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Abstract
Designing privacy-preserving DL solutions is a
major challenge within the AI community. Ho-
momorphic Encryption (HE) has emerged as one
of the most promising approaches in this realm,
enabling the decoupling of knowledge between
a model owner and a data owner. Despite exten-
sive research and application of this technology,
primarily in CNNs, applying HE on transformer
models has been challenging because of the dif-
ficulties in converting these models into a poly-
nomial form. We break new ground by introduc-
ing the first polynomial transformer, providing
the first demonstration of secure inference over
HE with full transformers. This includes a trans-
former architecture tailored for HE, alongside a
novel method for converting operators to their
polynomial equivalent. This innovation enables
us to perform secure inference on LMs and ViTs
with several datasts and tasks. Our techniques
yield results comparable to traditional models,
bridging the performance gap with transformers
of similar scale and underscoring the viability of
HE for state-of-the-art applications. Finally, we
assess the stability of our models and conduct a
series of ablations to quantify the contribution
of each model component. Our code is publicly
available.

https://github.com/IBM/PolyTransformer

1. Introduction
Privacy-Preserving Machine Learning (PPML) has become
a prominent field, ensuring that valuable insights can be
inferred from data without compromising individual privacy.
HE stands out within this domain, offering the capability
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Figure 1: Schematic Overview of Secure Inference Using
HE: The diagram depicts the sequence of steps where the
data owner sends an encrypted sensitive data sample, to the
model owner or an untrusted environment. Within this envi-
ronment, an HE framework (SDK) employs the polynomial
transformer to process encrypted data, ensuring no access to
the sensitive information, doing so in a non-interactive way.
After computation, the encrypted result, is returned to the
data owner, who decrypts it to retrieve the final classification
outcomes. As such, the privacy of the underlying data is
maintained. As such, the privacy of the underlying data is
maintained throughout the entire process.

to compute on encrypted data in a non-interactive manner,
thereby safeguarding sensitive information during local anal-
ysis. However, modern HE schemes such as CKKS (Cheon
et al., 2017) support computation over encrypted input only
when the computations are represented by polynomial func-
tions. This limitation poses a unique challenge for DL
applications. For example, GELU and Softmax are non-
polynomial and, therefore, must be adapted into an equiva-
lent polynomial form. Understanding the theoretical limi-
tation is important when considering applications of HE in
real-world scenarios.

Fig. 1 depict a typical HE scenario: A model owner provides
a trained model. A data owner encrypts its data using HE
and sends it to the model owner for inference. The model
owner processes the encrypted data, where the input and
output remain confidential and cannot be learned by the
model owner. The encrypted result is then returned to the
data owner for decryption and interpretation.

As of now, the adaptation process to align NNs with the
HE requirements has been primarily focused on polyno-
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mial CNNs such as AlexNet (Krizhevsky et al., 2012),
ResNet (He et al., 2016), and ConvNext (Liu et al., 2022).
This focus is evident in various previous works, e.g. (Baruch
et al., 2023; Aharoni et al., 2023; Lee et al., 2022b; Baruch
et al., 2022; Dathathri et al., 2019; Gilad Bachrach et al.,
2016). These models commonly use ReLU and GELU,
which are relatively straightforward for polynomial approx-
imation. However, transformers (Vaswani et al., 2017)
remain a notable exception due to their inherent non-
polynomial operations such as Softmax – which, unlike
ReLU, requires division by an exponent and presents a
more challenging case for polynomial approximation. An-
other limitation is their large structural size, for example,
one study (Zhou et al., 2019) showed that polynomial NNs
tend to be less stable with increasing capacity.

Our contributions.

1. We introduce a novel approach to adapt transformers to
be compatible with modern HE schemes for secure in-
ference. Our method involves a series of simplifications
and approximations, that allows us to introduce the first
practical polynomial transformer models that retain
competitive performance across both language modeling
and image classification.

2. We demonstrate the feasibility of employing transformers
under HE while bridging the performance gap with their
non-encrypted counterparts of similar scale.

3. We offer stability analyses and ablation studies for a
comprehensive understanding of the trade-offs and po-
tential of polynomial transformers in privacy-preserving
settings, paving the way for future innovations in PPML.

4. We provide techniques for polynomial and HE-friendly
alternatives to the layer normalization and self-attention
layers. Such techniques can enhance existing crypto-
graphic protocols including improving client-aided so-
lutions, or enable the development of a wider variety of
polynomial models, extending beyond transformers.

2. Background
Homomorphic Encryption (HE) is a cryptographic tech-
nique that allows computations to be performed on en-
crypted data without decryption (Gentry, 2009) The HE
system has an encryption operation Enc : R1 → R2 that
encrypts plaintext input from the ring R1(+, ∗) into cipher-
texts in the ring R2(⊕,⊙) and an associated decryption
operation Dec : R2 → R1. An HE scheme is correct if for
every valid input x, y ∈ R1:

Dec(Enc(x)) = x (1)
Dec(Enc(x)⊕ Enc(y)) = x+ y (2)
Dec(Enc(x)⊙ Enc(y)) = x ∗ y (3)

It is approximately correct if for some small ϵ > 0 deter-
mined by the key, |x − Dec(Enc(x))| ≤ ϵ, and similarly
modifying Equations 2 and 3.

Polynomial DL Models Producing polynomial networks
with high accuracy is challenging, and several theoretical
intuitions and proofs were proposed. For example, Zhou
et al. (2019) proved that under some conditions polyno-
mial FFNs are unstable, concluding that the likelihood of
instability in a polynomial network increases with its com-
plexity, specifically as depth and width grow. Goyal et al.
(2020) suggested that the problem with poly-activations
is that the gradients and outputs are unbounded and can
be arbitrarily large, unlike other activations such as ReLU
and GELU. They also pointed out that in deeper networks
f(d,l) with l layers and d-degree polynomial activations, the
gradients explode exponentially in the degree of the entire
network, since for input x > 1, limx→∞ f(n.l)(x)/x = ∞.
Additionally, Chrysos et al. (2020); Goyal et al. (2020); Got-
temukkula (2020) attempted to implement deep polynomial
networks but faced optimization instability. They resolved
the issue by incorporating non-polynomial components into
their models.

Recent works focus on converting Deep CNNs into poly-
nomials. The method in (Baruch et al., 2023) introduced a
technique to stabilize polynomial models by adding a loss
term that minimizes the input range to the non-polynomial
layers. Using this approach, they successfully produced low-
degree polynomial versions of ResNet-152 and ConvNeXt
on ImageNet. In addition, (Lee et al., 2021) approximated
ReLU using a composition of three polynomials to precisely
approximate ReLU, achieving high-degree polynomial mod-
els. To the best of our knowledge, these works represent
some of the deepest polynomial models to date. However,
none of these or any other works have tackled the problem
of polynomial transformers.

Polynomial Approximation Polynomial networks are
commonly obtained by approximating the non-polynomial
functions of pre-trained networks, e.g., (Lee et al., 2022d;
Takabi et al., 2019; Mohassel & Zhang, 2017; Hesamifard
et al., 2017; Lee et al., 2021), or by substituting ReLU dur-
ing or after a dedicated training process (Baruch et al.,
2022; 2023). The Remez algorithm (Remez, 1934; Pachón
& Trefethen, 2009; Egidi et al., 2020) is commonly used
for finding the optimal polynomial approximation of a func-
tion f(x) in a certain degree within a pre-defined range
[a, b], assuming a uniform distribution of x. Alternatively,
iterative methods such as the Newton–Raphson method
(Raphson, 1702) offer another polynomial approximation
approach. Specifically, (Panda, 2022) focused on approx-
imating 1√

x
in the interval [a, b], by dividing the interval

into sub-intervals and approximating over each via New-
ton–Raphson method, before aggregating the results with
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another polynomial. However, the input range to the non-
polynomial layers [a, b] can be extremely large, which re-
sults in poor and no practical approximations. This paper
employs polynomials for ReLU, as defined in (Lee et al.,
2021), for layer normalization (inverse square root) from
(Panda, 2022) and for GELU using polynomials derived
from the Remez algorithm.

Transformers in PPML The integration of transformers
into PPML solutions has become significantly prominent,
highlighting the relevance of both fields. In recent years, a
variety of secure interactive protocols have been introduced
to enable secure inference of transformer models (Chen
et al., 2022; Ding et al., 2023; Liu & Liu, 2023; Liang et al.,
2023; Gupta et al., 2023; Zheng et al., 2023; Zeng et al.,
2023; Hao et al., 2022). These methods leverage mecha-
nisms such as shared secrets to compute non-polynomial
operations like GELU, Softmax, and LayerNorm. How-
ever, such approaches increase communication overhead
and the potential for vulnerability to man-in-the-middle at-
tacks. Our method addresses these concerns by enabling
computation in untrusted environments, eliminating the
need for additional communication, and thus preserving a
non-interactive stance. By offering polynomial alternatives
for non-polynomial operations in transformers, our method
not only enhances existing protocols, but also eliminates
the need for client involvement in the computation process
of non-polynomial operations. One alternative approach
involves applying secure inference on text embeddings ex-
tracted from an unsecured transformer via a HE-based clas-
sification model (Lee et al., 2022c; 2023). However, this
method addresses a significantly narrower threat model.

3. Problem Settings
We begin by clearly defining the motivation and problem
settings before discussing our methodology. Our objective
is to develop a transformer model that uses only polyno-
mial operations and performs well on downstream tasks. By
utilizing these polynomial-based transformers, we aim to
enable secure inference within the HE framework. Note
that this paper does not cover secure training. One might
think that replacing non-polynomial operations in the net-
work with polynomial alternatives or approximated poly-
nomials, either before or after training, could simply solve
the problem. However, polynomial networks are unsta-
ble, and instability issues can arise during training or when
non-polynomial operations are replaced, especially in deep
networks (as analyzed from both theoretical and empiri-
cal perspectives in (Zhou et al., 2019; Goyal et al., 2020)).
Therefore, standard methods for creating polynomial DNNs
for secure inference involve several architectural modifi-
cations and unique training procedures, including training
of non-polynomial DNNs as an intermediate step (Baruch

et al., 2023; 2022; Ao & Boddeti, 2023). Furthermore, in
general, as higher-degree polynomials are used, the running
time for secure inference increases drastically. Hence, a
common challenge is to reduce both the polynomial degree
of each operation and the overall multiplication depth of the
model.

4. Method
Addressing the problem defined in Section 3, our method-
ology begins by identifying non-polynomial components
in the transformer model: (i) The Softmax function in the
attention is non-polynomial, involving exponentiation and
division; (ii) layer normalization (LayerNorm), which nor-
malizes features by dividing them by their standard devia-
tion, also contains the square root function, adding to the
non-polynomial complexity; and (iii) activation functions,
which are traditionally non-polynomial but have been sub-
stituted with polynomial alternatives in prior research (Lee
et al., 2021; Baruch et al., 2023; Lee et al., 2022a).

From earlier stages of our research, we found that directly
approximating the Softmax and LayerNorm by polynomi-
als within each transformer block is challenging due to: (a)
the inherent complexity of these functions, which involve
multiple non-polynomial operations—specifically, division
and exponentiation for Softmax, and division along with
square root for LayerNorm, and (b) the nature of these func-
tions as vector-based rather than scalar-based, unlike neural
activation functions, which were approximated by polyno-
mials previously. In light of these complexities, our work
seeks to develop HE-friendly alternatives to Softmax-based
attention (in Section 4.1) and LayerNorm (in Section 4.2)
that are easier to approximate by a polynomial, ideally em-
ploying operations that are polynomial in nature, as well as
those that can be precisely approximated by polynomials.
Our entire pipeline for polynomial adaptation is detailed in
Section 4.3.

4.1. HE-Friendly Attention

To circumvent the use of Softmax, we employ a pointwise
activation-based attention, denoted as Attnσ as an alterna-
tive. This Softmax-free mechanism can be formalized as:

Attnσ(Q,K, V ) = σ

(
QKT

√
dk

)
V (4)

where σ acts as an element-wise activation function, dif-
fering from the vector-wise Softmax function used in stan-
dard attention mechanisms. This modification simplifies the
transformation into a polynomial form, effectively reducing
the problem from polynomial attention to the well-studied
problem of handling polynomial activation functions. This
mechanism enhances model accuracy (Ma et al., 2022) and
reduces latency (Hua et al., 2022; So et al., 2021), which are
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Figure 2: Method: The NLP pipeline is depicted at the top, and the vision pipeline shown at the button. Yellow marks
polynomial components, while red indicates components that cannot be efficiently adapted to polynomial form, and therefore
replaced by components that can be replaced by a polynomial via range-minimization tuning (blue). Green components can
be easily replaced by polynomials, given their current weights. Only the two central columns include training, while the rest
include component replacement. Skip-connections are omitted for clarity.

benefits outside the scope of HE. However, those implemen-
tations have combined it with additional techniques, such
as gated attention and extra unique normalization. These
additions result in an increase in the overall multiplication
depth and require the development of additional HE-friendly
alternatives. In our work, we omit these supplementary
components altogether. In their absence, the standalone
mechanism becomes less stable, and we use length scaling
to overcome this instability:

Attnσ-scale(Q,K, V ) =
1

S(L)
σ

(
QKT

√
dk

)
V (5)

where L represents the sequence length, and S is a scaling
function defined as either 1√

L
or 1

L . Thus, the stabilizing
effect of the Softmax is replaced by a scaling factor that
compensates for the instability introduced by the alternative
attention mechanism. Additionally, as the multiplication of
the attention matrix with the values matrix involves summa-
tion over L elements, it is logical to normalize by this factor.
We investigate various scaling functions, applied both pre-
and post-activation, and can be implemented by modifying
the σ activation function:

Pre-act scaling: σ̂(x) = σ(S(L)x) (6)
Post-act scaling: σ̂(x) = S(L)σ(x) (7)
Pre- and post-scaling: σ̂(x) = S(L)σ(S(L)x) (8)

The selection of scaling functions is determined by empirical
considerations and stability analysis.

Choosing the Attention Activation Naturally, we ini-
tially experimented with polynomials as activations. We
started with polynomials used in previous HE-literature,
ranging from a simple quadratic activation (x2) (Gi-
lad Bachrach et al., 2016) to high-degree polynomials (Lee
et al., 2021) that approximate ReLU and other standard
activations. However, these polynomial activations were
found to be unstable during training. To address this, we
first trained our model using standard non-polynomial acti-
vations and then applied an additional training phase to con-
vert these activations into polynomials, similar to (Baruch
et al., 2023). This approach balanced performance in the
initial training phase with the precision of polynomial ap-
proximation in the later phase.

Reformulate Attention Mask Traditional practices, such
as those employed in the Swin transformer or in train-
ing LLMs via self-supervised learning, manipulate self-
attention via masking to determine which tokens can attend
to each other. These standard mask mechanisms are specif-
ically designed for the Softmax-based self-attention and
should be reformulated for pointwise attention:

Attnσ(Q,K, V ) =

(
σ

(
QKT

√
dk

)
⊙M

)
V (9)

where M is the binary mask. This mechanism is agnostic to
any type of pointwise activation σ.
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4.2. HE-Friendly Normalization

To enhance training stability, transformers rely on
LayerNorm, which is formulated as follows:

LayerNorm(x) =
x− µ√

σ2
· γ + β (10)

where x is the input vector, µ is the mean of x, σ2 is the
variance, and γ and β are learnable parameters. Computing
LayerNorm over HE requires calculating the inverse square
root, which is not a polynomial operation. A common prac-
tice in designing DNNs for secure inference over HE is to
replace LayerNorm with BatchNorm, as it can be imple-
mented by a straightforward constant affine transformation
at inference time. Therefore, we attempted to train trans-
formers using σ-attention and BatchNorm. We observed
that these models were highly unstable, performing poorly
on vision tasks and failing to converge in NLP tasks. Con-
sequently, we adopt two distinct approaches for vision and
NLP tasks.

Normalization for Vision Transformers For ViTs, to
improve performance and mitigate training instability, we
add two components: (i) Additional BatchNorm in the
MLP, which is proposed in (Yao et al., 2021) as a stabilizer
for ViT training, and (ii) additional BatchNorm within
the σ-attention, which normalizes values across different
attention heads, since we observe that those are the sources
of instability. The resulting σ-attention variant is:

1

S(L)
σ

(
BatchNorm2D

(
QKT

√
dk

))
V (11)

Normalization for NLP Transformers For NLP, models
with σ-attention and BatchNorm completely failed, even
when augmented by stabilizing factors from the literature,
such as (Wang et al., 2022). Consequently, we had to con-
front the challenge of approximating LayerNorm by poly-
nomials, which entails approximating the inverse square
root function. Empirically, we found that the values of the
variance in trained transformers (with σ-attention) ranged
between 1 and 109, causing approximation challenges due to
the extremely large domain. To solve this problem, we first
focus on narrowing the domain of the variance, which then
makes it easier to approximate the inverse square root over
this restricted domain. The method is similar to (Baruch
et al., 2023), which introduces an additional loss function
that encourages the model to minimize the range of the input
to activation layers. We apply this technique on the variance
at each layer via the following objective:

LVar-Minimization :=

NL∑
n=1

max
c∈C,xi∈X

{
varin,c

}
(12)

where we denote the number of layers by NL, the set of
channels by C, and the train dataset by X := [x1, x2, ..].

Furthermore, we denote the variance at layer n and channel
c ∈ C, when the model processes the xi example by varin,c.
For reasons of efficiency, we compute the loss over each
batch rather than the whole training set X .

By extending this method to operate on layer normalization
(LayerNorm) instead of activations, we succeed in reducing
the variance range to a smaller domain. This reduction
makes it feasible to use well-known approximations, such
as the technique described in (Baruch et al., 2023), for the
inverse square root.

4.3. A Recipe for a Polynomial Transformer

Figure 2 illustrates the entire method, which comprises
three stages: (i) First, we modify the architecture from the
original transformer architecture (first column) to a HE-
friendly architecture (second column), namely, an archi-
tecture that can eventually be converted into a polynomial
form. Then we train the modified model from scratch with
the same hyperparameters. (ii) In the second stage, we
perform a supplementary training procedure to obtain a
model with HE-friendly weights, which means that each
non-polynomial component will only operate on specific
and restricted domains. To do so, we add a loss function
that minimizes the range of inputs to non-polynomial lay-
ers. For the activations (standard activations and attention-
activations), we directly apply the method from (Baruch
et al., 2023), which defines the range loss for activations.
For the LayerNorm layers, we use the loss defined in Eq. 12.
The whole training objective L is defined by:

αLRange Minimization + βLVar-Minimization + Loriginal (13)

where α and β are hyperparameters. (iii) Finally, each non-
polynomial layer is directly replaced with its polynomial ap-
proximation, resulting in a polynomial model. Appendix A
contains details on the approximation we used. Those ap-
proximations are accurate for the HE-friendly architecture
& weights obtained from earlier stages.

5. Experiments
We evaluate the polynomial models generated by our
method in Section 5.1, focusing on language modeling with
several benchmarks such as the Wikitext-103 dataset and
image classification using standard benchmarks, including
Tiny-ImageNet and CIFAR-10. Section 5.2 justifies our
methodological choices, specifically the use of scaled σ-
attention and an additional training phase designed to ma-
nipulate the input values of non-polynomial layers. Further-
more, that section contains several ablation studies to assess
the impact of each method component on the overall perfor-
mance degradation. Finally, we discusses the accuracy and
latency implications of applying our models over HE. The
experimental setup is detailed in Appendix B.
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5.1. Polynomial Models

Polynomial Language Modeling We evaluated our
BERT-like transformer model for language modeling as
our NLP task. Specifically, we trained on Wikitext-103,
text-8, and enwik8 with a self-supervised scheme for Next
Token Prediction (NTP). The results in Table 1 show that
after architectural and training modifications, we achieved a
polynomial model with competitive perplexity. In particular,
for the wikitext-103 benchmark, the perplexity increased
by 0.91 compared to a vanilla transformer of the same size,
from 18.98 to 19.89 for a 6-layer transformer (53.3M param-
eters), and by 2.02 from 16.89 to 18.91 for a 12-layer model
(95.8M parameters). Considering that at least 80% of the
gap between the vanilla transformer and our corresponding
polynomial model is caused in the last stage where poly-
nomial approximations are used (0.74 for 6 layers model
and 1.76 for 12 layers), we hypothesize that more accurate
polynomials can mitigate most of the performance gap.

Dataset Depth Original P P+RM Poly

wiki103 6 18.98 19.07 19.15 19.89
wiki103 12 16.89 16.98 17.15 18.91

text-8 6 2.416 2.419 2.433 2.435
text-8 12 2.395 2.400 2.404 2.421

enwik8 6 2.330 2.349 2.350 2.367
enwik8 12 2.211 2.226 2.234 2.281

Table 1: NLP Results: Perplexity results of a polyno-
mial BERT-like transformer on the Wikitext-103, text8,
and enwik8 benchmarks. ‘Depth’ indicates the number
of transformer layers. ‘Original’ denotes the perplexity of
the vanilla Softmax-based transformer of equivalent size.
‘P’ represents models utilizing scaled σ-attention, while
‘P+RM’ shows perplexity at the end of the range minimiza-
tion training. ‘Poly’ details the final performance after sub-
stituting LayerNorm and activation functions with polyno-
mial approximations.

Polynomial Image Classification We evaluated our vi-
sion models on two image classification benchmarks: Tiny-
ImageNet and CIFAR-100. The results, presented in Table 2,
indicate that our vision models, which are converted to poly-
nomial form by our methods, remain competitive. Specifi-
cally, for ViT on CIFAR-100, the original ViT (denoted as
‘O’) achieved a score of 73.4%, whereas our HE-friendly
alternative (P+BN+QK+A), achieved a score of 71.1%. The
HE-friendly alternative employs BatchNorm as the nor-
malization layer, includes additional stabilizers described
in 4.2, and is based on scaled-σ attention. After applying our
range-aware training procedure, the accuracy of our model
decreased marginally by 0.1% to 71.0%, and it further de-
creased to 70.8% after approximating non-polynomial com-

ponents. For the Swin Transformer on Tiny-ImageNet, the
original model achieved 59.4%, and transitioning to the
HE-friendly architecture resulted in a performance decrease
of 0.3% to 59.1%. After employing range-aware training
to obtain HE-friendly weights, the performance further de-
graded by 0.2% to 58.9%, while the final performance of
the polynomial model remained the same. In conclusion,
the performance gap between the polynomial models and
the original architectures is less than 4%, demonstrating the
practicality of our methods in this domain.

Model Dataset O P+BN+QK+A RM Poly

ViT CIFAR-100 73.4 71.1 71.0 70.8
Swin Tiny-ImgNet 59.4 59.1 58.9 58.9

Table 2: Vision Results: Test accuracy results of a poly-
nomial ViT. ‘O’ represents the original vanilla model,
‘P+BN+QK+A’ represents scaled-σ attention-based ViT
trained with BatchNorm as the normalization function in-
stead of LayerNorm, and contains the additional stabilizers
described in 4.2. ‘RM’ refers to the accuracy at the end of
the range minimization training, and ‘Poly’ details the final
performance after substituting polynomial approximations.

5.2. Model Analysis

Scaled-σ attention We began our analysis by empir-
ically assessing the performance differences between the
vanilla transformer and the scaled-σ attention. We con-
ducted experiments in five regimes: language modeling on
wikitext-103 for (i) next token prediction (NTP) and (ii)
denoising (MLM), (iii) language modeling on the text-8
dataset for NTP, and two additional image classification
tasks using (iv) CIFAR-10 with the ViT backbone and (v)
Tiny-ImageNet with the Swin backbone. Across all regimes,
we employed the same hyperparameters that were optimized
for the vanilla transformer, which can be found in Table 8
and Table 7 (see Appendix B). The training curves are pre-
sented in Figure 3, and indicate that the models with scaled-
σ attention perform comparably to the baseline.

To justify our design choices regarding length scaling, we
performed analyses in both the NLP and vision domains,
comparing several variants of scaled-σ attention models.
These variants included models without length scaling and
models with length scaling, employing the two functions
S(L) = 1√

(L)
and S(L) = 1

L , applied at different positions

relative to the activation — either before, after, or both.

For the NLP tasks, consistent with our previous experiments,
we employed a 6-layer BERT-like transformer as a baseline
and evaluated the variants on the Wikitext-103 dataset. We
experimented with two types of activation functions: GELU
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Figure 3: Scaled-σ attention is comparable with Softmax attention. On each graph, we present the test accuracy for vision
tasks, or perplexity for language modeling tasks.

and Squared ReLU. Notably, without length scaling, we
observed that the model’s weights explode in the initial
training epochs. This phenomenon confirms the necessity
of integrating length scaling with σ-attention. Furthermore,
variants utilizing both pre-scaling and post-scaling with a
scaling function of S(L) = 1

L failed to converge and even-
tually collapsed. For the other scaling functions, the results
are depicted in Figure 4. Evidently, employing post-length
scaling with the scaling function S(L) = 1√

L
provides the

best performance for both types of attention activation.

Figure 4: Pointwise Transformers Require Scaling in
NLP. (left) GELU attention. (right) Squared ReLU attention.
All experiments without scaling, or with both pre-scale and
post-scale by length ( 1

Lσ(
x
L )) collapse early in the training,

even for lower learning rate.

For vision tasks, we replicated the settings detailed in Sec-
tion 5.1 with the ViT backbone. Test accuracy results with
and without length scaling for attention activations are pre-
sented in Table 3 for models evaluated on both the CIFAR-
10 and CIFAR-100 benchmarks. These experiments were
conducted with BatchNorm, as this was the type of nor-
malization we use for secure ViT (see Section 4.2). We
employ post-activation length scaling with a scaling func-
tion S(L) = 1√

L
, which we found to be optimal for scaled-

σ based ViT. The findings underscore the significance of
length scaling, which substantially enhances performance.
Specifically, length scaling improves the GELU-attention
models, increasing their accuracy by 2.46% from 68.41%

to 70.87% on CIFAR-100, and lifting their performance by
11.14% from 81.17% to 92.31% on CIFAR-10.

Dataset Vanilla GELU Scaled-GELU

CIFAR-100 72.08 68.41 70.87
CIFAR-10 92.70 81.17 92.31

Table 3: Pointwise ViT Require Scaling: Experiments on
both CIFAR-100 and CIFAR-10 with ViT. For both bench-
marks, we compare vanilla attention, GELU-attention, and
scaled-GELU attention.

σ O B B+QK B+QK+A B+QK+A+S

G. 59.4 39.0 49.8 58.6 59.1
R. 59.4 38.4 50.1 56.2 58.6

Table 4: Stabilize BatchNorm-based σ-ViT: Experiments
on both Tiny-ImageNet with σ-attention-based Swin trans-
former. We compare models with GELU-attention (G.) and
ReLU-attention (R.). ‘O’ denotes the accuracy of the origi-
nal Swin with Softmax and LayerNorm. ‘B’ denote the ac-
curacy of a σ-attention-based Swin with BatchNorm. The
remaining three columns represent the accuracy achieved
by incorporating the first technique, the first two techniques
combined, and all of the techniques, respectively.

Range Minimization Our novel training method narrows
the variance range at each LayerNorm layer and the input
to the activation layers, including both attention activations
and MLP activations. To demonstrate the practicality and
effectiveness of this method, we visualize in Figure 5 the
maximal and mean-variance values at each layer, as well
as the maximal and minimal values at the input of each
activation. Both are measured at the end of each epoch to
demonstrate progress during training.

The graph clearly illustrates that prior to implementing the
additional training phase, variance values were limited by
3300. This number was reduced to 300 during range train-
ing. Furthermore, it is evident that the activation range has
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Figure 5: Range Minimization: The impact of applying range regularization loss (Eq. 13) to constrain the input range of
non-polynomial layers. Each curve corresponds to an individual non-polynomial layer. The left panel displays maximal and
minimal values recorded at the input of the activation layers throughout the test set for each layer, where dashed lines denote
activations in the MLP and solid lines represent attention activations. The middle and right panels, respectively display the
mean and maximum values of the variance observed throughout the test set for each layer. The colors of the curves progress
from blue to red to denote the sequence of layers: blue for the first layer, and red for the last, where intermediate layers are
colored by interpolating blue and red based on their sequence position. The x-axes represent the epochs.

been shortened from 70 to 20. These reductions greatly
facilitate the approximation problem, since the error of the
approximation increases with the domain width of the func-
tion being approximated, as reported in (Baruch et al., 2023).
Additionally, this allows for the use of relatively low-degree
polynomials, which significantly reduce the overall mul-
tiplication depth and, consequently, decrease the model’s
latency during secure inference. It is also noteworthy that
the values of both the variance and activation norms tend
to rise in the deeper layers, posing a greater challenge for
approximating these layers.

Robustness to Context Length and Headcount

To further explore the robustness of our method with re-
spect to variations in context length and headcount, we con-
ducted additional experiments. Specifically, we evaluated
our model configurations with 12 and 16 attention heads
in Table 6, and context lengths of 256 and 1024 tokens in
Table 5, across both 6-layer and 12-layer architectures. In
both tables, ‘Original’ denotes the perplexity of the vanilla
Softmax-based transformer of equivalent size, ‘ReLU’ rep-
resents models utilizing scaled σ-attention, while ‘P+RM’
shows perplexity at the end of the range minimization train-
ing. Finally, ‘Poly’ details the score of a fully polynomial
model. All results are averaged over 3 seeds and contain per-
plexity scores of the model that was trained and evaluated
on Wikitext-103. These tables demonstrate that regardless
of the configuration, our method achieves only a marginal
reduction in performance. These results emphasize the ro-
bustness of our approach across various context sizes and
headcounts.

Stabilized HE-Friendly ViT Although σ-transformers
that normalize with BatchNorm rather than LayerNorm

Table 5: Perplexity Across Various Context Lengths

Length Depth Original ReLU P+RM Poly

256 6 20.07 21.87 22.04 22.38
512 6 18.98 19.07 19.15 19.89

1024 6 17.85 17.96 18.22 18.59
256 12 17.41 17.55 17.94 19.17
512 12 16.89 16.98 17.15 18.91

1024 12 16.08 16.62 16.93 18.29

Table 6: Perplexity Across Different Headcounts

Heads Depth Softmax ReLU P+RM Poly

8 12 16.89 16.98 17.15 18.91
12 12 16.76 16.96 17.13 18.73
16 12 17.04 17.30 17.46 19.04

do not collapse and provide some non-trivial accuracy in
the image classification regime, their performance still falls
short of that of standard ViTs with Softmax attention and
LayerNorm. To bridge this gap, Sections 4.2 and 4.1 pro-
pose three techniques: (i) adding an additional BatchNorm
layer to the MLP in each ViT block (A), (ii) normalizing the
attention matrix across the attention heads via BatchNorm
2D (QK), and (iii) implementing length scaling (S). In Ta-
ble 4, we ablate the contributions of each of these methods.
These experiments were conducted using the Swin Trans-
former backbone on the Tiny ImageNet dataset. The re-
sults indicate that the incorporation of BatchNorm instead
LayerNorm (denoted by B) initially decreases performance
compared to the original Softmax-based Swin (denoted by
O), with GELU-attention (G.) and ReLU-attention (R.) accu-
racy dropping to 39.0% and 38.4%, respectively. However,
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normalizing the attention matrix across the attention heads
with BatchNorm 2D (B+QK) significantly improves accu-
racy. The subsequent addition of an extra BatchNorm layer
(B+QK+A) further enhances performance, nearly matching
the original Swin’s accuracy. Finally, the implementation
of length scaling (B+QK+A+S) improves σ-attention-based
models and closed the gap with the original Swin.

Accuracy over FHE To validate that our polynomial
models can be precisely computed over FHE, we fine-tuned
our 6-layer and 12-layer polynomial transformers, which
were pre-trained on the Wikitext-103 dataset, for financial
news text classification (Muchinguri, 2022) involving three
classes. After fine-tuning, we achieved 72% and 74% accu-
racy on plaintext, respectively. Then, we tested the models
on all 506 encrypted examples in the test set via HElay-
ers (Aharoni et al., 2023). The results showed exactly the
same predictions for both encrypted and plaintext examples
in 99.5% of the cases, resulting in a similar level of accuracy.

Performance under FHE We run HElayers (Aharoni
et al., 2023) version 1.5.4 as our HE SDK and set the un-
derlying HE library to HEaaN. The concrete HE parameters
were set as follows: We used ciphertexts with 215 coeffi-
cients, a multiplication depth of 12, fractional part precision
of 42, and integer part precision of 18. This context al-
lows us to use up to 9 multiplications before bootstrapping
is required. The security parameters were set to provide
a solution with 128-bit security. Our hardware involved a
computing system that used both CPU and GPU capabilities.
The CPU component was an AMD EPYC 7763 64-core pro-
cessor comprising 32 cores and 32 threads, along with 200
GB of RAM allocated to the processes under evaluation.
Complementing this, we utilized an NVIDIA A100-SXM4-
80GB GPU with 80GB of memory, which was integral for
performing certain parts of the computation. This configura-
tion was designed to exploit the combined processing power
of CPU and GPU, ensuring efficient performance for our
computational tasks. Under these settings, for a BERT-like
transformer with 6 layers and 53.3M parameters (see hyper-
parameters in Table 7, Appendix B), secure inference over
128 tokens takes 211.15 seconds. In Fig. 6 we visualize a
pie chart illustrating the distribution of computation times
across different components during secure inference.

6. Conclusion
This paper presents an effective and innovative approach
to converting transformers into a polynomial form via the
scaled-σ attention mechanism and a specialized training
procedure that produces HE-friendly weights. Our tech-
niques are the first to propose polynomial alternatives to the
self-attention and LayerNorm layers, allowing the deploy-
ment of secure inference with transformers for the first time.

Figure 6: Breakdown of Runtime for Secure Inference
Over HE. The chart details the time spent on various com-
putational tasks, measured in seconds.

This advancement significantly extends the potential of the
HE-based DL models.

7. Limitations
While our approach marks a significant advancement in ap-
plying DL over HE, it comes with certain limitations. Firstly,
our method does not directly approximate the Softmax func-
tion using polynomials. Instead, it employs an alternative
architecture and a complementary training procedure. This
approach might not fully capture the entire range of be-
haviors exhibited by the traditional Softmax function in
various contexts, potentially affecting the model’s perfor-
mance in specific scenarios. Secondly, the scalability and
consistency of our scaled-σ attention mechanism as a uni-
versal replacement for standard self-attention have not yet
been fully established. These aspects should be thoroughly
explored in future research, particularly through the use of
larger models and datasets, as well as additional modalities
such as speech, to ascertain the robustness and versatility of
our method across a diverse range of AI applications.

Acknowledgments
We thank HElayers (Aharoni et al., 2023) developers, partic-
ularly Ehud Aharoni and Ramy Masalha, for their technical
support and guidance regarding using the HElayers library.

Impact Statement
Our research introduces the first polynomial transformer,
enabling HE-based secure inference with transformers over
encrypted data and through encrypted weights. This ad-
vancement contributes to privacy-preserving deep learning,
offering significant implications for data-sensitive sectors
like healthcare and finance. This work aligns with the ethi-
cal need for responsible AI development by enhancing data
privacy.

9



Converting Transformers to Polynomial Form for Secure Inference Over Homomorphic Encryption

References
Aharoni, E., Adir, A., Baruch, M., Drucker, N., Ezov, G.,

Farkash, A., Greenberg, L., Masalha, R., Moshkowich,
G., Murik, D., et al. HElayers: A tile tensors framework
for large neural networks on encrypted data. PoPETs,
2023. doi: 10.56553/popets-2023-0020.

Ao, W. and Boddeti, V. N. Autofhe: Automated adaption
of cnns for efficient evaluation over fhe. arXiv preprint
arXiv:2310.08012, 2023.

Baruch, M., Drucker, N., Greenberg, L., and Moshkowich,
G. A Methodology for Training Homomorphic Encryp-
tion Friendly Neural Networks. In Applied Cryptography
and Network Security Workshops, pp. 536–553, Cham,
2022. Springer International Publishing. ISBN 978-3-
031-16815-4. doi: 10.1007/978-3-031-16815-4\ 29.

Baruch, M., Drucker, N., Ezov, G., Kushnir, E., Lerner, J.,
Soceanu, O., and Zimerman, I. Sensitive tuning of large
scale cnns for e2e secure prediction using homomorphic
encryption. arXiv preprint arXiv:2304.14836, 2023.

Chen, T., Bao, H., Huang, S., Dong, L., Jiao, B., Jiang,
D., Zhou, H., Li, J., and Wei, F. The-x: Privacy-
preserving transformer inference with homomorphic en-
cryption. arXiv preprint arXiv:2206.00216, 2022.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. Homomorphic
encryption for arithmetic of approximate numbers. In
International Conference on the Theory and Application
of Cryptology and Information Security, pp. 409–437.
Springer, 2017. doi: 10.1007/978-3-319-70694-8\ 15.

Chrysos, G. G., Moschoglou, S., Bouritsas, G., Panagakis,
Y., Deng, J., and Zafeiriou, S. P-nets: Deep polynomial
neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
7325–7335, 2020.

Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,
K., Maleki, S., Musuvathi, M., and Mytkowicz, T. Chet:
An optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, pp. 142–156, New York,
NY, USA, 2019. ISBN 9781450367127. doi: 10.1145/
3314221.3314628.

Ding, Y., Guo, H., Guan, Y., Liu, W., Huo, J., Guan,
Z., and Zhang, X. East: Efficient and accurate secure
transformer framework for inference. arXiv preprint
arXiv:2308.09923, 2023.

Egidi, N., Fatone, L., and Misici, L. A New Remez-
Type Algorithm for Best Polynomial Approximation.

In Sergeyev, Y. D. and Kvasov, D. E. (eds.), Numeri-
cal Computations: Theory and Algorithms, pp. 56–69,
Cham, 2020. Springer International Publishing. doi:
10.1007/978-3-030-39081-5\ 7.

Gentry, C. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, Palo Alto, CA, 2009.
URL https://crypto.stanford.edu/craig/
craig-thesis.pdf.

Gilad Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Ap-
plying neural networks to encrypted data with high
throughput and accuracy. In International Con-
ference on Machine Learning, pp. 201–210, 2016.
URL http://proceedings.mlr.press/v48/
gilad-bachrach16.pdf.

Gottemukkula, V. Polynomial activation functions. 2020.

Goyal, M., Goyal, R., and Lall, B. Improved polyno-
mial neural networks with normalised activations. In
2020 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2020.

Gupta, K., Jawalkar, N., Mukherjee, A., Chandran, N.,
Gupta, D., Panwar, A., and Sharma, R. Sigma: Secure
gpt inference with function secret sharing. Cryptology
ePrint Archive, 2023.

Hao, M., Li, H., Chen, H., Xing, P., Xu, G., and Zhang,
T. Iron: Private inference on transformers. Advances
in Neural Information Processing Systems, 35:15718–
15731, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hesamifard, E., Takabi, H., and Ghasemi, M. Cryptodl:
Deep neural networks over encrypted data, 2017. URL
https://arxiv.org/abs/1711.05189.

Hua, W., Dai, Z., Liu, H., and Le, Q. Transformer quality
in linear time. In International Conference on Machine
Learning, pp. 9099–9117. PMLR, 2022.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet
classification with deep convolutional neural networks.
Neural Information Processing Systems, 25, 01 2012. doi:
10.1145/3065386.

Lee, E., Lee, J.-W., Lee, J., Kim, Y.-S., Kim, Y., No, J.-S.,
and Choi, W. Low-complexity deep convolutional neural
networks on fully homomorphic encryption using multi-
plexed parallel convolutions. In International Conference
on Machine Learning, pp. 12403–12422. PMLR, 2022a.

10

https://crypto.stanford.edu/craig/craig-thesis.pdf
https://crypto.stanford.edu/craig/craig-thesis.pdf
http://proceedings.mlr.press/v48/gilad-bachrach16.pdf
http://proceedings.mlr.press/v48/gilad-bachrach16.pdf
https://arxiv.org/abs/1711.05189


Converting Transformers to Polynomial Form for Secure Inference Over Homomorphic Encryption

Lee, E., Lee, J.-W., Lee, J., Kim, Y.-S., Kim, Y., No, J.-S.,
and Choi, W. Low-complexity deep convolutional neural
networks on fully homomorphic encryption using multi-
plexed parallel convolutions. In Chaudhuri, K., Jegelka,
S., Song, L., Szepesvari, C., Niu, G., and Sabato, S.
(eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pp. 12403–12422. PMLR, 17–
23 Jul 2022b. URL https://proceedings.mlr.
press/v162/lee22e.html.

Lee, G., Kim, M., Park, J. H., Hwang, S.-w., and Cheon,
J. H. Privacy-preserving text classification on bert em-
beddings with homomorphic encryption. arXiv preprint
arXiv:2210.02574, 2022c.

Lee, J., Lee, E., Lee, J.-W., Kim, Y., Kim, Y.-S., and
No, J.-S. Precise approximation of convolutional neural
networks for homomorphically encrypted data. arXiv
preprint arXiv:2105.10879, 2021. URL https://
arxiv.org/abs/2105.10879.

Lee, J.-W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin,
M., Lee, E., Lee, J., Yoo, D., Kim, Y.-S., and No, J.-S.
Privacy-preserving machine learning with fully homomor-
phic encryption for deep neural network. IEEE Access,
10:30039–30054, 2022d. doi: 10.1109/ACCESS.2022.
3159694.

Lee, S., Lee, G., Kim, J. W., Shin, J., and Lee, M.-K. Hetal:
Efficient privacy-preserving transfer learning with homo-
morphic encryption. 2023.

Liang, Z., Wang, P., Zhang, R., Xu, N., and Zhang, S.
Merge: Fast private text generation. arXiv preprint
arXiv:2305.15769, 2023.

Liu, X. and Liu, Z. Llms can understand encrypted prompt:
Towards privacy-computing friendly transformers. arXiv
preprint arXiv:2305.18396, 2023.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G., May,
J., and Zettlemoyer, L. Mega: moving average equipped
gated attention. arXiv preprint arXiv:2209.10655, 2022.

Mohassel, P. and Zhang, Y. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pp. 19–38, 2017.
doi: 10.1109/SP.2017.12.

Muchinguri, N. Financial news classification dataset.
https://huggingface.co/datasets/
nickmuchi/financial-classification,
2022. Accessed: 2024-05-26.

Pachón, R. and Trefethen, L. N. Barycentric-remez algo-
rithms for best polynomial approximation in the chebfun
system. BIT Numerical Mathematics, 49(4):721–741,
2009. doi: https://doi.org/10.1007/s10543-009-0240-1.

Panda, S. Polynomial approximation of inverse sqrt func-
tion for fhe. In International Symposium on Cyber Se-
curity, Cryptology, and Machine Learning, pp. 366–376.
Springer, 2022.

Raphson, J. Analysis aequationum universalis. Typis TB
prostant venales apud A. and I. Churchill, 1702.
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A. Our Polynomial Approximations
After modifying the architecture and training using the meth-
ods described in Sec. 4, we obtain model architecture and
weights that are HE-friendly. At this point, simple and well-
known polynomial approximations can be applied to convert
the model to a polynomial form. For the GELU and ReLU
functions, which are used for attention activations and the
MLP activations, we utilize the approximations from (Lee
et al., 2021) for ReLU, and polynomials generated with the
Remez algorithm for GELU. To approximate the layer nor-
malization, we use polynomials from (Panda, 2022). The
polynomials and their approximation errors are presented in
Figure 7.

Figure 7: Our Polynomial Approximations: (Left): Poly-
nomial obtained by various well-known methods. (Right):
L1 approximation error for each approximation presented
on a logarithmic scale. At the top, we present polynomials
and L1-error for ReLU; in the middle, for GELU, and at the
bottom, for 1√

x
.

B. Experimental Setup
Training setup All training experiments were performed
on public datasets using a single A100 80GB GPU for a
maximum of two days. All experiments were conducted us-
ing PyTorch, employing half-precision floating-point format.
Results were averaged over three seeds, and all hyperparam-
eters are detailed in Table 7 and Table 8.

Parameter Value

Model-width 768
Number of heads 8
σ-activation ReLU
Context-length (training) 512
Batch-size 256
Optimizer AdamW
Momentum β1, β2 = 0.9, 0.999
Base learning rate 5e− 4
Weight decay 0.0
Dropout 0.1
Training epochs 100
Learning rate schedule cosine decay
Warmup epochs 5
Warmup schedule linear

Table 7: Hyperparameters for Wikitext-103

Table 8: Hyperparameters for ViT and Swin

Parameter ViT Swin

Model-width 192 96
Model-depth 9 [2, 6, 4]
Number of heads 12 [3, 6, 12]
Trainable parameters 2.7M 7.13M
Window-size - 4

Label smoothing 0.1
σ-activation GELU
Patch-size 4× 4
Batch-size 128
Optimizer AdamW
Momentum β1, β2 = 0.9, 0.999
Base learning rate 1e− 3
Weight decay 5e-2
Dropout 0.1
Training epochs 100
Learning rate schedule cosine decay
Warmup epochs 10
Warmup schedule linear
Random erasing probability 0.25
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