
GPTSwarm: Language Agents as Optimizable Graphs

Mingchen Zhuge * 1 Wenyi Wang * 1 Louis Kirsch 2 Francesco Faccio 1 2 Dmitrii Khizbullin 1

Jürgen Schmidhuber 1 2

https://gptswarm.org

Abstract
Various human-designed prompt engineering tech-
niques have been proposed to improve prob-
lem solvers based on Large Language Models
(LLMs), yielding many disparate code bases. We
unify these approaches by describing LLM-based
agents as computational graphs. The nodes im-
plement functions to process multimodal data or
query LLMs, and the edges describe the informa-
tion flow between operations. Graphs can be re-
cursively combined into larger composite graphs
representing hierarchies of inter-agent collabora-
tion (where edges connect operations of different
agents). Our novel automatic graph optimizers
(1) refine node-level LLM prompts (node opti-
mization) and (2) improve agent orchestration by
changing graph connectivity (edge optimization).
Experiments demonstrate that our framework can
be used to efficiently develop, integrate, and auto-
matically improve various LLM agents. The code
can be found here.

1. Introduction
Interest in LLM-powered autonomous problem solvers
or agents and their varied applications is continually ris-
ing (Wang et al., 2023; Xi et al., 2023). However, much
work remains to be done to effectively incorporate these
agents into a cohesive society and improve their structure
automatically.

Early approaches zero-shot-prompted LLMs or prompted

*Equal contribution 1AI Initiative, King Abdullah Uni-
versity of Science and Technology (KAUST), Thuwal,
Saudi Arabia 2The Swiss AI Lab IDSIA, USI, SUPSI,
Lugano, Switzerland. Correspondence to: Mingchen
Zhuge <mingchen.zhuge@kaust.edu.sa>, Dmitrii Khizbullin
<dmitrii.khizbullin@kaust.edu.sa>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

them with few-shot examples (Kojima et al., 2022; Brown
et al., 2020). Recent methods prompt LLMs in a struc-
tured way, such as chain of thought (COT) (Wei et al.,
2022), ReAct (Yao et al., 2022), tree of thought (TOT) (Yao
et al., 2023), Reflexion (Shinn et al., 2023), and Graph
of Thought (GOT) (Besta et al., 2023), to improve text-
based reasoning. Single agent applications such as Auto-
GPT (Torantulino et al., 2023), BabyAGI (Nakajima, 2023),
LangChain (Chase, 2022), and Llama-index (Liu, 2022)
utilize LLMs for various functionalities, including tool us-
age, function calling, and embodied actions. In multi-agent
frameworks (Zeng et al., 2022; Zhuge et al., 2023) several
LLMs take on different roles (Li et al., 2023; Park et al.,
2023; Qian et al., 2023; Wu et al., 2023) to communicate in
natural language and collectively solve a given task. This
approach often outperforms single agents, exploiting the
specialization (Hong et al., 2023) of various LLM agents.
Unfortunately, it also leads to increasingly different and
disparate code bases that require a lot of human engineering
to define prompting schemes and the workflow of agents.

In a “society of mind” (SOM) (Minsky, 1988; Zhuge et al.,
2023), higher-level intelligence emerges from the combina-
tion of simpler and modular cognitive components. Inspired
by SOMs, we describe language agent systems through
graph representations. Language agents querying LLMs
and utilizing external tools are modeled as computational
graphs where each node is dedicated to a specific function,
while the edges define a topology of how inputs are pro-
cessed across nodes, mirroring the prompting schemes in
prior studies. A swarm is defined as a composite graph,
where each subgraph represents a collaborative agent. This
creates a deeper hierarchy of intelligence. Agent graphs
combine basic LLM operations (Kennedy, 2006; Nepusz &
Vicsek, 2013), and swarm graphs contain subgraphs repre-
senting agents. Approaches such as COT (Wei et al., 2022),
TOT (Yao et al., 2023), and Self-Consistency (Wang et al.,
2022) can be represented by our graphs.

Our graph representation lends itself to optimization via
prompting and evolutionary or reinforcement-learning tech-
niques, so that agents can improve their communication (or

1

https://gptswarm.org
https://github.com/metauto-ai/gptswarm

GPTSwarm: Language Agents as Optimizable Graphs

TOT

1 2 3 B

A C

Query

Search

Answer

Operation = Node

Agent = Graph of Nodes

Swarm = Composite Graph

Orchestration =
Edge Connections in the Composite Graph

Collaboration and Communication =
Information Flow between Graphs

Optimization =
Optimization of Nodes or Edges

1

2

3

A

B

C

COT

Main Features

TOT

GPTSwarm: Language Agents as Optimizable Graphs

Figure 1. GPTSwarm is a framework that represents agents as graphs. In this framework, each node represents an operation (e.g., LLM
inference or tool use). An agent is a graph composed of these nodes. An edge between two agent graphs characterizes a communication
channel; each agent collaborates with others through different channels. When connected, multiple agents form a composite graph with a
certain orchestration topology. This graph representation lends itself to optimization of nodes and edges via prompting and evolutionary
or reinforcement learning techniques.

orchestration) patterns. The graph connectivity (adjacency
matrices) between agents can self-improve online as a task
is being solved or its solution is transferred to another task.

As a proof-of-concept, we demonstrate how suboptimal
agent organization can be overcome and how existing
prompting techniques, such as Tree of Thought and Reflex-
ion, can be automatically recombined by optimizing edges
in a composite graph. Apart from edge optimization, our
framework allows each node in the graph to self-improve
by adapting its prompts based on previous input and task
feedback.

Our contributions can be summarized as follows:

(1) We unify language agent systems by describing them as
optimizable computational graphs.
(2) We introduce an open-source framework that allows
for constructing arbitrary agent systems by recombining
fundamental operations. We describe these engineering-
level contributions in Appendix A.
(3) We develop optimization methods for nodes and edges,
enabling automatic improvements of agent prompts and
inter-agent orchestration.
(4) We validate our framework on various benchmarks in-
cluding MMLU, Mini CrossWords, HumanEval, and GAIA,
with an emphasis on the benefits of automatic graph opti-
mization.

2. GPTSwarm
2.1. Language Agents as Graphs

Taking inspiration from the society of mind (SOM) (Minsky,
1988; Zhuge et al., 2023), we propose to organize intelli-
gence within a modular and hierarchical framework. This
framework consists of nodes, graphs, and composite graphs,
with each component playing a specific role. A node rep-
resents a fundamental operation that includes, but is not
limited to, LLM inference, tool use, function calls, and vari-
ous embodied actions. An agent, conceptualized as a graph,
consists of multiple nodes that form a coherent functional
entity. A swarm, or composite graph, represents a complex
system of agents where the collective capabilities of this
system may exceed those of individual agents. Finally, the
edges within an agent define its execution topology, while
the edges between agents establish collaboration and com-
munication among them.

2.2. Graph Definition

Single language agent as a graph. We model a language
agent as a directed computational graph G, defined by a
tuple (N,E, F, o), where N is a set of computational nodes,
E ⊂ N×N is a set of directed edges, F = {fn}n∈N is a set
of computational routines and o ∈ N is an output node. The
set of predecessors of node n is denoted by pre(n). In this
paper, we focus on directed acyclic graphs (DAGs). Given
an input x, a graph G iteratively executes its nodes according

2

GPTSwarm: Language Agents as Optimizable Graphs

to their topological order. Each node n ∈ N receives as
input x and the output zn from its predecessor nodes. In
this work, inputs and outputs are strings in natural language,
but may take on other data types more generally. Node n
applies the computational routine fn(zn, x) and sends the
output to its successor nodes. The graph output, denoted
ŷ = G(x), is the output fo(zo, x) from the output node o.
Note that in a DAG, some nodes will not have predecessors.
For such nodes, the context z will be empty. This graph
execution procedure is summarized in Algorithm 1.

Algorithm 1 Graph Execution
Require: Computational graph G = (N,E, F, o), input x,

empty context z for each node without predecessors.
for n in TopologicalSort(N) do
zn ← {fv(zv, x) : v ∈ pre(n)}

end for
Ensure: fo(zo, x)

In the context of language agents, for example, the input
x may correspond to a question in natural language. Each
node processes the input x and context information z from
its predecessor nodes by applying a computational routine f .
Examples of routines include LLM queries with input data
from other agents, instructions to generate prompts for web
searches that gather task-related information, or tool usage.
Although our formalization specifies that the input x is given
to each node, in practice, many routines might be designed
to ignore the input and operate solely in the context provided
by the predecessor nodes. Finally, the output provided by the
output node corresponds to the answer to the input question
or, more generally, to the solution of the input task.

Swarm of language agents as a composite graph. Given
a set of K language agents, each represented by a com-
putational graph {Gk = (Nk, Ek, Fk, ok)}Kk=1, one can
compose these agents to achieve high performance in spe-
cific tasks. Let N ′ = ∪kNk represent the union of the
nodes of the agents, E′ = ∪kEk be the union of the edges
of the agents, F ′ = ∪kFk be the union of the computa-
tional routines of the agents, and o′ ∈ ∪k{ok} be the output
node for the composite graph. Consider a selection of edges
E ⊂ ∪i̸=jNi×Nj that describe a set of connections between
nodes from different agents. We define the composite graph
representing the swarm of agents as GE = (N ′, EE , F

′, o′),
where EE = E′ ∪ E is the union of the edges of the agents
and the new edges connecting them. Composite graphs are
restricted to DAGs. The composite graph GE can be exe-
cuted as described in Algorithm 1. In a swarm of language
agents, the newly specified edges represent communication
channels between agents. In the following sections, we
explore how to optimize such a computational graph.

2.3. Edge Optimization

Given a task τ and its associated utility function uτ that
maps the candidate graphs to real numbers, we formulate
an optimization problem about the choice of additional
edges. The goal is to identify the edges that connect var-
ious language agents in a swarm, maximizing the utility.
This process involves determining the most effective pat-
terns of communication and information exchange among
agents for the task at hand. We consider a set of poten-
tial edges {ei}di=1 = E , which leads to 2d possible edge
configurations, symbolized as E ∈ {0, 1}d. We further re-
strict the search space to only consider composite graphs
that are DAGs. Formally, optimization of the composite
graph of language agents is achieved by solving the prob-
lem maxE uτ (GE).

2.3.1. PROBLEM REFORMULATION

DAG optimization through pruning of nodes and edges
was already present in the first work on “deep learning”
with deep feedforward networks (Ivakhnenko et al., 1965;
Ivakhnenko, 1968). Due to the combinatorial complexity
induced by DAGs, recent studies have increasingly focused
on the continuous optimization approach (Vowels et al.,
2022). This is particularly relevant in scenarios where most
node executions require one or more queries to LLMs for
moderate-scale applications. Moreover, the utility function
is typically non-differentiable due to the tokenization of
LLMs, and this remains true even when a differentiable
DAG sampling technique is employed. Therefore, we refor-
mulate our edge optimization as a continuous optimization
problem. Instead of optimizing in a discrete space, our
approach is to optimize over a continuum of probabilistic
distributions, each representing a distribution over the fea-
sible DAGs. Formally, rather than solving the maximum
utility function argmaxE uτ (GE), we propose solving

argmax
θ∈Θ

EG′∼Dθ
[uτ (G

′)], (1)

where Dθ is a parameterized distribution and Θ represents
a feasible set of real-valued parameters.

2.3.2. SOLUTION PARAMETERIZATION

A straightforward way to define a parameterized probabilis-
tic distribution over DAGs with fixed nodes N and required
edges E is to assign a real-valued parameter θi ∈ R to each
potential edge ei. Let θ = [θ1; θ2; . . . ; θd] ∈ [0, 1]d. The
probability of G′ = GE for G′ ∼ Dθ is

d∏
i=1

{
θi if (N,E ∪ ({ej}i−1

j=1 ∩ E) ∪ {ei}) is a DAG,
0 otherwise.

A sampling method that realizes this distribution is first to
initialize a graph G′ ← (N,E). Then, iteratively sample

3

GPTSwarm: Language Agents as Optimizable Graphs

whether to include edge ei in G′ for all i’s. If including ei
causes a cycle in current G′, then the edge would not be
included. Otherwise, add the edge to G′ with probability θi.

2.3.3. OPTIMIZATION ALGORITHM

To optimize the objective function (Equation (1)), we apply
the REINFORCE algorithm (Williams, 1992) by applying a
gradient ascent variant (e.g., Adam (Kingma & Ba, 2014))
with an unbiased gradient estimation:

∇θ EGE∼Dθ [uτ (GE)] ≈
1

M

M∑
i=1

ûτ (Gi)∇θ log(pθ(Gi)), (2)

where G1, G2, . . . , GN ∼ Dθ are mutually independent
and ûτ (Gi) is an independent unbiased estimate of uτ (Gi)
for all i and some M ∈ N. Algorithm 2 describes the
optimization algorithm with vanilla gradient ascent.

Algorithm 2 Edge Optimization with REINFORCE
Require: A parameterized probabilistic distribution over

computation graphs Dθ, an unbiased utility estimator
ûτ (·), and a learning rate α.
Initialize θ ∈ Rd.
while terminate condition not met do

Sample Gi ∼ Dθ for i = 1, 2, . . . ,M .
Update θ ← θ + α

M

∑M
i=1 ûτ (Gi)∇θ log(pθ(Gi)).

end while

2.4. Node Optimization

In our framework, each node implements a fundamental
operation, such as querying an LLM, using a tool, calling
an API, etc. In a language agent, most of these operations
involve prompting an LLM once or several times. Optimiz-
ing the prompts of these nodes is crucial for improving the
system’s overall performance.

Unlike many other works on prompt optimization, which
optimize a single global prompt (e.g., Yang et al., 2023;
Pryzant et al., 2023; Deng et al., 2022), our node optimiza-
tion problem naturally involves several operations where
each of them consists of a node-level prompt. In our case,
the optimization problem is more complex due to prompts
affecting how other prompts operate on connected nodes.
At the same time, our graph representation leads to a sepa-
ration of concerns where each node has a specific purpose
with its own associated prompt. Due to this separation of
concerns, we hypothesize that, for every optimization step,
it is sufficient to update each node-level prompt individually,
assuming that all other prompts are fixed.

Consider a parameterized computational graph GP =
(N,E, FP , o), where FP = {fpn

n } are computational rou-
tines, each parameterized by a prompt pn to be optimized
for all n ∈ N . To enable effective node optimization, we

also require a natural language description of the intended
function for each routine fpn

n ∈ F denoted by dn. For ex-
ample, a suitable description for a node designed to write
Python programs would be “a Python code generator”. Here,
existing prompt optimization methods, such as OPRO (Yang
et al., 2023), can be described as a function I that iteratively
maps a prompt, a function description, and a set of node
input-output pairs (which may include annotations such as
a quality measure for each pair) to an improved prompt. For
example, I could take a prompt such as “generate Python
code”, a description “a Python code generator”, and an
input-output pair “Input: evaluate two divided by one as an
integer. Output: 2 / 1”, where the output yields 1.0 as the
result of execution. A prompt optimization method would
return an improved prompt “generate Python code and pay
attention to data types”.

Formally, our method begins by initializing an empty his-
tory set, denoted hn, one for each node n ∈ N . The process
then proceeds iteratively: first, the graph GP (x) is executed
using a randomly sampled input x following Algorithm
1. Subsequently, for each node, a tuple consisting of the
input to the node (zn, x), where zn is the context vector
that includes the outputs of the predecessor nodes, and the
node’s own output fpn

n (zn, x), is added to the node’s his-
tory hn. The final step involves updating the node prompts.
This is done by applying I to the node’s updated history,
its current prompt, and its function description, resulting
in an improved prompt I(hn, pn, dn). This iterative pro-
cess, described in Algorithm 3, continuously improves the
operations of the nodes in the entire graph.

Algorithm 3 Node Optimization
Require: A parameterized graph GP = (N,E, FP , o),

natural language function descriptions D = {dn}n∈N ,
and a distribution of inputs DX .
Initialize pn for all n ∈ N .
Initialize hn ← ∅ for all n ∈ N .
while terminate condition not met do

Sample input x ∼ DX .
y ← GP (x) following Algorithm 1.
hn ← hn ∪ {((zn, x), fpn

n (zn, x))} for all n ∈ N .
pn ← I(hn, pn, dn), for all n ∈ N .

end while

2.5. General Applicability

Frameworks such as AutoGPT (Torantulino et al., 2023)
and LangChain (Chase, 2022) have set a standard for flexi-
bility and reusability in various language-based tasks. Our
framework, GPTSwarm, introduces a graph-based design of
agents and swarms. This design further simplifies the reuse
of modular components (nodes & agents) and the integra-
tion of such modules. For instance, GPTSwarm supports
41 types of file analysis, web search (e.g., Google Search),

4

GPTSwarm: Language Agents as Optimizable Graphs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Score

1T1A

3T3A

5T5A

7T7A

Evaluation Scores
Evaluation Mode

Full graph
Randomly-connected
Optimized
Baseline

Figure 2. Score recovery through edge optimization. “T” de-
notes truthful and “A” adversarial agents, e.g., a 3T3A swarm has
3 of each. Ablation studies include a “full graph” and random
graphs sampled according to distribution D0.5. The dashed line
corresponds to the direct answer baseline.

and index-based memory. By offering a wide range of mod-
ules, our framework makes it easier to implement various
language agent systems. See Section 3.4 for further details.

3. Experiments
3.1. MMLU

3.1.1. ADVERSARIAL SETTING

Motivation: In our first experiments, we demonstrate that
edge optimization effectively filters adversarial agents from
a swarm, mirroring a scenario in multi-agent systems where
some agents are detrimental rather than beneficial. Ideally,
optimization would automatically eliminate harmful agents.
We conducted this experiment using the 4-choice MMLU
general knowledge question answering dataset, as detailed
by Hendrycks et al. (2021b;a). Our setup involves initializ-
ing a swarm consisting of k Input-Output (IO) agents and
k adversarial agents, following the terminology by Besta
et al. (2023). The IO agents query an LLM and relay the
LLM’s responses directly. In contrast, adversarial agents
are deliberately programmed to manipulate the LLM to
provide incorrect answers. The collective decision on the
final answer is made through majority voting, bypassing
any additional LLM query that could introduce corrective
intelligence against adversarial influence. We benchmark
the performance of a single IO agent as our baseline. An
effective optimization is expected to elevate the swarm’s
performance on the MMLU dataset to match this baseline
level.

Analysis: In Figure 2, we present the comparative perfor-
mance scores of different swarm configurations: the base-
line, the graph formed by sequentially including edges that
do not create loops (denoted as the ‘full graph’), a randomly
connected swarm sampled from the initial distribution Dθ

with θ = 0.5, and the optimized swarm. These scores

are derived from evaluating the initial 10% of the MMLU
validation set. The edge optimization process applies REIN-
FORCE (Alg. 2) for 200 iterations. Each iteration assesses
four graph samples, each on a specific problem sourced
from the MMLU dev set. In all experiments, we used GPT-
4-Turbo with the token sampling temperature 0.2. Figure 10
demonstrates how the optimized swarm score aligns asymp-
totically with that of the baseline. Table 4 compiles the key
statistics and findings of these experiments. The findings
indicate that our approach successfully safeguards a swarm
against harmful adversaries.

3.1.2. COLLABORATIVE SETTING

In the adversarial setting above, we observe no score im-
provement over the single agent baseline. We attribute this
to the fact that all IO agents are prompted identically. To
elicit score improvement, we run a set of 7 different IO
agents instructed to behave according to various roles. See
Appendix E.1.3 for the list of roles. The optimized swarm
improves over the baseline from Sec. 3.1.1 by 2.1% ± 1.1%
averaged over 5 training seeds.

3.2. Mini Crosswords

Motivation: This section investigates to what extent edge
optimization can improve the performance of standard
agents from the literature. We conduct our evaluation on
the Mini Crosswords dataset1. A subset of 20 problems is
used to optimize and evaluate our methods, in agreement
with previous studies (Yao et al., 2023; Sel et al., 2023).
The choice of Mini Crosswords for this analysis is strate-
gic, as it highlights how the algorithmic structure of the
solvers, such as the tree search employed by TOT, signifi-
cantly influences their performance (Yao et al., 2023). Our
hypothesis is that edge connections can meaningfully deter-
mine the algorithmic structure. Through edge optimization,
we anticipate the automatic discovery and implementation
of high-performance algorithms.

Analysis: In our experiments, we explore the performance
of swarms of three distinct agents. The first agent, which
implements the TOT approach, iteratively branches over
candidate solutions provided by an LLM, processing one
word at each step. The second agent is based on the Reflex-
ion method (Shinn et al., 2023). This agent first proposes a
solution through a greedy approach and then creates an al-
ternative solution informed by feedback from a critic, which
is based on an LLM analysis of the initial solution. The
third agent we examine is a Chain of Thought (COT) agent
consisting of three nodes. Each node within the COT per-
forms an internal brute-force search to select the optimal
subset of candidates generated by the LLM for the current
state, scored by the LLM. The agent or swarm then returns

1https://www.goobix.com/crosswords

5

https://www.goobix.com/crosswords

GPTSwarm: Language Agents as Optimizable Graphs

0 2 4

6 8 10

Figure 3. Visualizing the evolution of the probability distribu-
tion during optimization in adjacency-like matrices. In this
figure, we show the probability parameters (one corresponds to
an edge) in an adjacency-like matrix for iterations 0, 2, 4, 6, 8,
and 10 of optimizing the objective for the Mini Crosswords task.
We observe that the parameters first change chaotically. However,
after iteration 6, the parameters change almost monotonically.

all the solutions generated by their output node.

For the utility function, we choose the best of all the graph-
returned solutions according to the number of words cor-
rectly filled (i.e., best state word accuracy) as done by Yao
et al. (2023). During the evaluation, we average over 20
graph samples from the graph distribution, each evaluated
on a unique question randomly sampled from the dataset.

We optimize our composite graph of agents using the RE-
INFORCE (Alg. 2), setting the initial edge probability to
θ = 10% and the learning rate to α = 0.4. For each itera-
tion, the gradient is estimated according to equation (2) by
sampling M = 20 graphs, each evaluated on a crossword
problem. For cost-effectiveness, we optimize and evaluate
graphs with the GPT-3.5-Turbo language model, where the
temperature is set to zero. Figure 3 visualizes the evolu-
tion of probability parameters in the form of adjacency-like
matrices over ten iterations. We observe that the parame-
ters first change chaotically. However, after iteration 6, the
parameters change almost monotonically.

We follow Alg. 2 to optimize the objective in Equation
1, achieving an average accuracy of 0.575(±0.0275) after
ten iterations (we report the average over 3 runs and the
standard error). This surpasses the initial distribution’s score
of 0.465(±0.0509). Furthermore, we evaluate the best-of-
three performance by aggregating the top results from each
problem across the three agents, which yields an accuracy
of 0.320(±0.0415).

Note that denser graphs are likely to require more com-
putational resources. To verify that the improvements of
our method are not solely due to an increase in the num-
ber of edges and therefore a larger computational budget,
we compare it with a distribution with all parameters set
to θ = 12.5%. This value reflects the average number of

0.0 0.2 0.4 0.6 0.8

Objective Value

Best-of-Three

Initial Distribution

0.125 Parameter-Valued
Distribution

Final Distribution with
GPT-3.5-Turbo

Final Distribution with
GPT-4-Turbo

Mini Crosswords Performance

ToT (0.675)

Figure 4. Edge optimization on the Mini Crosswords dataset
improves over standard methods The baseline methods are eval-
uated with GPT-3.5-Turbo. The optimized final distribution outper-
forms several baselines. When evaluating the already optimized
edge distribution with GPT-4-Turbo, we achieve better results com-
pared to the previous state-of-the-art method (Tree of Thought
evaluated with GPT-4).

edges in the learned distribution, determined by sampling
1000 graphs from each run’s resulting distribution. The ex-
pected number of edges for both the learned distribution and
the 0.125 parameter-valued distribution are approximately
32.76(±1.93) and 32.80(±0.11), respectively. Despite the
similarity in the edge count, the 0.125 parameter-valued dis-
tribution achieves an accuracy of 0.510(±0.0552), allowing
us to attribute the improvements to factors beyond the mere
edge density.

Furthermore, we evaluate one of our final optimized dis-
tributions (randomly selected) with the GPT-4-Turbo lan-
guage model2 (Figure 4). It achieves an accuracy of
0.800(±0.0616), significantly outperforming the previous
state-of-the-art method, TOT evaluated with GPT-4, with
an accuracy of 0.675 (Yao et al., 2023). For a fair compari-
son, we also evaluate the TOT implementation by Yao et al.
(2023) with GPT-4-Turbo. It yields an accuracy of 0.668.

3.3. HumanEval

Motivation: In the previous experiments on MMLU (math
problems) and Mini Crosswords (open-ended puzzles) we
have validated the utility of optimizing graph edges. In this
section, we test the HumanEval dataset (Chen et al., 2021),
which is known to be sensitive to prompt design. Previ-
ous research involved manually crafting prompts (Shinn
et al., 2023; Hong et al., 2023) and achieved impressive
performance. In contrast, here, we explore how node-based
optimization can simplify this process.

Analysis: In this section, we optimize the prompts of a

2We are limiting our evaluation to a single graph distribution
due to the high cost associated with API calls for this type of
evaluation.

6

GPTSwarm: Language Agents as Optimizable Graphs

1 2 3 4 5 6 7 8
Number of Iterations

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Optimization Curve on HumanEval Dataset

Figure 5. Optimization curve on HumanEval. Accuracy as a
function of the number of iterations. We observe significant im-
provements during the first five iterations. The results, including
the mean and standard errors, are based on three repeated experi-
ments.

ReAct-style (Yao et al., 2022) agent. The agent first gener-
ates a Python program in response to a given question. If
the generated program passes all test cases included in the
problem statement, then the program is returned. Otherwise,
the agent regenerates a program based on the execution
feedback. We optimize the prompts by adding input-output
pairs selected by assessing their effectiveness as demonstra-
tion examples, particularly in improving the node operation
applied to the node’s ten most recent inputs. To evaluate a
node operation, we determine if the generated program suc-
cessfully solves the unit tests provided in the input problem
statement. For more details on the node optimizer, please
refer to Appendix E.3.1.

Figure 5 shows the optimization results of the first eight
iterations. After each iteration, the optimized solution is
evaluated on the entire dataset. The mean and standard er-
rors are presented for three repeated runs. We observe that
the accuracy increases during the first five iterations. We
also test our method in an online learning setting, contin-
uously optimizing and evaluating without restarting. An
improvement is observed from 0.76 (no optimization) to
0.88(±0.007) (mean and standard error).

3.4. GAIA

Motivation: GAIA is a benchmark specifically designed
for testing the generality of AI assistants focusing on real-
world questions (Mialon et al., 2023). Abilities required to
answer GAIA questions include reasoning, multi-modality
processing, web browsing, and other tool use. Although
conceptually straightforward for humans, these questions
present significant challenges for current AI systems.

Using this benchmark, we evaluate the general applicabil-
ity of our framework. We construct swarms with multiple
agents of the same type and employ self-consistency (a
prompt-based majority vote) for the final decision (Wang

Figure 6. Solving a wide range of tasks requires many different
tools. The GAIA benchmark (Mialon et al., 2023) tests for many
of these capabilities by including questions that require several of
these tools for successful completion.

Table 1. Performance on the GAIA Benchmark (Mialon et al.,
2023). Using our framework, we demonstrate significant improve-
ments across several levels of difficulty. The ‘GPT-4 with plugins’
baseline is less significant since it involves the manual selection
of the appropriate tools per question. We report the mean and
standard deviation across 5 runs.
Method Level 1 Level 2 Level 3 Avg.
GPT-3.5 7.55 4.65 0 4.85
GPT-4 15.09 2.33 0 6.06
GPT-4-Turbo 20.75 5.81 0 9.70
AutoGPT 13.21 0 3.85 4.85
GPTSwarm 30.56±3.25 20.93±1.27 3.85±2.43 18.45
Improvement 47.3%↑ 260.2%↑ 0.0% 90.2%↑
GPT4 with Plugins* 30.30 9.70 0 14.6

et al., 2022). We also experimented with adding different
types of agents to the swarm and using prompt-based best
answer selection. The results indicate that prompt-based
self-consistency yields the best performance. Note that
these experiments are meant to demonstrate the generic ca-
pabilities of our modular framework and include neither
edge-based nor node-level optimization, which is left for
future work.

Analysis: Table 1 shows the results of our swarm with
seven TOT agents and the self-consistency strategy for
the final decision. We compare the performance of the
GPT-Series (Achiam et al., 2023) with plugins and Auto-
GPT (Torantulino et al., 2023) performance as reported by
Mialon et al. (2023). Our methods significantly outperform
these baselines.

Table 2 presents a more comprehensive set of results. We ex-
periment with varying numbers of agents and different node
operations, such as different tool uses. Our observations
indicate that the time requirement of a swarm grows ap-
proximately linearly with the number of agents. Despite the
increased computational time, incorporating more agents

7

GPTSwarm: Language Agents as Optimizable Graphs

Table 2. Ablations on the GAIA benchmark (Level 1 validation set) (Mialon et al., 2023). DA = DirectAnswer, GQ = GenerateQuery,
WS = WebSearch, FA = FileAnalyzer, CA = CombinedAnswer. ‘!’ indicates the presence of a specific feature in the corresponding
framework, ‘%’ its absence. Each type of experiment is run five times to record the mean, standard deviation, and best run (marked as
Best). Self-Consistency describes prompt-based self-consistency (Wang et al., 2022); Choose “Best” refers to the LLM’s favorite answer
among the different agents’ answers. All agents and swarms are implemented using our GPTSwarm framework.

Agent or Swarm DA GQ WS FA CA Decision Strategy Accuracy Best Duration (s)
(A) Agent: IO ! % % % % N/A 16.60±3.02 20.75% ∼13.37
(B) Agent: COTweb % ! ! % ! N/A 18.87±2.67 22.64% ∼60.90
(C) Agent: COTFA % ! % ! ! N/A 25.28±3.50 30.18% ∼56.42
(D) Agent: TOT % ! ! ! ! N/A 25.66±3.50 30.18% ∼71.31
(E) Swarm(3×IO) ! % % % % Choose “Best” 15.85±0.92 18.87% ∼45.65
(F) Swarm(3×COT) % ! ! % ! Choose “Best” 27.17±3.29 32.08% ∼152.89
(G) Swarm(3×TOT) % ! ! ! ! Choose “Best” 30.18±4.30 35.85% ∼198.50
(H) Swarm(3×IO) ! % % % % Self-Consistency 18.11±3.07 22.64% ∼45.70
(I) Swarm(3×COT) % ! ! % ! Self-Consistency 27.17±4.06 32.08% ∼150.26
(J) Swarm(3×TOT) % ! ! ! ! Self-Consistency 28.30±3.38 32.08% ∼181.15
(K) Swarm(5×TOT) % ! ! ! ! Self-Consistency 29.06±2.56 32.08% ∼291.07
(L) Swarm(7×TOT) % ! ! ! ! Self-Consistency 30.56±3.25 35.85% ∼414.89
(M) Human - - - - - - 94% - ∼422.26

notably improves the overall performance of the system. We
also found that a greater variety of node operations leads to
better performance. As illustrated in Figure 6, web browsing
is required for 43.9% of the tasks. Our current implemen-
tation accesses the Internet by only downloading materials
directly from the URLs provided in the problem statement or
querying a Google search3 without further website naviga-
tion. Therefore, we believe that enhancing web capabilities
would further increase performance significantly.

4. Related Work
4.1. LLM-based Autonomous Agents

Current works on LLM-based autonomous agents or lan-
guage agents vary in focus. Methods such as Chain of
Thought (Wei et al., 2022), ReAct (Yao et al., 2022), Re-
flexion (Shinn et al., 2023), Tree of Thought (ToT) im-
prove prompt strategies and structure to improve reason-
ing capabilities, while others such as exchange-of-thoughts
(EOT) (Yin et al., 2023) focus on the benefits of various
communication paradigms. Single LLM agent frameworks
such as AutoGPT (Gravitas, 2023), LangChain (Chase,
2022), LlamaIndex (Liu, 2022), and XAgent (XAgent Team,
2023) showcase problem solving through various external
functions and tools. In the space of LLM-based multia-
gent systems (Xie et al., 2023; Chen et al., 2023a;b), NL-
SOMs (Zhuge et al., 2023) employ various social struc-
tures for task-specific applications (inspired by SOMs (Min-
sky, 1988)), without exploring optimization over the social
structure of agents. CAMEL (Li et al., 2023), Generalist

3We use SearchApi (https://www.searchapi.io/) in the experi-
ments

Agents (Park et al., 2023), ChatDev (Qian et al., 2023), and
AutoGen (Wu et al., 2023) focus on role-based communi-
cation, but struggle with hallucinations. MetaGPT (Hong
et al., 2023) introduces standard operating procedures for
better role definition and communication, making the collab-
oration between agents more effective. In contrast to these
frameworks, we automatically optimize nodes and edges in
a self-organizing society of agents.

4.2. Language Agents with Graphs

Besta et al. (2023) introduced LLM-based problem-solving
with graphs; however, the approach only encompasses LLM
prompting schemes without modeling other fundamental
capabilities of language agents, such as use of external tools.
LangGraph (langchain ai, 2024), on the other hand, is a
concurrent open-source framework that focuses on building
multi-actor state LLM applications through possibly cycli-
cal operations. However, its practical applicability has not
yet been systematically studied. Unlike previous studies,
our approach emphasizes the development of hierarchical
intelligence, as discussed by Minsky (1988) and Kennedy
(2006), through the construction of agent graphs and the
composition of multiple graphs into swarms. Crucially, the
graph representation facilitates automatic optimization on
two levels. First, at the node level, since the majority of
nodes in the graph involve prompting an LLM, prompt op-
timization methods can be employed. Second, at the edge
level, we demonstrate the application of the REINFORCE
algorithm (Williams, 1992) to optimize the potential con-
nections between nodes.

8

https://www.searchapi.io/

GPTSwarm: Language Agents as Optimizable Graphs

4.3. Optimizing LLM Inference and Self-Improvement

Much of deep learning research is concerned with tuning
the learning algorithms, architectures, hyper-parameters,
and other aspects of the learning pipeline (Schmidhuber,
2015; Yan et al., 2015). Meta-learning attempts to automate
large parts of that process (Schmidhuber, 1987; Elsken et al.,
2019; Kirsch & Schmidhuber, 2021). Similarly, recently, a
lot of research and engineering has gone into the prompting
and structuring of LLM inference to make better use of
LLMs and build better agents. Due to the ability of LLMs
to learn in context (Brown et al., 2020; Kirsch et al., 2022),
one can view this process as configuring learning algorithms.
The optimization of the inference structure and the prompts
can then be viewed as meta-learning in LLMs.

In the realm of prompt optimization, OPRO (Yang et al.,
2023) generates better prompts through iterative LLM
queries using prior solutions and their performance. Prompt-
Breeder (Fernando et al., 2023) implements a mechanism
that evolves and self-improves task-specific and meta-
prompts through mutation and LLM prompting. Related to
these works, we self-improve future prompts by prompting
LLMs. Similarly to our work, DSPy (Khattab et al., 2023)
implements LLM pipelines as computational graphs with
modular LLM queries as nodes, parameterized by prompts
and neural network weights. It proposes a two-stage process
to optimize the parameters of these nodes. Initially, it gener-
ates a set of candidate solutions for each node. Subsequently,
it optimizes across the Cartesian product of these candidate
solution sets, aiming to identify an effective combination of
parameters for the entire graph. To address the combinato-
rial optimization challenge raised in DSPy, we propose an
iterative optimization process. By virtue of decomposing a
solution into nodes with expected functions, at each itera-
tion, we improve each node individually, conditioned on the
execution history of the graph with the current prompts of
each node.

Regarding the optimization of the inference structure, Dy-
LAN (Liu et al., 2023) uses a fixed heuristic to improve
the collaboration of LLM agents by selecting agents and
determining the number of communication rounds. In line
with previous ideas on self-referential learning (Schmidhu-
ber, 1993; Irie et al., 2022; Kirsch & Schmidhuber, 2022),
STOP (Zelikman et al., 2023) optimizes both the prompts
and the inference structure together by introducing an ini-
tial improver program that is applied to itself to iteratively
improve its performance. In our work, we optimize the
inference structure by employing RL techniques applied to
the potential edges of a given graph.

5. Conclusion
This paper introduces GPTSwarm, an open-source frame-
work that constructs language agents from graphs and agent
societies from graph compositions. This approach allows
for the easy implementation of existing methods from basic
node operations and enables automatic optimization of the
graph in the form of node-level improvement and edge-level
REINFORCE optimization. Our experiments demonstrate
the advantages of our language agent graphs and automatic
optimization on several benchmarks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. The societal consequences of our
work are multifaceted. On the one hand, it could lead to
significant advancements in the efficiency and effectiveness
of machine learning systems. On the other hand, the in-
creased capability and automation of LLM agents might
raise ethical and employment concerns. As AI systems
become more autonomous and powerful, it is crucial to con-
sider their impact on job displacement and the importance
of implementing safeguards to prevent biased or unethical
AI behaviors. Furthermore, the potential for misuse of ad-
vanced AI technologies requires rigorous oversight and the
development of ethical guidelines to ensure that these tech-
nologies are used responsibly and for the benefit of society
as a whole.

Author Contributions
Mingchen initiated the project and conceived the initial idea,
led the development of the codebase, conducted GAIA &
HumanEval experiments, drafted the initial manuscript, and
created most of the visualizations. Wenyi discussed the
core ideas with Mingchen, contributed to the codebase, con-
ducted Mini CrossWords & HumanEval experiments, and
drafted the initial manuscript. Louis reviewed and polished
the paper, extensively rewrote the introduction, and coor-
dinated team meetings. Francesco reviewed and polished
the paper, significantly revising the methods section. Fur-
thermore, Louis and Francesco discussed and formalized
various techniques for graph optimization. As the senior
engineering lead, Dmitrii advised and made significant revi-
sions to the codebase, conducted the MMLU experiments,
and contributed to the visualizations. Juergen, as mentor
and advisor, offered guidance and support throughout the
project’s progression.

Acknowledgements
This work was supported by the SDAIA-KAUST Center
of Excellence in Data Science and Artificial Intelligence

9

GPTSwarm: Language Agents as Optimizable Graphs

(SDAIA-KAUST AI). It was further supported by the Eu-
ropean Research Council (ERC, Advanced Grant Number
742870) and the Swiss National Science Foundation (SNF,
Grant Number 200021 192356).

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47:235–256, 2002.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Gi-
aninazzi, L., Gajda, J., Lehmann, T., Podstawski, M.,
Niewiadomski, H., Nyczyk, P., et al. Graph of thoughts:
Solving elaborate problems with large language models.
arXiv preprint arXiv:2308.09687, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chase, H. LangChain. https://github.com/
hwchase17/langchain, 2022.

Chen, G., Dong, S., Shu, Y., Zhang, G., Sesay, J., Karls-
son, B. F., Fu, J., and Shi, Y. Autoagents: A frame-
work for automatic agent generation. arXiv preprint
arXiv:2309.17288, 2023a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, W., Su, Y., Zuo, J., Yang, C., Yuan, C., Qian, C., Chan,
C.-M., Qin, Y., Lu, Y., Xie, R., et al. Agentverse: Facili-
tating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848,
2023b.

Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T.,
Song, M., Xing, E. P., and Hu, Z. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. arXiv
preprint arXiv:2205.12548, 2022.

Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., and Mor-
datch, I. Improving factuality and reasoning in lan-
guage models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. The Journal of Machine Learning
Research, 20(1):1997–2017, 2019.

Fernando, C., Banarse, D., Michalewski, H., Osindero,
S., and Rocktäschel, T. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Gravitas, S. Auto-gpt. GitHub repository, 2023.

Hendrycks, D., Burns, C., Basart, S., Critch, A., Li, J., Song,
D., and Steinhardt, J. Aligning ai with shared human
values. Proceedings of the International Conference on
Learning Representations (ICLR), 2021a.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021b.

Hong, S., Zheng, X., Chen, J., Cheng, Y., Zhang, C., Wang,
Z., Yau, S. K. S., Lin, Z., Zhou, L., Ran, C., et al. Metagpt:
Meta programming for multi-agent collaborative frame-
work. arXiv preprint arXiv:2308.00352, 2023.

Irie, K., Schlag, I., Csordás, R., and Schmidhuber, J. A mod-
ern self-referential weight matrix that learns to modify
itself. In International Conference on Machine Learning,
pp. 9660–9677. PMLR, 2022.

Ivakhnenko, A., Lapa, V., and ENGINEERING., P. U. L.
I. S. O. E. Cybernetic Predicting Devices. JPRS 37,
803. Joint Publications Research Service [available from
the Clearinghouse for Federal Scientific and Technical
Information], 1965. URL https://books.google.
com.sa/books?id=l38DHQAACAAJ.

Ivakhnenko, A. G. The group method of data handling, a
rival of the method of stochastic approximation. Soviet
Automatic Control, 13(3):43–55, 1968.

Kennedy, J. Swarm intelligence. In Handbook of nature-
inspired and innovative computing: integrating classi-
cal models with emerging technologies, pp. 187–219.
Springer, 2006.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., San-
thanam, K., Vardhamanan, S., Haq, S., Sharma, A., Joshi,
T. T., Moazam, H., et al. Dspy: Compiling declarative
language model calls into self-improving pipelines. arXiv
preprint arXiv:2310.03714, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kirsch, L. and Schmidhuber, J. Meta learning backpropaga-
tion and improving it. Advances in Neural Information
Processing Systems, 34:14122–14134, 2021.

10

https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain
https://books.google.com.sa/books?id=l38DHQAACAAJ
https://books.google.com.sa/books?id=l38DHQAACAAJ

GPTSwarm: Language Agents as Optimizable Graphs

Kirsch, L. and Schmidhuber, J. Eliminating meta optimiza-
tion through self-referential meta learning. arXiv preprint
arXiv:2212.14392 and First Conference on Automated
Machine Learning (Workshop), 2022.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. arXiv preprint arXiv:2212.04458, 2022.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

langchain ai. LangGraph. https://github.com/
langchain-ai/langgraph, 2024.

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and
Ghanem, B. Camel: Communicative agents for” mind”
exploration of large scale language model society. arXiv
preprint arXiv:2303.17760, 2023.

Liu, J. LlamaIndex, 11 2022. URL https://github.
com/jerryjliu/llama_index.

Liu, Z., Zhang, Y., Li, P., Liu, Y., and Yang, D. Dy-
namic llm-agent network: An llm-agent collaboration
framework with agent team optimization. arXiv preprint
arXiv:2310.02170, 2023.

Mialon, G., Fourrier, C., Swift, C., Wolf, T., LeCun, Y., and
Scialom, T. Gaia: a benchmark for general ai assistants.
arXiv preprint arXiv:2311.12983, 2023.

Minsky, M. Society of mind. Simon and Schuster, 1988.

Nakajima, Y. Babyagi. Python. https://github.
com/yoheinakajima/babyagi, 2023.

Nepusz, T. and Vicsek, T. Hierarchical self-organization
of non-cooperating individuals. Plos one, 8(12):e81449,
2013.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and
Technology, pp. 1–22, 2023.

Pryzant, R., Iter, D., Li, J., Lee, Y. T., Zhu, C., and Zeng, M.
Automatic prompt optimization with” gradient descent”
and beam search. arXiv preprint arXiv:2305.03495, 2023.

Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J.,
Liu, Z., and Sun, M. Communicative agents for software
development. arXiv preprint arXiv:2307.07924, 2023.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Schmidhuber, J. A ‘self-referential’weight matrix. In
ICANN’93: Proceedings of the International Conference
on Artificial Neural Networks Amsterdam, The Nether-
lands 13–16 September 1993 3, pp. 446–450. Springer,
1993.

Schmidhuber, J. Deep learning in neural networks: An
overview. Neural networks, 61:85–117, 2015.

Sel, B., Al-Tawaha, A., Khattar, V., Wang, L., Jia, R.,
and Jin, M. Algorithm of thoughts: Enhancing explo-
ration of ideas in large language models. arXiv preprint
arXiv:2308.10379, 2023.

Shinn, N., Cassano, F., Labash, B., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: Language
agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 14, 2023.

Torantulino et al. Auto-gpt. https://github.com/
Significant-Gravitas/Auto-GPT, 2023.

Vowels, M. J., Camgoz, N. C., and Bowden, R. D’ya like
dags? a survey on structure learning and causal discovery.
ACM Computing Surveys, 55(4):1–36, 2022.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J.,
Chen, Z., Tang, J., Chen, X., Lin, Y., et al. A survey on
large language model based autonomous agents. arXiv
preprint arXiv:2308.11432, 2023.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E., Li,
B., Jiang, L., Zhang, X., and Wang, C. Autogen: Enabling
next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023.

XAgent Team. Xagent: An autonomous agent for complex
task solving, 2023.

11

https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT

GPTSwarm: Language Agents as Optimizable Graphs

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B.,
Zhang, M., Wang, J., Jin, S., Zhou, E., et al. The rise and
potential of large language model based agents: A survey.
arXiv preprint arXiv:2309.07864, 2023.

Xie, T., Zhou, F., Cheng, Z., Shi, P., Weng, L., Liu, Y., Hua,
T. J., Zhao, J., Liu, Q., Liu, C., et al. Openagents: An
open platform for language agents in the wild. arXiv
preprint arXiv:2310.10634, 2023.

Yan, L. C., Yoshua, B., and Geoffrey, H. Deep learning.
nature, 521(7553):436–444, 2015.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. arXiv
preprint arXiv:2309.03409, 2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629,
2022.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. R. Tree of thoughts: Deliberate
problem solving with large language models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=5Xc1ecxO1h.

Yin, Z., Sun, Q., Chang, C., Guo, Q., Dai, J., Huang, X.-
J., and Qiu, X. Exchange-of-thought: Enhancing large
language model capabilities through cross-model com-
munication. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp.
15135–15153, 2023.

Zelikman, E., Lorch, E., Mackey, L., and Kalai, A. T. Self-
taught optimizer (stop): Recursively self-improving code
generation. arXiv preprint arXiv:2310.02304, 2023.

Zeng, A., Attarian, M., Ichter, B., Choromanski, K., Wong,
A., Welker, S., Tombari, F., Purohit, A., Ryoo, M., Sind-
hwani, V., et al. Socratic models: Composing zero-shot
multimodal reasoning with language. arXiv preprint
arXiv:2204.00598, 2022.

Zhuge, M., Liu, H., Faccio, F., Ashley, D. R., Csordás,
R., Gopalakrishnan, A., Hamdi, A., Hammoud, H. A.
A. K., Herrmann, V., Irie, K., et al. Mindstorms in nat-
ural language-based societies of mind. arXiv preprint
arXiv:2305.17066, 2023.

12

https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h

GPTSwarm: Language Agents as Optimizable Graphs

A. The GPTSwarm Framework
A.1. The Vision

Many recent language agents are described as compositions of components of different functionalities (Wang et al., 2023).
A popular tweet states: “agent = LLM + memory + planning skills + tool use.”4 Such additive formulations highlight
individual components, but fail to address the essential aspect of component integration. GPTswarm’s computational graph
formulation, however, precisely focuses on integration through edge optimization, to learn improved recommendations of
agent orchestration and precise agent routing. This will become increasingly relevant as swarm size increases to millions or
billions of agents.

A.2. Class Diagram

The GPTSwarm framework is developed using Python and PyTorch. Its class diagram is illustrated in Figure 7.

On the graph level, Node, Graph, and CompositeGraph are directly implemented as classes. Graph edges are implicitly
stored as an adjacency list within each Node. Functionally, the framework distinguishes between Agents and Operations
through various classes, such as DirectAnswer and WebSearch for operations, and IO and TOT for agents. To encapsulate
the abstraction of an external LLM, we introduce an interface named after it. The primary implementation of this interface is
a lightweight wrapper around the OpenAI API. To facilitate dataset integration for optimization and evaluation, we provide
implementations for two interfaces: Dataset and PromptSet. The Dataset interface is designed to load benchmark datasets
like GAIA and MMLU, while the PromptSet customizes node behavior for a specific Dataset. The Evaluator class manages
the optimization processes for both edges and nodes.

The framework is highly customizable, allowing users to add more LLM backends, Dataset and PromptSet combinations,
Agents, and Nodes as needed. Additionally, the framework makes extensive use of asynchronous computations for task
parallelism, leveraging Python’s async-await syntax.

4https://twitter.com/lilianweng/status/1673535600690102273

13

https://twitter.com/lilianweng/status/1673535600690102273

GPTSwarm: Language Agents as Optimizable Graphs

Figure 7. The class diagram of the GPTSwarm framework.

14

GPTSwarm: Language Agents as Optimizable Graphs

B. Swarm examples
To facilitate understanding of the concepts presented in this study, we are showing a simple example of a swarm consisting
of 3 agents: Tree-of-Thought, Input-Output, and Decision Agents in Figure 8.

Figure 8. A simple example of a swarm consisting of one Tree-of-Thought, one Input-Output, and the Decision agent.

15

GPTSwarm: Language Agents as Optimizable Graphs

C. More Visualizations

Swarm: MMLU_3COT

Agent: HumanEval_ReAct

Swarm: CrossWords_COT_TOT_Reflexion_1

Swarm: CrossWords_COT_TOT_Reflexion_3
Swarm: GAIA_3FileCOT Swarm: GAIA_3WebCOT

Swarm: GAIA_3TOT Swarm: GAIA_5TOT

Agent: GAIA_IO

Agent: GAIA_WebCOT

Agent: GAIA_FileCOT

Agent: GAIA_TOT

Swarm: GAIA_7TOT

Swarm: MMLU_5T5A

Swarm: CrossWords_COT_TOT_Reflexion_2

Figure 9. Different agents or swarms implemented by GPTSwarm.

16

GPTSwarm: Language Agents as Optimizable Graphs

D. Additional Experiments
D.1. Comparing Our Method with Multiagent Debate and DYLAN on MMLU

Our MMLU experimental setup can be viewed as a multi-agent optimization problem with an equal number of truthful
and adversarial agents in the system. We compare our approach to two baselines from the literature that naturally fit this
problem: Multiagent Debate (Du et al., 2023) and DyLAN (Liu et al., 2023).

For the Multiagent Debate baseline, we directly use the original setting with three truthful agents and three adversarial agents.
For DyLAN, we adopt the original implementation (Liu et al., 2023), adding system prompts ”You are a knowledgeable
expert in question answering.” for truthful agents, and ”Pretend you are a non-expert in question answering. You can provide
wrong answers to the questions.” for adversarial agents. DyLAN performs optimization by scoring each agent and pruning a
certain number of agents with the lowest scores. Since DyLAN has not fixed the number of pruned agents, we report the
average performance in multiple settings, from 1 to 5 agents pruned.

The results in Table 3 indicate that the Multiagent Debate is less effective in this setting. DyLAN achieves a 0.0065
improvement in accuracy compared to our method. We suspect that this improvement is due to DyLAN’s more complex
debate scheme and prompts. This design also contributes to DyLAN’s larger computational cost.

Table 3. Results of the Multiagent Debate, DyLAN, and our method on MMLU. We report the performance and computational cost
of these methods applied to an LLM-based multiagent system with adversaries. Computational cost for optimization and inference is
presented separately except for the Multiagent Debate, where there is no explicit separation. DyLAN is reported as an average over five
different choices for the number of pruned agents.

Methods Cost (USD) # Prompt Tokens # Completion Tokens Time (h) Accuracy
Multiagent Debate 32.8 1,689,960 530,005 8.36 0.5751
DyLAN optimization 105.93 5,671,276 1,640,566 25.4 -
DyLAN inference 14.99 628,009 290,472 4.75 0.8366
GPTSwarm optimization 5.32 361,812 56,770 0.9 -
GPTSwarm inference 1.82 113,233 22,923 0.31 0.8301

D.2. Applying Node Optimization after Edge Optimization

As described in Section 3.2, we first perform ten REINFORCE steps to optimize the edges of a three-agent swarm, resulting
in a 0.575(±0.0275) accuracy. Based on this optimized edge distribution we further apply our node optimization algorithm
(Algorithm 3). For each node n, pn corresponds to the initial prompt, hn consists of the input-output pairs obtained by
executing the graphs on the 20 Mini Crosswords problems, and d is ignored. For each node n, the improver I either
chooses a demonstration example from hn to include as a part of n’s prompt or keeps the prompt unchanged. This choice is
implemented using the upper confidence bound algorithm UCB1 (Auer et al., 2002), over a hundred iterations. Preference is
given to pairs (or the choice of no demonstration example) that help the node accurately fill in more words on its previous
input. Applying this node optimization after edge optimization improves accuracy to 0.668(±0.0060).

E. Experimental Details
In our experiments involving multiple agents, we incorporate an additional virtual agent, represented by a single node, to
serve as a final decision aggregator. This node is designated as the output node for the composite graph, and its specific
implementation varies between different experiments. Common implementations for this node include employing a majority
vote and a self-consistency strategy for decision-making. Unless explicitly stated, communication between agents within a
composite graph does not include this virtual agent. Additionally, in all our experiments, the potential edge set of a composite
graph is defined as all possible node pairs, provided that the nodes in each pair originate from different agents. We exclude
any edges that would connect the output node of a composite graph to other nodes. Moreover, we employ Adam (Kingma &
Ba, 2014) optimizer with parameters β1 = 0.9, β2 = 0.999 and a variable learning rate in place of the vanilla stochastic
gradient accent method described in Alg. 2. Finally, we use the version gpt-4-1106-preview and gpt-3.5-turbo-1106 for
LLMs. For the vision-language model utilized in the GAIA experiments, we employed the gpt-4-1106-vision-preview
version of GPT-4-Turbo.

17

GPTSwarm: Language Agents as Optimizable Graphs

E.1. MMLU

We provide adversarial robustness experiments in Table 4. The convergence of the train utility to the baseline for the 3T3A
experiment is shown in Figure 10. The first 10% of the validation dataset comprises 153 questions.

Table 4. Stats for the adversarial experiments. #Nodes means the number of nodes in the swarm excluding the final decision node.
#Potential edges is the total number of edges that are optimized and potentially realized. The optimization time is measured as the wall
clock time. #LLM inferences is the total number of LLM queries made during the optimization cycle when graph pruning is turned off.

Swarm configuration #Nodes #Potential edges Optimization time, mins
1 Trustful Agent + 1 Adversarial Agent 2 4 9
3 Trustful Agents + 3 Adversarial Agents 6 36 23
5 Trustful Agents + 5 Adversarial Agents 10 100 58
7 Trustful Agents + 7 Adversarial Agents 14 196 95

0 25 50 75 100 125 150 175 200
Iteration

0.50

0.55

0.60

0.65

0.70

0.75

Tr
ai

n
sc

or
e

Mean score
1-sigma range
Direct answer baseline (dev split)

Figure 10. The training score during the optimization of the adversarial swarm (3T3A) on MMLU. We apply smoothing with an
unbiased exponential moving average and the smoothness factor of 0.97.

E.1.1. HYPER-PARAMETERS & PROMPTS

We use the Adam optimizer with a learning rate of 0.1 to update the logit parameters associated with each potential edge.
The prompts that have been used for the adversarial robustness experiments are collected in Table 5.

Table 5. Prompts for the Adversarial experiments on MMLU.
Prompt purpose Prompt
System prompt You are a knowledgeable expert in question answering. I will ask you a question. I will also give

you 4 answers enumerated as A, B, C and D. Only one answer out of the offered 4 is correct.
You must choose the correct answer to the question. Your response must be one of the 4 letters:
A, B, C or D, corresponding to the correct answer. Only one letter (A, B, C or D) is allowed in
your answer.

Direct answer template {question}
Adversarial answer tem-
plate

Answer a lie to the following question: {question}.

Question template {open-ended question}. Option A: {option A}, Option B: {option B}, Option C: {option C},
Option D: {option D}.

18

GPTSwarm: Language Agents as Optimizable Graphs

E.1.2. ADVERSARIAL SWARM OPTIMIZATION CASE STUDY

An example of a swarm with 2 truthful and 2 adversarial examples is shown in Figure 11. Figure 11a shows all potential
edges before optimization. Figure 11b shows only the edges that were connected after optimization was complete. Note that
the disconnected agents and edges are pruned.

(a) An non-optimized swarm with 2 truthful agents
and 2 adversarial agents. Dotted arrows depict
potential edges.

(b) An optimized swarm with realized edges.

Figure 11. A 2T2A swarm before (a) and after (b) optimization

E.1.3. SWARM ROLES

The list of roles randomly assigned to the IO agents is displayed in Table 6.

Table 6. Roles that can be assigned to IO agents.

Botanist Data Scientist Social Worker Journalist Pilot
Anthropologist Fitness Coach Politician Artist Marine Biologist

Ethicist Entrepreneur Linguist Archaeologist Nurse
Graphic Designer Philanthropist Meteorologist Sommelier Cybersecurity Expert

19

GPTSwarm: Language Agents as Optimizable Graphs

E.2. Mini Crosswords

E.2.1. AGENTS SETTING

In our Mini Crosswords experiments, each node returns one or two solutions—either updated or unchanged—for each
received solution. The solutions produced by a node are conditionally independent of each other, given the input solutions
of the node. The output node of a composite graph forwards all received solutions without alteration. To ensure integration
within the system, we mandate the existence of edges from any agent’s output node directly to the composite graph’s output
node.

Our TOT agent uses a tree-search strategy across a perfect binary tree with a depth of eight. Instead of constructing a graph
of 29 − 1 nodes to represent this tree, the search is carried out through a chain of eight branching nodes. Each branching
node is designed to generate two solutions from every input solution that it processes, effectively embodying the TOT
strategy.

E.2.2. HYPER-PARAMETERS & PROMPTS

The candidate word generation prompt and the pruning prompt are adapted from the original TOT work (Yao et al., 2023)
and detailed in Table 7. A clue is defined as a partial filling of the crossword, accompanied by its intended word description
and specific position on the board.

E.3. HumanEval

E.3.1. THE NODE OPTIMIZATION METHOD

For node optimization, we update each node after every four new problem executions. When addressing a new problem q
with graph G, executing G(q) produces a program, denoted by s, whose effectiveness is assessed against test examples
associated with q. The input-output pairs of the nodes generated during the evaluation of G(q) are classified as positive if
s passes the tests and as negative otherwise. We limit each node to include a maximum of four demonstration examples.
Let n be a node in the graph associated with a computational routine fp

n, which returns Python programs, parameterized
by demonstration examples p. During an optimization step of n, that is, an application of I as described in Section 2.4,
we assess whether to retain existing demonstration examples (p1n) or to augment them with positive examples from the
four most recent problems, subsequently randomly selecting up to four unique examples from this pool (denoted as p2n).
More specifically, let Z be the set of the last ten inputs of node n received when solving the first-seen problems. We select
pin to update the demonstration examples of n, where i = argmaxi∈{1,2}

∑
z∈Z 1z(f

pi
n

n (z, qz)), 1z determines whether a
program passes the unit tests stated in z, and qz is the original graph input associated with z.

The utility measure for Mini Crosswords experiments is defined as the best state word accuracy, as detailed in Section
3.2. To reduce the variance in gradient estimation with the REINFORCE algorithm, we adjust the utility by subtracting a
constant of 0.4. For example, a perfectly completed solution results in a utility of 0.6, while an empty solution yields a
utility of −0.4.

E.3.2. HYPER-PARAMETERS & PROMPTS

Table 8 shows the prompts used in our experiments following the principle of ReAct (Yao et al., 2022).

E.4. GAIA

E.4.1. AGENT SETTING

We design different agents and swarms. Representative agents and swarms are visualized in Figure 9.

E.4.2. HYPER-PARAMETERS & PROMPTS

We use GPT-4-Turbo for the experiments and design different node operations to solve the GAIA tasks. Table 9 and Table 10
show the prompts used in our experiments.

20

GPTSwarm: Language Agents as Optimizable Graphs

Table 7. Prompts for the Mini Crosswords Experiments.
Prompt purpose Prompt
Candidate words
generation prompt

Let’s play a 5 x 5 mini crossword, where each word should have exactly 5 letters.
{current board status}
Unfilled:
{Unfilled clues}
Filled:
{filled clues}
Changed:
{Changed clues}
Suggestions:
{suggestions generated by previous Reflection nodes}
Given the current status, list all possible answers for unfilled or changed words, and your confidence levels (cer-
tain/high/medium/low), using the format ”h1. apple (medium)”. Use ”certain” cautiously and only when you are
100% sure this is the correct word. You can list more then one possible answer for each word.

Pruning prompt Evaluate if there exists a five letter word of some meaning that fit some letter constraints (sure/maybe/impossible).
Incorrect; to injure: w o g
The letter constraint is: 5 letters, letter 1 is w, letter 3 is o, letter 5 is g.
Some possible words that mean ”Incorrect; to injure”:
wrong (w r o n g): 5 letters, letter 1 is w, letter 3 is o, letter 5 is g. fit!
sure
A person with an all-consuming enthusiasm, such as for computers or anime: u
The letter constraint is: 5 letters, letter 5 is u.
Some possible words that mean ”A person with an all-consuming enthusiasm, such as for computers or anime”:
geek (g e e k): 4 letters, not 5
otaku (o t a k u): 5 letters, letter 5 is u
sure
Dewy; roscid: r l
The letter constraint is: 5 letters, letter 1 is r, letter 5 is l.
Some possible words that mean ”Dewy; roscid”:
moist (m o i s t): 5 letters, letter 1 is m, not r
humid (h u m i d): 5 letters, letter 1 is h, not r
I cannot think of any words now. Only 2 letters are constrained, it is still likely
maybe
A woodland: l d e The letter constraint is: 5 letters, letter 2 is l, letter 4 is d, letter 5 is e.
Some possible words that mean ”A woodland”:
forest (f o r e s t): 6 letters, not 5 woods (w o o d s): 5 letters, letter 2 is o, not l
grove (g r o v e): 5 letters, letter 2 is r, not l I cannot think of any words now. 3 letters are constrained, and l d e
seems a common pattern
maybe
An inn: d w f
The letter constraint is: 5 letters, letter 2 is d, letter 4 is w, letter 5 is f.
Some possible words that mean ”An inn”: hotel (h o t e l): 5 letters, letter 2 is o, not d
lodge (l o d g e): 5 letters, letter 2 is o, not d
I cannot think of any words now. 3 letters are constrained, and it is extremely unlikely to have a word with pattern d

w f to mean ”An inn”
impossible
Chance; a parasitic worm; a fish: w r a k
The letter constraint is: 5 letters, letter 1 is w, letter 2 is r, letter 3 is a, letter 4 is k.
Some possible words that mean ”Chance; a parasitic worm; a fish”:
fluke (f l u k e): 5 letters, letter 1 is f, not w
I cannot think of any words now. 4 letters are constrained, and it is extremely unlikely to have a word with pattern w r
a k to mean ”Chance; a parasitic worm; a fish”
impossible
{clue}

Suggestion Prompt You are playing a 5 x 5 mini crossword, where each word should have exactly 5 letters. Given the current status:
{current board status }
The target words are classified as Impossible Words, Correct Words, and Incorrect Words.

Impossible Words:
{impossible clues}
Correct Words:
{correct clues }
Incorrect Words:
{incorrect clues }
Respond at most five sentences, one sentence per line. Do not include the phrase ”next time” in your response.

21

GPTSwarm: Language Agents as Optimizable Graphs

Table 8. Prompts for the Node Optimization experiments on HumanEval.
Prompt purpose Prompt
System prompt You are an AI that only responds with only Python code.

CodeWriting You will be given a function signature and its docstring by the user. Write your full implemen-
tation (restate the function signature). Use a Python code block to write your response. For
example: “‘python print(‘Hello world!’) ”’
{Demonstrations}
{problem statement}

CodeWriting (ReAct) You will be given a function signature and its docstring by the user. Write your full implemen-
tation (restate the function signature). Use a Python code block to write your response. For
example: “‘python print(‘Hello world!’) ”’
{Demonstrations}
Here is an unsuccessful attempt to solve the following question:
Question:
{problem statement}
Attempted Solution:
{previously generated program}
Feedback:
{internal unit test results}
Rewrite the code based on the feedback and the following question:
{problem statement}

F. Resource Requirements
Table 11 presents the cost, token consumption, and time requirements of representative experiments.

G. Limitation and Future Work
In this paper, we focus on optimizing communication between agents, laying the groundwork for more extensive graph
optimization in the future. For example, while current methods optimize edge connections between agents, the internal node
topology of each agent is also crucial. Dynamically changing the topology may enhance task planning. Additionally, scaling
up the agent framework is essential. When the number of agents exceeds 100, maintaining communication efficiency and
system robustness becomes a significant challenge.

22

GPTSwarm: Language Agents as Optimizable Graphs

Table 9. Prompts for the Task-Solving experiments on GAIA (1).
Prompt purpose Prompt
System prompt You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your

answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR
FINAL ANSWER should be a number OR as few words as possible OR a comma separated
list of numbers and/or strings. If you are asked for a number, don’t use comma to write your
number neither use units such as $ or percent sign unless specified otherwise. If you are asked
for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the digits in plain
text unless specified otherwise. If you are asked for a comma separated list, apply the above
rules depending of whether the element to be put in the list is a number or a string.

DirectAnswer {question}
GenerateQuery # Information Gathering for Question Resolution

Evaluate if additional information is needed to answer the question.
If a web search or file analysis is necessary, outline specific clues or details to be searched for.
Target Question:
question
Clues for Investigation:
Identify critical clues and concepts within the question that are essential for finding the answer.

WebSearch # Web Search Task
Original Question:
—
{question}
—
Targeted Search Objective:
—
query
—
Simplified Search Instructions:
Generate three specific search queries directly related to the original question. Each query should
focus on key terms from the question. Format the output as a comma-separated list. For example,
if the question is ’Who will be the next US president?’, your queries could be: ’US presidential
candidates, current US president, next US president’. Remember to format the queries as ’query1,
query2, query3’.

DistillWebSearch ## Required Information for Summary:
—
{query}
—
Analyzed Search Results:
—
{results}
—
Instructions for Summarization:
1. Review the provided search results and identify the most relevant information related to the
question and query.
2. Extract and highlight the key findings, facts, or data points from these results.
3. Organize the summarized information in a coherent and logical manner.
4. Ensure the summary is concise and directly addresses the query, avoiding extraneous details.
5. If the information from web search is useless, directly answer: N̈o useful information from
WebSearch.̈

FileAnalyse # File Analysis Task
Information Extraction Objective:
—
{query}
—
File Under Analysis
—
{file}
—
Instructions:
1. Identify the key sections in the file relevant to the query.
2. Extract and summarize the necessary information from these sections.
3. Ensure the response is focused and directly addresses the query.
Example: ’Identify the main theme in the text.’”

23

GPTSwarm: Language Agents as Optimizable Graphs

Table 10. Prompts for the Task-Solving experiments on GAIA (2).
Prompt purpose Prompt
CombinedAnswer Reference information for FileAnalysis:

—
{file analysis}
—
Reference information for Websearch:
— {web search} —
Provide a specific answer. For questions with known answers, ensure to provide accurate and
factual responses. Avoid vague responses or statements like ’unable to...’ that don’t contribute
to a definitive answer. For example: if a question asks ’who will be the president of America’,
and the answer is currently unknown, you could suggest possibilities like ’Donald Trump’, or
’Biden’. However, if the answer is known, provide the correct information.”

FinalDecision
(Self-Consistency)

Self-Consistency Evaluation Task
Question for Review:
—
{question}
—
Reviewable Answers:
—
{formatted answers}
—
Instructions for Selection:
1. Read each answer and assess how it addresses the question.
2. Compare the answers for their adherence to the given question’s criteria and logical coherence.
3. Identify the answer that best aligns with the question’s requirements and is the most logically
consistent.
4. Ignore the candidate answers if they do not give a direct answer, for example, using ’unable to
...’, ’as an AI ...’.
5. Copy the most suitable answer as it is, without modification, to maintain its original form.
6. Adhere to the constraints: {constraint}.
Note: If no answer fully meets the criteria, choose and copy the one that is closest to the
requirements.

FinalDecision
(Choose “Best”)

Question:
—
{question}
—
Candidate Answers for Evaluation:
—
{formatted answers}
—
Evaluation Instructions:
1. Examine the question closely to understand its requirements.
2. Read each candidate answer thoroughly and assess its relevance and accuracy about the
question.
3. Choose the answer that most accurately and completely addresses the question.
4. Ignore the candidate answers if they do not give a direct answer, for example, using ’unable to
...’, ’as an AI ...’.
”5. Copy the chosen answer exactly as it is presented, maintaining its original format.
6. Adhere to the constraints:
{constraint}.
Note: If none of the answers fully meet the question’s criteria, select the one closest to fulfilling
them.

24

GPTSwarm: Language Agents as Optimizable Graphs

Table 11. Cost, token consumption, and time requirements. The following experiments are performed with gpt-3.5-turbo-1106 if
marked with GPT-3.5T, or gpt-4-1106-preview otherwise.

Experiment Cost (USD) # Prompt Tokens # Completion Tokens Time (h)
TOT - Mini Crosswords 65.61 1,515,826 2,013,511 8.5
GPTSwarm - Mini Crosswords Edge-Opt (GPT-3.5T) 77.42 50,394,028 13,511,265 2.82
GPTSwarm - Mini Crosswords Edge-Opt-Eval (GPT-3.5T) 9.89 6,448,660 1,718,613 0.73
GPTSwarm - Mini Crosswords Edge-Opt-Eval 377.54 13,137,160 8,205,522 5.56
GPTSwarm - Mini Crosswords Node-Opt (GPT-3.5T) 11.22 7,468,797 1,876,246 0.83
GPTSwarm - Mini Crosswords Node-Opt-Eval (GPT-3.5T) 28.18 22,791,158 2,693,575 0.91
GPTSwarm - HumanEval w/o Opt 1.61 59,646 33,951 0.68
GPTSwarm - HumanEval w/ Opt 28.46 2,298,140 182,594 1.49
GPTSwarm - GAIA (Level 1) - Agent(TOT) 2.21 123,801 32,599 1.05
LLM-Debate - MMLU (3A3T) 32.8 1,689,960 530,005 8.36
DyLAN - MMLU optimization (3A3T) 105.93 5,671,276 1,640,566 25.4
DyLAN - MMLU inference (3A3T) 14.99 628,009 290,472 4.75
GPTSwarm - MMLU optimization (3A3T) 5.32 361,812 56,770 0.9
GPTSwarm - MMLU inference (3A3T) 1.82 113,233 22,923 0.31

25

