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Abstract
Reinforcement Learning from Human Feedback
(RLHF) is a pivotal technique that aligns language
models closely with human-centric values. The
initial phase of RLHF involves learning human
values using a reward model from ranking data.
It is observed that the performance of the reward
model degrades after one epoch of training, and
optimizing too much against the learned reward
model eventually hinders the true objective. This
paper analyzes potential reasons behind the issues,
and designs improved reward learning algorithm
termed ’Iterative Data Smoothing’ (IDS). The
core idea is that during each training epoch, we
not only update the model with the data, but
also update the date using the model, replacing
hard labels with soft labels. Our empirical
findings highlight the superior performance of
this approach over the traditional methods.

1. Introduction
Recent progress on Large Language Models (LLMs) is
having a transformative effect not only in natural language
processing but also more broadly in a range of AI
applications (Radford et al., 2019; Chowdhery et al., 2022;
Brown et al., 2020; Touvron et al., 2023; Bubeck et al.,
2023; Schulman et al., 2022; OpenAI, 2023; Anthropic,
2023). A key ingredient in the roll-out of LLMs is the
fine-tuning step, in which the models are brought into
closer alignment with specific behavioral and normative
goals. When no adequately fine-tuned, LLMs may exhibit
undesirable and unpredictable behavior, including the
fabrication of facts or the generation of biased and toxic
content (Perez et al., 2022; Ganguli et al., 2022). The current
approach towards mitigating such problems is to make use
of reinforcement learning based on human assessments. In
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particular, Reinforcement Learning with Human Feedback
(RLHF) proposes to use human assessments as a reward
function from pairwise or multi-wise comparisons of model
responses, and then fine-tune the language model based on
the learned reward functions (Ziegler et al., 2019; Ouyang
et al., 2022; Schulman et al., 2022).

Following on from a supervised learning stage, a typical
RLHF protocol involves two main steps:

• Reward learning: Sample prompts from a prompt
dataset and generate multiple responses for the same
prompt. Collect human preference data in the form
of pairwise or multi-wise comparisons of different
responses. Train a reward model based on the
preference data.

• Policy learning: Fine-tune the current LLM based on
the learned reward model with reinforcement learning
algorithms.

Although RLHF has been successful in practice (Bai
et al., 2022; Ouyang et al., 2022; Dubois et al., 2023),
it is not without flaws, and indeed the current reward
training paradigm grapples with significant value-reward
mismatches. There are two major issues with the current
paradigm:

• Reward overfitting: During the training of the reward
model, it has been observed that the test cross-entropy
loss of the reward model can deteriorate after one epoch
of training (Ouyang et al., 2022).

• Reward overoptimization: When training the policy
model to maximize the reward predicted by the learned
model, it has been observed that the ground-truth
reward can increase when the policy is close in KL
divergence to the initial policy, but decrease with
continued training (Gao et al., 2023).

In this paper, we investigate these issues in depth. We
simplify the formulation of RLHF to a multi-armed bandit
problem and make attempt to explain and reproduce the
overfitting and overoptimization phenomena. We leverage
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theoretical insights in the bandit setting to design new
algorithms that help mitigate the issues and work well under
practical fine-tuning scenarios.

1.1. Main Results

As our first contribution, we make the attempt to explain
and analyze both reward overfitting and overoptimization
from the simple setting of multi-armed bandit. We show that
the inadequacy of the cross-entropy loss for long-tailed
preference datasets can be one of the reasons for both
overfitting and overoptimization. As illustrated in Figure 1,
even a simple 3-armed bandit problem can succumb to
overfitting and overoptimization when faced with such
imbalanced datasets. Consider a scenario where we have
three arms with true rewards given by r⋆1 = 1, r⋆2 = r⋆3 = 0,
and the preference distribution is generated by the Bradley-
Terry-Luce (BTL) model (Bradley & Terry, 1952), i.e.
P(i ≻ j) = exp(r⋆i )/(exp(r

⋆
i ) + exp(r⋆j )). Suppose our

preference dataset compares the first and second arms 1000
times but only compares the first and third arm once, and let
n(i ≻ j) denote the number of times that arm i is preferred
over arm j. The standar empirical cross-entropy loss used in
the literature for learning the reward model (Ouyang et al.,
2022; Zhu et al., 2023a) can be written as follows:

−
∑
i,j

n(i ≻ j) log

(
exp(ri)

exp(ri) + exp(rj)

)
.

We know that the empirical values n(1 ≻ 2) and n(2 ≻ 1)
concentrate around their means. However, we have with
probability 0.73, n(1 ≻ 3) = 1 and n(3 ≻ 1) = 0, and
with probability 0.27, n(1 ≻ 3) = 0 and n(3 ≻ 1) = 1. In
either case, the minimizer of the empirical entropy loss
will satisfy either r̂1 − r̂3 = −∞ or r̂1 − r̂3 = +∞.
This introduces a huge effective noise when the coverage is
imbalanced. Moreover, the limiting preference distribution
is very different from the ground truth distribution, leading
to reward overfitting. Furthermore, since there is 0.27
probability that r̂1 − r̂3 = −∞, we will take arm 3 as
the optimal arm instead of arm 1. This causes reward
overoptimization during the stage of policy learning since
the final policy converges to the wrong arm with reward
zero.

To mitigate these effects, we leverage the pessimism
mechanism from bandit learning to analyze and design
a new algorithm, Iterative Data Smoothing (IDS), that
simultaneously addresses both reward overfitting and reward
overoptimization. The algorithm design is straightforward:
in each epoch, beyond updating the model with the data,
we also adjust the data using the model. Theoretically,
we investigate the two phenomena in the tabular bandit
case. We show that the proposed method, as an alternative
to the lower-confidence-bound-based algorithm (Jin et al.,

2021; Xie et al., 2021; Rashidinejad et al., 2021; Zhu et al.,
2023a), learns the ground truth distribution for pairs that are
compared enough times, and ignores infrequently covered
comparisons thereby mitigating issues introduced by long-
tailed data. Empirically, we present experimental evidence
that the proposed method improves reward training in both
bandit and neural network settings.

1.2. Related Work

RLHF and Preference-based Reinforcement Learning.
RLHF, or Preference-based Reinforcement Learning
(PbRL), has delivered significant empirical success in the
fields of game playing, robot training, stock prediction,
recommender systems, clinical trials and natural language
processing (Novoseller et al., 2019; Sadigh et al., 2017;
Christiano et al., 2017b; Kupcsik et al., 2018; Jain et al.,
2013; Wirth et al., 2017; Knox & Stone, 2008; MacGlashan
et al., 2017; Christiano et al., 2017a; Warnell et al., 2018;
Brown et al., 2019; Shin et al., 2023; Ziegler et al., 2019;
Stiennon et al., 2020; Wu et al., 2021; Nakano et al., 2021;
Ouyang et al., 2022; Menick et al., 2022; Glaese et al.,
2022; Gao et al., 2022; Bai et al., 2022; Ganguli et al., 2022;
Ramamurthy et al., 2022). In the setting of the language
models, there has been work exploring the efficient fine-
tuning of the policy model (Snell et al., 2022; Song et al.,
2023a; Yuan et al., 2023; Zhu et al., 2023b; Rafailov et al.,
2023; Wu et al., 2023).

In the case of reward learning, Ouyang et al. (2022) notes
that in general the reward can only be trained for one
epoch in the RLHF pipeline, after which the test loss
can go up. Gao et al. (2023) studies the scaling law of
training the reward model, and notes that overoptimization
is another problem in reward learning. To address the
problem, Zhu et al. (2023a) propose a pessimism-based
method that improves the policy trained from the reward
model when the optimal reward lies in a linear family. It is
observed in Song et al. (2023b) that the reward model tends
to be identical regardless of whether the prompts are open-
ended or closed-ended during the terminal phase of training,
and they propose a prompt-dependent reward optimization
scheme.

Another closely related topic is the problem of estimation
and ranking from pairwise or K-wise comparisons. In the
literature of dueling bandit, one compares two actions and
aims to minimize regret based on pairwise comparisons (Yue
et al., 2012; Zoghi et al., 2014b; Yue & Joachims, 2009;
2011; Saha & Krishnamurthy, 2022; Ghoshal & Saha, 2022;
Saha & Gopalan, 2018a; Ailon et al., 2014; Zoghi et al.,
2014a; Komiyama et al., 2015; Gajane et al., 2015; Saha
& Gopalan, 2018b; 2019; Faury et al., 2020). (Novoseller
et al., 2019; Xu et al., 2020) analyze the sample complexity
of dueling RL agents in the tabular case, which is extended
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Figure 1: Illustration of the problem of the vanilla empirical cross-entropy minimization for learning the ground truth
reward. With a small number of samples comparing arm 1 and 3, the minimization converges to a solution which assigns
r̂1 − r̂3 = −∞ with constant probability. With the proposed Iterative Data Smoothing (IDS) algorithm, the estimator is able
to recover the ground truth reward.

to linear case and function approximation by the recent work
of Pacchiano et al. (2021); Chen et al. (2022). Chatterji et al.
(2022) studies a related setting where in each episode only
binary feedback is received. Most of the theoretical work
of learning from ranking focuses on regret minimization,
while RLHF focuses more on the quality of the final policy.

Knowledge Distillation The literature of knowledge
distillation focuses on transferring the knowledge from
a teacher model to a student model (Hinton et al., 2015;
Furlanello et al., 2018; Cho & Hariharan, 2019; Zhao et al.,
2022; Romero et al., 2014; Yim et al., 2017; Huang & Wang,
2017; Park et al., 2019; Tian et al., 2019; Tung & Mori,
2019; Qiu et al., 2022; Cheng et al., 2020). It is observed
in this literature that the soft labels produced by the teacher
network can help train a better student network, even when
the teacher and student network are of the same size and
structure (Hinton et al., 2015). Furlanello et al. (2018)
present a method which iteratively trains a new student
network after the teacher network achieves the smallest
evaluation loss. Both our iterative data smoothing algorithm
and these knowledge distillation methods learn from soft
labels. However, iterative data smoothing iteratively updates
the same model and data, while knowledge distillation
method usually focuses on transferring knowledge from
one model to the other.

2. Formulation
We begin with the notation that we use in the paper. Then
we introduce the general formulation of RLHF, along with
our simplification in the multi-armed bandit case.

Notations. We use calligraphic letters for sets, e.g., S and
A. Given a set S, we write |S| to represent the cardinality
of S. We use [K] to denote the set of integers from 1 to K.
We use µ(a, a′) to denote the probability of comparing a
and a′ in a preference dataset, and µ(a) =

∑
a′∈A µ(a, a′)

to denote the probability of comparing a with any other
arms. Similarly, we use n(a), n(a, a′) to denote the number
of samples that compare a with any other arms, and the
number of samples that compare a with a′, respectively. We
use a1 ≻ a2 to denote the event that the a1 is more preferred
compared to a2.

2.1. General Formulation of RLHF

The key components in RLHF consist of two steps: reward
learning and policy learning. We briefly introduce the
general formulation of RLHF below.

In the stage of reward learning, one collects a preference
dataset based on a prompt dataset and responses to the
prompts. According to the formulation of Zhu et al. (2023a),
for the i-th sample, a state (prompt) si is first sampled
from some prompt distribution ρ. Given the state si, M
actions (responses) (a(1)i , a

(2)
i , · · · , a(M)

i ) are sampled from
some joint distribution P(a(1), · · · , a(M) | si), Let σi :
[M ] 7→ [M ] be the output of the human labeller, which
is a permutation function that denotes the ranking of the
actions. Here σi(1) represents the most preferred action,
and σi(M) is the least preferred action. A common model
for the distribution of σ under multi-ary comparisons is
a Plackett-Luce model (Plackett, 1975; Luce, 2012). The
Plackett-Luce model defines the probability of a state-action
pair (s, ai) being the largest among a given set {(s, ai)}Mi=1

as

P(ai ≻ aj ,∀j ̸= i | s) = exp(r⋆(s, ai))∑M
j=1 exp(r

⋆(s, aj))
,

where r⋆ : S × A 7→ R is the ground-truth reward for the
response given the prompt. Moreover, the probability of
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observing the permutation σ is defined as1

P(σ | s, {a(i)}Mi=1) =

M∏
i=1

exp(r⋆(s, a(σ(i))))∑M
j=i exp(r

⋆(s, a(σ(j))))
.

When M = 2, this reduces to the pairwise comparison
considered in the Bradley-Terry-Luce (BTL) model (Bradley
& Terry, 1952), which is used in existing RLHF algorithms.
In this case, the permutation σ can be reduced to a
Bernoulli random variable, representing whether one action
is preferred compared to the other. Concretely, for
each queried state-actions pair (s, a, a′), we observe a
sample c from a Bernoulli distribution with parameter

exp(r⋆(s,a))
exp(r⋆(s,a))+exp(r⋆(s,a′)) . Based on the observed dataset,
the cross-entropy loss is minimized to estimate the ground-
truth reward for the case of pairwise comparison. The
minimizer of cross-entropy loss is the maximum likelihood
estimator:

r̂MLE ∈ arg min
r

LCE(D, r),

LCE(D, r) = −
n∑

i=1

log

(
yi · exp(r(si, a(1)i ))

exp(r(si, a
(1)
i )) + exp(r(si, a

(2)
i ))

(1)

+
(1− yi) · exp(r(si, a(2)i ))

exp(r(si, a
(1)
i )) + exp(r(si, a

(2)
i ))

)
.

After learning the reward, we aim to learn the optimal policy
under KL regularization with respect to an initial policy π0

under some state (prompt) distribution ρ′.

π̂ = arg max
π

Es∼ρ′,a∼π[r̂MLE(s, a)]−

λ · Es∼ρ′ [KL(π(· | s)∥π0(· | s))].

2.2. RLHF in Multi-Armed Bandits

To understand the overfitting and overoptimization
problems, we simplify the RLHF problem to consider a
single-state multi-armed bandit formulation with pairwise
comparisons. Instead of fitting a reward model and policy
model with neural networks, we fit a tabular reward model
in a K-armed bandit problem.

Consider a multi-armed bandit problem with K arms.
Each arm has a deterministic ground-truth reward r⋆(k) ∈
R, k ∈ [K]. In this case, the policy becomes a distribution
supported on the K arms π ∈ ∆([K]). The sampling
process for general RLHF reduces to the following: we
first sample two actions ai, a′i from a joint distribution

1In practice, one may introduce an extra temperature parameter
σ and replace all r⋆ with r⋆/σ. Here we take σ = 1.

µ ∈ ∆([K]× [K]), and then observe a binary comparison
variable yi following a distribution

P(yi = 1) =
exp(r⋆(ai))

exp(r⋆(ai)) + exp(r⋆(a′i))
,

P(yi = 0) = 1− P(yi = 1).

Assume that we are given n samples, which are sampled
i.i.d. from the above process. Let n(a, a′) be the total
number of comparisons between actions a and a′ in the n
samples. Let the resulting dataset be D = {ai, a′i, yi}ni=1.
The tasks in RLHF for multi-armed bandit setting can be
simplified as:

1. Reward learning: Estimate true reward r⋆ with a
proxy reward r̂ from the comparison dataset D.

2. Policy learning: Find a policy π ∈ ∆([K]) that
maximizes the proxy reward under KL constraints.

In the next two sections, we discuss separately the reward
learning phase and policy learning phase, along with the
reasons behind overfitting and overoptimization.

2.3. Overfitting in Reward Learning

For reward learning, the commonly used maximum
likelihood estimator is the estimator that minimizes
empirical cross-entropy loss:

r̂MLE = arg min
r

L̂CE(D, r), where (2)

L̂CE(D, r̂) = −
1

n

n∑
i=1

yi log

(
exp(r̂(ai))

exp(r̂(ai)) + exp(r̂(a′i))

)
+ (1− yi) log

(
exp(r̂(a′i))

exp(r̂(ai)) + exp(r̂(a′i))

)
.

By definition, r̂MLE is convergent point when we optimize
the empirical cross entropy fully. Thus the population cross-
entropy loss of r̂MLE is an indicator for whether overfitting
exists during reward training.

We define the population cross entropy loss LCE(r) as

−E(a,a′)∼µ

[
exp(r⋆(a))

exp(r⋆(a)) + exp(r⋆(a′))
log

(
exp(r(a))

exp(r(a)) + exp(r(a′))

)

+
exp(r⋆(a′))

exp(r⋆(a)) + exp(r⋆(a′))
log

(
exp(r(a′))

exp(r(a)) + exp(r̂(a′))

)]
.

(3)

For a fixed pairwise comparison distribution µ, it is known
that the maximum likelihood estimator r̂MLE converges to
the ground truth reward r⋆ as the number of samples n goes
to infinity.
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Theorem 2.1 (Consistency of MLE, see, e.g., Theorem
6.1.3. of Hogg et al. (2013)). Fix r⋆(K) = r̂(K) = 0 for
the uniqueness of the solution. For any fixed µ, and any
given ground-truth reward r⋆, we have that r̂MLE converges
in probability to r⋆; i.e., for any ϵ > 0,

lim
n→+∞

P (∥r̂MLE − r⋆∥∞ ≥ ϵ) = 0.

Here we view r̂MLE and r⋆ as K-dimensional vectors.

The proof is deferred to Appendix D. This suggests that the
overfitting phenomenon does not arise when we have an
infinite number of samples. However, in the non-asymptotic
regime when the comparison distribution µ may depend on
n, one may not expect convergent result for MLE. We have
the following theorem.

Theorem 2.2 (Reward overfitting of MLE in the
non-asymptotic regime). Fix r⋆(a) = 1(a = 1) and
r̂(K) = 0 for uniqueness of the solution. For any fixed
n > 500, there exists some 3-armed bandit problem such
that with probability at least 0.09,

LCE(r̂MLE)− LCE(r
⋆) ≥ C

for any arbitrarily large C.

The proof is deferred to Appendix E. Below we provide a
intuitive explanation. The constructed hard instance is a
bandit where r⋆(a) = 1(a = 1). For any fixed n, we set
µ(1, 2) = 1− 1/n, µ(1, 3) = 1/n.

In this hard instance, there is constant probability that
arm 3 is only compared with 1 once. And with constant
probability, the observed comparison result between arm
1 and arm 3 will be different from the ground truth.
The MLE will assign r(3) = +∞ since the maximizer
of log(exp(x)/(1 + exp(x))) is infinity when x is not
bounded. Thus when optimizing the empirical cross entropy
fully, the maximum likelihood estimator will result in a
large population cross-entropy loss. We also validate this
phenomenon in Section C.1 with simulated experiments.

This lower bound instance simulates the high-dimensional
regime where the number of samples is comparable to the
dimension, and the data coverage is unbalanced across
dimensions. One can also extend the lower bound to
more than 3 arms, where the probability of the loss being
arbitrarily large will be increased to close to 1 instead of a
small constant.

2.4. Overoptimization in Policy Learning

After obtaining the estimated reward function r̂, we optimize
the policy π ∈ ∆([K]) to maximize the estimated reward.
In RLHF, one starts from an initial (reference) policy π0,
and optimizes the new policy π to maximize the estimated

reward r̂ under some constraint in KL divergence between
π and π0. It is observed in (Gao et al., 2022) that as we
continue optimizing the policy to maximize the estimated
reward, the true reward of the policy will first increase
then decrease, exhibiting the reward overoptimization
phenomenon.

Consider the following policy optimization problem for a
given reward model r̂:

max
π∈∆([K])

Ea∼π(·)[r̂(a)]−
1

λ
· KL(π∥π0). (4)

Assuming that the policy gradient method converges to the
optimal policy for the above policy optimization problem,
which has a closed-form solution:

πλ(a) =
π0(a) · exp(λ · r̂(a))∑

a′∈A π0(a′) · exp(λ · r̂(a′))
. (5)

In the tabular case, we can derive a closed form solution
for how the KL divergence and ground-truth reward change
with respect to λ, thus completely characterizing the reward-
KL tradeoff. We compute the KL divergence and ground-
truth reward of the policy as

KL(πλ∥π0) =

∑
a∈A π0(a) · exp(λ · r̂(a)) · log(exp(λ · r̂(a))/(

∑
a′∈A π0(a

′) · exp(λ · r̂(a′))))∑
a′∈A π0(a′) · exp(λ · r̂(a′))

=

∑
a∈A π0(a) · exp(λ · r̂(a)) · λ · r̂(a)∑

a′∈A π0(a′) · exp(λ · r̂(a′))
− log

(∑
a′∈A

π0(a
′) · exp(λ · r̂(a′))

)
,

Ea∼πλ
[r⋆(a)] =

∑
a∈A π0(a) · exp(λ · r̂(a)) · λ · r⋆(a)∑

a′∈A π0(a′) · exp(λ · r̂(a′))
.

The above equation provides a precise characterization
of how the mismatch between r̂ and r⋆ leads to the
overoptimization phenomenon, which can be validated from
the experiments in Section C. To simplify the analysis
and provide better intuition, we focus on the case when
λ → ∞, i.e., when the optimal policy selects the best
empirical arm without considering the KL constraint. In
this case, the final policy reduces to the empirical best arm,
π∞(a) = 1(a = arg maxa′ r̂(a′)).

By definition, π∞ is the convergent policy when we
keep loosening the KL divergence constraint in Equation
(4). Thus the performance of π∞ is a good indicator of
whether overoptimization exists during policy training. We
thus define a notion fo sub-optimality to characterize the
performance gap between the convergent policy and the
optimal policy:

SubOpt(π̂) := max
a

E[r⋆(a)− r⋆(π̂)].

We know from Theorem 2.1 that, asymptotically, the MLE
for reward r̂MLE converges to the ground truth reward r⋆.
As a direct result, when using the MLE as reward, the sub-
optimality of the policy π∞ also converges to zero with an
infinite number of samples.
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However, as a corollary of Theorem 2.2 and a direct
consequence of reward overfitting, π∞ may have large sub-
optimality in the non-asymptotic regime when trained from
r̂MLE.

Corollary 2.3 (Reward overoptimization of MLE in the
non-asymptotic regime). Fix r⋆(a) = 1(a = 1). For any
fixed n, there exists some 3-armed bandit problem such that
with probability at least 0.09,

SubOpt(π̂∞) ≥ 1.

The proof is deferred to Appendix F. This suggests that
r̂MLE also leads to the reward overoptimization phenomenon
in the non-asymptotic regime. In Section C, we conduct
simulation in the exact same setting to verify the theoretical
results.

3. Methods: Pessimistic MLE and Iterative
Data Smoothing

The problem of overfitting and overoptimization calls for a
design of better and practical reward learning algorithm that
helps mitigate both issues. We first discuss the pessimistic
MLE algorithm in (Zhu et al., 2023a), which is shown to
converge to a policy with vanishing sub-optimality under
good coverage assumption.

3.1. Pessimistic MLE

In the tabular case, the pessimistic MLE corrects the original
MLE by subtracting a confidence interval. Precisely, we
have

r̂PE(a) = r̂MLE(a)− λ ·
√

1

n
, (6)

where n is the total number of samples and λ = ∥(L +

ϵI)
−1/2
j ∥2 is the norm of the j-th column of the matrix

(L + ϵI)−1/2, where L is the matrix that satisfies La,a =
n(a)/n, La,a′ = −n(a, a′)/n,∀a ̸= a′, and ϵ is a small
constant. Intuitively, for those arms that are compared
fewer times, we are more uncertain about their ground-truth
reward value. Pessimistic MLE penalizes these arms by
directly subtracting the length of lower confidence interval
of their reward, ensuring that the arms that are less often
compared will be less likely to be chosen. It is shown
in Zhu et al. (2023a) that the sub-optimality of the policy
optimizing r̂PE converges to zero under the following two
conditions:

• The expected number of times that one compares
optimal arm (or the expert arm to be compared with in
the definition of sub-optimality) is lower bounded by
some positive constant µ(a⋆) ≥ C.

• The parameterized reward family lies in a bounded
space |r̂(a)| ≤ B, ∀a ∈ [K].

This indicates that pessimistic MLE can help mitigate
the reward overoptimization phenomenon. However,
for real-world reward training paradigm, the neural
network parameterized reward family may not be bounded.
Furthermore, estimating the exact confidence interval for a
neural-network parameterized model can be hard and costly.
This prevents the practical use of pessimistic MLE, and
calls for new methods that can potentially go beyond these
conditions and apply to neural networks.

3.2. Iterative Data Smoothing

We propose a new algorithm, Iterative Data Smoothing
(IDS), that shares similar insights as pessimistic MLE.
Intuitively, pessimistic MLE helps mitigate the reward
overoptimization issue by reducing the estimated reward
for less seen arms. In IDS, we achieve this by updating the
label of the data we train on.

As is shown in Algorithm 1, we initialize yi,0 as the labels
for the samples yi. In the t-th epoch, we first update the
model using the current comparison dataset with labels
{yi,t}ni=1. After the model is updated, we also update
the data using the model by predicting the probability
P(yi = 1) for each comparison (ai, a

′
i) using the current

reward estimate r̂θt . We update each label yi,t as a weighted
combination of its previous value and the new predicted
probability.

Intuitively, yi,t represents a proxy of the confidence level
of labels predicted by interim model checkpoints. The idea
is that as the model progresses through multiple epochs of
training, it will bring larger change to rewards for frequently
observed samples whose representation is covered well in
the dataset. Meanwhile, for seldom-seen samples, the model
will make minimal adjustments to the reward.

3.2.1. BENEFIT OF ONE-STEP GRADIENT DESCENT

Before we analyze the IDS algorithm, we first discuss why
training for one to two epochs in the traditional reward
learning approach works well (Ouyang et al., 2022). We
provide the following analysis of the one-step gradient
update for the reward model. The proof is deferred to
Appendix G.
Theorem 3.1. Consider the same multi-armed bandit
setting where the reward is initialized equally for all K
arms. Then after one-step gradient descent, one has

∀a, a′ ∈ [K], r̂(a)− r̂(a′) =

α · (n+(a)− n−(a)− (n+(a
′)− n−(a

′))),

where n+(a), n−(a) refers to the total number of times that
a is preferred and not preferred, respectively.
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Algorithm 1 Iterative Data Smoothing (D, θ0, α, β)

Input: The pairwise comparison dataset D = {ai, a′i, yi}ni=1. A parameterized reward model family {rθ : A 7→ R | θ ∈
Θ} with initialization θ0 ∈ Θ. Two step sizes α, β. An empirical loss function

Lθ({yi},D) = −
1

n

n∑
i=1

yi · log
(

exp(rθ(ai))

exp(rθ(ai)) + exp(rθ(a′i))

)
+ (1− yi) · log

(
exp(rθ(a

′
i))

exp(rθ(ai)) + exp(rθ(a′i))

)
Initialize t = 0 and yi,0 = yi,∀i ∈ [n].
while rθt does not converge do

θt+1 ← θt − α · ∇Lθ({yi,t},D)

yi,t+1 ← (1− β) · yi,t + β ·
exp(rθt+1(ai))

exp(rθt+1
(ai)) + exp(rθt+1

(a′i))

t← t+ 1

end while
Return: rθt

Remark 3.2. The result shows that why early stopping in the
traditional reward learning works well in a simple setting.
After one gradient step, the empirical best arm becomes
the the arm whose absolute winning time is the largest.
This can be viewed as another criterion besides pessimism
that balances both the time of comparisons and the time of
being chosen as the preferred arm. When the arm a is only
compared few times, the difference n+(a)− n−(a) will be
bounded by the total number of comparisons, which will
be smaller than those that have been compared much more
times. Thus the reward model will penalize those arms seen
less. After updating the label with the model prediction, the
label of less seen samples will be closer to zero, thus getting
implicitly penalized.

3.2.2. BENEFIT OF ITERATIVE DATA SMOOTHING

Due to under-optimization, the estimator from a one-step
gradient update might still be far from the ground-truth
reward. We provide an analysis here why IDS can be better.
Consider any two arms a, a′ with n(a, a′) observations
among n total observations. By computing the gradient,
we can write the IDS algorithm as

r̂t+1(a)− r̂t+1(a
′) = r̂t(a)− r̂t(a

′) +
α · n(a, a′)

n

·
(
(µ̂(a ≻ a′) · yt + µ̂(a ≺ a′) · (1− yt)) ·

exp(r̂t(a
′))

exp(r̂t(a)) + exp(r̂t(a′))

− (µ̂(a ≺ a′) · yt + µ̂(a ≻ a′) · (1− yt)) ·
exp(r̂t(a))

exp(r̂t(a)) + exp(r̂t(a′))

)
yt+1 = (1− β) · yt + β · exp(r̂t+1(a))

exp(r̂t+1(a)) + exp(r̂t+1(a′))
,

where we define µ̂(a ≻ a′) = n(a ≻ a′)/n(a, a′). One can
see that the effective step size for updating r̂ is α·n(a, a′)/n,

while the effective step size for updating y is β. Assume
that we choose α, β, l,m such that

α · l/n≪ β ≪ α ·m/n.

Consider the following two scales:

• When there are sufficient observations, n(a, a′) ≥ m,
we know that β ≪ α · n(a, a′)/n. In this case, the
update step size of yt is much slower than r̂t. One can
approximately take yt ≈ 0 or 1 as unchanged during
the update. Furthermore, since n(a, a′) ≥ m is large
enough, µ̂ concentrates around the ground truth µ. In
this case, one can see that the reward converges to the
ground truth reward r̂t → r⋆.

• When the number of observations is not large, i.e.,
n(a, a′) ≤ l, we know that α · l/n ≪ β. In this case,
the update of r̂ is much slower than yt. When the r̂0
are initialized to be zero, yt will first converge to 1/2,
leading to r̂t(a) ≈ r̂t(a

′) when t is large.

To formalize the above argument, we consider the following
differential equations:

ḋ(t) = αn ·

(
(µ · y(t) + (1− µ) · (1− y(t))) · 1

1 + exp(d(t))

− ((1− µ) · y(t) + µ · (1− y(t))) · exp(d(t))

1 + exp(d(t))

)

ẏ(t) = β ·
(

exp(d(t))

1 + exp(d(t))
− y(t)

)
. (7)

Here d represents the difference of reward between two arms
a, a′, and µ represents the empirical frequency µ̂(a ≻ a′).
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Let the initialization be d(0) = 0, y(0) = 1. We have the
following theorem.
Theorem 3.3. The differential equations in Equation (7)
have one unique stationary point d(t) = 0, y(t) = 1

2 . On
the other hand, for any α, β, n, T with βT ≤ ϵ ≪ 1 ≪
αnT , one has

∣∣∣∣ exp(d(T ))

1 + exp(d(T ))
− µ

∣∣∣∣ ≤ max(2(1− exp(−ϵ)), exp(−µ(1− µ)αnT ))

y(T ) ≥ exp(−ϵ).

The proof is deferred to Appendix H. The above argument
only proves convergence to the empirical measure µ. One
can combine standard concentration argument to prove the
convergence to the ground truth probability. The result
shows that when choosing α, β carefully, for the pair of
arms with a large number of comparisons, the difference of
reward will be close to the ground truth during the process of
training. As a concrete example, by taking α = n−1/2, β =
n−1T−2, ϵ = βT , we have∣∣∣∣ exp(d(T ))

1 + exp(d(T ))
− µ

∣∣∣∣
≤max(2n−1T−1, exp(−µ(1− µ)n1/2T )).

For those pairs of comparisons with a large sample size
n, the estimated probability is close to the ground truth
probability. On the other hand, for those pairs that are
compared less often, the difference d(t) is updated less
frequently and remains close to the initialized values.
Thus the algorithm implicitly penalizes the less frequently
seen pairs, while still estimating the commonly seen pairs
accurately. We also present an alternative formulation of
IDS in Appendix B.

In summary, the IDS algorithm enjoys several benefits:

• For a sufficient number of observations, the estimated
reward converges to the ground truth reward; while for
an insufficient number of observations, the estimated
reward remains largely unchanged at the initialization.
Thus the reward model penalizes the less observed
arms with higher uncertainty.

• It is easy to combine with neural networks, allowing
arbitrary parametrization of the reward model.

• It utilizes the soft labels starting from the second epoch,
which can be more effective than hard labels according
to the literature on knowledge distillation (Hinton et al.,
2015; Zhao & Zhu, 2023).

3.3. Experiments

Due to space limit, we provide one experimental result
in Figure 2, and leave all the details of experiments to

Appendix C, where we conduct simulation study on multi-
armed bandit environment, and real-world experiments
with the human-labeled Helpfulness and Harmlessnes (HH)
dataset from Bai et al. (2022) and TLDR dataset2, along
with comparison with more baseline algorithms including
Laplace Smoothing (Chen & Goodman, 1999). In Figure 2,
we train a reward model with 1 Billion parameters using HH
dataset, and fine-tune the language model with the reward
model. One can see that after 1 epoch of training, the
test loss of MLE begins to increase, while IDS enables
continuous decrease of test loss for more than 3 epochs.
Furthermore, when tuning the language model with the
proxy reward model, the ground-truth reward for IDS grows
higher than that of MLE.

4. Conclusions
We have presented analyses and methodology aimed at
resolving the problems of overfitting and overoptimization
for RLHF. We show that our proposed algorithm, IDS, helps
mitigate these issues. While we identify the underlying
source of reward overfitting and overoptimization as the
variance of the human preference data, it is also possible that
bias also contributes to these phenomena. In future work,
it is interesting to pursue further theoretical analysis of the
IDS algorithm, and explore potential applications beyond
reward training in the generic domains of classification and
prediction.
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is an important technique to improve the helpfulness
and harmlessness of large language models. It tackles
several critical social issues concerning the malicious usage
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Figure 2: Comparisons of MLE and IDS when the reward is parameterized by a neural network.

of language models such as spreading knowledge that
may harm humanity and society, academic misconduct
of students, creation of fake news, and circulation of
misinformation. By overcoming the overfitting and
overoptimization issues in the current RLHF scheme, one
can make better use of expensive human preference datasets,
training more accurate reward models and less harmful
language models. In conclusion, our paper has positive
social impacts.
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A. Extension to Multi-wise Comparison
Here we discuss potential extensions from pairwise comparisons to multi-wise comparison. When there is M ranked
responses for each prompt, there are two losses that one can choose from, namely MLE2 and MLEM from Zhu et al. (2023a).

θ̂MLE2 ∈ arg min
r

L2(D, r),

where L2(D, r) = −
1

n

n∑
i=1

M∑
j=1

M∑
k=j+1

log

(
exp(r(si, a

(σi(j))
i ))

exp(r(si, a
(σi(j))
i )) + exp(r(si, a

(σi(k))
i ))

)
θ̂MLEM

∈ arg min
r

LM (D, r),

where LM (D, r) = − 1

n

n∑
i=1

M∑
j=1

log

(
exp(r(si, a

(σi(j))
i ))∑M

k=j exp(r(si, a
(σi(k))
i ))

)
.

Here we discuss how to incorporate the iterative data smoothing algorithm for the two losses above.

The loss MLE2 splits the M -wise comparisons into pairwise comparisons, thus it is straightforward to predict the new label
yj,ki for each pair of the comparisons between j-th and k-th response. The loss used for iterative data smoothing can be
written as

LDR
2 (D, r) = − 1

n

n∑
i=1

M∑
j=1

M∑
k=j+1

y
σi(j),σi(k)
i log

(
exp(r(si, a

(σi(j))
i ))

exp(r(si, a
(σi(j))
i )) + exp(r(si, a

(σi(k))
i ))

)

+ (1− y
σi(j),σi(k)
i ) log

(
exp(r(si, a

(σi(k))
i ))

exp(r(si, a
(σi(j))
i )) + exp(r(si, a

(σi(k))
i ))

)
.

yj,ki,t+1 = (1− β) · yj,ki,t + β ·
exp(rθt+1

(si, a
j
i ))

exp(rθt+1(si, a
j
i )) + exp(rθt+1(si, a

k
i ))

.

On the other hand, adapting the loss MLEM for iterative data smoothing requires more efforts since it requires changing the
ranking labels to soft labels. The design of MLEM decomposes the probability of the observed ranking to the product of the
probability that each response is the most preferred one among the rest of the responses. One of the options is to directly
change the labels for the current rankings by the following update rules:

LM (D, r) = − 1

n

n∑
i=1

M∑
j=1

y
σi(j)
i log

(
exp(r(si, a

(σi(j))
i ))∑M

k=j exp(r(si, a
(σi(k))
i ))

)
.

And the update rule for the labels yi is

y
σi(j)
i,t+1 = (1− β) · yσi(j)

i,t + β ·
exp(rθt+1(si, a

(σi(j))
i ))∑M

k=j exp(rθt+1(si, a
(σi(k))
i ))

.

However, the above update method does not directly reduce to the the case of pairwise comparisons when setting M = 2. In
order to recover the pairwise loss, one needs to consider all possible rankings and get the soft labels for all the rankings. The
loss will become

L′
M (D, r) = − 1

n

n∑
i=1

∑
σ∈Π(M)

M∑
j=1

yj,σi log

(
exp(r(si, a

(σ(j))
i ))∑M

k=j exp(r(si, a
(σ(k))
i ))

)
.

Here Π(M) is the set of all permutations of the M elements. And the label is initialized as yj,σi,0 = 1 if σ = σi, and 0
otherwise. And the update rule for the labels yi is

yj,σi,t+1 = (1− β) · yj,σi,t + β ·
exp(rθt+1

(si, a
(σ(j))
i ))∑M

k=j exp(rθt+1
(si, a

(σ(k))
i ))

.
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The loss is consistent with the pairwise cross entropy loss when M = 2. However, it requires enumerating over all possible
permutations, which are not very efficient when M is large. It requires more study to decide which loss is more appropriate
for M -wise iterative data smoothing.

B. An Alternative Formulation of Iterative Data Smoothing
Besides the formulation shown in Algorithm 1, we also propose an alternative formulation that directly multiplies a
confidence ci in front of the original loss for each sample, as is shown in Algorithm 2. We note here that although the
algorithm has better asymptotic convergence result, its performance in practice is not as good as Algorithm 1.

Algorithm 2 Iterative Data Smoothing V2 (D, θ0, α, β)

Input: The pairwise comparison dataset D = {ai, a′i, yi}ni=1. A parameterized reward model family {rθ : A 7→ R | θ ∈
Θ} with initialization θ0 ∈ Θ. Two step sizes α, β. An empirical loss function

Lθ({ci},D) = −
1

n

n∑
i=1

max(2ci − 1, 0) ·
(
yi · log

(
exp(rθ(ai))

exp(rθ(ai)) + exp(rθ(a′i))

)
+ (1− yi) · log

(
exp(rθ(a

′
i))

exp(rθ(ai)) + exp(rθ(a′i))

))
.

Initialize t = 0 and ci,0 = 1,∀i.
while rθt does not converge do

θt+1 ← θt − α · ∇Lθ({ci,t},D)

ci,t+1 ← (1− β) · ci,t + β ·
exp(rθt+1

(ai))

exp(rθt+1
(ai)) + exp(rθt+1

(a′i))

t← t+ 1

end while
Return: rθt

We multiply a max(2ci − 1, 0) in front of the loss for each sample as an approximation of how confident the current model
predicts the preference label. When the reward is approximately similar, the coefficient goes to 0, putting less weights on
those samples. Below we show that asymptotically, the new iterative data smoothing V2 algorithm is better at preserving the
preference distribution compared with the original version.

Theorem B.1. Consider the multi-armed bandit problem with the number of samples going to infinity and a fixed sampling
distribution µ. Assume that µ(a, a′) > 0 for any a, a′ > 0. Then we have

• Any stationary point for Algorithm 1 satisfies ∀a, a′, r̂(a) = r̂(a′);

• There is one stationary point for Algorithm 2 that satisfies

∀a, a′, r̂(a)− r̂(a′) = r⋆(a)− r⋆(a′).

Proof. The stationary points for Algorithm 1 and 2 are the points where the gradients equal 0. For Algorithm 1, this is
equivalent to ŷ = exp(r̂(a))

exp(r̂(a))+exp(r̂(a′)) , and

(µ(a ≻ a′) · ŷ + µ(a ≺ a′) · (1− ŷ)) · exp(r̂(a′))

exp(r̂(a′)) + exp(r̂(a′))

=(µ(a ≺ a′) · ŷ + µ(a ≻ a′) · (1− ŷ)) · exp(r̂(a))

exp(r̂(a)) + exp(r̂(a′))
.

Here ŷ can be different for different (a, a′). Solving the above equation gives that the only stationary point is ŷ = 1/2 and
r̂(a)− r̂(a′) = 0.
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On the other hand, for Algorithm 2, the stationary point condition is equivalent to ĉ(a, a′) = exp(r̂(a))
exp(r̂(a))+exp(r̂(a′)) , and

∑
a′

max(2ĉ(a, a′)− 1, 0) ·
(
µ(a ≻ a′) · exp(r̂(a′))

exp(r̂(a′)) + exp(r̂(a′))
− µ(a ≺ a′) · exp(r̂(a))

exp(r̂(a)) + exp(r̂(a′))

)
= 0.

Thus one can verify that r̂(a)− r̂(a′) = r⋆(a)− r⋆(a′) satisfies the stationary condition. This proves the result.

Remark B.2. Although the asymptotic stationary points of Algorithm 1 do not contain the ground truth, the two-scale
analysis discussed in Section 3.2.2 shows that when one of the step size is much larger than the other such that one of the
updates in ŷ or r̂ is slower (and thus does not hit the stationary point), the reward still converges to the ground truth for those
sufficiently observed arms. However, preliminary experiments on Algorithm 2 show that the result is worse than that of
Algorithm 1, and also suffer from reward overfitting. This together with the failure of MLE may suggest that asymptotic
result does not reflect the practical performance with smaller sample size compared with number of parameters.
Remark B.3. The condition of µ(a, a′) > 0 can be relaxed to that the comparison graph induced by the Laplace matrix L is
connected, since the reward is identifiable in this case (Shah et al., 2015).

C. Experiments
In this section, we present the results of experiments with both multi-armed bandits and neural networks.

C.1. Multi-Armed Bandit

In the bandit setting, we focus on the hard example constructed in Theorem 2.2. We take total samples n = 60 and the
number of arms K as 10 and 20. We compare the performance of the vanilla MLE, pessimistic MLE and IDS in both the
reward learning phase and the policy learning phase.

In the reward learning phase, we run stochastic gradient descent with learning rate 0.01 on the reward model for multiple
epochs and monitor how the loss changes with respect to the number of training epochs. For pessimistic MLE, we subtract
the confidence level in the reward according to Equation (6). For IDS, we take the two step sizes as α = 0.01, β = 0.001. As
is shown in left part of Figure 3, both MLE and pessimistic MLE suffer from reward overfitting, while the test cross-entropy
loss for the IDS algorithm continues to decrease until convergence. Since the training loss changes with the updated labels,
we plot the population cross-entropy loss which is averaged over all pairs of comparisons.

In the right part of the figure, we plot the KL-reward tradeoff when training a policy based on the learned reward. We
vary the choice of λ in Equation (5) to derive the optimal policy under diverse levels of KL constraint, where we take the
reference policy π0 as the uniform policy. One can see that IDS is able to converge to the optimal reward when KL is large,
while both MLE and pessimistic MLE suffer from overoptimization.

We remark here that the reason pessimistic MLE suffers from both overfitting and overoptimization might be due to the
design of unbounded reward in the multi-armed bandit case. When the reward family is bounded, pessimistic MLE is also
guaranteed to mitigate the overoptimization issue. Furthermore, we only run one random seed for this setting to keep the
plot clean since the KL-reward trade-off heavily depends on the observed samples.

C.2. Neural Network

We also conduct experiments with neural networks. We use the human-labeled Helpfulness and Harmlessnes (HH) dataset
from Bai et al. (2022).3 We take Dahoas/pythia-125M-static-sft4 as the policy model with three different
reward models of size 125M, 1B and 3B. When training reward model, we take a supervised fine-tuned language model,
remove the last layer and replace it with a linear layer. When fine-tuning the language model, we use the proximal policy
optimization (PPO) algorithm (Schulman et al., 2017).

We take a fully-trained 6B reward model Dahoas/gptj-rm-static trained from the same dataset based on
EleutherAI/gpt-j-6b as the ground truth. We use the model to label the comparison samples using the BTL
model (Bradley & Terry, 1952). And we train the 125M, 1B and 3B reward model with the new labeled comparison samples.

3https://huggingface.co/datasets/Dahoas/static-hh
4https://huggingface.co/Dahoas/pythia-125M-static-sft
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Figure 3: Comparisons of the three methods in the multi-armed bandit setting.
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Figure 4: Comparisons of MLE and IDS when the reward is parameterized by a neural network.
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The reward training results are shown in Figure 4. One can see that the MLE begins to overfit after 1-2 epochs, while the
loss of the IDS algorithm continues to decrease stably until convergence.

For both MLE and IDS algortihms, we take the reward with the smallest evaluation loss and optimize a policy against the
selected reward model. We compare results for policy learning as shown in Figure 5. One can see that MLE suffers from
reward overoptimization with few thousand steps, while the ground truth reward continues to grow when using our IDS
algorithm. We select step sizes α = 10−5 and β = 0.7 for all experiments. We observe that larger model leads to more
improvement after one epoch, potentially due to more accurate estimation of the labels. We provide more details of the
experiment along with the experiments on a different dataset, TLDR, in Appendix C.3.
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Figure 5: Comparison of MLE and IDS for policy learning

In the implementation, we find that it is helpful to restore the best checkpoint at the end of each epoch. This is due to that an
inappropriate label {yi}ni=1 at certain epoch may hurt the performance of the model. To prevent overfitting to the test set, we
choose a large validation and test dataset, and we select the best checkpoint according to the smallest loss in the validation
set, and plot the loss on the test set. During the whole training procedure including checkpoint restoration, we do not use
any of the sample in the test set.

We also compare the algorithm with Laplace Smoothing, which simply replaces the hard label yi = 1 with yi = 1− α, and
minimize the following loss function.

Lθ({yi},D) = −
1

n

n∑
i=1

(1− α) · log
(

exp(rθ(ai))

exp(rθ(ai)) + exp(rθ(a′i))

)
+ α · log

(
exp(rθ(a

′
i))

exp(rθ(ai)) + exp(rθ(a′i))

)

In our experiments, we conduct hyperparameter search and take α = 0.05. The comparison is listed in Figure 6. One can see
that Laplace Smoothing helps makes the convergence point slightly better than MLE, but still much worse than that of IDS.

C.3. Additional Experiments on TLDR

The hyper-parameters for the neural network experiments are listed in table 1.
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Figure 6: Comparisons of MLE, Laplace Smoothing and IDS.

Model Parameter Value

Reward model

learning rate α 10−5

label update parameter β 0.7
batch size 128

eval & save steps 100

Policy model

max sequence length 1024
max output length 500

generation temperature 1.0
batch size 64

fixed KL coefficient 0.001
number of rollouts 128

PPO epochs 4
value coefficient 0.5

GAE coefficient λ 0.95
discount factor 1.0

clip range 2

Table 1: Hyper-parameters for the neural network experiments

We also include additional experiments on a different dataset, TLDR5, in Figure 7 and 8 of this section. The settings follow
the same as HH in Section C.2. One can see that in the case of TLDR, the test accuracy does not drop significantly like HH.
However, even with small difference in loss and the accuracy, the resulting policy reward difference is still significant.

D. Proof of Theorem 2.1
Proof. Let Pr(a, a

′, c) = Pr(a ≻ a′) if c = 1, and Pr(a
′ ≻ a) if c = 0 be the density function of the observations.

According to Theorem 6.1.3. of Hogg et al. (2013), it suffices to verify the following conditions for the consistency of MLE:

• The CDFs are distinct, i.e. Pr(a, a
′, c) = Pr′(a, a

′, c) almost everywhere implies that r = r′. This is true since the
distribution is supported on discrete space, and the equality implies that r(i)− r(j) = r(i)′ − r(j)′ for any i, j, and
r(M) = r′(M) = 1.

• The PDFs have common support for all r. This is true since the probability is positive for any a, a′, c.

5https://huggingface.co/datasets/CarperAI/openai_summarize_comparisons
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Figure 7: Comparisons of MLE and Iterative Data Smoothing when the reward is parameterized by a neural network.
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Figure 8: Comparison of MLE and Iterative Data Smoothing for policy learning.

• The point r⋆ is an interior point in RK . This is true by definition, since any open ball of radius ϵ around r⋆ is a subset
of the space.

E. Proof of Theorem 2.2
Proof. The construction is in similar spirit to (Rashidinejad et al., 2021) and (Zhu et al., 2023a). Consider a bandit problem
where r⋆(a) = 1(a = 1). For any fixed n, we set µ(1, 2) = 1− 1/n, µ(1, 3) = 1/n.

In this hard instance, there is constant probability that arm 3 is only compared with arm 1 once. Concretely, we have

P(n(1, 3) = 1) = n · (1− µ(1, 3))n−1 · µ(1, 3) = (1− 1/n)
n−1

.

When n ≥ 500, we have P(n(1, 3) = 1) ≥ 0.36. Under this case, we know that arm 3 is preferred with probability at
least exp(r(3))/(exp(r(1)) + exp(r(3))) > 0.26. When there is only one comparison between arm 1 and 3, and arm 3 is
preferred, the MLE assigns r(3) as infinity. Even when the reward for arm 1 is estimated perfectly, this leads to a population
cross-entropy loss arbitrarily large.

F. Proof of Corollary 2.3
Proof. The proof follows immediately from Theorem 2.2. Under the same construction, we know that r̂MLE(3) = +∞ with
probability at least 0.09. Thus, the sub-optimality of the resulting optimal policy is at least 1.
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G. Proof of Theorem 3.1
Proof. Let r̂i be the reward for the i-th arm, and r̂ = [r̂1, r̂2, · · · , r̂K ] as the vector for the reward. One can calculate the
gradient of the reward as

∇r̂iLCE(D, r̂) = −
1

n

n∑
i=1

∇r̂i

(
yi log

(
exp(r̂ai)

exp(r̂ai
) + exp(r̂a′

i
)

)
+ (1− yi)) log

(
exp(r̂a′

i
)

exp(r̂ai
) + exp(r̂a′

i
)

))

= − 1

n

n∑
i=1

(
yi exp(r̂a′

i
)

exp(r̂ai
)) + exp(r̂a′

i
)
− (1− yi) exp(r̂ai

)

exp(r̂ai
) + exp(r̂a′

i
)

)

= −1

2
· (n+(i)− n−(i)).

Here the last equality is due to that all the reward is initialized at the same value. And n+(i) (or n−(i)) refers the total
number of winning (or losing) of arm i in the observations.

We assume all the reward is initialized at 0 without loss of generality. After one step gradient, we have

r̂(i) = α(n+(i)− n−(i)).

This proves the result.

H. Proof of Theorem 3.3
Proof. From the differential equations in (7), we know that

ẏ(t)

y(t)
≥ −β.

Taking integration on both sides give us

y(t) ≥ exp(−βt) ≥ exp(−ϵ).

Now we set a Lyapunov function V (t) =
(

exp(d(t))
1+exp(d(t)) − µ

)2
. We know that

V̇ (t) = 2

(
exp(d(t))

1 + exp(d(t))
− µ

)
· exp(d(t))

(1 + exp(d(t)))2
· ḋ(t)

= 2αn

(
exp(d(t))

1 + exp(d(t))
− µ

)
· exp(d(t))

(1 + exp(d(t)))2

·
(
(µ · y(t) + (1− µ) · (1− y(t))) · 1

1 + exp(d(t))
− ((1− µ) · y(t) + µ · (1− y(t))) · exp(d(t))

1 + exp(d(t))

)
= 2αn

(
exp(d(t))

1 + exp(d(t))
− µ

)
· exp(d(t))

(1 + exp(d(t)))2
·
(
(2µ− 1) · y(t) + 1− µ− exp(d(t))

1 + exp(d(t))

)
= −2αn · exp(d(t))

(1 + exp(d(t)))2
·
(

exp(d(t))

1 + exp(d(t))
− µ

)2

+ 2αn · exp(d(t))

(1 + exp(d(t)))2
·
(

exp(d(t))

1 + exp(d(t))
− µ

)
· (2µ− 1) · (y(t)− 1)

(i)

≤ 2αn · exp(d(t))

(1 + exp(d(t)))2
·

(
−
(

exp(d(t))

1 + exp(d(t))
− µ

)2

+ 1− exp(−ϵ)

)

= 2αn · exp(d(t))

(1 + exp(d(t)))2
· (−V (t) + 1− exp(−ϵ)) .

23



Iterative Data Smoothing: Mitigating Reward Overfitting and Overoptimization in RLHF

Here (i) uses the fact that y(t), µ, exp(d(t))
1+exp(d(t)) ∈ [0, 1]. Now consider two scenarios. The first is that for any time t ∈ [0, T ],

one always has V (t) ≥ 2(1− exp(−ϵ)). In this case, we know that

V̇ (t) ≤ 2αn · exp(d(t))

(1 + exp(d(t)))2
· (−V (t) + 1− exp(−ϵ))

≤ −αn · exp(d(t))

(1 + exp(d(t)))2
· V (t)

≤ 0. (8)

This shows that V (t) is a non-increasing function. Without loss of generality, assume that µ ≥ 1/2. We know that

V (t) ≤ V (t′),∀t > t′. (9)

Now we prove that there must be exp(d(t))
1+exp(d(t)) ≤ µ. If one can find some t0 such that exp(d(t))

1+exp(d(t)) > µ, by the continuity of
exp(d(t))

1+exp(d(t)) and the fact that exp(d(0))
1+exp(d(0)) = 1/2, one can find some t1 < t0 such that exp(d(t1))

1+exp(d(t1))
= µ. This gives that

V (t1) = 0 < V (t0),

which contradicts Equation (9). Thus we know that exp(d(t))
1+exp(d(t)) ≤ µ holds for any t. Furthermore, since we know that V (t)

is non-increasing, we know that exp(d(t))
1+exp(d(t)) ≥ 1/2. This also implies that

exp(d(t))

(1 + exp(d(t)))2
≥ µ(1− µ).

Similarly, we can prove the same condition holds when µ < 1/2. Thus we have

V̇ (t)

V (t)
≤ −µ(1− µ)αn.

By integrating over t on both sides, we have

V (t) ≤ exp(−µ(1− µ)αnt) · V (0) ≤ exp(−µ(1− µ)αnt).

Here the last inequality uses the fact that V (0) ∈ [0, 1].

On the other hand, assume that at some time point t0 ∈ [0, T ], we have V (t0) < 2(1 − exp(−ϵ)). When V (T ) >
2(1−exp(−ϵ)), by the continuity of the function V (·), we know that there exists some t1 such that V (t1) = 2(1−exp(−ϵ)),
and for any t ∈ [t1, T ], V (t) ≥ 2(1 − exp(−ϵ)). From Equation (8), we know that in the regime of t ∈ [t1, T ], V (t) is
non-increasing. This contradicts with the fact that V (T ) > V (t1). Thus we know that

V (T ) ≤ 2(1− exp(−ϵ)).
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