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Abstract
Curriculum learning is a training paradigm where
machine learning models are trained in a mean-
ingful order, inspired by the way humans learn
curricula. Due to its capability to improve model
generalization and convergence, curriculum learn-
ing has gained considerable attention and has
been widely applied to various research domains.
Nevertheless, as new curriculum learning meth-
ods continue to emerge, it remains an open is-
sue to benchmark them fairly. Therefore, we de-
velop CurBench, the first benchmark that supports
systematic evaluations for curriculum learning.
Specifically, it consists of 15 datasets spanning 3
research domains: computer vision, natural lan-
guage processing, and graph machine learning,
along with 3 settings: standard, noise, and im-
balance. To facilitate a comprehensive compar-
ison, we establish the evaluation from 2 dimen-
sions: performance and complexity. CurBench
also provides a unified toolkit that plugs auto-
matic curricula into general machine learning pro-
cesses, enabling the implementation of 15 core
curriculum learning methods. On the basis of this
benchmark, we conduct comparative experiments
and make empirical analyses of existing methods.
CurBench is open-source and publicly available
at https://github.com/THUMNLab/CurBench.

1. Introduction
Throughout the development of machine learning, a large
number of works have been greatly influenced by human
learning. Curriculum learning is such a research topic within
machine learning that draws inspiration from a remarkable
aspect of human learning: curriculum, i.e., learning in a pur-
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poseful and meaningful order (Wang et al., 2021a; Soviany
et al., 2022). In contrast to conventional machine learn-
ing methods where training examples are randomly input,
curriculum learning aims to facilitate learning by gradu-
ally increasing the difficulty of data or tasks experienced
by the model (Bengio et al., 2009). Since this easy-to-hard
training paradigm is verified to bring the advantage of en-
hancing model generalization and accelerating convergence
speed (Gong et al., 2016; Weinshall et al., 2018), it has
aroused widespread interest among researchers in harness-
ing its potential across diverse application domains, such as
computer vision (CV) (Guo et al., 2018; Soviany et al., 2020;
Gui et al., 2017), natural language processing (NLP) (Pla-
tanios et al., 2019; Tay et al., 2019; Liu et al., 2018), graph
machine learning (Li et al., 2023; Wang et al., 2021b; Wei
et al., 2023; Qin et al., 2024; Yao et al., 2024), multimodal
learning (Lan et al., 2023; Chen et al., 2023; Zhou et al.,
2023), recommender systems (Chen et al., 2021b;a; Wu
et al., 2023; Wang et al., 2023a), reinforcement learning
(RL) (Florensa et al., 2017; Narvekar et al., 2017; Ren et al.,
2018b), and others (Zhang et al., 2022; Zhou et al., 2022b).

Despite the significant progress and the wide application
of curriculum learning, the increasing number of works
has posed challenges in terms of their comparison and
evaluation, mainly due to the differences in their experi-
mental setups including datasets, backbone models, and
settings. For instance, DCL (Saxena et al., 2019) and
DDS (Wang et al., 2020) use the same WideResNet-28-
10 model (Zagoruyko & Komodakis, 2016), but perform
experiments on different datasets: CIFAR-100 and CIFAR-
10 (Krizhevsky et al., 2009) respectively. Similarly, DI-
HCL (Zhou et al., 2020) and CBS (Sinha et al., 2020) lever-
age the same ImageNet (Deng et al., 2009) dataset, but
employ distinct models: ResNet-50 and ResNet-18 (He
et al., 2016) respectively. Furthermore, while MCL (Zhou
& Bilmes, 2018) and LRE (Ren et al., 2018a) utilize the
same MNIST dataset and LeNet model (LeCun et al., 1998),
they adopt different settings: standard and imbalanced la-
bels respectively. Consequently, their experimental results
cannot be compared directly, which makes it challenging
to conduct a fair evaluation. The absence of a standardized
evaluation not only hinders researchers from accurately as-
sessing their own contributions when they propose a new
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Domain

CV NLP Graph

Backbone Model

Convolution Recurrent Attention

Setting

Standard Noise Imbalance

Evaluation

Performance Complexity

Dataset Metrics

CIFAR-10 Accuracy

MRPC F1 Score

STS-B Spearman Correlation

Time (h) Memory (MB)

0.3 15

1.6 200

14 3,345

Class 0

Class 1

Class 2
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Class 2

Class 0
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Figure 1. CurBench includes 15 datasets spanning 3 research domains, 9 backbone models, 3 training settings, and 2 evaluation dimensions,
providing a comprehensive benchmark for existing curriculum learning methods.

method but also poses barriers for users when they seek a
suitable method for their specific tasks.

To deal with this issue, researchers have made notable ef-
forts to evaluate and summarize existing works. From a
theoretical perspective, there have been surveys covering
general curriculum learning (Wang et al., 2021a; Soviany
et al., 2022) as well as specific ones for graph (Li et al.,
2023) and RL (Narvekar et al., 2020; Portelas et al., 2020),
all of which manage to formulate and categorize relevant
methods comprehensively. Although they offer valuable
theoretical insights, current surveys do not incorporate any
practical implementation or experimental results. From an
empirical perspective, there has been an open-source library
on curriculum learning (Zhou et al., 2022a), which repro-
duces multiple related methods through a unified framework.
Although it provides empirical results of the implemented
methods, this library only supports the classification task on
CIFAR-10, limited in experimental setups. In conclusion,
the related works fail to address the open issue of evaluating
and comparing curriculum learning methods completely.

In order to address the absence of benchmarks in this field,
we propose CurBench, the first benchmark for systematic
evaluations of curriculum learning, as shown in Figure 1.
Concretely, it encompasses 15 prevalent datasets, spanning
3 research domains including CV, NLP, and graph to en-
sure the reliability of evaluation. These datasets are further
preprocessed into 3 settings including standard, noise, and
imbalance to reveal the capability of methods to enhance
model generalization and robustness. Without loss of gen-
erality, a total of 9 prevalent backbone models of varying
types and scales adapted to the above datasets are employed
in an appropriate manner, incorporating corresponding hy-
perparameters, optimizers, and so on. Most of the datasets,
settings, and models are commonly used in previous re-

lated works, while the rest are supplemented in this work
to investigate how these methods can adapt to the tasks in
other domains. For ease of use, this benchmark also pro-
vides a unified toolkit that plugs automatic curricula into
general machine learning processes and reproduces a collec-
tion of 15 core curriculum learning approaches. Based on
these implementations in CurBench, we further perform a
comprehensive evaluation from 2 dimensions including per-
formance and complexity, presenting the improvements the
methods bring and the additional resources they consume.

Furthermore, we delve into our benchmark, organize exper-
imental outcomes, conduct in-depth analyses, and obtain
some intriguing findings. First, there has been no such
method that outperforms others all the time, and the effec-
tiveness depends on specific scenarios. Second, curriculum
learning brings more significant improvements in noise set-
tings than in standard and imbalance ones. Third, methods
by teacher transferring have edges in noise settings, while
methods by reweighting perform relatively well in imbal-
ance settings. Lastly, methods involving gradient calculation
and extra learnable networks generally have higher time and
space complexity.

Our contributions are summarized as follows:

• We propose CurBench, the first benchmark on curricu-
lum learning to the best of our knowledge.

• We conduct extensive experiments to impartially eval-
uate and compare the performance and complexity of
existing curriculum learning methods under various
experimental setups.

• We make in-depth analyses and demonstrate intriguing
observations on curriculum learning based on empirical
results derived from CurBench.
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Domain Dataset Setting Training Validation Test Class Metrics

CV

CIFAR-10 Standard / Noise-0.4 45,000 5,000 10,000 10 Accuracy
Imbalance-50 12,536 5,000 10,000 10 Accuracy

CIFAR-100 Standard / Noise-0.4 45,000 5,000 10,000 100 Accuracy
Imbalance-50 12,536 5,000 10,000 100 Accuracy

Tiny-ImageNet Standard / Noise-0.4 90,000 10,000 10,000 200 Accuracy
Imbalance-50 22,700 10,000 10,000 200 Accuracy

NLP

RTE Standard / Noise-0.4 2,490 277 - 2 Accuracy
MRPC Standard / Noise-0.4 3,668 408 - 2 F1 Score
STS-B Standard / Noise-0.4 5,749 1,500 - 6 Spearman
CoLA Standard / Noise-0.4 8,551 1,043 - 2 Matthews
SST-2 Standard / Noise-0.4 67,349 872 - 2 Accuracy
QNLI Standard / Noise-0.4 104,743 5,463 - 2 Accuracy
QQP Standard / Noise-0.4 363,846 40,430 - 2 F1 Score
MNLI-(m/mm) Standard / Noise-0.4 392,702 9,815/9,832 - 3 Accuracy

Graph

MUTAG Standard / Noise-0.4 150 19 19 2 Accuracy
PROTEINS Standard / Noise-0.4 890 111 112 2 Accuracy
NCI1 Standard / Noise-0.4 3,288 411 411 2 Accuracy
ogbg-molhiv Standard / Noise-0.4 32,901 4,113 4,113 2 ROC-AUC

Table 1. The statistics of 15 datasets adopted in CurBench, which covers a wide range of scales across 3 research domains in 3 settings.
“Spearman” and “Matthews” refers to the correlation coefficient. “Noise-0.4” means 40% data samples are independently attached with
random incorrect labels. “Imbalance-50” means a ratio of 50 between the number of samples in the largest class and that in the smallest
class in a long-tailed dataset where the number of samples for each class follows a geometric sequence. The imbalance setting is not
applied to NLP and graph datasets, which are imbalanced originally.

2. Related Work
2.1. Curriculum Learning

Curriculum learning, much like many other topics in ma-
chine learning, draws inspiration from human learning. It
refers to a training strategy where models learn from input
data in a meaningful order, imitating the way humans learn
from curricula. The emergence of this idea could at least
be traced back to Elman’s work (Elman, 1993) in 1993,
which advocated the importance of starting small. In 2009,
Bengio et al. (Bengio et al., 2009) first introduced a formal
definition of curriculum learning and explored when, why,
and how a curriculum could benefit machine learning. In
the early stages, curricula for models were entirely prede-
fined by humans, and the most typical method was named
Baby Step (Spitkovsky et al., 2010). However, this type
of predefined approach is not flexible and general enough
for widespread applications. In 2010, Kumar et al. (Kumar
et al., 2010) proposed self-paced learning (SPL), enabling
automatic curriculum scheduling by ordering data according
to their training loss. Subsequently, a variety of automatic
curriculum learning methods have continued to emerge. For
example, transfer learning methods (Weinshall et al., 2018;
Hacohen & Weinshall, 2019) employ teacher models to of-
fer student models curricula. Reinforcement learning meth-
ods (Graves et al., 2017; Matiisen et al., 2019; Zhao et al.,
2020) allow teacher models to adapt curriculum based on

the feedback from student models. In addition, there are
other ones based on Bayesian optimization (Tsvetkov et al.,
2016), meta-learning (Ren et al., 2018a; Shu et al., 2019),
and adversarial learning (Zhang et al., 2020) for implement-
ing automatic curriculum learning.

2.2. Summative Work on Curriculum Learning

To the best of our knowledge, CurBench is the first bench-
mark on curriculum learning. Despite no related bench-
marks, there have been numerous efforts to investigate and
summarize the curriculum learning methods from different
perspectives. For example, Wang et al. (Wang et al., 2021a)
survey curriculum learning and propose a general frame-
work to cover the related methods by abstracting them into
two key components, i.e., a difficulty measurer to tell what
data or task is easy or hard to learn and a learning scheduler
to decide when to learn the easier or harder part, and further
categorize the methods according to the implementation of
these two components. Soviany et al. (Soviany et al., 2022)
also survey curriculum learning and propose a generic al-
gorithm for it based on the definition of machine learning,
i.e., data, modal, and task, and organize the methods ac-
cording to their application domains and tasks. Narvekar
et al. (Narvekar et al., 2020) survey the relevant methods
applied to RL and abstract them into three steps, i.e., task
generation, sequencing, and transfer learning. Portelas et
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al. (Portelas et al., 2020) also focus on curriculum learning
for RL, and classify the methods based on three questions,
i.e., why, what control, and what optimize. Li et al. (Li et al.,
2023) review the tailored methods for graph, and group
them according to the tasks, i.e., node-level, link-level, and
graph-level. However, these works only summarize and an-
alyze the methods from the theoretical aspect. On the other
hand, Zhou et al. (Zhou et al., 2022a) develop CurML, a
code library for curriculum learning, which designs a unified
framework for the reproduction and comparison of existing
methods from the empirical aspect. Nevertheless, it can
only conduct experiments on a single task within a specific
domain, significantly limiting its generality and reliability.
Therefore, it is necessary to develop a benchmark across di-
verse experimental setups for a fair, reliable, and systematic
study on curriculum learning.

3. Curriculum Learning Benchmark
In this section, we describe our design for the benchmark
in detail. First, we clarify the scope of this benchmark
in Section 3.1. Then, we introduce the adopted datasets
in Section 3.2, followed by the corresponding settings in
Section 3.3 and the backbone models in Section 3.4. Lastly,
we elaborate on the evaluation dimensions in Section 3.5.

3.1. Benchmark Scope

CurBench focuses on benchmarking existing prevalent cur-
riculum learning methods for supervised tasks in CV, NLP,
and graph domains. This is because CV and NLP are
representative research domains in machine learning, with
datasets in these areas frequently used to validate the perfor-
mance of curriculum learning methods, as shown in Table 6.
Graph data, being structured, differs from the unstructured
data of images and text, contributing to the diversity of
CurBench, and curriculum learning in the graph domain has
gained significant attention recently. Besides, the main chal-
lenge of the tasks included in CurBench lies in designing
appropriate curricula at the data level so that the models
can be guided to better cope with standard, noisy, and im-
balanced datasets. In contrast, the methods designed at the
task level and specifically targeting the RL domain are not
within the scope of this work. We plan to expand the scope
of CurBench in a future version, as stated in Section 6.

3.2. Dataset

Table 1 outlines the datasets included in CurBench, all of
which are publicly available and widely used in their respec-
tive domains. Besides, they vary in scale from hundreds of
samples to hundreds of thousands. A brief introduction to
the datasets and our preprocessing is listed as follows.

CV Domain: CIFAR-10 and CIFAR-100 (Krizhevsky et al.,

2009) consist of 32 × 32 × 3 color images in 10 and 100
classes respectively. Tiny-ImageNet (Le & Yang, 2015) is
a subset of the ILSVRC2012 version of ImageNet (Deng
et al., 2009) and consists of 64 × 64 × 3 down-sampled
images. Since the test set of Tiny-ImageNet is not released
with labels, we use the validation set as the test set. For
these 3 datasets, we split the original training set into a new
training set and a validation set with a 9:1 ratio.

NLP Domain: All 8 datasets are sourced from GLUE
(Wang et al., 2018), which is a collection of tools for evalu-
ating models across diverse natural language understanding
tasks. GLUE originally contains 9 datasets, and we fol-
low BERT (Devlin et al., 2018), excluding the problematic
WNLI set and using the remaining 8 datasets. Since the test
sets are not released with labels, we report the results on the
validation sets.

Graph Domain: The ogbg-molhiv dataset belongs to Open
Graph Benchmark (OGB) (Hu et al., 2020), a collection
of realistic, large-scale, and diverse benchmark datasets
for graphs. We strictly follow its origin split scheme, split
ratios, and metrics. The other 3 datasets come from TU-
Dataset (Morris et al., 2020), a collection that consists of
over 120 graph datasets of varying sizes from a wide range
of applications. Since there are no established training and
test set split, we randomly divide the original datasets into
training, validation, and test sets with an 8:1:1 ratio.

3.3. Setting

To robustly evaluate the curriculum learning methods, we
establish the 3 settings as follows.

Standard: After dividing the datasets into training, valida-
tion, and test sets as mentioned above, we do not perform
any further data processing.

Noise-p: We follow previous works (Zhang et al., 2016; Ren
et al., 2018a; Shu et al., 2019) and apply uniform noise by
independently changing the label of each sample in the train-
ing set to a random one with a probability of p ∈ (0.0, 1.0].
When p = 0, it degenerates to the standard setting.

Imbalance-r: We follow previous works (Cui et al., 2019;
Shu et al., 2019) to form a long-tailed dataset by reduc-
ing the number of samples per class in the training set.
Let c ∈ {0, 1, 2, ..., C − 1} be the class index, C be the
number of classes, nc be the number of samples in the
cth class, and then an originally balanced dataset satisfies
n0 ≈ n1 ≈ ... ≈ nC−1. We implement the imbalance
setting by requiring nc to follow the exponential function
nc = n0d

c where d ∈ (0, 1) and define the imbalance factor
r = n0 : nC−1 as the ratio between the number of samples
in the largest class and that in the smallest class. When
r = 1, it degenerates to the standard setting.
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Domain Model Mechanism Parameters

CV
LeNet Convolution ∼ 0.07M
ResNet-18 Convolution ∼ 11.2M
ViT Attention ∼ 9.6M

NLP
LSTM Recurrent ∼ 10.4M
BERT Attention ∼ 109M
GPT2 Attention ∼ 124M

Graph
GCN Convolution ∼ 0.01M
GAT Attention ∼ 0.14M
GIN Isomorphism ∼ 0.01M

Table 2. The statistics of 9 backbone models adopted in CurBench,
which covers various mechanisms and scales. “∼” signifies an
approximation, and “M” represents million.

3.4. Backbone Model

Table 2 overviews the backbone models that we employ in
CurBench. All the values in the last column are approxima-
tions because the number of parameters varies depending
on the input sizes and output classes. All of the models are
commonly applied to the aforementioned datasets, and they
are distinct from each other in mechanism and model size.

CV Domain: LeNet (LeCun et al., 1998) is one of the ear-
liest convolutional neural networks (CNN), which is com-
posed of 3 convolution layers, two pooling layers, and some
fully-connected layers. ResNet (He et al., 2016) is a classic
CNN with residual connection designed for easier training
of deeper networks, and ResNet-18 refers to the 18-layer
version. ViT (Dosovitskiy et al., 2020) is the standard Trans-
former directly applied to images by treating image patches
as word tokens. ViT in CurBench is not pretrained because
its pretrained weights are derived from ImageNet (Deng
et al., 2009), which leads to the risk of data leakage when
evaluating its performance on Tiny-ImageNet (Le & Yang,
2015), a subset of ImageNet.

NLP Domain: LSTM (Hochreiter & Schmidhuber, 1997) is
a typical recurrent neural network (RNN), which introduces
gate functions to control what to remember and what to
forget in the face of long sequences. BERT (Devlin et al.,
2018) is a deep bidirectional Transformer pretrained by
masked language model task and it excels at semantic repre-
sentation due to its encoder-based architecture. GPT2 (Rad-
ford et al., 2019) is a decoder-based Transformer pretrained
through left-to-right language modeling objectives, and as a
result, works well on text generation. BERT and GPT2 in
CurBench are pretrained because training them from scratch
would result in poor performance, making it difficult to
maintain consistency with their suggested performance.

Graph Domain: GCN (Kipf & Welling, 2016) is a vari-
ant of CNN, designed to operate directly on graphs. Its
insight lies in the choice of convolutional architecture via

a localized first-order approximation of spectral graph con-
volutions. GAT (Veličković et al., 2017) introduces masked
self-attentional layers based on GCN to enable implicitly
specifying different weights to different nodes in a neigh-
borhood. GIN (Xu et al., 2018) is developed based on
Weisfeiler-Lehman test theory and emphasizes the impor-
tance of summation as the readout function.

3.5. Evaluation

To ensure a comprehensive analysis of existing methods, we
consider the following 2 evaluation dimensions.

Performance: We adopt the widely accepted metrics on
each dataset, such as accuracy on image, F1 score, Spear-
man Correlation, and Matthews Correlation on the GLUE
benchmark, AUC (Yang et al., 2021) on graph. To display
the results clearly, we report the average and standard devia-
tion of the metric over 5 runs for each dataset.

Complexity: It is essential to examine the time and space
complexity of each method because they always cost extra
computational time and sources to assess model compe-
tence and data difficulty for appropriate curricula design.
We record the training time and maximum memory con-
sumption on the same GPU device as the indicators of the
complexity.

4. CurBench Toolkit
4.1. Modules

To facilitate the use of our CurBench, we develop a com-
panion toolkit based on CurML (Zhou et al., 2022a) for
the entire pipeline of applying curriculum learning to vari-
ous machine learning tasks, reproducing 15 core methods.
Compared to CurML, this toolkit extends the methods to
accommodate inputs in various data formats and diverse
output evaluation metrics and provides searched hyperpa-
rameters for each method. As illustrated in Figure 2, we
summarize and abstract the whole toolkit into 5 modules:
data processing, model loading, objective fitting, curriculum
learning, and evaluation.

Data Processing: This module aims to prepare data accord-
ing to the specified dataset and setting. Given a data name in
a format like “cifar10”, “cifar100-noise-p” or “tinyimagenet-
imbalance-r”, this module can automatically parse it, split
the dataset into training, validation, and test set, and pro-
cess the training set by adding noise with probability p or
forming imbalance with factor r.

Model Loading: This module is used to initialize the model
based on the model name and the target dataset. For instance,
CV models need to modify their input layer to accommo-
date input images and patch sizes. Similarly, graph models
require node features and edge relationships when construct-
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Data Processing

Dataset

CIFAR-10

Setting

Noise

Ratio

0.4

Model Loading

Model

ResNet-18

Input Size

(32, 32)

Class

10

Objective Fitting

Epoch

200

Optimizer

Adam

Objective

Cross Entropy

Curriculum Learning Evaluation

Performance

Accuracy

F1 Score

…… ……

Complexity

Training Time

GPU Memory

via Data Selection

SPL  (NeurIPS, 2010)

MCL  (ICLR, 2018)

LGL  (CVPR, 2019)

C2F  (arXiv)

TTCL  (ICML, 2018)

DIHCL  (NeurIPS, 2020)

Adaptive CL (ICCV, 2021)

EfficientTrain (ICCV, 2023)

via Model Adjustment via Loss Reweighting

CBS  (NeurIPS, 2020) ScreenerNet (arXiv)

MW-Net  (NeurIPS, 2019)

SuperLoss (NeurIPS, 2020)

LRE  (ICML, 2018)

DCL  (NeurIPS, 2019)

DDS  (ICML, 2020)

Figure 2. Our CurBench toolkit, which is composed of 5 modules, offers a unified and complete pipeline from initiation to evaluation,
aiming for easy implementation and reproduction of curriculum learning methods. This figure showcases an example of noisy CIFAR-10.

ing graph convolutional layers. Besides, the class number
of the dataset determines the models’ output layer.

Objective Fitting: This module handles the process where
models learn and fit datasets to accomplish target tasks. For
different research domains, we select tailored hyperparame-
ters, optimizers, loss functions, and so on. Unlike common
machine learning, the training procedure in this module is
guided by the curriculum learning module.

Curriculum Learning: This module integrates 15 core
curriculum learning methods, all of which are abstracted as a
class for easy plug-in into the objective fitting module. This
design of abstracting methods as classes ensures that the
module is extensible for new methods. Currently, we divide
the existing methods into the following 3 categories. It is
worth noting that this categorization is intended to facilitate
the implementation and extension of various methods within
a unified framework, but it does not imply that methods
within the same category necessarily share similar properties
or performance.

• via Data Selection: The primary approach to imple-
menting curriculum is through data selection so that
models can progressively learn from a subset to the en-
tire dataset in a meaningful order. The methods belong
to this category are vanilla SPL (Kumar et al., 2010),
DIHCL (Zhou et al., 2020), and so on (Weinshall et al.,
2018; Zhou & Bilmes, 2018; Cheng et al., 2019; Kong
et al., 2021; Wang et al., 2023b). Some methods select
data subsets based on sample difficulty, while others
select data based on sample class.

• via Model Adjustment: An innovative idea for design-
ing curricula is to regulate the amount of data informa-
tion the model receives by modifying its architecture.
CBS (Sinha et al., 2020), which employs a Gaussian
filter to manage information intake, is a typical one.

• via Loss Reweighting: Loss reweighting can be re-
garded as a “soft” version of data selection. Intuitively,

assigning a low weight to a data sample is almost equiv-
alent to disregarding it. A common practice to reweight
loss is through meta-learning (Finn et al., 2017), such
as LRE (Ren et al., 2018a), MW-Net (Shu et al., 2019),
and DDS (Wang et al., 2020), all of which employ a
meta-network to assess the weights of losses and opti-
mize the meta-network with the validation set. Addi-
tionally, there are other approaches, such as variants of
SPL (Fan et al., 2017; Castells et al., 2020), DCL (Sax-
ena et al., 2019), ScreenerNet (Kim & Choi, 2018),
and SuperLoss (Castells et al., 2020).

Evaluation: This module is utilized to report results from
2 aspects, i.e., performance and complexity, in order to
respectively demonstrate the effectiveness and efficiency of
different methods. The performance metrics depend on the
target datasets and tasks, and the complexity metrics include
training time and maximum GPU memory consumption.

4.2. Example Usage

Figure 3 illustrates the python-like sample code of our
CurBench toolkit, where an object of the SPLTrainer class
is instantiated given the essential parameters, including a
CIFAR-10 dataset name with the noise setting for data pro-
cessing and a ResNet-18 net name for model loading. All of
the above are put together to fit and evaluate the final result.
With only a few lines of code, a dozen curriculum learning
methods can be easily implemented and reproduced. On the
basis of this tool, we conduct a multitude of experiments,
and we will report the experimental setups and results in the
next section.

5. Experiments and Analyses
5.1. Experimental Setup

To ensure a fair and reproducible evaluation, we fix all
possible confounding factors and report the average and
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from curbench.algorithms import SPLTrainer

# Instantiate curriculum learning class 
trainer = SPLTrainer(

# CIFAR-10 with 40% wrong labels
data_name='cifar10-noise-0.4',
# ResNet-18 with 32×32 input size
net_name='resnet18',
# Self-Paced Learning in a linear way
start_rate=0.0,
grow_epochs=100,
grow_fn='linear',
weight_fn='hard',

)
# Automatic, no need to specify:
# trainer._init_dataloader()
# trainer._init_model()

# Fitting and evaluating
trainer.fit()
trainer.evaluation()

Figure 3. Python-like sample code for an example of Self-Paced
Learning applied to image classification with CurBench Toolkit.

standard deviation results of 5 runs with different fixed
random seeds for each combination of datasets, backbone
models, and settings. The detailed hyperparameters for
both training processes and curriculum learning methods
are presented in the Appendix.

5.2. Performance

5.2.1. Main Results

Table 3 presents the overall performances with and without
curriculum learning under different combinations of back-
bone models, datasets, and settings. The detailed results of
each specific curriculum learning method are attached in
the Appendix, and we report the best ones among them in
this table. The imbalance setting is not applied to NLP and
graph datasets, where the number of samples in each class
is imbalanced originally.

It is observed that curriculum learning can bring consistent
improvement across domains. Compared to standard and
imbalance settings, curriculum learning benefits much more
in noise settings. This phenomenon is consistent with exist-
ing theoretical analysis, where curriculum learning is able
to denoise and guide machine learning by discarding the
difficult and possibly noisy data in the early stages of train-
ing. Besides, there is no such method that can outperform
the others all the time, and the effectiveness of curriculum
learning methods still depends on the target scenarios. For

example, ScreenerNet (Kim & Choi, 2018) exhibits superior
performance on CV datasets compared to graph datasets,
and TTCL (Weinshall et al., 2018) performs better in noise
settings than in standard and imbalance ones. Therefore,
it is essential to explore more general methods while also
researching methods tailored to specific environments.

5.2.2. Results in Noise Settings

Figure 4 demonstrates the performances of curriculum
learning methods on datasets with different noise ratios
p ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Without loss
of generality, we select a backbone model and a dataset from
each research domain. Some methods such as CBS, LGL,
C2F, and EfficientTrain are only applied to CV datasets
and not to NLP and graph datasets due to the following
reasons. CBS (Sinha et al., 2020) requires convolutional
layers in backbone models, and such models in CurBench
are only within the CV domain. LGL (Cheng et al., 2019)
and C2F (Stretcu et al., 2021) require multiple classes for
clustering, but most NLP and graph datasets in CurBench
have only two classes. EfficientTrain (Wang et al., 2023b)
is based on data augmentation techniques on images.

We can observe that TTCL (Weinshall et al., 2018), the
method by teacher transferring, obtains competitive perfor-
mances regardless of the noise ratio, thanks to the guidance
from the teacher model pretrained on the clean dataset. In
contrast, SPL (Kumar et al., 2010), which is similar to TTCL
but guides the learning by itself, performs relatively poorly.
It is because a model not fully trained is not that competent
to accurately distinguish noisy or hard data.

5.2.3. Results in Imbalance Settings

Figure 5 depicts the performances on CIFAR-10 with vary-
ing imbalance factor r ∈ {1, 10, 20, 50, 100, 200}.

It is observed that all methods achieve similar performances
under different imbalance ratios. When the imbalance factor
r increases, the differences between the methods become ev-
ident. Relatively speaking, the methods by data reweighting,
such as DCL (Saxena et al., 2019) and SuperLoss (Castells
et al., 2020), perform well because they can mitigate the
impact of imbalanced classes by reassigning the weight of
data or even class.

Compared with noise settings, curriculum learning brings
less significant improvements and shows less variation be-
tween methods in imbalance settings. This is primarily
because most curriculum learning methods focus on the
difficulty of samples instead of classes, leading to over-
all better performances in noise settings than in imbalance
settings. Additionally, the differences in judging difficult
or noisy samples result in larger performance disparities
among methods in noise settings.
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CIFAR-10 CIFAR-100 Tiny-ImageNet
Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50

LeNet 69.951.00 65.021.12 44.930.56 35.460.70 29.590.40 19.570.64 22.080.61 18.630.43 11.650.30
LeNet + CL 70.430.41 65.930.57 45.280.56 35.630.78 30.870.48 19.740.17 22.830.44 19.910.26 12.360.47
ResNet-18 92.330.16 82.752.06 75.490.87 69.970.27 52.140.39 42.570.68 51.411.74 39.420.21 28.830.38
ResNet-18 + CL 92.880.23 86.920.20 76.430.96 71.310.14 58.560.60 43.470.43 53.610.48 43.640.72 30.820.36
ViT 79.900.38 64.190.51 52.120.81 51.050.62 35.250.24 26.050.52 38.160.53 24.900.26 17.150.31
ViT + CL 80.660.27 69.830.53 52.850.81 51.930.64 39.150.30 26.400.34 38.920.53 29.760.34 17.470.14

RTE MRPC STS-B CoLA
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

LSTM 52.951.34 53.431.77 81.430.14 81.220.00 12.730.72 10.901.19 11.291.27 3.271.68
LSTM + CL 53.071.29 54.221.77 81.540.18 81.240.05 14.112.21 11.751.61 12.651.21 8.552.10
BERT 64.623.33 54.223.14 88.540.45 81.890.83 85.260.22 80.711.01 57.391.30 32.350.79
BERT + CL 66.351.76 56.325.04 88.691.24 81.940.55 85.420.22 81.310.25 57.801.96 45.791.64
GPT2 65.341.95 52.924.49 85.490.86 78.231.72 76.441.20 69.651.85 37.003.72 5.861.69
GPT2 + CL 66.352.10 57.403.39 86.290.36 82.550.88 80.821.39 71.571.74 39.953.16 12.542.75

SST-2 QNLI QQP MNLI-(m/mm)
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

LSTM 81.670.85 64.361.12 50.540.00 50.620.16 75.690.27 60.720.79 61.380.30 / 61.210.45 44.410.51 / 44.830.90
LSTM + CL 82.870.88 78.581.64 51.020.46 50.830.45 75.730.21 66.470.72 62.470.36 / 62.330.42 58.590.54 / 58.500.64
BERT 92.660.28 87.220.82 91.210.24 81.210.76 88.050.12 76.230.48 83.890.31 / 84.380.29 78.650.70 / 79.210.62
BERT + CL 92.820.16 91.250.59 91.490.13 89.450.44 88.160.13 84.500.25 84.270.07 / 84.400.42 81.730.31 / 82.250.40
GPT2 91.950.49 85.830.57 87.920.31 78.720.37 86.000.23 75.400.84 81.530.21 / 82.400.21 76.560.15 / 77.690.15
GPT2 + CL 92.250.42 90.340.53 88.170.67 84.000.70 86.680.16 82.160.35 81.900.23 / 82.590.35 78.360.19 / 79.620.44

MUTAG PROTEINS NCI1 ogbg-molhiv
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

GCN 73.682.11 66.317.14 70.714.20 63.576.45 69.591.23 55.233.21 75.841.02 64.294.55
GCN + CL 74.743.94 71.585.37 73.214.41 71.616.62 71.391.29 67.982.01 77.411.15 72.811.14
GAT 69.476.14 65.265.37 64.462.96 65.719.13 56.742.86 53.772.12 68.072.34 65.372.66
GAT + CL 72.638.42 69.4710.21 69.827.13 69.113.77 59.371.59 55.674.70 72.641.16 66.731.84
GIN 86.847.90 78.953.72 74.114.24 69.821.73 79.321.40 60.243.92 74.721.36 63.073.73
GIN + CL 88.422.10 81.584.56 77.144.88 73.931.82 82.041.90 62.146.47 76.531.97 65.531.61

Table 3. The empirical performances of 9 backbone models over 15 datasets in 3 settings with and without curriculum learning methods.
The rows with “+ CL” present the best performances achieved among the methods involved in this benchmark. The bold font highlights
the superior performances brought by curriculum learning. The imbalance setting is not applied to NLP and graph datasets, which are
imbalanced originally. Note: The detailed performances of each method are reported in Table 9-11 in the Appendix.
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Figure 4. The performances as a function of noise ratio p for different curriculum learning methods on datasets from 3 research domains.
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Figure 5. The performances as a function of imbalance factor r.

5.3. Complexity

Figure 6 shows the time and space complexity of each
method in the case of ResNet-18 and CIFAR-10, measured
by GPU training time (Hour) and maximum GPU memory
consumption (GB).

The whole figure can be divided into 3 parts. The first is the
upper right corner, which contains the methods requiring
gradient calculation and meta-network training, resulting in
high time and space complexity. The second is the middle
part with the point of ScreenerNet, which also introduces
an extra network but only requires once backward, leading
to less complexity. The third is the lower left corner, which
includes most of the methods consuming similarly small
amounts of training time and GPU memory because they
measure data difficulty and schedule curriculum in a rela-
tively intuitive way and do not demand a learnable network
with a large number of parameters.
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Figure 6. Time and space complexity of different methods in the
case of ResNet-18 and CIFAR-10. Note: The numerical results of
3 different cases are reported in Table 8 in the Appendix.

6. Conclusion
In this paper, we propose CurBench, the first benchmark
for curriculum learning. It covers a broad range of research
domains, datasets, backbone models, settings, and evalu-
ation dimensions, ensuring a fair, reliable, and systematic
evaluation of existing curriculum learning methods. For
convenient utilization, it is complemented by a toolkit that
implements essential related works in a unified pipeline and
applies them to various machine learning tasks. Through em-
pirical results and theoretical analyses, we provide valuable
findings on curriculum learning. In conclusion, CurBench
holds the potential to benefit future research and suggest
promising directions.

Limitations: Despite the benefits of our CurBench, we
also recognize the following limitations in this version and
intend to refine them in future expansions.

• CurBench mainly covers supervised learning in CV,
NLP, and graph domains, but has not incorporated
the datasets, backbone models, and tasks related to
other domains such as audio processing, multimodal
learning, recommender systems, and robotics. Ad-
ditionally, CurBench has not involved unsupervised,
semi-supervised, and reinforcement learning. Given
the importance of these topics in the context of curricu-
lum learning applications, they will be integrated as a
significant part of future versions.

• CurBench currently employs publicly available
datasets that are commonly used in their respective
domains. However, CurBench has not yet introduced
any new datasets. Designing specialized datasets for
curriculum learning is essential because these datasets
can better align with the unique requirements and ob-
jectives of curriculum learning methodologies. We
recognize the importance of this task and intend to
undertake it in the future.

• CurBench has not evaluated the performance of curricu-
lum learning on large models, which deserves in-depth
exploration in this era of large models. Considering
that large models often encounter vast amounts of data
with varying quality when learning, it is suitable to
utilize curriculum learning for guidance and denoising.
We plan to include the prevalent large-scale language
and multimodal models in our future work.
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CurBench: Curriculum Learning Benchmark

A. Appendix Abstract
In this appendix, we first list the essential information of
the datasets in Section B and backbone models in Section C.
Then we summarize the curriculum methods implemented
in this work in Section D to present how these methods were
evaluated when they were proposed. After providing the
training hyperparameters in Section E and method hyperpa-
rameters in Section F, we report the detailed performance
and complexity of each method in various experimental
setups in Section G.

B. Datasets
All the datasets included in CurBench are publicly available
for research. To eliminate the risk of ethical or license issues,
we list the essential information of the datasets, such as their
home pages, common download links, and licenses.

Domain Home Page Download Link License

CV CIFAR PyTorch MIT
Tiny-ImageNet CS231n MIT

NLP GLUE Hugging Face Various

Graph TUDataset PyTorch Geometric Various
OGB OGB Dataset MIT

Table 4. The home pages, download links, and licenses of datasets.

Concretely, in this work, we download CIFAR via PyTorch
API, GLUE via Hugging Face API, TUDataset via PyTorch
Geometric (PyG) API, and OGB dataset via OGB API. For
Tiny-ImageNet, we download the zip file from CS231n,
and adjust its file structure to the same form as CIFAR for
easier loading with the help of the tool code from Github:
lromor/tinyimagenet.py.

C. Backbone Models
For the standardization and reliability of CurBench, we
implement all backbone models by referencing highly rec-
ognized code repositories as shown in Table 5.

Domain Model Reference

CV LeNet, ResNet-18 pytorch-cifar
ViT vit-pytorch

NLP LSTM lstm-gru-pytorch
BERT, GPT2 Hugging Face

Graph GCN, GAT, GIN PyTorch Geometric

Table 5. The implementation references of backbone models.

Among these models, BERT and GPT2 are initiated with
the pretrained parameters from Hugging Face and finetuned
in this work, while others are trained from scratch.

D. Curriculum Learning Methods
When designing CurBench, we are inclined to the datasets
and models used in previous works for evaluation. There-
fore, we have surveyed what datasets and models are com-
monly employed and completed the Table 6.

It can be obviously found that when researchers propose a
curriculum learning method, they always conduct experi-
ments on image classification tasks for performance evalua-
tion. Only a few authors will try to apply their methods to
the datasets for object detection or neural machine transla-
tion. Besides, not all works take different settings, such as
noise or imbalance, into consideration.

Therefore, as stated in the main text, we not only select the
datasets and models in the CV domain, which are commonly
used in previous related works, but also supplement those in
the NLP and graph domains to investigate how the methods
can adapt to various scenarios.

E. Training Hyperparameters
To ensure a fair evaluation, we run 5 times with fixed differ-
ent random seeds s ∈ {42, 666, 777, 888, 999}, and report
the average and standard deviation results. Besides, we
strictly set the training hyperparameters as follows:

LeNet, ResNet-18, ViT: We choose a batch size of 50, and
use an Adam optimizer to train the model with a constant
learning rate of 0.0001 for 200 epochs.

LSTM: We choose a batch size of 50, and use a SGD op-
timizer to train the model with a cosine annealing learning
rate of 0.00001∼1 for 10 epochs.

BERT, GPT2: We choose a batch size of 50, and use an
AdamW optimizer to train the model with a constant learn-
ing rate of 0.00002 for 3 epochs.

GCN, GAT, GIN: We choose a batch size of 50, and use
an Adam optimizer to train the model for 200 epochs with
learning rates of 0.01 for TUDataset and 0.001 for OGB.

F. Method Hyperparameters
For a reproducible evaluation, we demonstrate the hyper-
parameters that we select for curriculum learning methods
in Table 7. It should be noted that this table includes the
hyperparameters for the experiments with 200 epochs. For
text domain tasks trained for 3 or 10 epochs, we sightly ad-
just some epoch-related hyperparameters to adapt the tasks,
such as grow epochs, warm epochs, and schedule epochs.

G. Detailed Complexity and Performance
Tables from 8 to 11 report complexity and performance.
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Method Conference Datasets Models Settings
Std Noi Imb

SPL
(Kumar et al., 2010) NIPS, 2010

MUC6, UniProbe,
MNIST, Mammals SSVM ✓

TTCL
(Weinshall et al., 2018) ICML, 2018 CIFAR-100, STL-10 CNN ✓

MCL
(Zhou & Bilmes, 2018) ICLR, 2018

News-20, MNIST,
CIFAR-10, STL-10,
SVHN, Fashion

LeNet5, CNN ✓

ScreenerNet
(Kim & Choi, 2018) ArXiv, 2018

Cart-pole-v0,
CIFAR-10, MNIST,
Pascal VOC

DDQN, CNN ✓

LRE
(Ren et al., 2018a) ICML, 2018

MNIST, CIFAR-10,
CIFAR-100

LeNet, ResNet-32,
WideResNet-28-10 ✓ ✓

MW-Net
(Shu et al., 2019) NIPS, 2019

CIFAR-10, CIFAR-100,
Clothing1M

ResNet-32, ResNet-50,
WideResNet-28-10 ✓ ✓ ✓

DCL
(Saxena et al., 2019) NIPS, 2019

CIFAR-10, CIFAR-100,
ImageNet, WebVision,
KITTI

VGG-16, SSDNet,
ResNet-18,
WideResNet-28-10

✓ ✓

LGL
(Cheng et al., 2019) CVPR, 2019

CIFAR-10, CIFAR-100,
ImageNet VGG-16, ResNet-50 ✓

DDS
(Wang et al., 2020) ICML, 2020

CIFAR-10, ImageNet,
TED

LSTM, ResNet-50,
WideResNet-28-10 ✓ ✓

DIHCL
(Zhou et al., 2020) NIPS, 2020

CIFAR-10, CIFAR-100,
ImageNet, Food-101,
FGVC Aircraft,
Stanford Cars,
Birdsnap, FMNIST,
KMNIST, STL10,
SVHN

ResNet-50,
WideResNet-16-8,
WideResNet-28-10,
ResNeXt50-32x4d,
PreActResNet34

✓

SuperLoss
(Castells et al., 2020) NIPS, 2020

MNIST, UTKFace,
CIFAR-10, CIFAR-100,
WebVision, Pascal VOC,
Revisited Oxford and Paris

ResNet-18, ResNet-50,
ResNet-101,
WideResNet-28-10,
Faster R-CNN,
RetinaNet

✓ ✓

CBS
(Sinha et al., 2020) NIPS, 2020

CIFAR-10, CIFAR-100,
ImageNet, SVHN,
CelebA, Pascal VOC,
MNIST, USPS

VGG-16, ResNet-18,
Wide-ResNet-50,
ResNeXt-50,
VAE, β-VAE

✓

C2F
(Stretcu et al., 2021) ArXiv, 2021

CIFAR-10, CIFAR-100,
Shapes, Tiny-ImageNet

Resnet-18, Resnet-50,
WideResnet-28-10 ✓

Adaptive CL
(Kong et al., 2021) ICCV, 2021

CIFAR-10, CIFAR-100,
Subset of ImageNet

MLP, HNN,
VGG-16, ResNet-18
ResNet-v1-14

✓

EfficientTrain
(Wang et al., 2023b) ICCV, 2023

ImageNet-1K/22K,
MS COCO, Flowers-102,
CIFAR, Stanford Dogs

ResNet, ConvNeXt,
DeiT, PVT,
Swin, CSWin

✓

Table 6. Summary of the methods reproduced in CurBench, where we overview the datasets and models involved in the related works.
“Std” stands for the standard setting, “Noi” for noise, and “Imb” for imbalance.
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Method Hyerparameter Value

SPL

start ratio 0.0
grow epochs 100
grow fn linear
weight fn hard

TTCL

start ratio 0.0
grow epochs 100
grow fn linear
weight fn hard

MCL

schedule epochs 20
warm epochs 5
lam 1
minlam 0.2
gamma 0.1
fe alpha 2
fe beta 0.75
fe gamma 0.9
fe lambda 0.9

ScreenerNet M 1.0
LRE meta split 0.1

MW-Net meta split 0.1
VNet [1, 100, 1]

DCL

init class param 0.0
lr class param 0.1
wd class param 0.0
init data param 1.0
lr data param 0.1
wd data param 0.0

LGL

start ratio 0.1
grow ratio 0.3
grow interval 20
strategy random

DDS meta split 0.1
eps 0.001

DIHCL

warm epochs 50
discount factor 0.9
decay rate 0.9
bottom size 0.5
type loss
sample type random

SuperLoss
tau 0.0
lam 1.0
fac 0.9

CBS

kernel size 3
start std 1.0
grow factor 0.9
grow interval 5

C2F cluster K 3

Adaptive CL

pace p 0.1
pace q 2.5
pace r 15
inv 20
alpha 0.7
gamma 0.1
bottom gamma 0.1

EfficientTrain
epochs {120, 160, 200}
crop size {160, 192, 224}
rand aug 0→9

Table 7. The default hyperparameters we set for each method when
the number of training epochs is 200.

Training Time
(Minute)

GPU Memory
(MB)

SPL 175 420
TTCL 111 464
MCL 106 422
ScreenerNet 291 825
LRE 665 1241
MW-Net 728 1241
DCL 158 422
LGL 149 421
DDS 632 1411
DIHCL 107 421
SuperLoss 156 421
CBS 155 538
C2F 159 464
Adaptive CL 132 468
EfficientTrain 214 421

(a) ResNet-18 on CIFAR-10

Training Time
(Minute)

GPU Memory
(MB)

SPL 1.28 6615
TTCL 1.12 7036
MCL 2.12 6615
ScreenerNet 2.05 13114
LRE 3.27 22989
MW-Net 4.23 22989
DCL 1.18 6615
DDS 4.02 23997
DIHCL 1.05 6615
SuperLoss 1.10 6615
Adaptive CL 0.68 7036

(b) BERT on RTE

Training Time
(Minute)

GPU Memory
(MB)

SPL 4.75 6.12
TTCL 3.50 5.76
MCL 3.03 5.82
ScreenerNet 6.25 7.46
LRE 7.77 105.41
MW-Net 8.65 24.79
DCL 3.87 5.79
DDS 11.62 20.50
DIHCL 2.12 5.71
SuperLoss 3.90 5.76
AdaptiveCL 3.53 5.46

(c) GCN on NCI1

Table 8. Time and space complexity, measured by training time
and GPU memory usage on NVIDIA V100 GPU.
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CIFAR-10 CIFAR-100 Tiny-ImageNet
Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50

SPL 69.080.78 63.681.01 42.340.90 34.700.72 26.090.69 18.150.68 21.530.25 15.590.63 10.170.12
TTCL 68.870.69 64.631.00 44.030.54 34.190.88 28.830.96 18.390.42 22.080.48 18.840.18 11.170.34
MCL 65.860.31 62.501.01 34.590.90 32.600.75 27.090.34 15.900.31 20.990.37 17.060.37 9.820.35
ScreenerNet 70.430.41 65.450.92 45.280.56 35.630.78 29.720.69 19.740.17 22.830.44 18.540.29 11.770.19
LRE 64.520.86 59.880.49 36.242.17 29.290.73 23.370.34 14.520.19 18.860.66 14.970.21 8.230.13
MW-Net 69.130.44 63.920.98 45.170.82 35.400.54 28.090.66 18.950.32 22.160.36 17.880.25 10.970.30
DCL 67.230.49 64.770.59 39.160.87 34.090.51 30.020.82 18.130.42 22.010.55 19.650.20 10.950.20
LGL 69.870.71 65.090.78 44.941.25 35.040.84 29.560.54 19.280.64 22.550.30 18.400.05 11.250.43
DDS 65.652.84 63.451.84 41.514.52 35.111.04 28.490.47 19.050.40 22.290.41 17.031.19 10.301.3
DIHCL 66.460.83 58.420.73 40.891.21 28.490.59 27.870.23 15.770.62 17.720.50 14.740.43 8.160.33
SuperLoss 70.290.68 65.930.57 43.130.51 34.910.68 30.870.48 18.570.17 22.270.29 19.910.26 11.230.31
CBS 69.790.36 63.470.96 44.601.77 35.170.63 28.140.74 18.870.60 21.870.58 17.780.58 11.100.43
C2F 69.490.37 64.350.79 43.740.86 35.510.40 29.920.58 19.240.52 22.440.22 18.780.23 11.690.32
Adaptive CL 69.250.43 63.930.97 42.870.47 34.580.51 28.360.43 18.590.26 22.620.30 18.090.37 10.980.20
EfficientTrain 70.340.44 62.960.84 43.921.01 35.590.66 28.040.71 18.780.62 22.310.42 18.050.17 12.360.47

(a) LeNet

CIFAR-10 CIFAR-100 Tiny-ImageNet
Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50

SPL 91.540.26 70.682.25 74.710.74 68.130.47 34.090.39 39.800.93 48.990.41 22.490.41 26.040.93
TTCL 92.350.13 86.920.20 75.590.56 67.520.46 58.560.60 38.400.97 48.500.34 41.810.67 25.320.46
MCL 91.760.15 77.840.33 73.710.85 68.680.37 45.950.58 40.490.67 51.460.16 34.390.66 28.080.28
ScreenerNet 92.740.20 81.630.70 75.370.56 71.310.14 51.960.56 43.470.43 53.610.48 39.220.57 30.820.36
LRE 90.800.22 80.350.50 73.710.36 66.990.24 50.310.88 40.690.69 49.860.37 36.400.33 27.490.41
MW-Net 91.790.26 79.770.44 74.860.59 69.090.25 49.870.32 40.990.48 50.930.36 37.790.43 27.960.55
DCL 92.410.25 82.440.66 76.300.88 69.800.47 54.010.57 42.310.41 52.250.43 40.670.42 28.830.63
LGL 92.190.20 73.420.41 74.870.40 69.080.15 39.930.58 41.070.31 50.320.38 27.350.32 27.210.21
DDS 90.942.26 78.743.07 70.248.53 68.870.17 46.871.72 37.932.71 50.840.30 37.540.37 26.961.29
DIHCL 91.870.21 77.380.42 74.310.60 67.360.33 44.190.37 39.510.75 50.590.32 32.700.38 26.360.34
SuperLoss 92.270.22 84.540.40 76.430.96 69.530.43 57.510.45 42.431.01 52.380.53 43.640.72 28.850.38
CBS 90.940.27 75.790.79 72.900.66 63.670.37 41.140.39 36.190.91 45.670.25 30.420.53 24.190.34
C2F 91.980.17 80.270.52 75.261.16 69.860.17 50.481.32 42.470.79 51.960.45 38.040.43 28.900.39
Adaptive CL 91.910.08 74.300.79 73.181.37 66.040.41 38.130.88 36.300.49 46.470.24 27.750.34 23.310.51
EfficientTrain 92.880.23 79.910.23 74.581.84 69.400.20 50.520.32 39.910.62 51.760.42 38.330.24 28.150.52

(b) ResNet-18

CIFAR-10 CIFAR-100 Tiny-ImageNet
Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50 Standard Noise-0.4 Imbalance-50

SPL 78.101.29 60.820.92 49.811.29 47.660.40 28.421.21 24.390.78 33.710.63 17.300.87 15.090.39
TTCL 77.360.34 69.830.53 50.820.79 45.350.59 39.150.30 24.150.25 35.610.15 29.760.34 15.830.38
MCL 77.850.55 61.610.65 49.680.79 49.900.53 31.460.59 25.020.62 36.660.75 21.500.58 16.300.43
ScreenerNet 80.450.53 64.200.50 51.341.08 51.930.64 34.770.21 26.320.23 38.140.80 24.900.49 17.470.14
LRE 75.810.52 61.112.95 46.132.60 45.590.64 30.910.29 24.000.51 34.100.71 21.420.28 13.980.44
MW-Net 77.392.30 63.010.60 51.191.25 49.460.44 33.990.38 24.860.47 37.160.29 23.490.33 16.130.40
DCL 80.660.27 66.000.07 51.731.25 51.230.62 37.010.35 26.400.34 38.920.53 26.170.37 17.200.34
LGL 79.520.38 63.190.91 52.141.18 50.390.63 31.341.16 26.090.51 36.250.47 20.220.52 16.430.43
DDS 77.542.13 63.460.22 51.120.73 49.670.66 33.790.45 24.810.38 36.600.46 23.470.42 16.180.61
DIHCL 78.090.73 63.390.41 50.780.72 49.800.34 33.640.22 25.490.32 37.890.48 22.360.57 16.290.32
SuperLoss 79.420.25 66.130.49 51.860.60 49.250.37 37.840.39 25.720.27 38.250.42 28.040.39 16.930.26
CBS 79.850.37 64.070.65 52.850.81 51.050.62 35.250.24 26.050.52 38.280.71 24.880.27 17.150.31
C2F 79.630.65 61.971.38 52.001.14 50.160.74 32.580.67 25.280.32 38.510.21 25.220.77 17.020.68
Adaptive CL 78.850.60 62.550.78 51.601.49 48.300.68 31.730.58 24.810.56 33.940.45 20.120.43 15.270.40
EfficientTrain 79.670.47 62.620.37 50.711.53 50.980.50 34.560.22 25.470.62 38.211.06 25.080.33 16.200.17

(c) ViT

Table 9. The performances of each curriculum learning method in the CV research domain.
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RTE MRPC STS-B CoLA
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 52.420.84 53.360.53 80.640.87 80.461.17 11.041.13 8.762.64 9.962.17 3.692.58
TTCL 52.780.14 53.791.81 81.540.18 81.220.00 14.112.21 11.102.25 12.442.22 8.552.10
MCL 52.850.29 52.640.58 81.220.00 80.950.54 12.951.23 10.551.32 10.131.36 4.161.92
ScreenerNet 52.850.18 53.720.86 81.400.11 81.240.05 13.220.96 10.991.41 12.331.01 3.512.16
DCL 53.071.29 54.221.77 81.460.18 81.220.00 12.670.79 11.621.10 11.061.68 2.501.89
DDS 52.710.00 53.140.42 81.370.08 81.230.03 12.541.28 11.272.73 12.651.21 3.512.26
DIHCL 52.710.00 53.720.77 81.370.14 81.220.00 13.991.26 9.890.80 11.692.90 3.412.69
SuperLoss 52.710.00 53.431.10 81.390.14 81.220.00 12.361.65 11.751.61 10.821.93 3.591.65
Adaptive CL 52.061.30 53.000.27 81.390.17 81.220.00 12.911.16 10.320.91 9.820.68 4.382.36

SST-2 QNLI QQP MNLI-(m) MNLI-(mm)
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 81.900.62 63.230.76 51.020.46 50.740.19 74.390.35 59.630.79 60.620.30 36.580.97 60.450.36 36.360.99
TTCL 82.130.91 78.581.64 50.650.22 50.730.18 75.140.16 66.470.72 62.470.36 58.590.54 62.330.42 58.500.64
MCL 82.520.99 63.102.08 50.540.00 50.720.29 75.100.15 59.290.39 60.920.42 45.551.91 60.820.24 46.322.08
ScreenerNet 82.070.43 64.420.85 50.550.02 50.720.23 74.270.19 61.330.30 61.380.37 42.361.49 60.710.25 43.031.60
DCL 82.020.76 64.361.08 50.540.00 50.620.15 75.580.31 60.770.70 61.610.34 44.130.74 61.210.41 45.040.77
DDS 82.480.68 62.161.36 50.540.00 50.770.27 74.920.14 60.950.42 60.750.42 42.460.89 60.430.19 42.850.98
DIHCL 82.090.88 62.430.92 50.540.00 50.830.45 74.090.10 59.711.05 58.840.39 37.170.60 58.840.74 36.650.81
SuperLoss 82.870.88 65.480.62 50.590.10 50.760.18 75.730.21 59.830.19 60.640.33 47.081.68 60.910.58 47.631.52
Adaptive CL 82.740.75 64.222.23 50.540.00 50.700.23 74.850.45 60.051.30 61.390.34 41.431.69 60.650.45 42.101.82

(a) LSTM

RTE MRPC STS-B CoLA
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 61.373.63 51.343.48 87.212.02 80.571.61 85.070.49 80.910.63 56.074.94 15.086.41
TTCL 66.351.76 56.325.04 88.631.88 81.790.57 84.910.68 80.741.66 57.260.87 45.791.64
MCL 66.352.02 55.092.22 88.691.24 78.942.59 85.420.22 79.210.65 56.242.37 30.205.94
ScreenerNet 64.691.62 52.495.06 87.780.99 79.044.22 84.910.45 80.690.97 56.371.62 33.253.26
LRE 58.941.34 53.361.24 81.730.34 80.900.64 81.081.76 75.522.07 51.562.12 26.923.88
MW-Net 66.280.81 53.862.73 88.090.61 80.890.67 84.990.92 79.161.19 56.342.19 30.801.89
DCL 66.212.58 53.794.20 88.531.13 81.940.55 85.090.51 80.991.22 57.471.91 32.663.66
DDS 64.551.03 55.453.89 87.321.11 79.412.43 84.380.88 78.001.97 56.121.23 27.491.52
DIHCL 64.481.22 54.802.44 86.851.12 81.470.39 85.050.27 81.310.25 52.341.49 30.494.98
SuperLoss 66.061.98 53.794.85 88.050.95 81.820.65 84.580.68 79.781.35 57.352.10 31.812.97
Adaptive CL 65.851.18 54.804.51 87.540.61 81.640.64 85.270.35 79.720.64 57.801.96 31.583.18

SST-2 QNLI QQP MNLI-(m) MNLI-(mm)
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 91.491.78 85.132.62 90.280.62 80.981.29 87.300.34 76.171.30 83.870.61 77.630.63 84.250.61 78.590.71
TTCL 92.480.41 91.250.59 91.370.16 89.450.44 87.450.46 84.500.25 83.990.31 81.730.31 84.340.45 82.250.40
MCL 92.410.20 84.330.91 91.240.23 80.711.08 88.160.13 74.191.02 83.860.42 76.850.79 84.110.29 77.920.79
ScreenerNet 92.480.27 87.750.96 91.180.11 81.871.40 87.530.22 75.851.26 83.830.42 78.590.52 84.130.44 79.160.61
LRE 92.180.38 86.611.54 89.320.47 80.370.83 84.560.32 72.300.02 82.210.29 75.630.51 82.580.29 76.400.53
MW-Net 92.620.41 87.060.96 91.280.20 81.271.40 87.440.19 75.480.61 84.010.23 78.350.68 84.390.38 78.960.62
DCL 92.820.16 86.672.23 91.490.13 81.411.98 88.030.21 75.260.95 84.240.27 78.550.46 84.400.42 79.390.89
DDS 92.410.28 86.190.56 91.140.14 81.880.71 87.500.25 76.040.57 83.890.12 78.510.37 84.380.18 78.850.25
DIHCL 92.520.31 87.750.81 91.230.11 83.031.09 86.740.35 76.750.43 83.280.32 78.510.73 83.570.32 79.420.86
SuperLoss 92.690.41 87.571.45 91.180.14 82.330.51 87.790.20 75.900.55 84.270.07 77.680.65 84.360.22 78.710.67
Adaptive CL 92.320.32 85.891.43 91.240.27 80.581.91 87.600.40 76.271.02 84.110.50 78.790.35 84.390.45 79.350.59

(b) BERT
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CurBench: Curriculum Learning Benchmark

RTE MRPC STS-B CoLA
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 59.424.22 54.732.38 84.321.09 79.472.26 76.662.48 63.164.95 30.728.65 2.950.70
TTCL 64.550.62 57.403.39 84.790.81 82.550.88 73.064.74 68.354.64 33.833.10 12.542.75
MCL 66.210.87 54.951.97 86.290.36 80.261.29 80.821.39 71.571.74 39.953.16 8.401.86
ScreenerNet 65.131.61 53.363.78 84.970.54 78.583.03 74.774.11 69.492.69 35.897.49 6.272.33
LRE 60.222.11 52.852.54 81.980.08 75.273.39 56.411.41 65.024.00 35.001.98 3.312.50
MW-Net 64.333.46 54.944.57 84.060.82 77.335.87 77.112.14 65.773.44 35.245.04 3.471.68
DCL 66.352.10 55.522.75 85.390.89 77.803.50 77.631.76 68.682.96 36.593.57 6.953.88
DDS 61.233.39 53.793.00 82.630.69 74.593.52 72.416.45 60.723.34 31.871.82 4.112.82
DIHCL 63.832.48 55.452.38 83.260.53 78.612.44 73.103.53 63.711.27 33.581.92 3.661.96
SuperLoss 66.210.96 53.721.70 85.120.62 79.183.14 73.654.55 66.133.65 37.602.98 8.905.55
Adaptive CL 65.491.38 53.860.86 84.820.98 78.053.47 76.583.05 66.302.02 33.613.90 6.501.55

SST-2 QNLI QQP MNLI-(m) MNLI-(mm)
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 91.930.45 85.441.40 87.790.35 76.292.81 85.290.31 73.761.51 81.050.27 76.470.27 81.930.52 77.480.40
TTCL 92.180.66 90.340.53 88.100.22 84.000.70 85.500.28 82.160.35 81.550.27 78.360.19 82.180.23 79.620.44
MCL 92.180.44 84.131.83 88.170.67 77.801.75 86.680.16 74.272.28 81.900.23 75.440.86 82.590.35 76.920.92
ScreenerNet 91.770.63 86.741.35 87.880.50 77.931.86 85.870.05 73.432.11 81.780.22 76.290.30 82.400.11 77.540.44
LRE 91.240.20 84.441.20 84.830.58 63.253.95 83.110.73 70.221.22 78.930.47 72.350.71 80.060.51 74.050.66
MW-Net 91.560.28 86.401.58 88.000.38 75.533.18 85.700.27 74.640.64 81.580.36 75.890.28 82.420.30 76.810.18
DCL 92.060.49 86.051.25 87.980.19 78.820.64 85.990.21 75.440.72 81.530.27 76.600.47 82.410.20 77.530.30
DDS 91.970.23 87.731.61 84.592.24 79.880.02 85.730.05 72.562.21 81.410.31 75.490.21 82.140.40 76.860.08
DIHCL 91.880.41 87.021.14 86.850.34 78.970.88 83.920.41 75.070.57 80.300.23 76.410.14 81.690.12 77.680.12
SuperLoss 92.250.42 87.550.72 87.990.52 79.700.65 86.130.18 75.830.70 81.330.18 75.900.29 82.140.27 77.050.25
Adaptive CL 92.110.24 85.781.42 87.790.18 78.141.66 85.720.21 75.720.57 81.380.11 76.040.41 82.380.34 77.440.37

(c) GPT2

Table 10. The performances of each curriculum learning method in the NLP research domain.
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CurBench: Curriculum Learning Benchmark

MUTAG PROTEINS NCI1 ogbg-molhiv
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 71.587.14 62.103.94 69.465.91 65.546.48 68.421.90 60.052.38 77.411.15 60.873.09
TTCL 70.527.14 71.585.37 72.687.63 71.616.62 70.902.21 67.982.01 75.890.81 72.811.14
MCL 71.587.14 71.588.55 70.545.15 65.004.71 68.561.04 54.502.85 74.101.40 64.264.17
ScreenerNet 72.633.94 64.215.16 71.965.61 67.144.05 69.782.22 56.065.14 73.710.45 61.007.79
LRE 70.529.18 61.404.96 68.036.17 66.615.25 58.231.60 51.222.38 73.741.48 57.927.98
MW-Net 74.732.11 63.164.71 70.544.55 66.794.13 68.711.78 56.011.37 75.571.03 62.816.19
DCL 74.732.11 61.0513.56 71.963.46 63.576.32 70.510.66 56.691.58 75.781.39 61.263.57
DDS 74.743.94 64.215.16 73.214.41 64.116.50 71.391.29 58.103.28 70.483.02 57.094.80
DIHCL 71.585.37 68.427.44 73.033.59 63.227.02 67.401.71 57.862.04 70.472.10 61.204.67
SuperLoss 71.585.37 69.476.14 72.323.44 65.893.84 70.222.00 57.173.38 75.971.03 61.215.12
Adaptive CL 73.683.33 66.317.88 72.684.84 65.714.51 69.882.17 58.445.29 75.491.13 60.957.96

(a) GCN

MUTAG PROTEINS NCI1 ogbg-molhiv
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 64.2111.72 65.265.37 69.296.93 67.143.85 56.492.61 54.744.10 69.692.38 64.882.73
TTCL 69.476.98 65.2610.84 69.827.13 64.461.31 56.791.40 55.472.73 68.272.04 66.731.84
MCL 64.2111.24 68.428.81 69.646.29 66.966.89 57.562.63 55.234.73 69.253.06 63.203.03
ScreenerNet 64.218.42 65.267.88 65.715.25 69.113.77 54.552.64 55.281.53 71.132.07 65.942.61
LRE 66.3111.34 63.164.71 66.431.84 66.073.19 54.112.32 52.942.36 66.592.45 63.742.61
MW-Net 61.849.40 65.267.14 66.783.01 67.144.42 57.562.29 55.331.18 68.543.76 62.392.60
DCL 67.3714.28 69.4710.21 68.037.39 64.283.84 59.371.59 55.331.72 72.641.16 62.223.98
DDS 66.317.14 67.376.14 67.143.31 66.789.69 53.241.81 54.453.35 68.502.05 62.225.88
DIHCL 72.638.42 66.328.55 65.006.81 68.576.93 57.181.73 55.674.70 69.072.79 66.382.78
SuperLoss 67.3713.06 68.427.44 63.932.63 66.077.23 57.082.27 55.132.39 70.581.52 60.922.13
Adaptive CL 67.3710.21 66.327.14 68.393.07 64.476.37 57.612.22 55.082.02 69.711.84 62.982.53

(b) GAT

MUTAG PROTEINS NCI1 ogbg-molhiv
Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4 Standard Noise-0.4

SPL 82.105.37 72.376.84 72.865.13 72.862.37 77.541.69 56.874.93 76.531.97 63.352.34
TTCL 84.217.44 81.584.56 75.712.36 73.931.82 80.241.67 56.274.27 75.131.55 62.163.07
MCL 84.216.45 73.695.27 75.723.93 70.002.68 75.671.00 57.734.11 74.200.48 63.823.85
ScreenerNet 82.107.14 75.005.74 75.711.82 68.394.88 79.611.09 55.575.11 74.391.24 61.072.33
LRE 78.953.72 80.272.28 72.685.46 66.436.48 71.411.71 54.081.72 73.492.36 63.304.44
MW-Net 88.422.10 75.004.37 73.754.10 66.618.54 79.221.21 55.524.78 75.220.80 65.432.70
DCL 85.268.42 76.324.56 74.113.14 64.464.39 79.661.39 56.063.79 75.232.22 61.653.38
DDS 85.263.94 80.265.73 70.312.78 65.896.69 77.623.58 54.894.85 72.852.67 63.383.91
DIHCL 85.534.36 73.683.72 73.754.54 71.614.28 76.551.70 53.331.28 72.431.80 62.235.86
SuperLoss 88.425.16 77.634.37 77.144.88 71.255.69 82.041.90 62.146.47 74.511.47 65.531.61
Adaptive CL 86.314.21 80.269.40 75.893.79 70.363.97 79.321.90 62.051.67 76.171.46 61.814.81

(c) GIN

Table 11. The performances of each curriculum learning method in the graph research domain.
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