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Abstract
Vision-language models (VLMs), such as CLIP,
have demonstrated impressive zero-shot capabil-
ities for various downstream tasks. Their per-
formance can be further enhanced through few-
shot prompt tuning methods. However, cur-
rent studies evaluate the performance of learned
prompts separately on base and new classes. This
evaluation lacks practicality for real-world ap-
plications since downstream tasks cannot deter-
mine whether the data belongs to base or new
classes in advance. In this paper, we explore
a problem setting called Open-world Prompt
Tuning (OPT), which involves tuning prompts
on base classes and evaluating on a combina-
tion of base and new classes. By introducing
Decomposed Prompt Tuning framework (DEPT),
we theoretically demonstrate that OPT can be
solved by incorporating out-of-distribution detec-
tion into prompt tuning, thereby enhancing the
base-to-new discriminability. Based on DEPT, we
present a novel prompt tuning approach, namely,
Decomposed Context Optimization (DECOOP),
which introduces new-class detectors and sub-
classifiers to further enhance the base-class and
new-class discriminability. Experimental results
on 11 benchmark datasets validate the effective-
ness of DEPT and demonstrate that DECOOP
outperforms state-of-the-art methods, providing a
significant 2% average accuracy improvement.

1. Introduction
Vision-language models (VLMs), such as CLIP (Radford
et al., 2021), have been developed to align images and lan-
guage, demonstrating impressive zero-shot capabilities for
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Figure 1. An illustration of the OPT evaluation paradigm. During
the training, we finetune the model with data from base classes.
During the testing, we evaluate the model on a mix of base and
new classes.

a variety of downstream tasks (Deng et al., 2009; Maji et al.,
2013; Krause et al., 2013), using only class names. The
classification prediction is determined by calculating the
cosine similarity between the image embedding, generated
by the image encoder, and the text embedding, generated
by the text encoder, using prompting techniques (Liu et al.,
2023). For example, by inputting “a photo of class”, the text
encoder generates the corresponding text embedding, where
“class” represents the class name.

In addition, it is possible to improve the performance of
CLIP, particularly when dealing with downstream tasks that
have limited labeled data. Few-shot prompt tuning meth-
ods (Lu et al., 2022; Zhou et al., 2022b; Shu et al., 2022b)
utilize a small amount of labeled data from downstream
datasets to fine-tune learnable prompts while keeping the
other parameters unchanged. These approaches can yield
substantial performance improvement compared to the zero-
shot VLMs in downstream classification tasks. However,
previous studies (Zhou et al., 2022a; Wang et al., 2023b)
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Figure 2. Delta performance of COOP and SHIP method compared
to zero-shot baseline CLIP method. Subfigres (a) and (b) show that
the changes in the H metric are not necessary indicators of perfor-
mance improvements or degradation of accuracy, highlighting the
significance of addressing the OPT problem.

have identified a limitation in which the learned prompts
only operate effectively with labeled data from base classes.
This limitation leads to a decrease in zero-shot performance
for new classes which are unseen in the training set. To ad-
dress this, the researchers propose an evaluation paradigm
that assesses the performance of both base and new classes
separately, as well as their harmonic mean, i.e., H metric.

Although this evaluation paradigm can comprehensively
evaluate the performance of both base and new classes, it
lacks practicality for real-world applications, which neces-
sitate prior knowledge of whether the data belongs to base
or new classes in the downstream task. For instance, in
the context of biological underpinnings (Hayes et al., 2021;
Kudithipudi et al., 2022) and visual classification (Lange
et al., 2022; Mai et al., 2022), both base classes and new
classes that arise during testing will be evaluated together.
Therefore, we introduce a realistic problem setting, namely,
Open-world Prompt Tuning (OPT), which evaluates the per-
formance of the model on a mix of base and new classes
while training model with base classes. An illustration of the
OPT problem is shown in Figure 1. The results in Figure 2
show that the changes in the H metric are not necessary in-
dicators of performance improvement or degradation when
evaluating the combination of base and new classes, which
highlights the significance of the OPT problem.

To address the OPT problem, we first analyze the origi-
nal problem, which consists of three parts: base-to-new
discriminability, base-class discriminability, and new-class
discriminability. We observe that existing methods and
settings fail to adequately consider the base-to-new dis-
criminability. Motivated by this analysis, we propose the

DEPT framework, which incorporates out-of-distribution
(OOD) detection into prompt tuning to enhance the base-
to-new discriminability and thereby prevents performance
degradation on new classes. We theoretically prove that the
DEPT framework can improve performance compared to
the zero-shot baseline and prompt tuning methods. Building
upon the DEPT framework, we introduce a novel prompt
tuning approach called Decomposed Context Optimization
(DECOOP). This approach incorporates new-class detec-
tors and sub-classifiers to further enhance the base-class
and new-class discriminability, respectively. Empirical re-
sults validate the effectiveness of the DEPT framework and
demonstrate that DECOOP approach outperforms current
state-of-the-art (SOTA) methods by a significant margin.

The contributions of this paper are summarized as follows:

(1) We explore a practical OPT problem and break down
the problem into two sub-problems: OOD detection and
prompt tuning. Through decomposition, we uncover
that base-to-new discriminability is crucial to address
OPT, overlooked in existing methods and settings.

(2) We propose a novel DEPT framework, which introduces
OOD detection into prompt tuning. Both our theoreti-
cal analysis and experimental results demonstrate the
effectiveness of DEPT framework for OPT.

(3) Based on DEPT framework, we propose a novel prompt
tuning approach DECOOP, which additionally enhances
the base-class and new-class discriminability by intro-
ducing new-class detectors and sub-classifiers.

(4) We conduct comprehensive experiments on DECOOP
using 11 benchmark datasets. The results show that
our proposed scheme outperforms current SOTA com-
parison methods, delivering a significant 2% average
improvement in accuracy.

2. Problem and Analysis
In this section, we first describe the notions and problem
formulation for the OPT setting. Subsequently, we conduct
an empirical analysis using a real-world dataset (Krause
et al., 2013), wherein we identify two primary challenges
to address: base-to-new discriminability and new-class dis-
criminability. Finally, we decompose the original problem
to demonstrate that the incorporation of the OOD detection
technique can effectively resolve these two challenges.

2.1. Problem Formulation

We focus on the prompt tuning setting for multi-class clas-
sification problems that involve an input space X , a class
space Y = Yb ∪ Yn = [C], and the text space T , where C
represents the number of classes. Here, Yb denotes the set of
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base classes, and Yn represents the set of new classes. The
name of the i-th class is denoted as ti ∈ T . Furthermore,
x ∈ X represents the data. f(x) ∈ Y and g(x) ∈ {b, n}
denote the label of x and the specific class space to which
it belongs, where f and g are the mapping functions of the
ground truth of the labels and the class space.

In OPT problem, we are given a pre-trained vision-language
model F = {EV ,ET }, which consists of a visual encoder
EV : X 7→ Rd and a textual encoder ET : T 7→ Rd,
where d represents the dimension of model F . During
the training stage, we learn the prompt vector p on a
few-shot dataset D containing data derived from Yb. To
simplify the notation, we define ti(p) as the concatena-
tion of the tokens of the class name ti and the learned
prompt p. Consequently, weight vectors {wi(p)}Ci=1 are
generated for each class as textual embeddings, where
wi(p) = ET (ti(p)) /∥ET (ti(p)) ∥. In the testing stage,
given the test data x drawn from Y , we initially obtain its
visual embedding z = EV (x)/∥EV (x)∥. Subsequently, we
calculate the prediction probabilities as follows:

P (y|x) = exp (zTwy/τ)∑C
i=1 exp (z

Twi/τ)
(1)

where τ represents the temperature determined by VLMs.
For convenience, we will also use P (x) to represent P (y|x)
in the subsequent paper. The prediction for x is given by
argmax

y∈Y
P (y|x). The objective of OPT is to train a model

that can make robust predictions on Y , which includes both
base and new classes, without experiencing overall perfor-
mance degradation due to the presence of new classes. In
our following analyses and experiments, we perform a com-
parison between the zero-shot baseline method (referred to
as ZS) and the prompt tuning method (referred to as PT) on
OPT problem.

2.2. Problem Analysis

To tackle the OPT problem, we investigate a real-world
dataset (Krause et al., 2013) to conduct detailed analyses
of the challenges inherent in OPT. Our observation demon-
strates that while prompt tuning methods can improve base-
class discriminability, they compromise both base-to-new
discriminability and new-class discriminability. To illustrate
this observation, we present a comparison between the ZS
methods and PT methods, where we employ CLIP as ZS
method and COOP as PT method, in Figures 3 and 4.

Figure 3 indicates that the prompt tuning method results in
a decreased base-to-new discriminability compared to the
zero-shot baseline. Specifically, the AUROC for detecting
new classes using the MSP technique (Hendrycks & Gimpel,
2016) decreases, and more false positive predictions are
introduced for base classes. Moreover, Figure 4 illustrates
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Figure 3. Performance of ZS and PT methods to distinguish data
from base classes and new classes (base-to-new discriminability).
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Figure 4. Performance of ZS and PT methods to distinguish data
within new classes (new-class discriminability).

that the prompt tuning method also exhibits reduced new-
class discriminability compared to the zero-shot baseline.

We emphasize that the existing H metric is incapable of mea-
suring base-to-new discriminability, making it unsuitable for
comprehensive practical applications. In OPT problem, the
accuracy evaluated in the entire class space can effectively
address this limitation.

2.3. Problem Decomposition

The above analysis reveals that the zero-shot baseline sur-
passes the prompt tuning method in terms of both new-class
discriminability and base-to-new discriminability. This ob-
servation motivates us to incorporate OOD detection tech-
nique to combine ZS method and PT method. This approach
aims to preserve the new-class discriminability using ZS
while enhancing the base-class discriminability using PT.
Therefore, we decompose the original classification problem
into separate OOD detection and two classification prob-
lems:

P (y|x) =
∑

i∈{b,n}

P (y|y ∈ Yi,x) · P (y ∈ Yi|x)

= P (y|y ∈ Yk,x) · P (y ∈ Yk|x)
(2)

where k always equals g(x) for the sake of simplicity, repre-
senting the ground-truth label space of x. The second term
is an OOD detector to determine whether x belongs to the
base or new class space. The first term is a classifier for the
corresponding class space.

Equation 2 motivates us to propose a novel Decomposed
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Prompt Tuning framework (DEPT), which synergistically
leverages the advantages of both the zero-shot baseline ZS
and the prompt tuning method PT. The prediction probabil-
ity PDEPT(y|x) of DEPT framework is:{

PPT(y|x), POOD(y ∈ Yb|x) ≥ POOD(y ∈ Yn|x),
PZS(y|x), POOD(y ∈ Yb|x) < POOD(y ∈ Yn|x).

(3)

where POOD(y ∈ Yb|x) is the OOD detector to determine
whether x belongs to the base or new class space. PZS(y|x)
and PPT(y|x) are classifiers of ZS and PT. In following
theoretical analysis and empirical experiment, we adopt the
ZS method using MSP method as the OOD detector, i.e.,
POOD(y ∈ Yi|x) = maxj∈Yi

PZS(y = j|x) for i ∈ {b, n}.

Then, we adopt the cross-entropy metric of two probabil-
ity distributions p and q, i.e., H(p, q) = −

∑C
i=1 pi log qi,

to evaluate the performance of PZS(y|x) and our DEPT
framework PDEPT(y|x). We denote distributions k̃ =

{I[k = b], I[k = n]} and ỹ = {[f(x) = i]}Ci=1 for x. Fi-
nally, we denote the following cross-entropy values for zero-
shot baseline, prompt tuning method, and DEPT framework:

HOOD
ZS (x) = H

(
k̃, {PZS(y ∈ Yi|x)}i={b,n}

)
,

HCLS
ZS (x) = H

(
ỹ, {PZS(y = j|y ∈ Yk,x)}Cj=1

)
,

HCLS
PT (x) = H

(
ỹ, {PPT(y = j|y ∈ Yk,x)}Cj=1

)
,

HZS(x) = H
(
ỹ, {PZS(y = j|x)}Cj=1

)
,

HDEPT(x) = H
(
ỹ, {PDEPT(y = j|x)}Cj=1

)
.

(4)

Theorem 2.1. If Ex

[
HCLS

ZS (x)
]
≤ δ for x belonging to

both base and new classes, Ex

[
HCLS

PT (x)
]
≤ δ −∆ for x

belonging to base classes, and Ex

[
HOOD

ZS (x)
]
≤ ϵ, given a

uniform mixing ratio (α : 1 − α) of base classes and new
classes in the testing data, we can determine that:{

Ex [HZS(x)] ≤ ϵ+ δ,

Ex [HDEPT(x)] ≤ ϵ+ δ − α ·∆.
(5)

Remark 2.2. Theorem 2.1 demonstrates that decomposing
the zero-shot baseline into an OOD detector and classifiers,
and incorporating prompt tuning methods to aid in classify-
ing base classes, can effectively decrease the upper bound of
classification error. Moreover, enhancing the reliability of
the OOD detector helps reduce the error term ϵ and ensures
that the performance on new classes remains uncompro-
mised compared to the baseline method. Consequently, this
framework preserves base-to-new discriminability and new-
class discriminability of ZS method. Additionally, refining
the PT method increases ∆, further enhancing base-class
discriminability and reducing the upper bound of error.

The proof is presented in Appendix A. Theorem 2.1 moti-
vates us to design a robust prompt tuning method based on
Equation 3 using OOD detection techniques to solve OPT.

3. DECOOP Approach
We propose a novel prompt tuning framework, called DEPT,
to address the OPT problem. The DEPT framework effec-
tively maintains the discriminability between base classes
and new classes, thus preventing degradation of discrim-
inability when prompt tuning is applied. Our theoretical
analysis, as presented in Theorem 2.1, demonstrates the
superiority of DEPT when combining the zero-shot baseline
and prompt tuning method. However, there are still two
challenges that need to be addressed in order to further en-
hance the performance in complex real-world applications:
(1) How can we train reliable OOD detectors to identify
new-class data using limited labeled data from base classes?
(2) With reliable OOD detectors, how to separately improve
the base-class and new-class discriminability?

To tackle the challenges above, we present a novel prompt
tuning approach named Decomposed Context Optimization
(DECOOP) based on our DEPT framework, containing
K new-classes detectors {Mi

D}Ki=1 and sub-classifiers
{Mi

C}Ki=1. The introduction of new-class detectors aids
in the improved detection of data from new classes in OPT
problem, where the names of new classes are known and
can be utilized. This differs from the traditional OOD de-
tection problems and presents an opportunity for further
performance enhancement. The sub-classifiers are designed
to better classify the data from base classes and reduce the
potential risks for new classes, which aims to enhance the
base-class and new-class discriminability with a reliable
base-to-new discriminability. The overall illustration of DE-
COOP approach is shown in Figure 5 and each component
is described thoroughly in the following subsections.

3.1. New-class Detector MD

In the OPT problem, the model is trained with Yb but has
knowledge of the entire class space Y during testing. There-
fore, the main challenge for new class detectors is to train
the model to effectively utilize the knowledge of the new
class Yn, which is only known during testing.

Specifically, Our proposed solution incorporates a leave-
out strategy which divides the base class space Yb into two
distinct subsets during training stage: simulated base classes
Ŷb and simulated new classes Ŷn, where Ŷb ∪ Ŷn = Yb.
Respectively, we split the original training set D into Db =
{(x, y)|(x, y) ∼ D ∧ y ∈ Ŷb} and Dn = {(x, y)|(x, y) ∼
D ∧ y ∈ Ŷn}. Then, our optimization objective function for
the new-class detector is defined as:

ℓOOD =
1

|Db|
∑

(x,y)∼Db

ℓCE(x, y)

+ max
{
0, γ + ℓb

E − ℓn
E

} (6)

where ℓCE(x, y) = − logP (x)y represents the cross-
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entropy loss, ℓE(x) = −
∑C

i=1 P (x)i logP (x)i represents
the entropy loss, ℓb

E = 1
|Db|

∑
(x,y)∼Db

ℓE(x) represents
the average entropy on the simulated base classes, and
ℓn
E = 1

|Dn|
∑

(x,y)∼Dn
ℓE(x) represents the average entropy

on the simulated new classes. Additionally, γ is a hyper-
parameter that controls the margin between ℓb

E and ℓn
E to

ensure stable optimization. The objective function in Equa-
tion 6 encourages the model to make low-entropy predic-
tions on simulated base classes and high-entropy predictions
on simulated new classes, thereby enhancing base-to-new
discriminability. However, partitioning the base class space
causes the model’s cognition to be limited to a subset of base
classes, leading to the failure to distinguish between other
base classes and new classes during testing. To address this
issue, we propose the adoption of an ensemble of K new-
class detectors {Mi

D}Ki=1 that cover the entire base class
space during training. Each new-class detector is trained
with Equation 6 with a different class partition. Our class
partitions of K new-class detectors ensure each base class
is considered as a simulated new class for at least one new-
class detector. We denote Mi

D(x) as the new-class score
computed for x. Lower scores indicate a higher likelihood
that x belongs to new classes.

In addition, a threshold remains crucial for the detection
of new classes, even when well-trained new-class detectors
are provided. Leveraging the benefits of our partition and
ensemble strategy, we can directly estimate the threshold for
each new-class detector during training using the Otsu algo-
rithm (Otsu, 1979; Liu & Yu, 2009) and training data. This
is possible due to the presence of naturally simulated base
classes and new classes in the training data for each new-
class detector. Subsequently, these estimated thresholds can

be averaged to determine the threshold value, denoted as τ ,
for testing.

3.2. Sub-Classifier MC

After training reliable new-class detectors, we proceed
to train a sub-classifier for each detector, as each detec-
tor focuses on a specific subset of the base class space.
Each of the K sub-classifiers, denoted as {Mi

C}Ki=1, is
designed to specialize in a particular base class space,
thereby achieving better discriminability for the correspond-
ing subset class space. For the i-th sub-classifier Mi

C ,
we first utilize the trained new-class detector Mi

D parti-
tion the training data into two subsets: Di

b and Di
n. Here,

Di
b =

{
(x, y)|(x, y) ∼ D ∧Mi

D(x) ≥ τ
}

and Di
n ={

(x, y)|(x, y) ∼ D ∧Mi
D(x) < τ

}
. Subsequently, we op-

timize the following objective function:

ℓCLS =
∑

(x,y)∼Di
b

ℓCE(x, y)+
∑

(x,y)∼Di
n

ℓKL (P (x), PZS(x))

(7)
Here, ℓKL denotes KL-divergence loss, and P (x) and
PZS(x) represent the prediction probabilities of DECOOP
approach and zero-shot CLIP baseline. We denote Mi

C(x)
as the prediciton probabilities computed for x.

3.3. Inference

During testing, we evaluate an ensemble of K new-class
detectors {Mi

D}Ki=1 to determine whether each testing data
should be predicted by one of the learned sub-classifiers
Mi

C or the zero-shot CLIP baseline. Specifically, for a
testing instance x, we first compute the scores of the new-
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Table 1. Comparison of average performance across 11 datasets
was conducted among three approaches: ZS, PT, and our DEPT

framework, utilizing ViT-B/16 and ViT-B/32 architectures. These
results are consistent with our theoretical analysis.

METHOD
VIT-B/16 VIT-B/32

NEW ACC. ACCURACY NEW ACC. ACCURACY

ZS 65.49 63.92 63.95 60.36
PT 57.73 65.57 53.01 61.03
DEPT 68.15 68.03 65.45 62.92

class detectors, {Mi
D(x)}Ki=1, and then make the prediction

according to our DECOOP approach, defined as:

PDECOOP(x) =


PZS(x), if max

i∈{1,··· ,K}
Mi

D(x) < τ,

Mi⋆

C (x), if max
i∈{1,··· ,K}

Mi
D(x) ≥ τ,

(8)
where i⋆ = argmaxi∈{1,··· ,K} Mi

D(x). DECOOP ap-
proach selects single sub-classifier to predict each test-
ing data instead of aggregating the results from all sub-
classifiers. As a result, our approach requires K times
computation for the new-class detectors compared to the
zero-shot CLIP baseline. In our experiments, we set K to
3, which does not impose a heavy computational burden.
We conduct experiments about evaluation time in Appendix
B.7, demonstating that DECOOP is relatively efficient.

4. Experiments
In this section, we conduct experiments to answer the fol-
lowing three research questions:

RQ1: Can the empirical results of the DEPT framework
on real-world datasets conform to our theoretical analysis?

RQ2: Can the DECOOP method surpass existing baseline
and SOTA methods, thereby demonstrating its robustness?

RQ3: Does the DECOOP successfully improve the base-
to-new discriminability, as designed?

4.1. Experimental Setup

Evaluation Protocol. We adopt the few-shot prompt tun-
ing setting as previously explored in studies such as (Rad-
ford et al., 2021; Zhou et al., 2022a; Wang et al., 2023b).
This setting involves partitioning the class space of each
dataset equally, with 50% of the classes designated as base
classes and the remaining 50% as new classes. Conse-
quently, for each dataset, prompts are learned for down-
stream tasks using 16 labeled samples per base class, drawn
from the training set. The efficacy of these learned prompts

Table 2. The average performance across 11 datasets using ViT-
B/16 and ViT-B/32 architectures. The best performance is in bold.

METHOD
VIT-B/16 VIT-B/32

H ACCURACY H ACCURACY

CLIP 70.84 63.92 67.13 60.36
PROMPT ENS. 71.65 65.39 67.76 60.73
COOP 72.14 65.57 67.86 61.03
COCOOP 74.72 67.67 70.77 62.96
SHIP 72.26 64.51 69.25 59.91
DECOOP(OURS) 76.13 69.69 72.51 65.75

is subsequently evaluated on the entire testing set, encom-
passing both base and new classes. In DECOOP method, we
report the Accuracy as well as previously reported H metric.
As per the definition in CoCoOp (Zhou et al., 2022a), H
metric separately evaluates the accuracy on base classes
and new classes, denoted as Accbase and Accnew. Then, H
metric is computed using their harmonic mean, defined as
H = 2×Accbase×Accnew

Accbase+Accnew
. The metric H evaluates the overall

performance of classifying both base and new classes sepa-
rately, which we refer to as base-class discriminability and
new-class discriminability. We evaluate the accuracy of the
entire class space, which includes a mix of base and new
classes, denoted as Accuracy. This metric evaluates the over-
all performance of classifying both base and new classes,
while additionally measuring base-to-new discriminability
compared to the H metric.

Datasets. Following the CoOp framework (Zhou et al.,
2022b), we conducted evaluations of our proposed DE-
COOP framework along with comparison methods on
various image classification tasks. These tasks included
general object recognition using ImageNet (Deng et al.,
2009) and Caltech-101 (Fei-Fei et al., 2007) datasets, fine-
grained object recognition involving datasets such as Ox-
ford Pets (Krause et al., 2013), Food-101 (Bossard et al.,
2014), Stanford Cars (Krause et al., 2013), Oxford Flow-
ers 102 (Nilsback & Zisserman, 2008), and FGVC Air-
craft (Maji et al., 2013). Additionally, we performed a
remote sensing recognition task using the EuroSAT (Helber
et al., 2019) dataset, a texture recognition task using the
DTD (Cimpoi et al., 2014) dataset, an action recognition
task using UCF101 (Soomro et al., 2012) dataset and a large-
scale scene understanding task using SUN397 (Xiao et al.,
2010) dataset. For each dataset, we developed a few-shot
training set for prompt tuning and employed the full testing
set to evaluate the effectiveness of the learned prompts.

Compared Methods. We compare our approach with five
existing prompt-based methods. CLIP (Radford et al., 2021)
uses a hand-crafted prompt to generate the target classifier
on the downstream task. Furthermore, we compare the
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Table 3. Performance comparison on 11 datasets using ViT-B/16 architecture. The best performance is in bold.

AVERAGE IMAGENET CALTECH101 OXFORDPETS
H ACC. H ACC. H ACC. H ACC.

CLIP 70.84 63.92 70.20 ± 0.00 66.73 ± 0.00 95.41 ± 0.00 92.90 ± 0.00 92.93 ± 0.00 88.03 ± 0.00
PROMPT ENS. 71.65 65.39 72.00 ± 0.00 68.48 ± 0.00 96.20 ± 0.00 94.08 ± 0.00 92.42 ± 0.00 86.37 ± 0.00
COOP 72.14 65.57 64.95 ± 1.11 61.79 ± 1.09 95.96 ± 0.39 93.24 ± 0.68 95.38 ± 0.33 89.61 ± 0.34
COCOOP 74.72 67.67 72.71 ± 0.33 69.41 ± 0.36 95.55 ± 0.24 93.43 ± 0.37 95.71 ± 0.76 90.24 ± 1.32
SHIP 72.26 64.51 67.29 ± 0.38 63.65 ± 0.32 95.83 ± 0.23 92.93 ± 0.37 94.44 ± 0.54 86.78 ± 1.32
DECOOP(OURS) 76.13 69.69 72.98 ± 0.04 69.62 ± 0.08 96.52 ± 0.09 94.50 ± 0.22 95.27 ± 0.08 88.87 ± 0.28

STANDFORDCARS FLOWERS102 FOOD101 FGVCAIRCRAFT
H ACC. H ACC. H ACC. H ACC.

CLIP 68.75 ± 0.00 65.39 ± 0.00 72.74 ± 0.00 67.28 ± 0.00 90.18 ± 0.00 85.40 ± 0.00 30.25 ± 0.00 23.94 ± 0.00
PROMPT ENS. 69.36 ± 0.00 65.95 ± 0.00 72.14 ± 0.00 67.03 ± 0.00 90.32 ± 0.00 85.54 ± 0.00 29.42 ± 0.00 23.31 ± 0.00
COOP 68.22 ± 0.49 63.81 ± 0.44 78.33 ± 2.26 72.11 ± 2.36 86.65 ± 1.38 80.84 ± 1.50 29.38 ± 1.78 24.80 ± 1.23
COCOOP 71.49 ± 0.62 67.75 ± 0.68 80.04 ± 1.46 71.95 ± 1.24 90.41 ± 0.24 85.61 ± 0.43 27.87 ± 11.36 21.46 ± 7.42
SHIP 69.71 ± 0.43 64.67 ± 0.55 76.85 ± 2.18 70.40 ± 2.01 86.84 ± 1.49 77.39 ± 2.19 27.13 ± 1.10 24.44 ± 0.96
DECOOP(OURS) 73.24 ± 0.15 69.64 ± 0.19 84.16 ± 0.27 78.61 ± 0.59 90.68 ± 0.09 85.83 ± 0.07 31.44 ± 0.39 25.15 ± 0.31

SUN397 DTD EUROSAT UCF101
H ACC. H ACC. H ACC. H ACC.

CLIP 72.26 ± 0.00 62.57 ± 0.00 57.32 ± 0.00 44.56 ± 0.00 58.16 ± 0.00 41.40 ± 0.00 71.00 ± 0.00 64.97 ± 0.00
PROMPT ENS. 75.04 ± 0.00 65.97 ± 0.00 59.63 ± 0.00 46.28 ± 0.00 58.45 ± 0.00 48.91 ± 0.00 73.17 ± 0.00 67.33 ± 0.00
COOP 71.37 ± 1.21 61.82 ± 1.11 57.22 ± 2.37 48.18 ± 1.78 74.33 ± 4.35 59.65 ± 5.07 71.68 ± 2.84 65.41 ± 2.18
COCOOP 77.17 ± 0.27 68.17 ± 0.33 60.59 ± 1.51 47.90 ± 1.43 73.77 ± 3.58 58.08 ± 1.49 76.59 ± 0.79 70.39 ± 1.25
SHIP 72.57 ± 0.38 60.42 ± 0.48 56.82 ± 2.18 47.58 ± 1.62 73.29 ± 2.67 54.11 ± 1.73 74.09 ± 2.09 67.24 ± 1.94
DECOOP(OURS) 78.11 ± 0.09 69.33 ± 0.05 62.72 ± 1.23 51.44 ± 1.04 74.61 ± 3.82 61.90 ± 3.72 77.67 ± 0.50 71.71 ± 0.79

PROMPT ENS. method, an ensemble technique that utilizes
multiple classifiers to enhance the performance of CLIP,
adhering to the guidelines set by CLIP. COOP (Zhou et al.,
2022b) learns a soft prompt by minimizing the classification
loss, and COCOOP (Zhou et al., 2022b) extends COOP by
further learning a lightweight neural network to generate
for each image an input-conditional token. SHIP (Wang
et al., 2023b) follows variational autoencoders to introduce
a generator that reconstructs the visual features by inputting
the synthesized prompts and the corresponding class names
to the textual encoder of CLIP.

Implementation Details. The number of tokens in each
prompt is set to 16 for DECOOP approach and comparison
methods. We train the prompts of new-class detectors for 50
epochs using the SGD optimizer and subsequently train the
prompts for sub-classifiers for 100 epochs, also using the
SGD optimizer. The learning rate lr is set to 0.002, and it
follows a cosine decay schedule. The margin γ is set to 0.4
for all datasets. We use the PROMPT ENS. method as our
zero-shot baseline within the DECOOP approach. The batch
size for images is 32 across all datasets. All experiments
were conducted on Linux servers equipped with NVIDIA
A800 GPUs. We report the average results over 5 runs with
different random seed {1, 2, 3, 4, 5}.

4.2. Empirical Results

RQ1: Can the empirical results of the DEPT framework on
real-world datasets conform to our theoretical analysis?

To verify Theorem 2.1, we conducted experiments on 11
datasets using ViT-B/16 and ViT-B/32 architectures. We em-
ployed CLIP as the zero-shot baseline ZS and COOP as the
prompt tuning method PT. Subsequently, we constructed
our DEPT framework by integrating these two methods,
as presented in Equation 3. Here, the OOD detector used
in our DEPT framework directly derives from CLIP using
MSP method (Hendrycks & Gimpel, 2016). Each method
is evaluated on the entire class space Y , and the average
performance across all datasets is reported. The results
include New Acc. and Accuracy, indicating the average per-
formance of new classes and all classes, respectively. The
results presented in Table 1 consistently demonstrate that
our DEPT framework outperforms both ZS and PT methods
when evaluated using the New Acc. and Accuracy metrics.
This observation suggests that the DEPT framework effec-
tively mitigates performance degradation on new classes
through the utilization of the OOD detector, which aligns
well with our theoretical analysis.

RQ2: Can the DECOOP method surpass existing baseline
and SOTA methods, thereby demonstrating its robustness?

To assess the effectiveness of the DECOOP approach, we
conducted experiments on 11 datasets using ViT-B/16 and
ViT-B/32 architectures. The average performance across all
datasets, as well as the detailed performance on each dataset
measured by two metrics, i.e., H and Accuracy, is reported.
The results obtained using the ViT-B/16 architecture are
presented in Table 3. Our DECOOP approach demonstrates
superior average performance on both the H metric and
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Table 4. The base-to-new discriminability of each method evalu-
ated using MSP method (Hendrycks & Gimpel, 2016) and AUROC
metrics. The best performance is in bold.

DATASET CLIP COCOOP SHIP DECOOP(OURS)

IMAGENET 88.34 88.05 84.71 97.48
CALTECH101 97.03 95.71 96.94 99.58
OXFORDPETS 92.66 91.15 93.30 98.12
STANFORDCARS 86.24 83.00 87.23 97.63
FLOWERS102 84.92 79.63 84.84 95.75
FOOD101 89.88 88.19 89.92 97.59
FGVCAIRCRAFT 75.08 69.00 75.78 84.06
SUN397 72.46 73.75 74.78 90.21
DTD 62.29 60.65 60.66 75.47
EUROSAT 56.40 57.74 59.32 77.78
UCF101 82.03 79.03 80.35 93.56
AVERAGE 80.67 78.72 80.71 91.57
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Figure 6. The ROC curve for detecting new classes of each method
on Flowers102 and StandfordCars datasets.

Accuracy, showcasing its robustness. Regarding the detailed
performance on each dataset, our approach outperforms
the comparison methods on 10 out of 11 datasets, while
achieving comparable performance on the remaining dataset.
The detailed results using the ViT-B/32 architecture are
provided in Appendix B.1, which yield similar conclusions.

Furthermore, these results reveal a positive correlation be-
tween the H metric and Accuracy in most cases. However,
specific datasets such as FGVCAircraft (Maji et al., 2013)
show that higher H metric values do not necessarily lead
to improved Accuracy. This observation suggests that the
H metric is inadequate for measuring base-to-new discrim-
inability, emphasizing the significance of OPT problem.

RQ3: Does the DECOOP successfully improve the base-to-
new discriminability, as designed?

The DECOOP approach introduces new-class detectors with
the aim of improving base-to-new discriminability while si-
multaneously enhancing the discriminability of new classes.
We evaluate the base-to-new discriminability of our ap-
proach and selected methods using the MSP (Hendrycks
& Gimpel, 2016) method with the ViT-B/16 architecture.
Specifically, for each method, we use the maximum prob-
ability on base classes as the scores and report the AU-
ROC (Bradley, 1997) in Table 4. The results clearly indicate
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Figure 7. Performance using different values of margin γ.

that our DECOOP approach significantly improves base-to-
new discriminability, which accounts for its SOTA perfor-
mance. We have omitted some methods and standard devia-
tions due to space limitations. Please refer to Appendix B.2
for full results. Additionally, we present the ROC curves for
two representative datasets in Figure 6, which demonstrates
similar findings. Due to space limitations, the ROC curves
for all datasets are provided in Appendix B.3. Furthermore,
we explore the correlation between the performance of new-
class detectors and the model in Appendix B.4.

Hyperparemeter. The margin γ serves as a hyperparam-
eter for learning new-class detectors in our DECOOP ap-
proach. It controls the margin in the optimization process
of the detectors, which may affect their performance. To an-
swer the robustness question of γ, we conduct experiments
on six datasets. Figure 7 demonstrates the robustness of the
DECOOP approach to changes in γ.

Comparison with Ensembling of COOP. In Ap-
pendix B.6, we conduct an experiment to determine if
directly combining multiple COOP prompts can lead to
performance improvement. The results demonstrate that
combining 2, 4, or 6 COOP prompts does not effectively
enhance performance and, at times, even deteriorates the
performance. This indicates that our performance gains
cannot be attributed to simple prompt ensembling.

Running Time. In Appendix B.7, we conduct an experi-
ment to compare the COOP, COCOOP, and DECOOP meth-
ods as shown in Table 9. On the EuroSAT dataset, the
runtime of DECOOP increased only slightly compared to
COOP (14.1s vs. 34.1s), but it is significantly more efficient
than COCOOP (62.0s), demonstrating the efficiency of the
DECOOP algorithm.

5. Related Work
Few-shot Prompt Tuning. Prompt learning aims to for-
malize various NLP tasks to mask language modeling prob-
lems, which is similar to the pre-training of language mod-
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els (Devlin et al., 2018; Radford et al., 2019; 2021) by adopt-
ing different prompt templates. The previous works (Petroni
et al., 2019; Radford et al., 2019; Brown et al., 2020) elab-
orately design human-crafted prompts, which is known as
prompt engineering. Despite considerable progress in NLP,
prompt learning remains underexplored in computer vi-
sion. Pretrained VLMs (Jia et al., 2021; Radford et al.,
2021) introduce hand-crafted prompts to perform zero-shot
inference on the downstream tasks. However, designing
specific prompts for various downstream tasks is ineffi-
cient and costly and several studies (Shi et al., 2024b;c)
peforms parameter-efficient fine-tuning to address this prob-
lem. CoOp (Zhou et al., 2022b) makes prompt learnable via
minimizing the classification loss on the target task, adopt-
ing the prompt tuning approach of NLP. However, CoOp
decreases the zero-shot capability of VLMs. To fix the prob-
lem, CoCoOp (Zhou et al., 2022a) introduces meta net to
conditionally fine-tune prompts. LFA (Ouali et al., 2023)
adopts a simple linear approach for vision-language align-
ment. VPT (Derakhshani et al., 2022) attempts to learn a
collection of continuous prompts to capture the variational
visual representation. SHIP (Wang et al., 2023b) follows
the paradigm of variational autoencoders to generate visual
features according to the prompts via the generative method.
ProDA (Lu et al., 2022) proposes to learn the distribution
of instance-specific prompts via variational inference. Ding
et al. (2024) explores the integration of OOD detection
methods for VLMs and present meaningful observations.
However, these studies do not consider the OPT evaluation
setting. Recent studies (Zhang et al., 2024; Shu et al., 2022a)
also make the attempts to perform prompt tuning on chang-
ing datastreams in a test-time adaptation manner (Zhou
et al., 2023; 2024; Zhao et al., 2024). These studies can be
explored to address OPT problem in the furture studies.

Out-of-distribution Detection. Out-of-distribution detec-
tion refers to training the model on in-distribution (ID)
dataset to classify OOD and ID samples. MSP (Hendrycks
& Gimpel, 2016) takes the maximum softmax probability
over ID categories as the score. RotPred (Hendrycks et al.,
2019) includes an extra head to predict the rotation angle of
rotated inputs in a self-supervised manner, and the rotation
head together with the classification head is used for OOD
detection. MCD (Yu & Aizawa, 2019) considers an ensem-
ble of multiple classification heads and promotes the dis-
agreement between each head’s prediction on OOD samples.
StyleAugment (Geirhos et al., 2018) applies style transfer
to clean images to emphasize the shape bias over the texture
bias. STEP (Zhou et al., 2021) focuses on exploring out-of-
distribution detection within a semi-supervised setting (Tong
et al., 2022; Lan-Zhe & Yu-Feng, 2024; Shi et al., 2024a;
Jia et al., 2024). CIDER (Ming et al., 2022) regularizes the
model’s hyperspherical space by increasing inter-class sepa-
rability and intra-class compactness. MixOE (Zhang et al.,

2023) performs pixel-level mixing operations between ID
and OOD samples and regularizes the model such that the
prediction confidence smoothly decays as the input transi-
tions from ID to OOD. RegMixup (Pinto et al., 2022) trains
the model with both clean images and mixed images ob-
tained from the convex combination. Recent studies (Ming
& Li, 2024; Sun et al., 2024), such as Clipn (Wang et al.,
2023a), LoCoOp (Miyai et al., 2023), attempt to explore
the capability of zero-shot and few-shot ood detection via
VLMs respectively. However, while these studies primarily
focus on OOD detection tasks, our research utilizes OOD
detection to enhance the generalization of VLMs.

6. Conclusion
In this paper, we explore the OPT problem in detail and
uncover that the base-to-new discriminability is crucial but
often overlooked by existing methods and settings. We first
introduce the DEPT framework and demonstrate, through
theoretical analysis, that incorporating OOD detection into
prompt tuning can enhance the base-to-new discriminabil-
ity and prevent degradation of new-class discriminability.
Building upon DEPT, we propose a novel prompt tuning ap-
proach called DECOOP that introduces new-class detectors
and sub-classifiers to further enhance the discriminability of
both the base and new classes. Experimental results validate
our analysis of DEPT and demonstrate the effectiveness of
our DECOOP approach.

One limitation of our work is that we only take the initial
step in combining OOD detection and prompt tuning. We
believe there is potential for future researchers to explore.
The other limitations are included in Appendix C.

Code Availability Statement
The implementation code for this work is available at
https://github.com/WNJXYK/DeCoOp.
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A. Proof of Theorem 2.1
Proof. We first compute HCLS

ZS (x) and HOOD
ZS (x) for one specific instance x. Recall that for an instance x, we denote its

ground-truth label space as k (which always equals to g(x)) and its ground-truth label as f(x). To facilitate the proof, we
define additional label spaces:

Yi,j =

{
{j}, j ∈ Yi,

∅, otherwise,
(9)

and additional class vectors for x:

ỹi,j =

{
1, f(x) = j ∧ f(x) ∈ Yi,

0, otherwise.
(10)

Our computational results are presented as follows:

HCLS
ZS (x) = H

(
ỹ, {PZS(y = j|y ∈ Yk,x)}Cj=1

)
= H

(
ỹ, {PZS(y ∈ Yk,j |y ∈ Yk,x)}Cj=1

)
= −

C∑
j=1

ỹj logPZS(y = j|y ∈ Yk,x)

= − logPZS(y = f(x)|y ∈ Yk,x),

(11)

and

HOOD
ZS (x) = H

(
k̃, {PZS(y ∈ Yi|x)}i={b,n}

)
= −

∑
i∈{b,n}

k̃i logPZS(y ∈ Yi|x)

= − logPZS(y ∈ Yk|x).

(12)

Then, we can bound Ex [HZS(x)] as follows:

Ex [HZS(x)] = Ex

[
H

(
ỹ, {PZS(y = j|x)}Cj=1

)]
= Ex

[
H

(
ỹ, {PZS(y ∈ Yk,j |x)}Cj=1

)]
= Ex

[
− logPZS(y ∈ Yk,f(x)|x)

]
= Ex

[
− logPZS(y ∈ Yk,f(x)|y ∈ Yk,x)− logPZS(y ∈ Yk|x)

]
= Ex

[
HCLS

ZS (x) +HOOD
ZS (x)

]
= Ex

[
HCLS

ZS (x)
]
+ Ex

[
HOOD

ZS (x)
]

≤ δ + ϵ.

(13)

Further, we can similarily compute HCLS
PT (x) as follows:

HCLS
PT (x) = H

(
ỹ, {PPT(y = j|y ∈ Yk,x)}Cj=1

)
= H

(
ỹ, {PPT(y ∈ Yk,j |y ∈ Yk,x)}Cj=1

)
= −

C∑
j=1

ỹk,j logPPT(y ∈ Yk,j |y ∈ Yk,x)

= − logPPT(y ∈ Yk,f(x)|y ∈ Yk,x).

(14)
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Table 5. Performance comparison between our proposed DECOOP method and comparison methods on 11 datasets using ViT-B/32
architecture. The best performance is in bold.

AVERAGE IMAGENET CALTECH101 OXFORDPETS
H ACC. H ACC. H ACC. H ACC.

CLIP 67.13 60.36 65.69 ± 0.00 62.05 ± 0.00 93.78 ± 0.00 91.08 ± 0.00 91.30 ± 0.00 85.01 ± 0.00
PROMPT ENS. 67.76 60.73 66.91 ± 0.00 63.22 ± 0.00 94.06 ± 0.00 91.20 ± 0.00 89.73 ± 0.00 83.18 ± 0.00
COOP 67.86 61.03 60.99 ± 0.09 57.61 ± 0.12 93.55 ± 0.76 91.09 ± 0.45 92.17 ± 0.77 85.21 ± 0.65
COCOOP 70.77 62.96 67.74 ± 1.23 64.06 ± 1.39 93.78 ± 0.92 91.01 ± 0.87 94.05 ± 0.56 87.84 ± 0.89
SHIP 69.25 59.91 61.72 ± 0.61 56.93 ± 1.26 93.35 ± 0.93 89.80 ± 0.83 92.19 ± 1.47 81.22 ± 1.03
DECOOP(OURS) 72.51 65.75 68.07 ± 0.06 64.49 ± 0.04 95.56 ± 0.22 93.36 ± 0.48 93.13 ± 0.50 86.25 ± 0.96

STANDFORDCARS FLOWERS102 FOOD101 FGVCAIRCRAFT
H ACC. H ACC. H ACC. H ACC.

CLIP 65.14 ± 0.00 60.39 ± 0.00 70.50 ± 0.00 64.27 ± 0.00 85.10 ± 0.00 79.16 ± 0.00 23.62 ± 0.00 18.30 ± 0.00
PROMPT ENS. 64.67 ± 0.00 59.82 ± 0.00 68.60 ± 0.00 63.30 ± 0.00 85.55 ± 0.00 79.59 ± 0.00 23.45 ± 0.00 18.30 ± 0.00
COOP 62.33 ± 1.21 56.95 ± 1.37 71.13 ± 1.95 65.25 ± 1.43 81.55 ± 0.91 74.32 ± 1.17 23.15 ± 1.71 18.88 ± 0.85
COCOOP 65.48 ± 0.66 60.27 ± 0.84 74.46 ± 1.10 65.86 ± 1.53 86.11 ± 0.29 80.09 ± 0.40 21.68 ± 5.89 15.28 ± 4.87
SHIP 64.38 ± 0.81 56.22 ± 1.00 70.41 ± 1.72 62.41 ± 1.88 81.76 ± 0.90 72.14 ± 1.43 19.34 ± 2.64 19.00 ± 0.98
DECOOP(OURS) 67.45 ± 0.15 62.55 ± 0.23 79.06 ± 0.43 72.84 ± 0.77 86.04 ± 0.10 79.98 ± 0.11 25.58 ± 0.33 20.03 ± 0.16

SUN397 DTD EUROSAT UCF101
H ACC. H ACC. H ACC. H ACC.

CLIP 71.35 ± 0.00 61.99 ± 0.00 53.60 ± 0.00 42.85 ± 0.00 50.81 ± 0.00 38.17 ± 0.00 67.56 ± 0.00 60.67 ± 0.00
PROMPT ENS. 73.27 ± 0.00 63.74 ± 0.00 53.81 ± 0.00 43.44 ± 0.00 56.90 ± 0.00 40.75 ± 0.00 68.39 ± 0.00 61.49 ± 0.00
COOP 69.48 ± 1.01 59.89 ± 0.85 57.52 ± 1.82 48.90 ± 1.23 67.46 ± 7.70 51.07 ± 8.05 67.11 ± 3.56 62.12 ± 2.48
COCOOP 75.51 ± 0.37 65.96 ± 0.45 59.57 ± 2.21 47.08 ± 1.30 66.98 ± 8.67 49.19 ± 5.78 73.17 ± 1.24 65.98 ± 1.06
SHIP 70.33 ± 0.63 58.86 ± 0.71 57.22 ± 3.14 45.91 ± 1.07 77.74 ± 3.74 50.23 ± 1.92 73.27 ± 1.21 66.31 ± 0.72
DECOOP(OURS) 75.87 ± 0.14 66.59 ± 0.19 60.61 ± 0.48 50.39 ± 0.40 72.35 ± 2.42 58.93 ± 2.62 73.87 ± 0.36 67.83 ± 0.81

Finally, we can bound Ex [HDEPT(x)] as follows:

Ex [HDEPT(x)] = Ex

[
H

(
ỹ, {PDEPT(y = j|x)}Cj=1

)]
= Ex

[
H

(
ỹ, {PDEPT(y ∈ Yk,i|x)}Ci=1

)]
= Ex [− logPDEPT(y ∈ Yk,i|x)]
= Ex∧k=b [− logPDEPT(y ∈ Yk,i|x)] + Ex∧k=n [− logPDEPT(y ∈ Yk,i|x)]
= Ex∧k=b

[
− logPPT(y ∈ Yk,f(x)|y ∈ Yk,x)− logPZS(y ∈ Yk|x)

]
+ Ex∧k=n

[
− logPZS(y ∈ Yk,f(x)|y ∈ Yk,x)− logPZS(y ∈ Yk|x)

]
= Ex∧k=b

[
HCLS

PT (x) +HOOD
ZS (x)

]
+ Ex∧k=n

[
HCLS

ZS (x) +HOOD
ZS (x)

]
≤ α · (δ −∆+ ϵ) + (1− α) · (δ + ϵ)

≤ δ + ϵ− α ·∆.

(15)

B. Additional Experimental Results
B.1. Detailed Results on ViT-B/32 Architecture

To address the consistent performance of our proposal, we conduct experiments and compare our proposed DECOOP
method, baseline methods, and SOTA prompting tuning methods on 11 datasets using ViT-B/32 architectures. Each dataset is
trained with random seeds from 1 to 5. In terms of detailed performance on each dataset, our proposed method outperforms
the comparison methods on 9 out of 11 datasets, while achieving comparable performance on the remaining 2 datasets,
showcasing its robustness to different pre-trained architectures.

B.2. Detailed AUROC Results

The full experimental results of Table 4 are presented in Table 6. Our DECOOP approach achieves the best base-to-new
discriminability among all comparison methods.
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Table 6. AUROC performance is compared with CLIP, Prompt Ensemble, COOP, COCOOP, SHIP and our proposed DECOOP. The
results demonstrate that our proposal enhances base-to-new discriminability.

DATASET CLIP PROMPT ENS. COOP COCOOP SHIP DECOOP(OURS)

IMAGENET 88.34 ± 0.00 89.79 ± 0.00 77.14 ± 1.62 88.05 ± 1.22 84.71 ± 1.62 97.48 ± 0.03
CALTECH101 97.03 ± 0.00 97.09 ± 0.00 94.53 ± 0.87 95.71 ± 0.50 96.94 ± 0.79 99.58 ± 0.03
OXFORDPETS 92.66 ± 0.00 92.21 ± 0.00 91.06 ± 1.00 91.15 ± 0.95 93.30 ± 1.23 98.12 ± 0.24
STANFORDCARS 86.24 ± 0.00 87.46 ± 0.00 78.25 ± 2.00 83.00 ± 2.24 87.23 ± 1.16 97.63 ± 0.02
FLOWERS102 84.92 ± 0.00 87.78 ± 0.00 78.06 ± 1.82 79.63 ± 2.20 84.84 ± 1.41 95.75 ± 0.18
FOOD101 89.88 ± 0.00 90.26 ± 0.00 87.53 ± 1.20 88.19 ± 1.07 89.92 ± 1.00 97.59 ± 0.04
FGVCAIRCRAFT 75.08 ± 0.00 75.86 ± 0.00 75.25 ± 1.36 69.00 ± 7.91 75.78 ± 1.65 84.06 ± 0.26
SUN397 72.46 ± 0.00 75.29 ± 0.00 70.29 ± 1.47 73.75 ± 1.11 74.78 ± 1.14 90.21 ± 0.10
DTD 62.29 ± 0.00 61.10 ± 0.00 56.78 ± 1.93 60.65 ± 0.94 60.66 ± 1.22 75.47 ± 1.02
EUROSAT 56.40 ± 0.00 57.74 ± 0.00 52.26 ± 8.68 57.74 ± 2.49 59.32 ± 6.31 77.78 ± 3.85
UCF101 82.03 ± 0.00 83.56 ± 0.00 72.72 ± 2.21 79.03 ± 1.52 80.35 ± 1.99 93.56 ± 0.62
AVERAGE 80.67 81.65 75.81 78.72 80.71 91.57

Table 7. Ablation study. We report average performance across 11 datasets was conducted among baselines, COOP, DEPT, DECOOP

approaches, utilizing ViT-B/16 and ViT-B/32 architectures. The best performance is in bold. The second-best performance is underlined.

METHOD
VIT-B/16 VIT-B/32

H ACCURACY H ACCURACY

CLIP 70.84 63.92 67.13 60.36
PROMPT ENS. 71.65 65.39 67.76 60.73
COOP 72.14 65.57 67.86 61.03
DEPT 74.82 68.03 69.96 62.92
DECOOP 76.13 69.69 72.51 65.75

B.3. Detailed ROC Curves

To evaluate whether our proposal can improve the performance for detecting, we conduct experiments on 11 datasets using
ViT-B/16 architecture. Each curve is drawn using our experiment results with random seeds to 1. For each method, we adopt
the maximum softmax probability over new classes as the detecting score for drawing the curve. The results in Figure 8
show that our proposal can achieve the best detection performance.

B.4. Correlation between MO and Performance

The objective of the DECOOP approach is to enhance the base-to-new discriminability through the MO, leading to improved
performance. Hence, a key question arises: does a better MO result in enhanced performance? To investigate this, we
employ different new-class detectors with varying AUROC values for training and evaluate the performance as shown in
Figure 9. This figure illustrates the correlation between the AUROC of the new-class detector and the performance metric.
The results indicate a positive correlation between these two variables, validating our claim and aligning with our research
objective.

B.5. Ablation Study

We conduct ablation studies to validate the effectiveness of each component of our proposed DECOOP approach in Table 7.
In this paper, we first propose a novel prompt tuning framework DEPT to introduce OOD detection into prompt tuning.
Then, two advanced modules are integrated into DEPT framework to form our DECOOP approach. As the our two modules
cannot be separated to perform classification, we compare baseline methods, DEPT framework, and our proposed DECOOP
appraoch. The results show that DEPT framework enhances the base-to-new discriminability and prevents performance
degradation of new classes, thereby outperforming CLIP, PROMPT ENS., and COOP methods. Further, our proposed
DECOOP approach achieves the best performance among all methods, demonstrating it additionally enhances the base-class
and new-class discriminability.
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Figure 8. The roc curve for detecting new classes of each method on 11 datasets.
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Figure 9. Correlation between performance of MO and accuracy.

B.6. Simple Ensembling of COOP Method

We also conduct experiments to evaluate whether directly ensemble multiple COOP learners can achieve similar performance.
The results, shown in Table 8, indicate that the ensemble of multiple COOP prompts does not yield significantly better
performance compared to the COOP method. These results prove that the performance gain does not derive from simple
prompt ensembling.

B.7. Evaluation Time

Our DECOOP approach adopts multiple prompts to detect OOD, so it may take more time. We compared the running time
taken by COOP, COCOOP, and DECOOP methods when evaluating the testing set of two datasets in Table 9. The results
show that the running time of the DECOOP is not significantly longer than the COOP method since the computation can be
performed in parallel. However, our DECOOP approach runs in two stages (i.e., OOD detection and classification stages),
therefore, the running time will be approximately double compared to the COOP method. However, the running time of
COCOOP rises significantly as the number of categories increases, where demonstates our DECOOP is efficient.
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Table 8. Performance comparison between our proposed method and the ensemble of multiple COOP prompts is conducted. The results
demonstrate that directly combining multiple COOP learners does not yield significantly better performance compared to the COOP

method. Moreover, our proposed algorithm outperforms other methods.

METHOD FLOWERS102 DTD CALTECH101 STANDFORDCARS

COOP 72.11 48.18 93.24 63.81
COOP×2 71.62 50.08 93.31 64.20
COOP×4 73.12 49.99 92.89 64.32
COOP×6 71.89 49.69 92.87 65.03
DECOOP 78.61 51.44 94.50 69.64

Table 9. Evaluation running time of COOP, COCOOP, and DE-
COOP methods.

DATASETS #CLASSES COOP COCOOP DECOOP

EUROSAT 10 14.1S 62.0S 34.1S
FOOD101 101 50.5S 711.7S 131.5S

Table 10. Comparison with weight interpolating methods.

NEW ACC. ACCURACY

CLIP 65.48 63.92
COOP 57.75 65.58
RFT (WORTSMAN ET AL., 2022) 65.34 69.26
DECOOP 66.54 69.69

B.8. Comparison with Weight Interpolating Methods

Existing studies (Wortsman et al., 2022; Ilharco et al., 2022) observe that interpolating weights for tuned and original
vision-language models can improve the generalization capacity. In the context of prompt tuning, we can interpolate weights
of the tuned prompt and original prompt. We report the average results on all datasets using ViT-B/16 architecture in
Table 10. The results show that interpolating weights can give better performance compared to both the original model
and the tuned model, which aligns with the conclusion of existing studies. Our DECOOP outperforms other methods,
demonstrating its effectiveness. Note that Weight Interpolating Methods and DECOOP have studied the different stages in
fine-tuning, therefore, the combination of both to further enhance performance can be a direction for future research.

C. Limitation and Future Work
Our paper proposes the integration of OOD detection into prompt tuning to prevent performance degradation on new classes.
In addition to the content discussed at the end of Section 6, one limitation of our approach is the potentially increased time
consumption due to the adoption of a two-stage classification process. Integrating knowledge (Yang et al., 2024b;a) into the
prompt tuning to achieve the better generalization is also a future direction to explore. Experiments detailed in Appendix B.7
demonstrate that our method’s running time is shorter than some existing methods (e.g., COCOOP), proving that the running
time of our proposal is within an acceptable range. One possible solution is to integrate the two-stage classification into
prompt training through the utilization of advanced training strategies, which can be explored as potential research directions
in the future.
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