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Abstract

Antibodies are central proteins in adaptive
immune responses, responsible for protecting
against viruses and other pathogens. Rational
antibody design has proven effective in the diag-
nosis and treatment of various diseases like can-
cers and virus infections. While recent diffusion-
based generative models show promise in de-
signing antigen-specific antibodies, the primary
challenge lies in the scarcity of labeled antibody-
antigen complex data and binding affinity data.
We present AbX, a new score-based diffusion
generative model guided by evolutionary, phys-
ical, and geometric constraints for antibody de-
sign. These constraints serve to narrow the search
space and provide priors for plausible antibody se-
quences and structures. Specifically, we leverage
a pre-trained protein language model as priors
for evolutionary plausible antibodies and intro-
duce additional training objectives for geomet-
ric and physical constraints like van der Waals
forces. Furthermore, as far as we know, AbX is
the first score-based diffusion model with contin-
uous timesteps for antibody design, jointly mod-
eling the discrete sequence space and the SE(3)
structure space. Evaluated on two independent
testing sets, we show that AbX outperforms other
published methods, achieving higher accuracy in
sequence and structure generation and enhanced
antibody-antigen binding affinity. Ablation stud-
ies highlight the clear contributions of the intro-
duced constraints to antibody design.
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1. Introduction
The rational design of antigen-specific antibodies plays a
pivotal role in the prevention, diagnosis, and treatment of
various diseases (Carter, 2006). Antibodies perform their
functions by binding to antigens, triggering a cascade of
immune responses. While the framework regions of anti-
bodies exhibit high conservation, their complementarity-
determining regions (CDRs) are variable both in sequence
and structure, mainly determining the binding affinity and
specificity to antigens (Al-Lazikani et al., 1997; North et al.,
2011). Therefore, the primary objective of rational antibody
design is to optimize the CDRs for effective binding to the
targeted antigen.

Experimentally exploring the huge structure and sequence
space of CDRs and validating their binding affinity to anti-
gens is inefficient in wet lab settings. Therefore, compu-
tational methods have been proposed to optimize CDRs,
with antibody-antigen binding affinity as the primary ob-
jective. These include traditional classical methods such as
RAbD (Pantazes & Maranas, 2010; Lapidoth et al., 2015;
Adolf-Bryfogle et al., 2018), as well as more recent deep
learning-based methods.

Diffusion models, commonly applied in generating image
data, have recently been introduced to antibody design. For
example, DiffAb proposes a denoising diffusion probabilis-
tic model on both discrete sequence space and SE(3) struc-
ture space of antibody, targeting specific antigens (Luo et al.,
2022).

The scarcity of available antibody-antigen complex data
poses a significant challenge for these diffusion-based gen-
erative models. In the field of computer vision, models
often require significantly larger datasets for effective train-
ing, and diffusion models trained on limited datasets tend to
exhibit restricted expressiveness, resulting in the generation
of less diverse and potentially biased images (Hur et al.,
2024). For the case of antibody design, the widely-used
SAbDab database (Dunbar et al., 2014) of antibody-antigen
complexes comprises only thousands of non-redundant sam-
ples, leading to a high risk of overfitting.

We develop AbX, a new score-based diffusion model that is
guided by evolutionary, physical, and geometric constraints.
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These constraints serve as sequence and structure priors,
narrowing the exploration to a more plausible space and
mitigating the risk of overfitting. First, we incorporate the
language-language model ESM-2 (Lin et al., 2023)as a prior
for generating evolutionary plausible antibody sequences.
Second, we integrate geometric and physical constraints
to generate rational antibody structures and improve the
antibody-antigen binding affinity through additional train-
ing objectives, including Frame Aligned Point Error (FAPE)
and van der Waals loss. Moreover, AbX is the first model
to implement a continuous-time score-based diffusion ap-
proach in both discrete sequence space and SE(3) structure
space for antibody design.

Our contributions are summarized as follows:

• AbX integrates evolutionary, physical, and geometric
constraints in a unified framework for antibody design.

• Unlike previous diffusion-based methods using
discrete-time schemes, AbX introduces the first
continuous-time score-based diffusion model for joint
modeling of discrete sequence space and SE(3) struc-
ture space.

• Evaluation on independent testing sets demonstrates
that AbX achieves state-of-the-art performance in anti-
body design and optimization tasks, highlighting the
clear contribution of the introduced constraints.

2. Related Work
2.1. Computational Antibody Design

The primary objective of antibody design is to optimize anti-
body sequence and structure, particularly the CDRs, to effec-
tively bind to specific target antigens. Traditional classical
computational approaches like RAbD (Adolf-Bryfogle et al.,
2018) and AbDesign (Lapidoth et al., 2015) explore a li-
brary of clustered CDRs and optimize binding energy using
Monte Carlo-based methods, which can be time-intensive.

Recent deep learning-based methods have been proposed
to improve antibody design. These methods can be broadly
categorized into discriminative models and generative mod-
els. Discriminative models typically utilize graph neural
networks to extract features from antigen structure and to
predict the most likely antibody structure and sequence (Jin
et al., 2022; Kong et al., 2023a; Gao et al., 2023; Kong
et al., 2023b). Generative models (Rezende & Mohamed,
2015; Song et al., 2020; Goodfellow et al., 2020) explic-
itly describe the generative process of antibody structure
and sequence and can sample a group of diverse antibodies
(Eguchi et al., 2022). Among these, diffusion-based models
stand out for their high capacity to model the complex dis-
tributions of structure and sequence (Luo et al., 2022; Peng
et al., 2023). All these methods are limited to the scarcity

of training samples.

Introducing additional constraints into a generative model
serves as a strategy to address the limitation of scarce train-
ing datasets. For instance, additional priors have been in-
troduced to improve video generation (Ge et al., 2023; Jin
et al., 2023). In the case of antibody design, AbDiffuser
and DiffProperty are the most related to our approach. AbX
shows significant differences with these methods. AbDif-
fuser estimates a position-specific profile as sequence priors
from the limited available structure data. In contrast, our
approach utilizes a large pre-trained language model as se-
quence priors, which has been proven as an effective indica-
tor of evolutionary plausibility in wet-lab experiments (Hie
et al., 2023); While DiffProperty employs existing methods
to generate candidate antibodies and use property predictors
for further screening (Villegas-Morcillo et al., 2023), AbX
directly integrates constraints into the model.

2.2. Diffusion-based Generative Model

Diffusion-based generative models have recently shown
great potential in various fields like image, text, and video
(Ho et al., 2020; Austin et al., 2021; Mei & Patel, 2023). It
has also been applied in protein-related tasks such as protein
design (Watson et al., 2023; Ingraham et al., 2023; Alamdari
et al., 2023; Yim et al., 2023), protein structure prediction
(Jing et al., 2023), and protein side-chain packing (Liu et al.,
2023; Zhang et al., 2023).

DDPMs and score-based models are mainly two kinds of
diffusion-based models. Score-based models have demon-
strated superior performance over DDPMs in various do-
mains (Campbell et al., 2022; Vahdat et al., 2021). While
previous diffusion-based models for antibody design such as
DiffAb (Luo et al., 2022) and AbDiffuser (Martinkus et al.,
2023) leverage DDPMs to co-generate CDRs sequences and
structures, our model utilizes a score-based diffusion model.

3. Methods
This section is structured as follows: In section 3.1, we intro-
duce the notations used throughout the paper and formally
define the problem. Section 3.2 provides an overview of our
model. Section 3.3 describes the diffusion process applied to
modeling antibodies. Section 3.4 details our score network
for the diffusion process and our conditional encoder within
the model. Section 3.5 outlines the training objectives of
our model. Section 3.6 explains our strategy for sampling
protein sequences and structures.

3.1. Preliminaries and Notations

An antibody-antigen complex comprises four chains: two
identical heavy chains and two identical light chains, as
illustrated in Figure 1 (Dunbar et al., 2014). These chains
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are divided into variable (V) and constant (C) domains. The
variable domains, VH and VL, each contain three CDRs
each: H1, H2, H3 in VH, and L1, L2, L3 in VL (Al-Lazikani
et al., 1997; North et al., 2011).

Antigen

VH

VL

FR CDR1 FR CDR2 FR CDR3 FR

FR CDR1 FR CDR2 FR CDR3 FR

Figure 1. Illustration of antibody-antigen complex structure and its
CDRs.

Each antibody residue, denoted as {a1, a2, . . . , an},
is characterized by its amino acid type ai ∈
{ACDEFGHIKLMNPQRSTVWY}, the rotation
Ri ∈ SO(3), the 3D coordinate xi ∈ R3, we can combine
the rotation and 3D coordinate together denoted as frame
Ti = (Ri,xi) ∈ SE(3). Then the antibody can be
denoted as PAb = {(ai, Ti) | i = 1, · · ·n}. Antigen
also includes one or more chains, and the set of its
residues is {n + 1, n + 2, . . . ,m}. So we can denote the
antigen as PAg = {(ai, Ti) | i = n + 1, . . . ,m}. In this
work, our goal is to design CDRs given the antigen and
antibody framework regions. We assume the CDRs to be
generated are indexed by the set C ⊂ {1, 2, . . . , n}, where
|C| = N . Therefore, the CDRs can be represented as
PC = {(ai, Ti) | i ∈ C}, with A = {ai | i ∈ C} denoting
the sequence and T = {Ti | i ∈ C} representing the
structure. Formally, our goal is to model the distribution of
PC given PFC = {(ai, Ti) | i ∈ {1, . . . ,m}\C}.

3.2. Overview of AbX

Figure 2 provides a comprehensive overview of the AbX
model. The model integrates physical and geometric con-
straints as part of the training objectives, and the evolu-
tionary constraint is informed by the large language model
ESM-2 within the model architectures.

During inference, the process begins by sampling the struc-
ture and sequence of the CDRs from prior distributions.
At each step, AbX receives the antigen and antibody from
the previous timestep as input. The antigen and frame-
work regions of the antibody are encoded by the conditional
encoder, and the large language model, ESM-2, within the
score network, is then utilized to generate antibody sequence
embeddings. Subsequently, the conditional embedding and
the sequence embedding are processed by the score network.
Finally, the score network generates the initial structure
T0

θ and sequence distribution pθ0|t(a0|a,PFC) for the CDRs.
Based on the initial structure, we compute the scores for

both sequence and structure. Utilizing these scores, we then
perform a reverse step to derive the sequence and structure
at the subsequent timestep. In summary, through the im-
plementation of a reverse diffusion process, AbX refines
these generated CDRs to yield the finalized structure and
sequence of the CDRs.

3.3. Score-based Diffusion Processes for Structure and
Sequence

Score-based diffusion models utilize stochastic differen-
tial equations (SDE) to characterize the diffusion process.
In this section, we briefly outline the forward and re-
verse processes for structures and sequences. Let Pt

C =
{(atj , T t

j ) | j ∈ C}, t ∈ U(0, 1) represent the intermediate
state of the CDRs at time t. The forward diffusion process
progresses from t = 0 to t = 1, and the generative diffu-
sion process proceeds in reverse. This diffusion process
applies to both the sequence {atj | j ∈ C} and the structure
{T t

j | j ∈ C}.

Diffusion process for sequence Given the discrete nature
of sequences, we follow τLDR to establish a Continuous
Time Markov Chain (CTMC) for sequence space, analo-
gous to a score-based diffusion process (Campbell et al.,
2022). Contrasting with τLDR, our method alters the origi-
nal diffusion model into a conditional version, incorporating
conditional embeddings of the target antigens and the frame-
work regions of antibodies. We define a prior distribution
pSeqref and a transition rate matrix St ∈ R20×20. For a current
state ã, the matrix entry St(ã, a) indicates the instantaneous
transition rate to state a. Detailed information about the Con-
tinuous Time Markov Chain is available in the Appendix
A.1.

The CDRs sequence is denoted as (At)t∼U(0,1) = ({ati|i ∈
C})t∼U(0,1), initiated at p0(A|PFC) = pdata(A|PFC) at
t = 0 and transitioning to p1(A|PFC) at t = 1, approximat-
ing the prior distribution pSeqref (A) = (U({0, . . . , 19}))⊗N ,
where U denotes the uniform distribution. The infinitesimal
transition probabilities for the forward and reverse processes
at each residue a are defined as:

pt|t−∆t(a|ã) = δa,ã + St(ã, a)∆t+ o(∆t), (1)

pt|t+∆t(ã|a,PFC) = δã,a + Ŝt(a, ã,PFC)∆t+ o(∆t).

Here, o(∆t) means terms that tend to zero at a faster rate
than ∆t, and Ŝt ∈ R20×20 represents a reverse transition
rate matrix which is calculated from St as:

Ŝt(a, ã,PFC)

= St(ã, a)
∑
a0

pt|0(ã|a0)
pt|0(a|a0)

p0|t(a0|a,PFC), a ̸= ã, (2)

where pt|0 are the marginals of the forward process, and
p0|t(a0|a,PFC) = pt|0(a|a0)pdata(a0|PFC)

pt(a|PFC) with pt(a|PFC)
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Figure 2. Overview of the AbX.AbX leverages a Continuous Time Markov Chain (CTMC) and a score-based diffusion model to generate
CDRs sequences and structures. It incorporates physical and geometric constraints during training and applies evolutionary constraints
within its model architecture. The grey part of the protein structure and sequence represents the target antigens and the antibody framework,
while the red part denotes the CDRs in the antibody.

being the forward process marginal at time t. Considering
the intractability of directly computing p0|t(a0|a), we ap-
proximate it as pθ0|t(a0|a,PFC) with the score network, and
we can get approximation reverse time transition rate matrix
Ŝt
θ. More details about the choice of transition rate matrix

can be found in the Appendix A.1.

Diffusion process for structure We employ a score-
based diffusion model in the SE(3)N space as proposed
in FrameDiff to describe the generative process for CDRs
structures (Yim et al., 2023). Our primary extension from
FrameDiff for structure modeling is that our approach
is a conditional diffusion model, taking into account the
target antigens and the framework regions of antibodies.
The intermediate states of CDRs structures can be de-
noted as (Tt)t∈U(0,1) = ({Rt,Xt})t∈U(0,1), where Rt =

{Rt
i}i∈C ,X

t = {xt
i}i∈C . Let (

←−
T t) = (T1−t)t∈U(0,1),

with
←−
T t = (

←−
Rt,
←−
Xt).

We select prior distribution as p
SE(3)N

ref (T) =
P#(N (0, Id)⊗N ) ⊗ U(SO(3))⊗N and the initial dis-
tribution p0(T|PFC) = pdata(T|PFC). The forward SDE

and reverse SDE on SE(3)N can be defined as follows:

dTt =

[
0

P 1
2X

t

]
dt+

[
dBt

SO(3)N

PdBt
R3N

]
, (3)

d
←−
T t =

[
0

− 1
2P
←−
Xt

]
+

[
∇R log p1−t(

←−
T t|PFC)

P∇x log p1−t(
←−
T t|PFC)

]
dt

+

[
dBt

SO(3)N

dBt
R3N

]
. (4)

Here, Bt
SO(3)N and Bt

R3N represent the Brownian motion

on SO(3)
N and R3N , respectively, and P ∈ R3N×3N

can be defined as the projection matrix that removes
the center of mass 1

N

∑
i∈C xi. The score functions

∇R log p1−t(
←−
T t|PFC) and ∇x log p1−t(

←−
T t|PFC) can be

approximated by sRθ and sxθ using Tt and T0
θ as per the

methods described in FrameDiff (Yim et al., 2023). The
computation of these scores is detailed in the Appendix A.2.
The generated initial structure T0

θ = (R0
θ,X

0
θ) can be esti-

mated with the score network, with further details provided
in Section 3.4.

3.4. Model Architectures

Conditional encoder We leverage a Multiple Layer Per-
ceptrons (MLP), denoted as Gθ(PFC), to learn single and
pair representations from the given antibody framework

4



Antibody Design Using a Score-based Diffusion Model Guided by Evolutionary, Physical and Geometric Constraints

region PFC and the antigen PAg

For the single representation s, the inputs include amino acid
types, the torsion angles ϕ and ψ, and 3D coordinates of all
atoms. For the pair representations z, the inputs include pair
amino acid identities, the inter-residue distances of all-atom
pairs, and the relative positional encoding.

Score network The score network employs triangular
multiplicative update and Invariant Point Attention (IPA)
layers (Jumper et al., 2021) to generate the initial structure
T0

θ and sequence distribution pθ0|t(a0|a,PFC).

The input to our score network Fθ(T
t,At, s, z) includes

the noised sequence and structure, supplemented by single
embeddings s and pair embeddings z from the conditional
encoder. Recognizing the superiority of general protein
language models in enhancing the evolutionary plausibility
of antibody designs, as established by Hie et al. (2023), we
have integrated ESM-2 (3B) as our evolutionary constraint
in the score network. ESM-2 is utilized for encoding the
noised sequence At ∪ (AAb\A), feeding into our score
network.

Moreover, our score network incorporates a recycling mech-
anism, acting as self-conditioning within the diffusion
model framework (Watson et al., 2023). During this re-
cycling process, the initially generated sequence is encoded
using ESM-2 and combined with the single and pair embed-
dings from IPA, augmenting the conditional embeddings.
More details about model architectures can be found in
Appendix A.3

3.5. Training Objectives

In our work, the process of learning the initial structure T0
θ

and the sequence distribution pθ0|t(a0|a) involves minimiz-
ing not only the denoising score matching losses but also
incorporating auxiliary losses designed to the specificity of
antibody design tasks. These auxiliary objectives include
physical and geometric constraints, improving target antigen
recognition and binding.

Physical constraint In our model, we embed physical
constraint to guide the generation of antibodies with high
binding affinity to target antigens. This includes a structural
violation loss Lviolations (Jumper et al., 2021) to prevent vi-
olations in covalent peptide bond angles and lengths among
neighboring residues (detailed in Appendix A.4), and a
van der Waals loss LVdW to approximate the van der Waals
forces within neighboring non-bonded backbone atoms. The
van der Waals loss is defined as:

LVdW =

Nnbpairs∑
i=1

max(dilit − τ − dipred, 0), (5)

where dipred is the distance between two non-bonded back-

bone atoms in the generated initial structure and dilit is the
literature-supported plausible distance based on van der
Waals radii and force. Nnbpairs represents the number of
non-bonded backbone atom pairs between CDRs and other
regions including antigens. The tolerance τ is set to 1.5Å.
The physical constraint is expressed as:

LPhysical = 0.03LVdW + 0.03Lviolation. (6)

Geometric constraint The geometric constraint is specifi-
cally formulated to accurately depict the rigidity and flexibil-
ity inherent in antibody structures. For the CDRs structures
T = (R,X), we incorporate the FAPE loss LFAPE, dis-
togram loss Ldistogram and lDDT-Cα loss LlDDT (Jumper
et al., 2021), aiming to generate more rational structure. The
geometric constraint is thus defined as:

LGeometric = LFAPE + 0.5Ldistogram + 0.1LlDDT. (7)

Denoising score matching losses For the CDRs structure,
we minimize the DSM loss LDSM as per previous work
(Yim et al., 2023). In the sequence space, the continuous
time negative Evidence Lower Bound (ELBO) LELBO and
the cross-entropy loss LCE are minimized. The continuous
time negative ELBO for the reverse time CTMC is defined
as follows:

LELBO =Et∼U(0,1)pt(a)rt(ã|a)[
∑
a′ ̸=a

Ŝt
θ(a, a

′)

−Zt(a) log(Ŝt
θ(ã, a))] + C, (8)

where C is a constant independent of θ, and

Zt(a) =
∑
a′ ̸=a

St(a, a
′), rt(ã|a) = (1− δã,a)

St(a, ã)

Zt(a)
.

The denoising score matching losses are denoted as:

LDiff = LDSM + 0.2LELBO + 0.2LCE. (9)

The overall training objective We aggregate all the afore-
mentioned losses to form the final training objective func-
tion. The geometric and physical constraints are applied
only when t is sampled near 0, where fine-grained charac-
teristics emerge. The complete training loss is expressed
as:

LAll = LDiff + It< 1
4
(LGeometric + LPhysical), (10)

where It< 1
4

is an indicator variable that equals 1 only when
t < 1

4 . More details about model training can be found in
Appendix C.
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3.6. Sampling Algorithms

Our algorithm integrates sequence sampling and struc-
ture sampling for antibody design. We employ the tau-
leaping method (Gillespie, 2001) for sequence generation
and geodesic random walk approach (Jørgensen, 1975) for
structure sampling, as detailed in Algorithm 1.

Sampling algorithm for sequence We utilize a tau-
leaping approach, assuming constant Ŝt

θ and At within the
interval [t− τ, t], where τ is a small time step. In the begin-
ning, we sample the sequence in CDRs from the uniform
distribution i.e. A1 ∼ (U({0, . . . , 19}))⊗N . The number
of transitions from At to At−τ in this interval follows a
Poisson distribution with a mean of τ Ŝt

θ(a
t, at−τ ). At time

t− τ , we aggregate all transitions:

At−τ = At +

N∑
d=1

19∑
s=0\at

d

Ps(s− atd)ed. (11)

Here, ed is a one-hot vector with a 1 at the dth dimension,
and Ps is a Poisson variable, Ps ∼ Poisson(τ Ŝt

θ(a
t, s)).

Sampling algorithm for structure For sampling in the
SE(3)

N space of structures, we apply Euler-Maruyama dis-
cretization of Eq. (4), following established methods (Yim
et al., 2023). In the initial phase of our sampling procedure,
we adopt distinct sampling approaches for translations and
rotations. For translations, we use a standard Gaussian dis-
tribution in R3: Zx

n ∼ N (0, Id3). For rotations, we employ
a uniform distribution on SO(3): ZR

n ∼ IGSO(3). Our
score network is also designed to generate the {Cα, C, N,
O} atoms.

Upon generating the backbone and sequence, we construct
the remaining side-chain atoms using the Rosetta side-chain
packing methods (Misura et al., 2004). Finally, the full
atom structure in CDRs is refined using Rosetta’s FastRelax
(Alford et al., 2017) component using the ref2015 score
function.

4. Experiments
In section 4.1, we assess the performance of AbX on the
RAbD test dataset. In section 4.2, we evaluate AbX in
antibody optimization using the DiffAb test dataset. In
section 4.3, we present the results of the ablation studies
on the key components of AbX. Finally, we illustrate case
studies to validate the efficacy of introduced contraints by
showing the trajectories of designed CDRs structures in
section 4.4..

4.1. Sequence and Structure Co-design

We evaluate AbX in CDRs structure and sequence co-design
on the RAbD test dataset, consisting of 60 diverse antibody-
antigen complexes (Adolf-Bryfogle et al., 2018). In this

task, we design all six CDRs, conditioned on the antibody
framework regions and the target antigens. For model train-
ing, we utilized data collected from the Structural Antibody
Database (SAbDab) (Dunbar et al., 2014) up to July 2023.
(Dunbar et al., 2014). We strictly remove the overlap be-
tween the training and testing sets using a CDR-H3 sequence
identity threshold of 40%. Further details on model training
are available in the Appendix C.

Baseline models As discussed in Section 2.1, computa-
tional antibody design methods can be categorized into two
groups: discriminative models and generative models. To
benchmark the performance, we incorporate state-of-the-
art methods from both categories. These include DiffAb
(Luo et al., 2022), a diffusion-based generative model, and
dyMEAN (Kong et al., 2023b), which employs a graph neu-
ral network. Further details on these baseline models can be
found in Appendix D.

Evaluation metrics The models are evaluated using vari-
ous metrics: (1) Amino Acid Recovery (AAR, %): measures
the sequence recovery accuracy of the generated sequences
compared with the native sequences; (2) Root Mean Square
Deviation (RMSD, Å): calculates the structure deviation
between Cα coordinates of generated and native CDRs; (3)
Plausibility: is assessed using likelihood under another in-
dependent antibody language model, AntiBERTy (Ruffolo
et al., 2021); (4) Improvement Percentage (IMP, %): indi-
cates the proportion of designed antibodies with improved
binding energy (∆G), computed using InterfaceAnalyzer in
Rosetta.

While the first four and last two residues in the CDR-H3 are
highly conserved, the middle loop residues predominantly
contribute to antigen binding (Kong et al., 2023b; Huang
et al., 2023). Therefore, we introduce additional metrics
that evaluate performance specifically on the middle loop
residues. These metrics include Loop RMSD and Loop
AAR, assessing RMSD and AAR in the middle loop region
within CDR-H3, respectively. For each antibody-antigen
complex in the test dataset, we design 100 candidates and
calculate the average of these metrics across the candidates.
Further details on the metrics are available in Appendix D.2.

Experimental results As shown in Table 1, AbX out-
performs other methods in each metric. Particularly, AbX
exhibits a significant improvement in IMP and Plausibility,
indicating the efficacy of the introduced constraints in gener-
ating more plausible antibodies capable of binding to target
antigens. Moreover, Table 2 provides detailed metrics for
each CDR region, showing AbX’s superior performance in
both AAR and RMSD compared to both the discriminative
and generative methods across all CDR regions.
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Table 1. Evaluation of de novo designed CDRs in RAbD test
dataset.

Metrics DiffAb dyMEAN AbX

IMP(%)↑ 12.07 0.00 18.64
Plausibility ↑ -1.38 -1.21 -1.01
Loop AAR↑ 21.25 22.25 30.80

Loop RMSD↓ 3.45 5.14 3.24

In addition, we have developed a full-atom version of AbX,
named AbX-FullAtom, which generates both the side-chain
and backbone atoms. As shown in Table S1 and Table S2,
AbX-FullAtom demonstrates performance comparable to
AbX. The advantage of AbX-FullAtom lies in its ability
to efficiently generate side-chain atoms without the need
for separate side-chain packing using Rosetta, which can
be time-consuming. More details on AbX-FullAtom are
available in Appendix B and Appendix D.

4.2. Antibody Optimization

We further evaluate AbX on the DiffAb testing set (Luo
et al., 2022), comprising 19 well-known antigens including
SARS-CoV-2 and MERS. All methods followed the dataset-
splitting approach established by DiffAb and retrained for a
fair comparison. We first evaluate the performance on Dif-
fAb testing set using the same metrics previously employed
for RAbD test set. As shown in Table 3, AbX maintains
superior performance over dyMean and DiffAb across all
metrics.

Table 3. Evaluation of de novo designed CDR-H3 in DiffAb test
dataset.

Metrics DiffAb dyMEAN AbX

IMP(%)↑ 37.13 5.26 42.93
Plausibility ↑ -0.70 -0.77 -0.67
Loop AAR↑ 21.76 29.31 30.25

Loop RMSD↓ 3.60 4.80 3.41

We next evaluate AbX in antibody optimization. Optimizing
existing antibodies to enhance binding affinity has broad
applications in therapeutics. Following the optimization out-
lined in DiffAb, we utilize the CDRs of existing antibodies
as the starting point for the inference process.

In this task, we specifically compare AbX with the genera-
tive model DiffAb. Given that AbX and DiffAb use different
noise schedules, we compare the performance at each noise
scale level instead of the optimization step. Further details
on this experiment are provided in Appendix E.

As illustrated in Figure 3, the antibodies optimized by AbX
consistently exhibit higher binding affinity than those opti-
mized by DiffAb across different noise scales. This high-

lights the superior efficacy of AbX in antibody optimization.
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Figure 3. Binding energy of designed antibody-antigen complex in
different noise scales. Binding energy is used as an approximation
for binding affinity in antibody-antigen interactions.

4.3. Ablation Studies

To validate our motivation and investigate the relative con-
tributions of key components of AbX, we conducted a series
of ablation studies, specifically: (1) Without both geomet-
ric and physical constraints. (2) Without the physical con-
straint. (3) Without the evolutionary constraint. For these
experiments, we employed all models trained on the DiffAb
dataset as detailed in Section 4.2. In our ablation studies,
we generated all six CDRs using these models.

Table 4 illustrates that the inclusion of geometric, physi-
cal, and evolutionary constraints significantly contributes
to the enhanced performance of AbX. The removal of the
evolutionary constraint led to reduced Plausibility and Loop
AAR, which underscores the critical role of evolutionary
constraint in achieving evolutionary plausible antibodies.
Furthermore, the exclusion of evolutionary constraint af-
fected both IMP and RMSD, indicating its importance in
generating structurally accurate and plausible antibodies.
The absence of geometric and physical constraints resulted
in a marked decrease in RMSD and IMP demonstrating
that these constraints are crucial for generating antibodies
with tight binding to target antigens. The decrease in IMP
observed without the physical constraint confirms its sig-
nificance in the generation of antibodies with low binding
affinity. Collectively, these findings underscore the vital
contribution of each constraint to the superior performance
of our model.
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Table 2. Evaluation of de novo designed CDRs across each CDR in RAbD test dataset.

CDR Method AAR(%) ↑ RMSD(Å)↓ CDR Method AAR(%) ↑ RMSD(Å) ↓

H1
DiffAb 70.01 0.88

L1
DiffAb 61.07 0.85

dyMEAN 75.71 1.09 dyMEAN 75.55 1.03
AbX 80.72 0.85 AbX 79.37 0.78

H2
DiffAb 38.52 0.78

L2
DiffAb 58.58 0.55

dyMEAN 68.48 1.11 dyMEAN 83.09 0.66
AbX 70.73 0.76 AbX 84.53 0.45

H3
DiffAb 28.05 2.86

L3
DiffAb 47.57 1.39

dyMEAN 37.50 3.88 dyMEAN 52.11 1.44
AbX 45.18 2.50 AbX 65.92 1.18

Table 4. Ablation studies for AbX in DiffAb test dataset.

Geometric
Constraint

Physical
Constraint

Evolutionary
Constraint IMP (%) Plausibility H3

AAR(%)
H3

RMSD

✓ ✓ ✓ 54.82 -0.67 49.17 2.68
✓ ✓ % 46.50 -0.77 45.32 3.19
% % ✓ 19.36 -0.70 53.21 3.62
✓ % ✓ 52.02 -0.69 53.84 2.86
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Figure 4. (a) Binding energy of designed antibody-antigen com-
plexes during the diffusion process. (b) Plausibility of designed
antibody-antigen complexes during the diffusion process.

4.4. Case Studies on Trajectories of Antibody Design

To illustrate the contribution of the introduced constraints
in AbX, we compare the trajectories of antibodies designed
by AbX with the ablation models that exclude these con-
straints. We selected a specific antibody-antigen complex
(PID: 5TLJ) and designed all six CDRs for the antigen. We
generated 10 antibodies, and at each diffusion step, we as-
sessed both the binding energy to the target antigen and
evolutionary plausibility.

First, as illustrated in Figure 4, the binding energy decreases
progressively during the inference process for all models.
Second, when compared with the ablation model lacking
the physical and geometric constraints (referred to as AbX
w/o Phy), AbX consistently produces antibodies with lower
binding energy at each inference step. Third, in comparison
with the ablation model that omits the evolutionary con-
straint (denoted as AbX w/o Evo), AbX consistently yields
antibodies with higher evolutionary plausibility. Fourth, the
number of atom clashes in generated antibody structures de-
creases as the inference progresses (Figure S2 in Appendix
F).

5. Conclusions
To address the challenge of limited training data in com-
putational antibody design, we present AbX, a score-based
diffusion model guided by physical, geometric, and evolu-
tionary constraints. Our results demonstrate that the intro-
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duced constraints in AbX lead to significant improvements
in antibody design and optimization.

While we have employed various in silico metrics to evaluate
the performance, one main limitation of our work is the
absence of wet-lab experimental validation, which remains
our future work. Our model holds potential for several
extensions. For instance, we can enhance it by incorporating
additional classical physical constraints, such as modeling
full-atom energy using established force fields like AMBER
(Maier et al., 2015).

6. Code Avilibility
The AbX software is available on Github (https:
//github.com/zhanghaicang/carbonmatrix_
public)

Impact Statement
This paper presents work whose goal is to advance the field
of AI for Science. There are many potential societal con-
sequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
We acknowledge the financial support from the National
Natural Science Foundation of China (grant no. 32370657)
and the Project of Youth Innovation Promotion Associa-
tion CAS to H.Z. We also acknowledge the financial sup-
port from the Development Program of China (grant no.
2020YFA0907000) and the National Natural Science Foun-
dation of China (grant nos. 32271297 and 62072435). We
thank the ICT Computing-X Center, Chinese Academy of
Sciences, for providing computational resources.

We thank Xiaoyang Hou and Zaikai He for the useful dis-
cussions.

References
Adolf-Bryfogle, J., Kalyuzhniy, O., Kubitz, M., Weitzner,

B. D., Hu, X., Adachi, Y., Schief, W. R., and Dunbrack Jr,
R. L. RosettaAntibodyDesign (RAbD): A general frame-
work for computational antibody design. PLoS computa-
tional biology, 14(4):e1006112, 2018.

Al-Lazikani, B., Lesk, A. M., and Chothia, C. Standard con-
formations for the canonical structures of immunoglob-
ulins. Journal of molecular biology, 273(4):927–948,
1997.

Alamdari, S., Thakkar, N., van den Berg, R., Lu, A. X., Fusi,
N., Amini, A. P., and Yang, K. K. Protein generation with
evolutionary diffusion: sequence is all you need. bioRxiv,
pp. 2023–09, 2023.

Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O’Meara,
M. J., DiMaio, F. P., Park, H., Shapovalov, M. V., Renfrew,
P. D., Mulligan, V. K., Kappel, K., et al. The Rosetta
all-atom energy function for macromolecular modeling
and design. Journal of chemical theory and computation,
13(6):3031–3048, 2017.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van
Den Berg, R. Structured denoising diffusion models in
discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

Campbell, A., Benton, J., De Bortoli, V., Rainforth, T., Deli-
giannidis, G., and Doucet, A. A continuous time frame-
work for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Carter, P. J. Potent antibody therapeutics by design. Nature
reviews immunology, 6(5):343–357, 2006.

Dunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs, A.,
Georges, G., Shi, J., and Deane, C. M. SAbDab: the
structural antibody database. Nucleic acids research, 42
(D1):D1140–D1146, 2014.

Eguchi, R. R., Choe, C. A., and Huang, P.-S. Ig-VAE:
Generative modeling of protein structure by direct 3D
coordinate generation. PLOS Computational Biology, 18
(6):1–18, 06 2022. doi: 10.1371/journal.pcbi.1010271.

Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior,
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A. Details of Diffusion Processes
A.1. Diffusion Process for Sequence

For the completeness of our study, we provide a brief introduction to the Continuous Time Markov Chain (CTMC). A
CTMC is a continuous stochastic process {at}t∈U(0,1) satisfying the Markov property. In this process, at takes values in a
discrete state space, and a CTMC is characterized by its transition probabilities. The subsequent state in the chain is selected
based on a transition probability pt|t−∆t(a|ã). We define this transition probability with a transition rate matrix S ∈ R20×20,
formulated as:

S(ã, a) = lim
∆t→0

pt|t−∆t(a|ã)− δa,ã
∆t

, (12)

pt|t−∆t(a|ã) = δa,ã + S(ã, a)∆t+ o(∆t), (13)

where S(ã, a) represents the (ã, a) element of the transition rate matrix, pt|t−∆t(a, ã) denotes the infinitesimal transition
probability from state ã at time t − ∆t to state a at time t. The transition rate matrix has the following properties:
S(ã, a) ≥ 0 for ã ̸= a, S(a, a) ≤ 0, S(a, a) = −

∑
ã ̸=a S(ã, a).

Building on the framework established by τLDR (Campbell et al., 2022), we set the transition rate matrix as St = β(t)S,
where S = 11T − 20Id, with 11T being a matrix of ones and Id the identity. This leads to the analytic expression of the
marginal distribution:

pt|0(a|a0) = exp(

∫ t

0

Ssds) = Q exp[Λ

∫ t

0

β(s)ds]Q−1, (14)

where S = QΛQ−1 is the eigendecomposition of matrix S, and exp is applied element-wise. For a more detailed exploration
of continuous-time score-based diffusion models for discrete space, we refer to the work of τLDR (Campbell et al., 2022).

A.2. Diffusion Process for Structure

Following the approach outlined by FrameDiff (Yim et al., 2023), we calculate the score on SE(3) space, utilizing the
generated initial structure T0

θ = (R0
θ,X

0
θ). This computation enables us to derive the score on both SO(3) and R3 as

follows:

∇R log pt|0(R
t|R0

θ) =
Rt

Wt
log{R(0,t)

θ }∂Wf(Wt, t)

f(Wt, t)
, (15)

∇x log pt|0(X
t|X0

θ) = (1− e−t)−1(e−
t
2X0

θ −Xt), (16)

where f represents the Brownian motion on SO(3), W(R) denotes the rotation angle in radians for any R ∈ SO(3),
R(0,t)is defined as (R0)TRt, and Wt = W(R(0,t)). Here, log is the inverse of the exponential map on SO(3). These
equations are fundamental to our diffusion process in SE(3) space. For a more comprehensive understanding of this process,
we refer to the detailed explanation provided in the work of FrameDiff (Yim et al., 2023).

A.3. Details of Model Architectures

Figure S1 illustrates our score network, which draws inspiration from AlphaFold2 (Jumper et al., 2021). Our model utilizes
the triangular multiplicative update method to effectively capture complex interactions within antibody-antigen complexes.
Additionally, we employ an SE(3)-invariant Invariant Point Attention (IPA) architecture for generating the initial structure
T0

θ and sequence marginals pθ0|t(a0|a,PFC).

The inputs to our score network include the noised sequence and structure, alongside the output from the conditional
encoder. The noised sequence At ∪ (AAb\A) is processed through the language model ESM-2, and the noised structure
serves as the initial frame for the IPA network. Embeddings from both the language model and the conditional encoder
undergo processing via the triangular multiplicative update. Subsequently, the IPA generates the final structure and marginal
distribution of the sequence.

In the recycling phase, the sequence is obtained by taking the value with the highest probability at each position according
to the marginal distribution pθ0|t(a0|a,PFC). This sampled sequence replaces the noised sequence in the language model.
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The final single, pair embeddings and distance map of the structure from the IPA are then incorporated into the conditional
encoder output. The entire process described above is then repeated. This recycling process is repeated three times to refine
the predictions.

ESM-2

Embedder

Triangular

Multiplicative	

Update

Conditional	
Encoder

IPA

Q V ... C A R G G G G F ... V S A

Q I ... A E D A A T Y C ... E L K

E F ... W K E L A N D V ... R L I

VH

VL

Antigen

Q V ... C A R G G G V F ... V S A

Q I ... A E D A A T Y C ... E L K

E F ... W K E L A N D V ... R L I

VH

VL

Antigen

Sample

Recycle	2	Times

Figure S1. Illustration of AbX’s model architectures.

A.4. Details of Training Objectives

Details of physical constraint To learn the geometry of inter-residue covalent bonds and prevent structural violations,
particularly in regions lacking ground truth atom coordinates, we incorporate the structural violation loss from AlphaFold2
(Jumper et al., 2021). This loss is comprised of bond length and angle violation losses.

The bond length violation loss is formulated as follows:

Lbond length =
1

Nbonds

Nbonds∑
i=1

max(|ℓipred − ℓilit| − τ, 0), (17)

where ℓipred denotes the bond length in the generated structure between the i-th N atom and the (i+ 1)-th Cα atom, forming
a peptide bond. ℓilit is the literature value of this bond length. Nbonds represents the total number of peptide bonds in the
generated CDRs structure, and the tolerance τ is set to 12σlit, with σlit being the standard deviation of this bond length
from the literature.

For bond angle violations, the loss is calculated using the cosine of the angle derived from the dot product of unit vectors of
the bonds:

Lbond angle =
1

Nangles

Nangles∑
i=1

max(| cosαi
pred − cosαi

lit| − τ, 0), (18)

where αi
pred is the predicted bond angle, and αi

lit is its corresponding literature value. Nangles is the total count of peptide
bond angles in the generated CDRs structure. The tolerance τ ranges from −12 to 12 times the standard deviation of this
bond angle as per literature.

The overall structure violation loss is computed as the sum of bond angle and bond length violation losses:

Lviolation = Lbond angle + Lbond length. (19)

Details of geometric constraint Drawing inspiration from the breakthroughs achieved by AlphaFold2 (Jumper et al.,
2021), our model integrates the Frame Aligned Point Error (FAPE) loss LFAPE, distogram loss Ldistogram, and lDDT-Cα
loss LlDDT. The FAPE loss, which is SE(3)-invariant, measures the structural similarity between the generated and ground
truth antibodies. It is calculated as:

LFAPE =
1

Z

1

Nres
2

Nres∑
i,j=1

min

(√∥∥T−1
i ◦ xj − T true−1

i ◦ xtrue
j

∥∥, dclamp

)
, (20)
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where Z, set to 10Å, is the length scale, and dclamp is a clamping constant and also set to 10Å. Nres denotes the number of
residues in the antibody-antigen complex. Given the complex interactions within antibody-antigen complexes, our model
also considers the interface FAPE loss (Evans et al., 2021).

To enhance the efficiency of pair representations, we incorporate the distogram loss. This involves projecting the symmetrized
pair representations (zij + zji) into 64 distance bins to obtain bin probabilities pbij using softmax. The bins span distances
from 2Å to 22Å. The label ybij is encoded as one-hot binned residue distances from ground-truth beta carbon positions. The
distogram loss is defined as:

Ldistogram = − 1

N2
res

∑
i,j

64∑
b=1

ybij log p
b
ij . (21)

To improve the stereochemical plausibility of the generated structure, we include the per-residue lDDT-Cα loss (Mariani
et al., 2013). This metric is computed against the ground truth structure and discretized into 50 bins, denoted as ptrue LDDT

i .
The final single representation from the IPA is projected into 50 bins, referred to as ppLDDT

i , for predicting the score. The
per-residue lDDT-Cα loss is described as:

LlDDT =
1

Nres

Nres∑
i=1

(ptrue LDDTT

i log ppLDDT
i ). (22)

Details of denoising score matching losses Following the approach described by FrameDiff (Yim et al., 2023), the
Denoising Score Matching (DSM) loss is computed as follows:

LR
DSM =

1

N

N∑
i=1

λt∥∇R log pt|0(R
t|R0

θ)−∇R log pt|0(R
t|R0)∥2, (23)

Lx
DSM =

1

N

N∑
i=1

∥x0
θ − x0∥2, (24)

where λt is calculated as λt = 1/( 1
N

∑N
i=1∇R log pt|0(R

t|R0)). The SE(3) DSM loss is then defined as the sum of these
individual losses:

LDSM = LR
DSM + Lx

DSM. (25)

A.5. Details of Sampling Algorithm

Details of the overall sampling algorithm are provided in Algorithm 1.

B. Full-atom version of AbX
We have developed AbX-FullAtom, a full-atom extension of the AbX model, capable of generating antibodies with complete
backbone and side-chain atoms. Following AlphaFold2 (Jumper et al., 2021), side-chain atoms in AbX-FullAtom are
represented as torsion angles. Due to the variability in the number of side-chain atoms among different residues, the count
of side-chain torsion angles varies for each residue. To account for the varied distribution of torsion angles across different
residues, AbX-FullAtom predicts side-chain torsion angles for all possible residues simultaneously. Subsequently, based on
the sequence sampled by our model, we select the appropriate torsion angles to construct the final structural output.

The training objectives for the full-atom version are enhanced by incorporating a side-chain FAPE loss (Jumper et al.,
2021), and expanding the van der Waals loss to encompass all atoms, not just those in the backbone. This is specifically
implemented to ensure the accuracy and quality of the side-chain conformations in the generated structures. Finally, we
utilize the fastrelax in Rosetta to refine these structures.

C. Implementation Details of AbX
In configuring the diffusion process for structures in both AbX and AbX-FullAtom, we followed a hyperparameter setting
consistent with that used in the score-based generative model by FrameDiff (Yim et al., 2023). For translations, we set
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Algorithm 1 Sampling Procedure of AbX
1: Input: θ,N,Nsteps, ϵ, ζ,PFC

2: ∆t = 1−ϵ
Nsteps

3: s, z = Gθ(PFC) # Convert PFC prior to conditional embeddings

4: A1 ∼ pSeqref ,T
1 ∼ P · pSE(3)N

ref # Initialize sampling from prior distributions
5: for t = 1, 1−∆t, 1− 2∆t, . . . , ϵ do
6: T0

θ, p
θ
0|t(A

0|At,PFC) = Fθ(T
t.At, s, z)

7: {(sRθ,n, sxθ,n)}Nn=1 = ∇Tt log pt|0(T
t|T0

θ) # Calculate the score function of structure

8: Ŝt
θ(a, ã) = St(ã, a)

∑
a∗

pt|0(ã|a∗)

pt|0(a|a∗)p
θ
0|t(a

∗|a,PFC) # Compute transition rate matrix of sequence
9: for (Rt

n,x
t
n, a

t
n) = (T t

1 , a
t
1), . . . , (T

t
N , a

t
N ) do

10: Zx
n ∼ N (0, Id3),Z

R
n ∼ IGSO(3) # Simulate reverse step for structure

11: Wx
n = P (P∆t[ 12x

t
n + sxθ,n] + ζ

√
∆tZx

n) # Remove center of mass
12: WR

n = ∆tsRθ,n + ζ
√
∆tZR

n

13: T t−∆t
n = expT t

n
{(WR

n ,W
x
n )}

14: Ps ∼ Possion(∆tŜt
θ(a

t, s)) # Simulate reverse step for sequence
15: at−∆t

n = atn +
∑19

s=0 Ps × (s− atn)
16: at−∆t

n = Clamp(at−γ
n ,min = 1,max = 19)

17: end for
18: end for
19: T0

θ, p
θ
0|t(A

0|Aϵ,PFC) = Fθ(T
ϵ.Aϵ, s, z)

20: Â0
θ = Sample(pθ0|t(A

0|Aϵ,PFC))

21: Output: T0
θ, Â

0
θ

fx(s) =
1
2β(s) and gx(s) =

√
β(s), with the schedule β(s) defined as β(s) = βmin + t(βmax − βmin). Here, βmin and

βmax are set at 0.1 and 20, respectively. For rotations, the diffusion schedule is given by σr(s) = log(s · exp(σmax) +
(1 − s) exp(σmin)), where σ2

min = 0.01 and σ2
max = 2.25. For the diffusion process for sequences in both AbX and

AbX-FullAtom, we selected β(t) as 0.3.

The dimensions of the single and pair representations, as well as the hidden representation in the IPA layer, are set to 512,
128, and 128, respectively. We utilize eight IPA layers and one triangular multiplicative update layer, bringing the total count
of trainable parameters to 11,859,323. In our model, the ESM-2 (3B) language model is utilized, which is accessible via
their GitHub repository (https://github.com/facebookresearch/esm). During training, the Adam optimizer
was employed with a batch size of 128. The learning rate followed a polynomial ramp from 0 to 100. We set the total
number of training iterations at 25,000, and the reverse diffusion model operates with 100 steps. The training involved
random sampling of combinations of CDRs for masking and generation, consistent with the training strategy outlined in the
codesign multicdrs.yml configuration file used in DiffAb.

D. Details of Structure and Sequence Co-design Tasks
D.1. Baseline Models

DiffAb (Luo et al., 2022) We utilized DiffAb from the GitHub repository (https://github.com/luost26/
diffab). To ensure a fair comparison, we retrained DiffAb on the same dataset as our model, using the configuration file
codesign multicdrs.yml. For the designed antibodies, side-chain atoms were added using Rosetta Packing, and the structures
were further refined using the fastrelax feature in Rosetta.

dyMEAN (Kong et al., 2023b) We employed dyMEAN from its GitHub repository (https://github.com/
THUNLP-MT/dyMEAN). For comparability, dyMEAN was retrained on the same dataset as ours, adhering to the
multi cdr design.json configuration. Similar to DiffAb, the antibodies designed by dyMEAN were refined using fas-
trelax in Rosetta.

RAbD (Adolf-Bryfogle et al., 2018) We intended to include Rosetta Antibody Design (RAbD) in our comparative analysis.
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However, the preprocessing service PyIgClassify (http://dunbrack2.fccc.edu/PyIgClassify) for antibodies,
was not operational, preventing a direct comparison with our model.

D.2. Metrics

Plausibility For evaluating the plausibility of our designed sequences, we utilize the pseudo log-likelihood scores
calculated by antibody language model AntiBerty (Ruffolo et al., 2021), in line with the approach described in AbDiffuser
(Martinkus et al., 2023). AntiBerty, an antibody-specific transformer language model, has been pre-trained on a dataset
comprising 558M natural antibody sequences. We implemented AntiBerty from their GitHub repository (https://
github.com/jeffreyruffolo/AntiBERTy).

Improvement Percentage (IMP, %) To assess IMP, we calculate the binding energy of antibody-antigen complexes using
the InterfaceAnalyzer and the ref2015 score function in pyRosetta. IMP is then determined by computing the proportion
of designed antibody-antigen complexes whose binding energy are lower (indicating improvement) than those in natural
complexes. For the relaxation and scoring of these complexes, we utilized the 2023.33 version of pyRosetta.

Root Mean Square Deviation (RMSD) Initially, we align the generated antibody-antigen complexes with their corre-
sponding natural complexes using Kabsch alignment. Subsequently, we calculate the RMSD for each region of these aligned
complexes.

Loop AAR and Loop RMSD DiffAb utilizes the Chothia scheme for numbering CDRs, whereas dyMEAN and AbX
employ the IMGT scheme. Given the difference in CDR numbering between these schemes, we standardize the comparison
by adjusting for CDR lengths. Specifically, for models using the IMGT scheme, we exclude the first four and last two
residues, while for the Chothia scheme, we omit the first two and last two residues. This approach ensures we focus on the
middle loop residues of equivalent lengths across different schemes, thereby enabling a fair and accurate comparison.

D.3. Results of AbX-FullAtom

In our experimental setup, AbX-FullAtom was trained using the identical dataset and configuration parameters as those
employed for AbX. We employed AbX and AbX-FullAtom to generate 100 candidate structures for each antibody-antigen
complex in the RAbD test dataset. Subsequently, we calculated the average values for each metric across all these candidates.
In Table S1, we observe that AbX-FullAtom exhibits marginally lower performance compared to AbX. Despite this,
AbX-FullAtom still outperforms other methods, underscoring the effectiveness of our models, AbX and AbX-FullAtom.

Table S1. Evaluation of de novo designed CDRs in RAbD test dataset.

Metrics AbX-FullAtom AbX

IMP(%)↑ 16.29 18.64
Plausibility ↑ -1.07 -1.01
Loop AAR↑ 30.09 30.80

Loop RMSD↓ 3.55 3.24

Table S2 presents the RMSD and AAR metrics for each CDR. Here, AbX-FullAtom demonstrates comparable performance
to AbX. These findings confirm that our full-atom antibody generation method, AbX-FullAtom, is also reliable.

E. Details of CDR-H3 Generation and Optimization Task
We adopted a data-splitting approach similar to that of DiffAb for the CDR-H3 generation task. Our training dataset, derived
from the SAbDab database accessed in July 2023, was clustered based on 50% sequence identity in CDR-H3 sequences. We
excluded clusters containing test data which encompasses 19 antibody-antigen complexes. To ensure a fair comparison,
DiffAb was retrained using this same dataset, employing the codesign multicdrs.yml configuration file. In this task, the
original CDR-H3 is removed from the antibody-antigen complexes, and both the sequence and structure of the missing
CDR-H3 are sampled.

In the optimization task, we followed the methodology proposed by DiffAb to optimize antibodies (Luo et al., 2022). This
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Table S2. Evaluation of de novo designed CDRs across each CDR in RAbD test dataset.

CDR Method AAR(%) ↑ RMSD(Å)↓ CDR Method AAR(%) ↑ RMSD(Å) ↓

H1 AbX-FullAtom 81.16 0.87 L1 AbX-FullAtom 74.24 0.88
AbX 80.72 0.85 AbX 79.37 0.78

H2 AbX-FullAtom 67.32 0.83 L2 AbX-FullAtom 78.79 0.53
AbX 70.73 0.76 AbX 84.53 0.45

H3 AbX-FullAtom 45.32 2.72 L3 AbX-FullAtom 57.12 1.13
AbX 45.18 2.50 AbX 65.92 1.18

process involves perturbing the CDR sequence and structure at time t using forward diffusion, then denoising from time t to
time 0 in reverse diffusion to generate a set of 100 optimized antibody candidates. Due to differences in the diffusion process
between AbX and DiffAb, we replace optimization steps in DiffAb with noise scale levels in the diffusion process for
structural comparison. The noise scale is determined by calculating the RMSD of Cα atoms between the noised structures
and the corresponding ground truth structures. The objective of the task is to identify the best candidate with optimal
binding energy to the target antigen across various noise scales. For this purpose, the average binding energy of the top
candidates from the test dataset is calculated using Rosetta. This average binding energy is then selected as the key metric
for assessment.

F. Visualization of Generated Antibody-antigen Complex During the Generative Process
Figure S2 presents antibody-antigen complexes generated by our score network at each timestep. Our analysis reveals a
decrease in the number of atom clashes and binding energy as the inference proceeds. Notably, the final generated complex
exhibits improved binding affinity compared to the natural complex. These findings underscore the effectiveness of our
biophysical constraints in enhancing antibody-antigen complex generation at each timestep.
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Figure S2. Visualization of generated antibody-antigen complexes during the generative process. The heavy, light, and antigen chains of
the antibody-antigen complex (PID:5TLJ) are denoted as D, C, and X.
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