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Abstract
Adversarial camouflage is a widely used physical
attack against vehicle detectors for its superiority
in multi-view attack performance. One promis-
ing approach involves using differentiable neu-
ral renderers to facilitate adversarial camouflage
optimization through gradient back-propagation.
However, existing methods often struggle to cap-
ture environmental characteristics during the ren-
dering process or produce adversarial textures that
can precisely map to the target vehicle, result-
ing in suboptimal attack performance. Moreover,
these approaches neglect diverse weather condi-
tions, reducing the efficacy of generated camou-
flage across varying weather scenarios. To tackle
these challenges, we propose a robust and ac-
curate camouflage generation method, namely
RAUCA. The core of RAUCA is a novel neu-
ral rendering component, Neural Renderer Plus
(NRP), which can accurately project vehicle tex-
tures and render images with environmental char-
acteristics such as lighting and weather. In ad-
dition, we integrate a multi-weather dataset for
camouflage generation, leveraging the NRP to en-
hance the attack robustness. Experimental results
on six popular object detectors show that RAUCA
consistently outperforms existing methods in both
simulation and real-world settings.

1. Introduction
Deep Neural Networks (DNNs) have achieved remarkable
performance in many real-world applications such as face
recognition and autonomous vehicles (Krizhevsky et al.,
2012; Wang et al., 2023; Chai et al., 2021). However, DNNs
suffer from adversarial examples (Szegedy et al., 2014). For
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Figure 1. Comparison of different adversarial camouflage under
sunny (first row) and foggy (second row) environments, where
only our method succeeds in both cases. (a) A car with normal
texture; (b) DAS (Wang et al., 2021). (c) and (d) are top-performed
methods FCA (Wang et al., 2022) and ACTIVE (Suryanto et al.,
2023), respectively. (e) Our method RAUCA.

instance, in the task of vehicle detection, adversarial inputs
can deceive detection models, leading to incorrect detection
of the surrounding vehicles, which poses a severe threat to
the safety of autonomous vehicles.

Adversarial examples can be categorized into digital and
physical adversarial types. Digital adversarial examples in-
volve introducing pixel-level perturbations to the model’s
digital input, while physical ones manipulate real-world
objects or surroundings, indirectly influencing the model
inputs (Chen et al., 2018; Sharif et al., 2016a; Mahendran
& Vedaldi, 2015). Physical adversarial examples are gen-
erally deemed more practical, as gaining direct access to
the model’s input often necessitates system authentication.
However, they are inherently more challenging as they must
prove effective in complex physical environments, including
various viewing perspectives, spatial distances, and light-
ing/weather conditions.

This paper focuses on physical adversarial examples against
vehicle (e.g., car) detection models, given their wide adop-
tion in autonomous driving scenarios where safety is of
great importance. To ensure the attack effectiveness across
various viewing angles, current methods prefer generating
adversarial camouflage capable of covering the entire sur-
face of the vehicle (Wang et al., 2021; 2022; Suryanto et al.,
2022; 2023). Top-performing methods achieve this by lever-
aging a differential neural renderer. This renderer maps
the 3D vehicle and its texture to 2D images, establishing
a differentiable path between the 3D vehicle and the vehi-
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cle detection models. Thus, the texture can be optimized
through gradient back-propagation for effective camouflage
generation.

In the literature, there are two ways to generate camouflage
with a neural renderer: one way is to optimize a 2D square
texture pattern and project it onto the vehicle repeatedly,
referred to as world-align-based methods; the other is to
optimize the 3D texture of the vehicle in the form of UV-
maps, referred to as UV-map-based method. However, both
approaches currently suffer from certain issues. The for-
mer method cannot guarantee the texture pattern projected
onto the car in the same manner in both texture genera-
tion and evaluation, leading to differences in adversarial
camouflage between generation and evaluation. The latter
UV-map-based render methods are not capable of rendering
sophisticated environment characteristics such as light and
weather, leading to sub-optimal camouflage generation. Be-
sides, all current methods fail to consider the effectiveness
of the camouflage under various weather conditions. As
shown in Figure 1, the camouflage generated by the top-
performed FCA (Wang et al., 2022) and ACTIVE (Suryanto
et al., 2023) methods fails to attack the detector in a foggy
scene.

To address the above issues, we develop a novel adversarial
camouflage generation framework against vehicle detectors.
Our key insight is that, for successful physical attacks, the
generated camouflage must accurately map onto the vehi-
cle. Additionally, the camouflage needs to be robust under
different environmental conditions. Achieving the first goal
necessitates an end-to-end optimization of the camouflage.
The second goal requires a dataset encompassing ample en-
vironmental effects and also requires that these effects can
be successfully utilized for camouflage optimization. To ful-
fill these objectives, we leverage the UV-map-based neural
renderer for accurate texture optimization. We adapt this
renderer to achieve photo-realistic rendering of the target
vehicle. Furthermore, we augment the dataset used for cam-
ouflage generation to include diverse weather conditions.
This enhanced dataset, combined with the refined renderer,
facilitates the generation of effective camouflage.

Our contributions can be summarized as follows:

• We present the Robust and Accurate UV-map-based
Camouflage Attack (RAUCA), a framework for gener-
ating physical adversarial camouflage against vehicle
detectors. It enhances the effectiveness and robustness
of the adversarial camouflage through a novel render-
ing component and a multi-weather dataset.

• We propose the Neural Renderer Plus (NRP), a novel
neural rendering component that allows for the opti-
mization of textures that can be accurately mapped to
vehicle surfaces and can render images with environ-

mental characteristics such as lighting and weather.

• We incorporate a multi-weather dataset with ample
environmental effects into the camouflage generation
process. Our experiments show that the use of this
dataset substantially enhances the attack robustness
when using NRP for rendering.

Our extensive studies demonstrate that our method outper-
forms the current state-of-the-art method by around 10%
in car detection performance (e.g., AP@0.5). Our attacks
achieve strong robustness and effectiveness, excelling in
multi-weather, multi-view, and multi-distance conditions.
We also demonstrate our method is effective in various
weather conditions in the physical world. Our code is avail-
able at: https://github.com/SeRAlab/Robust-and-Accurate-
UV-map-based-Camouflage-Attack.

2. Related work
Physical Adversarial Attack: Physical adversarial attacks
need to consider the robustness of the attacks because the
objects and the environment are not constant. The Expec-
tation over Transformation (EoT) (Athalye et al., 2018) is
a prime method of generating robust adversarial examples
under various transformations, such as lighting conditions,
viewing distances, angles, and background scenes. As a
result, many adversarial camouflage methods (Zhang et al.,
2019; Wu et al., 2020; Wang et al., 2021; 2022; Suryanto
et al., 2022; 2023) employ EoT-based algorithms to enhance
their attack robustness in the real world scenarios.

Adversarial Camouflage: For self-driving cars, precise
detection of surrounding vehicles is a critical safety require-
ment. Consequently, there has been a growing interest in
developing adversarial vehicle camouflage to evade vehicle
detection systems. Current research works mostly leverage
a 3D simulation environment to obtain 2D rendered vehi-
cle images with various transformations such that they can
obtain robust adversarial camouflage. The early researches
of adversarial camouflage for vehicles are mostly black-box
methods because the rendering process in the simulation
environment is non-differentiable. Zhang et al. (2019) first
conducts experiments in the 3D space to generate adversar-
ial camouflage for cars. They propose CAMOU, a method
to train an approximate gradient network to mimic the be-
havior of both rendering and detection of the camouflage
vehicles. Then, they can optimize the adversarial texture
using this network. Meanwhile, Wu et al. (2020) propose
an adversarial camouflage generation framework based on
a genetic algorithm to search an adversarial texture pattern.
Then, they repeat the optimized texture pattern to build the
3D texture that covers the full-body vehicle.

Recent methods introduce neural renderers, which enable
differentiable rendering. With this technique, the adversar-
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ial texture can be optimized via gradient back-propagation.
Two primary methods are employed in adversarial camou-
flage generation with neural renderer. One is to optimize
a 3D model texture directly, which we refer to as UV-map-
based camouflage methods; for example, Wang et al. (2021)
propose a Dual Attention Suppression (DAS) attack, which
minimizes the model attention and human attention on the
camouflaged vehicle. Besides, Wang et al. (2022) propose
the Full-coverage Camouflage Attack (FCA), which opti-
mizes full-body surfaces of the vehicle in multi-view sce-
narios. The other is to optimize a 2D square texture pattern
and then project it repeatedly to the target vehicle surface,
which we refer to as world-align-based camouflage meth-
ods. Suryanto et al. (2022) present the Differentiable Trans-
former Attack (DTA), which proposes a differentiable ren-
derer that can express physical and realistic characteristics
(e.g., shadow). ACTIVE, proposed by Suryanto et al. (2023),
introduces a texture mapping technique that utilizes depth
images and improves the naturalness of the camouflage by
using larger texture resolution and background colors.

While prior neural-renderer-based methods have achieved
impressive attack success rates, they typically struggle to
capture the environmental characteristics such as shadow
or produce adversarial camouflage that can precisely map
to the target vehicle, resulting in sub-optimal camou-
flage. Moreover, these methods frequently overlook diverse
weather conditions during the generation of adversarial cam-
ouflage, hindering the effectiveness of the camouflage in
varying weather environments.

3. Method
In this section, we present the overview of our framework
for generating adversarial camouflage. Subsequently, we
provide an in-depth explanation of the essential components
comprising our attack framework, RAUCA.

3.1. Overview

Figure 2 shows our entire framework for adversarial camou-
flage generation. Firstly, we modify the weather parameters
in the simulation environment to obtain a multi-weather
vehicle dataset (Iin, Y , Φcam, M ), where Iin is the original
input images, Y is the ground truth labels, Φcam is the cam-
era pose parameters (position and angle) for viewing the car,
and M is the binary masks of Iin, where the target vehicle
areas are set to 0. With Iin and M , we can use:

Xref = Iin · (1−M) (1)
B = Iin ·M (2)

to obtain the foreground car images Xref and the ambient
background images B. Then, we use the Neural Renderer
Plus (NRP) N , our proposal neural rendering component,

to obtain the rendered 2D vehicle images Xren through

Xren = N (Msh, Tadv,Φcam, Xref ) , (3)

where Msh and Tadv are the 3D mesh and the UV tex-
ture map of the vehicle, respectively. To obtain the re-
alistic vehicle pictures, we apply a simple transformation
Iout = Xren+B to attach the foreground Xren to the corre-
sponding background. We then input Iout into the target de-
tector D and obtain the detection results with R = D(Iout).

Our framework aims to generate adversarial camouflages
for vehicles to evade the detection of the vehicle detector.
We can obtain the final adversarial camouflage through the
solution of a specific optimization problem denoted as

argmax
Tadv

L (D (N (Msh, Tadv,Φcam, Xref ) +B) , Y ) ,

(4)

where L is our proposal loss function.

3.2. Multi-Weather Dataset

According to Athalye et al.’s EOT study (Athalye et al.,
2018), adding various weather conditions to training data
notably boosts attack robustness. Nevertheless, real-world
multi-weather dataset collection is hindered by high labor
expenses, weather’s inherent unpredictability, and difficul-
ties in getting the mask M of the vehicle.

To address the above difficulties, we use CARLA (Doso-
vitskiy et al., 2017), an autonomous driving simulation en-
vironment based on Unreal Engine 4 (UE4), to obtain the
multi-weather dataset. Modifying the weather and time pa-
rameters with CARLA API to simulate different weather and
light environment conditions is convenient. Moreover, with
its built-in semantic segmentation camera, we can accurately
and conveniently segment foreground and background.

In the assembly of the Multi-Weather Dataset, as shown in
Figure 2, we strategically vary the sun altitude angle and fog
density to simulate different weather conditions. The sun
altitude angle is instrumental in modulating the intensity of
sunlight within the environment, which in turn influences
the light’s interaction with the vehicle’s camouflage. This
variation in lighting can significantly affect the visibility
and effectiveness of the camouflage. Concurrently, the den-
sity of fog, a critical environmental parameter, determines
the extent to which the vehicle’s surface is obscured. At
specific densities, fog can effectively render parts of the
texture partially or entirely invisible, a factor that is crucial
in determining the success of adversarial textures.

3.3. Neural Render Plus (NRP)

In the rendering phase, we introduce NRP, a novel rendering
component that mitigates the limits of the previous neural-
renderer-based camouflage methods. The world-align-based
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Figure 2. The overview of RAUCA. First, a multi-weather dataset is created using CARLA, which includes car images, corresponding
mask images, and camera angles. Then the car images are segmented using the mask images to obtain the foreground car and background
images. The foreground car, together with the 3D model and the camera angle is passed through the NRP rendering component for
rendering. The rendered image is then seamlessly integrated with the background. Finally, we optimize the adversarial camouflage
through back-propagation with our devised loss function computed from the output of the object detector.

Figure 3. Comparison of rendering results of neural renderers used
in different methods. The first row shows the results obtained by
different neural renderers (already blended with the background)
and the second row shows the rendered results in UE4. Our ren-
derer is the only one that does both foreground environment ren-
dering and texture rendering similar to UE4.

methods cannot accurately wrap the adversarial camouflage
to the vehicle surface, which might weaken its attack perfor-
mance in the real world. Hence, we choose a UV-map-based
neural renderer to avoid this issue. However, the UV-map-
based methods struggle to render the environmental char-
acteristics on the vehicle surface, resulting in unrealistic
rendered images. Therefore, we introduce the environment
feature extractor that can combine the environmental char-
acteristics and neural renderer output to obtain a realistic
and accurate image of the camouflaged vehicle.

Following (Wang et al., 2021; 2022), we use Neural Ren-
derer (NR) (Kato et al., 2018) , whose input are 3D mesh
Msh, adversarial texture Tadv and camera angle Φcam, to
generate a rendered image of camouflaged vehicle. How-
ever, NR uses its own light source during rendering, which
makes it impossible to render complex environmental char-
acteristics similar to UE4. To amend this, we adopt the
method proposed in DTA and ACTIVE (Suryanto et al.,

2022; 2023), introducing an encoder-decoder network to
extract the environmental characteristics Xref . Since the
NR’s output Xnr already encompasses the shape, rotation,
and texture transformation of the vehicle, our network only
needs to learn the transformation of environmental charac-
teristics. We call this network as Environment Feature Ex-
tractor (EFE). EFE’s outputs are two maps of environment
features EF. We can fuse them with Xnr through pixel-by-
pixel multiplication and addition to get Xren, an image of a
textured vehicle with environmental characteristics.

Before applying the framework to generate adversarial tex-
tures, NRP needs to be trained in advance to optimize the
parameters of EFE. The NRP training process inputs the
masked images of the white car Xref , 3D mesh Msh, poses
of the camera Φcam, and multiple preset 3D texture T with
different colors. At the same time, we need to obtain images
of different vehicle colors based on Φcam and the colors of
T from the photo-realistic renderer. Then, we cut out the
vehicle parts as the network output target TG.

For each iteration of the training process, we input xref ∈
Xref , Msh, T and φcam ∈ Φcam into NRP to get the
rendering result xren. To optimize the parameters of the
network, we compute the following loss function

LEFE(xref ) = W (xref )BCE (xren, tg) , (5)

where BCE is the binary cross-entropy loss, and W (xref ) =
h∗w
s is a weight function. h and w are the height and width

of xref and s is the number of pixel points in the vehicle
part of xref . We introduce W (xref ) to balance NRP’s
rendering optimization across various camera viewpoints.
The original BCE loss, calculated over the entire image,
unfairly prioritizes rendering when the car occupies a small
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area of the entire image. To address this, we multiply BCE
by W (xref ) to compute the difference over the vehicle area,
improving rendering performance for views where the car
occupies a small image area.

Compared to NR, the rendering component used in FCA
(Wang et al., 2022) and DAS (Wang et al., 2021), our NRP
considers the environmental characteristics to make the final
input image to the target detector more realistic. Compared
to neural renderers used in DTA and ACTIVE (Suryanto
et al., 2022; 2023), our rendering component can render the
adversarial camouflage based on UV mapping projection in-
stead of world-aligned projection, which makes our textures
more robust to multiple views. Moreover, our renderer has
a more accurate projection of the texture compared to DTN
and NSR, due to the use of NR for texture projection.

As shown in Figure 3, the renderings obtained by DTA
and ACTIVE's renderers have a noticeable difference in the
vehicle textures from that in UE4. Additionally, the FCA's
renderer is not able to represent the complexity of light and
shadow information, showing a clear difference between the
foreground and the background. In contrast, the result of
our rendering component is relatively accurate both in terms
of environmental characteristics and texture mapping.

3.4. Attack Loss

We propose a novel attack loss function that consists of two
key components for improving attack effectiveness. The first
component is the Intersection Over Union (IOU) between
the object detection model’s output detection box and the
ground-truth box; the second component comprises the class
confidence score and objectiveness score of the output. The
loss function is denoted as

Hd(x) = IoU (Hb (x) , gt) ∗Hc (x) ∗Ho (x)

Latk (x) = − log (1−max (Hd(x))) , (6)

where x is the input image of the target detector, Hb(x) is
the detection bounding box, gt is the ground-truth box and
IoU (Hb(x), gt) is the Intersection over Union (IoU) be-
tween Hb(x) and gt. We use IoU (Hb(x), gt) as a weight
term, which allows the optimized loss function to focus
more on the bounding box with a larger intersecting ratio
area with gt. Ho(x) and Hc(x) represent the objectiveness
score and the car class confidence score for the bounding
box, respectively. Hd (x ) is our detection score, which
is the product of the objectiveness confidence, class confi-
dence, and the intersect ratio. Due to IoU (Hb(x), gt), we
only assign a non-zero detection score to the detected boxes
which are intersected with the ground-truth box. This makes
the texture optimization focus on making the target vehicle
detection ineffective. We select the highest Hd(x) and use
it to compute Latk(x) through a log loss. By minimizing
Latk(x), we can make the camouflaged vehicle misclassi-

fied or undetected by the object detector.

3.5. Smooth Loss

To ensure the smoothness of the generated texture for human
vision, we follow (Sharif et al., 2016b) to utilize smooth loss
Lsm to enhance texture consistency. We use the output of
NRP xren to compute for texture smoother in natural light
and shadow. The smooth loss function can be defined as:

Lsm =
∑
i,j

(xi,j − xi+1,j)
2
+ (xi,j − xi,j+1)

2
, (7)

where xi,j is the pixel value of xren at coordinate (i, j).

Finally, our loss function Ltotal can be summarized as

Ltotal = αLatk + βLsm, (8)

where α, β are the hyperparameters to control the contribu-
tion of each loss function.

4. Experiments
In this section, we first describe our experimental settings.
Then we evaluate the attack effectiveness of our adversarial
camouflage in both simulated and physical environments.

4.1. Experimental Settings

Datasets: We utilize CARLA to generate datasets in our
experimentation. To facilitate a comparative analysis with
previous studies (Wang et al., 2021; 2022; Suryanto et al.,
2022; 2023), we select the Audi E-Tron as the target vehicle
model. We create datasets using various simulation settings.
For NRP training and testing, we utilized 69,120 and 59,152
photo-realistic images encompassing 16 distinct weather
conditions, respectively. These conditions are a combination
of four sun altitudes and four fog densities. Additionally, we
generate a set of 40,960 images for our texture generation
and prepare 7593 images for each adversarial camouflage in
robust evaluation. The weather conditions present in these
two datasets are the same conditions employed during the
training and testing of NRP. For transferability evaluation,
we utilize an “unseen-weather dataset” consisting of 7593
images in 16 novel weather conditions that are not seen
during the texture generation phase. Moreover, we conduct
experiments in the real world by printing five types of ad-
versarial camouflages and sticking them to the 1:12 Audi
E-Tron car models. We shoot 432 photos under different
light conditions and 120 photos in a foggy environment for
each model. Additional information regarding the construc-
tion process of the datasets can be found in the appendix.

Compared methods: We compare our framework with
the state-of-the-art adversarial camouflage methods: DAS
(Wang et al., 2021), FCA (Wang et al., 2022), DTA
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(Suryanto et al., 2022), and ACTIVE (Suryanto et al., 2023).
Both DAS and FCA are UV-map-based methods. They
optimize the 3D texture by minimizing the attention-map-
based scores and the detection scores of the detection model,
respectively. Meanwhile, DTA and ACTIVE are both world-
align-based methods. They optimize a square texture pattern
with a neural network that can project the texture onto the
target object, whereas ACTIVE uses a projection network
that is closer to the world-aligned projection in UE4. We
compare our results using the official carefully optimized
textures generated by these methods. Given the similarity in
experimental setups between our approach and DAS/FCA,
as well as the generality of the textures generated by DTA
and ACTIVE, we consider that the comparison is fair.

Evaluation metrics: To evaluate the NRP rendering compo-
nent, Mean Absolute Error (MAE) is computed to quantify
the difference between the output of NRP and the estab-
lished ground truth, particularly within the vehicle region.
Furthermore, we evaluate the attack effectiveness of the ad-
versarial camouflage with the AP@0.5 (Everingham et al.,
2015), a standard benchmark reflecting both the recall and
precision value when the detection IOU threshold is 0.5.

Target detection models: Aligning with previous stud-
ies, we adopt YOLOv3 (Redmon & Farhadi, 2018) as the
white-box target detection model for adversarial camou-
flage generation. To evaluate the effectiveness of the opti-
mized camouflage, we utilize a suite of widely used object
detection models, treated as black-box models except for
YOLOv3. This suite includes YOLOX (Ge et al., 2021),
Deformable DETR (DDTR) (Zhu et al., 2021), Dynamic R-
CNN (DRCN) (Zhang et al., 2020), Sparse R-CNN (SRCN)
(Sun et al., 2021), and Faster R-CNN (FrRCNN) (Ren et al.,
2017), all of which are pretrained on the COCO dataset and
implemented in MMDetection (Chen et al., 2019).

Training details: We utilize the Adam optimizer with a
learning rate of 0.01 for NRP training and texture generation.
We train the NRP over a span of 20 epochs and select the
model exhibiting the best performance on the testing dataset.
Aligning with Wang’s study (2022), we configure the α and
β (See Eq. 8) values at 1 and 0.0001, respectively. We
directly obtain the mask of the vehicle from the semantic
segmentation camera feature in CARLA (Dosovitskiy et al.,
2017). During the adversarial camouflage generation phase,
the camouflage texture is initialized randomly and trains
with five epochs. We conduct experiments on a cluster with
four NVIDIA RTX 3090 24GB GPUs.

4.2. Evaluation in Physically-Based Simulation Settings

In this section, we conduct a comparative analysis of
RAUCA against current advanced adversarial camouflage
attack methods, including DAS, FCA, DTA, and ACTIVE.

Table 1. Comparison of the effectiveness of camouflages across
various object detection models. Values are AP@0.5 (%) of the
car.

METHODS
SINGLE-STAGE TWO-STAGE

YOLOV3 YOLOX DDTR DRCN SRCN FRRCN

NORMAL 0.70 0.899 0.780 0.784 0.785 0.761
RANDOM 0.623 0.812 0.581 0.670 0.659 0.652
DAS 0.638 0.875 0.707 0.709 0.710 0.710
FCA 0.555 0.795 0.555 0.655 0.619 0.654
DTA 0.507 0.692 0.341 0.592 0.461 0.534
ACTIVE 0.439 0.625 0.384 0.513 0.464 0.496

RAUCA 0.304 0.611 0.285 0.449 0.384 0.406

Robustness in multi-weather dataset: We run an extensive
attack comparison using diverse detection models. In addi-
tion to YOLOv3, we also use various black-box detection
models to evaluate the camouflage. The results are shown
in Table 1, showing that RAUCA has the best performance
on all models. DAS generally performs less effectively,
primarily due to the limitations of partially painted camou-
flage. Meanwhile, FCA exhibits sub-optimal performance,
only slightly better than random camouflage, because it is
not capable of rendering sophisticated environment char-
acteristics during texture generation. DTA and ACTIVE
are also less effective than our method because they do not
consider multi-weather conditions during texture generation.
Besides, their texture projection is not consistent between
generation and testing. Our method demonstrates a nearly
13% improvement in attack effectiveness compared to other
models on the white-box YOLOv3 model. Additionally,
it achieves an improvement of around 8% on most other
black-box models. Figure 4 shows an example of different
vehicle camouflage at night: our method is still effective,
while other methods fail to attack.

Figure 6 shows the summarized performance of each cam-
era pose and weather parameter; values are car AP@0.5
averaged from the detectors used in Table 1. We can see
that the texture produced by our method outperforms other
approaches in most camera transformations and weather
conditions. Our method improves multi-view robustness
over previous methods in most viewpoints, thanks to the
UV mapping-based projection for our textures and effec-
tive rendering of the environmental characteristics in the
foreground. In addition, due to the incorporation of a multi-
weather dataset during camouflage generation, our method
is also the most robust in different weather environments.

Transferability in unseen-weather dataset: We further
evaluate the transferability of our camouflage under un-
seen weather conditions. As shown in Table 2, our method
achieves the best attack performance on all types of detec-
tors. Our method outperforms the previous state-of-the-
art method, ACTIVE, by 23% on the white-box model
YOLOv3, and approximately 11% on other black-box mod-
els. Our camouflage shows better attack performance under
new weather conditions than under the weather conditions
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Figure 4. Attack comparison at night, a weather condition that has
been included in our training set.

Figure 5. Attack comparison in the rainy day, a weather condition
that hasn’t appeared in our training set.
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Figure 6. Attack comparison on different camera poses and
weather parameters. “ele” denotes elevation, “azi” denotes az-
imuth, “dis” denotes distance, “fog” denotes fog density, and “sun”
denotes sun altitude angle. Values are car AP@0.5 (%) averaged
from all models.

Table 2. Attack comparison in unseen-weather dataset. Values are
the car AP@0.5 (%).

METHODS
SINGLE-STAGE TWO-STAGE

YOLOV3 YOLOX DDTR DRCN SRCN FRRCN

NORMAL 0.814 0.923 0.815 0.816 0.807 0.813
RANDOM 0.752 0.837 0.597 0.698 0.651 0.691
DAS 0.757 0.887 0.739 0.730 0.725 0.744
FCA 0.634 0.808 0.533 0.641 0.576 0.655
DTA 0.651 0.711 0.328 0.629 0.458 0.545
ACTIVE 0.594 0.643 0.372 0.533 0.446 0.513

RAUCA 0.369 0.608 0.272 0.426 0.349 0.395

used for texture generation. This highlights the transfer-
ability of our approach across diverse weather conditions.
Such good transferability stems from the use of the multi-
weather dataset with various fog levels and lighting con-
ditions for texture optimization. The dataset includes 16
different weather conditions, including extreme conditions,
such as dark light and dense fog. In the dense fog weather,
the vehicle camouflage is heavily obscured but still effective
against detectors. The weather in real life is typically not so
extreme, so our camouflage can transfer well and achieve
effective attacking performance in the unseen conditions.

Figure 5 shows an example of different camouflage on rainy
days. Notice that rainy weather is excluded from texture

Table 3. Attack comparison under diverse real-world environmen-
tal conditions. Values are the car AP@0.5 (%) with YOLOv3.

METHODS
ENVIRONMENTAL CONDITION TOTAL

NOON AFTERNOON NIGHT FOG

NORMAL 0.810 0.82 0.728 0.721 0.770
DAS 0.778 0.781 0.670 0.793 0.756
FCA 0.488 0.547 0.462 0.473 0.493
DTA 0.382 0.438 0.379 0.158 0.339
ACTIVE 0.253 0.264 0.242 0.163 0.231

RAUCA 0.252 0.191 0.137 0.200 0.195

generation. Even though the rain blurs part of the texture,
RAUCA uniquely succeeds in attacking the target detector.

4.3. Evaluation in Real-World Settings

In this section, we move our test to the real world. We
conduct experiments with five types of camouflage in multi-
light and foggy conditions to demonstrate the robustness of
our camouflage in different physical environments.

Robustness in multi-light conditions: We change the light-
ing conditions by taking photos at different times of the day.
We report the car AP@0.5 with YOLOv3. The results are
shown in Table 3, which shows our method achieves the
best attack performance in all light conditions. Although our
camouflage has a similar attack effectiveness to ACTIVE
at noon, it significantly outperforms all other methods, par-
ticularly under low-light conditions at night. We can see
that almost all of the adversarial camouflage, except DAS,
attack better in the real world than in the simulation world,
probably because our camera viewpoint chosen in the real
world is more susceptible to attacks. The first three rows of
Figure 7 show the sample prediction results at different light
conditions. Our method distinguishes itself as the only suc-
cessful approach to deceive the target detector consistently
across diverse lighting conditions in these examples.

Robustness in foggy conditions: We compare the effects of
various attack textures in real-world fog scenarios, simulated

7
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Figure 7. Real-world evaluation using five different types of camouflage in different environmental conditions.

Table 4. Comparing the impact W (xref ) on NRP training. Values
are Mean Absolute Error values between the output of NRP and
ground truth within the car area.

METHODS
DISTANCE

5 10 15 20

WITHOUT W (xref ) 7.22 6.91 7.14 6.76
WITH W (xref ) 6.50 5.51 5.53 5.23

using a smoke machine. The car AP@0.5 for YOLOv3 de-
tection is reported in the fifth column of Table 3. DTA, AC-
TIVE, and our method demonstrate increased effectiveness
in attacking, with DTA and ACTIVE slightly surpassing our
method. Given the challenge of maintaining consistent fog
density, we acknowledge this discrepancy and consider it
reasonable. Figure 7 provides examples of vehicle texture
detection in foggy environments. It is evident that both
DAS and FCA struggle to effectively attack the target detec-
tor, while DTA, ACTIVE, and RAUCA successfully induce
misclassification in the target detector’s output.

We average the detection results for all environmental cases,
and the results are in the last column of Table 3, which shows
that our method has the best attack results. It illustrates the
robustness of our method in different physical environments.

4.4. Ablation Studies

Effectiveness of the W (xref ) for NRP training: During
the training of the NRP, we utilize W (xref ), a weight func-
tion that deflates the loss according to the vehicle area in
the image, to balance NRP’s rendering optimization across
various camera viewpoints. In this section, we evaluate the
compact of W (Xref ) on the accuracy of NRP rendering.

We report the MAE values between the output of NRP and
ground truth within the car area. As shown in Table 4, the
incorporation of W (xref ) enhances the rendering capability
across all camera distances. Notably, we observe a more pro-
nounced improvement in rendering ability at longer camera
distances, aligning with our intended design expectations.

Effectiveness of the multi-weather dataset and NRP for
texture generation: We evaluate the effectiveness of incor-
porating multi-weather conditions into our dataset and our
proposed rendering component, NRP, for texture generation.
As can be seen in Table 5, we generate the camouflage ac-
cording to the four combinations ways. The single-weather
dataset in the table is identical to the multi-weather dataset,
except that the weather parameter is fixed to the default
value in Carla. We observe that the multi-weather dataset
and the NRP rendering component are crucial to improv-
ing attacks' performance. Specifically, the NRP rendering
component has the most significant impact on adversarial
camouflage effects, with an improvement of 0.34% under
the multi-weather dataset.

We also observe that when the framework employs NR as
the renderer, introducing multi-weather conditions for tex-
ture generation results in a slightly diminished attack perfor-
mance. This discrepancy may stem from NR’s limitations
in rendering comprehensive environmental characteristics.
The weather information in the multi-weather dataset can’t
be effectively incorporated into the foreground; instead, it
amplifies the contrast between the foreground and back-
ground. Consequently, the image obtained from the fusion
of the front and rear backgrounds becomes less realistic,
causing the texture optimization in the wrong direction.
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Table 5. The effectiveness of the multi-weather dataset and NRP
for texture generation. Values are car AP@0.5 (%) with YOLOv3.

TEX-GEN DATASET
RENDERER

NR NRP

SINGLE-WEATHER 0.60 0.42
MULTI-WEATHER 0.64 0.30

Table 6. The effectiveness of the different adversarial losses for
texture generation. Values are car AP@0.5 (%) with YOLOv3.

METHODS
SINGLE-STAGE TWO-STAGE

YOLOV3 YOLOX DDTR DRCN SRCN FRRCN

FCA LOSS 0.331 0.620 0.404 0.437 0.479 0.453
ACTIVE LOSS 0.348 0.625 0.344 0.439 0.462 0.424
RAUCA LOSS 0.304 0.611 0.285 0.449 0.384 0.406

Effectiveness of our adversarial loss for texture gener-
ation: In this section, we evaluate the effectiveness of our
designed adversarial loss function. We compare our adver-
sarial loss with the ones used in FCA and ACTIVE. All
these losses are calculated using the predicted detection
boxes: the object confidence, class confidence, and IOU be-
tween the detection box and the ground truth. The difference
between our designed loss function and FCA’s loss func-
tion is that FCA’s adversarial loss only considers the output
detection box where the ground-truth center is located. In
contrast, ours considers all of the detection boxes. It makes
the camouflage to attack a broader range of detection boxes,
preventing the target from being detected by boxes that do
not contain the center of the ground truth. Compared with
ACTIVE’s, our loss function incorporates the IOU value
into the calculation, which makes our camouflage optimiza-
tion focus more on confusing the detection boxes with a
large degree of intersection with the target. Moreover, un-
like minimizing the maximum confidence score across all
classes in ACTIVE’s adversarial loss function, we minimize
the maximum confidence score for the car class to achieve
a more substantial attack effect. The comparing results are
shown in Table 6. Values are the car AP@0.5. It can be
seen that our proposed adversarial loss function achieves
the strongest attack effect on most of the models.

Effectiveness of the smooth loss for texture generation:
We investigate the impact of the smooth loss on the attack
effectiveness of the generated camouflage. We vary the
hyperparameter of the smooth loss β; the results are shown
in Table 7. Values are the car AP@0.5. It can be seen that the
overall attack effectiveness is better than the previous state-
of-the-art ACTIVE method when β changes, demonstrating
the effectiveness of our generated camouflage.

5. Conclusion
We have proposed RAUCA, a UV-map-based physical adver-
sarial camouflage attack framework with a realistic neural

Table 7. The effectiveness of the smooth loss for texture generation.
Values are car AP@0.5 (%) with YOLOv3.

METHODS
SINGLE-STAGE TWO-STAGE

YOLOV3 YOLOX DDTR DRCN SRCN FRRCN

ACTIVE 0.439 0.625 0.384 0.513 0.464 0.496

β=0.0 0.343 0.619 0.307 0.454 0.419 0.431
β=0.0001 0.304 0.611 0.285 0.449 0.384 0.406
β=0.0003 0.341 0.626 0.337 0.460 0.404 0.427

renderer and incorporating multi-weather cases. In particu-
lar, we utilize our novel neural render component, namely
NRP, which offers the advantages of precise texture map-
ping and the ability to render environment characteristics.
Additionally, we incorporate a multi-weather dataset dur-
ing camouflage generation to further enhance its robustness.
Our experiments demonstrate that RAUCA outperforms the
existing works under multi-weather situations, making it
more robust in both simulation and physical world settings.
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A. Datasets
This section presents the parameters of all of the datasets in our experiments.

For NRP model training and testing: We collect vehicle datasets in the CARLA simulation environment under 16 weather
conditions. These weather conditions are generated by combining four sun altitude angles (-90◦, -30◦, 30◦, 90◦) with four
fog densities (0, 25, 50, 90). Within each weather scenario, we randomly choose 30 locations for model training and 3
for testing. For each car location, imagery is acquired at two azimuth angles (0◦, 45◦), two altitude angles (22.5◦, 67.5◦),
and four distances (5m, 10m, 15m, 20m). In terms of color paint for the vehicle, nine vehicle colors are utilized during
training(red, green, blue, magenta, yellow, cyan, white, and black and grey ), and 64 vehicle colors (RGB values are taken
from [0, 85, 170, 255] respectively) for testing. In summary, we employ 69,120 photo-realistic images for model training
(consisting of 16 weather conditions × 30 car locations × 16 camera poses × 9 colors) and 49152 for testing (consisting of
16 weather conditions × 3 car locations × 16 camera poses × 64 colors)

For texture generation and evaluation in physically-based simulation settings: For the generation of adversarial
camouflage, we choose the same 16 weather combinations as NRP training. For evaluation in physically-based simulation,
we produce two datasets: one with the same weather combinations as the training set and the other featuring 16 novel
weather conditions that are not seen during the texture generation, including diverse scenarios like MidRainyNight and
DustStorm. We use the former dataset for robust evaluation and the latter for transferability evaluation. Within each weather
scenario, we randomly choose 20 locations for texture generation and 4 distinct locations for each test dataset. For each car
transformation, imagery is captured at every 45-degree increment in azimuth angle, spanning four distinct altitude angles
(0.0◦, 22.5◦, 45.0◦, 67.5◦) and four varying distances (5m, 10m, 15m, 20 m) for each. In summary, we employ 40,960
photo-realistic images for model training (consisting of 16 weather conditions × 20 car locations × 128 camera poses × 1
colors) and 7593 for each test dataset (consisting of 16 weather conditions × 4 car locations × 128 camera poses × 1 colors
and obliterating the images of the car entirely obscured by the obstacle).

For evaluation in the real world settings: We print our texture and adversarial texture from DAS (Wang et al., 2021), FCA
(Wang et al., 2022), DTA (Suryanto et al., 2022) as well as ACTIVE (Suryanto et al., 2023) and stick them on official 1:12
Audi E-Tron vehicle models. For the adversarial texture generated by the UV-map-based method (DAS, FCA, and RAUCA),
we print it and paste it on the vehicle directly according to its corresponding position since it is in the form of a UV map.
For the world-align-based method (DTN and ACTIVE), since it generates a 2D square texture pattern, it cannot be directly
pasted like the UV-map-based camouflage. Hence, we adopt the implementation from previous methods: repeating and
enlarging the pattern, printing it, and applying it to the entire vehicle. In addition to this, we also prepare an unpainted
vehicle. We shoot these models in the real world with the Xiaomi 14 for comparison. To demonstrate the robustness of our
camouflage in physical multi-light conditions, we capture photos at different times to change the light condition. We take
2592 pictures of six cars with poses of 3 distances (5cm, 10cm, 15cm), 8 azimuths per 45◦, and 3 altitude angles (0◦, 30◦,
60◦), as well as at two locations (an asphalt road and an open square) at noon, in the afternoon, and at night . Moreover, we
evaluate textures’ effectiveness in the presence of fog in the real world. We use a smoke machine to simulate the foggy
environment on the imitated road on the desktop. We capture pictures of six cars at every 45-degree increment in azimuth
angle, 3 altitude angles (0◦, 30◦, 60◦). We take five consecutive pictures for the same camera angle with each car to reduce
the unfairness caused by the randomness of the fog. Finally, we obtained 720 pictures for comparison.
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