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Abstract
Few-shot class-incremental learning (FSCIL) is
proposed to continually learn from novel classes
with only a few samples after the (pre-)training on
base classes with sufficient data. However, this re-
mains a challenge. In contrast, humans can easily
recognize novel classes with a few samples. Cog-
nitive science demonstrates that an important com-
ponent of such human capability is compositional
learning. This involves identifying visual primi-
tives from learned knowledge and then composing
new concepts using these transferred primitives,
making incremental learning both effective and
interpretable. To imitate human compositional
learning, we propose a cognitive-inspired method
for the FSCIL task. We define and build a compo-
sitional model based on set similarities, and then
equip it with a primitive composition module and
a primitive reuse module. In the primitive compo-
sition module, we propose to utilize the Centered
Kernel Alignment (CKA) similarity to approxi-
mate the similarity between primitive sets, allow-
ing the training and evaluation based on primitive
compositions. In the primitive reuse module, we
enhance primitive reusability by classifying in-
puts based on primitives replaced with the closest
primitives from other classes. Experiments on
three datasets validate our method, showing it
outperforms current state-of-the-art methods with
improved interpretability. Our code is available at
https://github.com/Zoilsen/Comp-FSCIL.

1. Introduction
With advancements in hardware, deep neural networks have
demonstrated considerable success across various areas us-
ing pre-defined large-scale datasets (Simonyan & Zisser-
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Figure 1. As studied by cognitive science (Biederman, 1987), hu-
mans can compositionally learn knowledge by dividing learned
ones into primitives, and then compose them to learn novel knowl-
edge, which leads to the good human capability of incremental
learning with only scarce data. To imitate the human ability of com-
positional learning, we propose a compositional learning method
for the few-shot class-incremental learning (FSCIL) task. We
briefly plot the primitives automatically found by our methods
with the possible meanings, where we can see good reusability and
interpretability of primitives. Detailed plots are in Fig.7.

man, 2015; He et al., 2016). However, real-world scenarios
present novel knowledge continuously, often with limited
data (Hou et al., 2019; Rebuffi et al., 2017), such as rare
diseases. Addressing this challenge requires models to learn
novel knowledge from just a few samples without forget-
ting previously learned ones (Castro et al., 2018; Tao et al.,
2020). This necessity gives rise to the Few-Shot Class-
Incremental Learning (FSCIL) task (Zhang et al., 2021;
Zhou et al., 2022). In this task, models are initially (pre-
)trained on base classes during a base session with sufficient
training data. Then, models learn from novel classes in
incremental sessions with only a few samples, and finally
classify test samples across all encountered classes. While
various approaches, including metric-based ones (Zou et al.,
2022; Zhang et al., 2021), adaptation-based ones (Zhou
et al., 2022; Yibo Yang, 2023), etc. have been explored for
this task, FSCIL remains a challenge due to the scarcity of
training data and the risk of catastrophic forgetting.

In contrast to machines, humans can easily learn from lim-
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ited data without forgetting learned knowledge (Schwartz
et al., 2019). Cognitive science demonstrates that an impor-
tant component of such human capability is compositional
learning (Biederman, 1987; Zou et al., 2020), which enables
humans to divide knowledge, such as semantic objects, into
visual primitives (Hoffman & Richards, 1984) (like object
parts), and then compose novel or learned knowledge by
transferred primitives (Fodor, 1975), as shown in Fig.1.
Since primitives are reusable among base and novel classes,
it enables us to not only avoid forgetting by maintaining
learned primitives, but also efficiently learn from few-shot
novel classes by learning the composition of primitives.
Moreover, primitives can be viewed as the foundational ele-
ments guiding human decision-making, providing insights
into why a particular sample is classified into a specific class.
This enhances the interpretability of black-box deep learn-
ing models (e.g., Fig.1 depicts a spider as a composition of
an ant-like insect and nets). Consequently, this paper aims
to imitate the human ability for compositional learning to
tackle the challenging problem of FSCIL.

Specifically, we first define primitive composition based
on set similarities and then build our model by modifying
the FSCIL base method. Since primitives always refer to
object parts (Zou et al., 2020), we define image patches as
candidate primitives, which may contain sample-specific
candidate primitives such as background, and common prim-
itives shared across samples. For each class, we employ a set
of prototypes to form its primitive set, which encodes com-
mon primitives shared within this class. We then propose
to utilize the Centered Kernel Alignment (CKA) similar-
ity (Kornblith et al., 2019) to approximate the similarity
between primitive sets, which enables the training and eval-
uation based on primitive compositions. To enhance the
reusability of primitives across classes, we further design
a primitive reuse module, which classifies input samples
based on primitives replaced with the closest primitives
from other classes. Our model is firstly trained in the base
session, and then transferred to incremental sessions with
a fixed backbone network. The reusability of primitives is
achieved both implicitly through the reuse of the backbone
network and explicitly through the primitive reuse module.

In summary, our contributions can be listed as:

•We propose a cognitive-inspired compositional learning
method for the FSCIL task, which first defines and builds
a compositional model based on set similarities, and then
equips it with a primitive composition module and a primi-
tive reuse module.

• In the primitive composition module, we propose to utilize
the CKA similarity to approximate the similarity between
primitive sets, allowing the training and evaluation based on
primitive compositions.

• In the primitive reuse module, we enhance primitive
reusability by classifying inputs based on primitives that
are replaced with the nearest primitives from other classes.

• Extensive experiments on three public benchmarks vali-
date the rationale of our compositional learning method, and
demonstrate it outperforms current state-of-the-art works
while providing enhanced interpretability.

2. Related Work
Few-shot class-incremental learning can be roughly cat-
egorized into adaptation-based (Hou et al., 2019; Rebuffi
et al., 2017; Castro et al., 2018; Tao et al., 2020) and metric-
based methods (Zhang et al., 2021; Zou et al., 2022). The
first group adapts the model during novel-class training,
with the backbone network often frozen to prevent catas-
trophic forgetting (Zhou et al., 2022). In the second group,
each class is represented by prototypes averaged from sam-
ples (Zou et al., 2022), with network parameters similarly
frozen to mitigate the risk of catastrophic forgetting. How-
ever, there is a scarcity of works exploring the compositional
structure of FSCIL models, and as far as we know, our study
is the first to delve into this aspect.

Compositional learning seeks to learn knowledge through
its primitives or components, which is a concept extensively
explored in cognitive science (Biederman, 1987; Hoffman
& Richards, 1984; Fodor, 1975). This approach has found
applications in various domains, such as CPDE (Zou et al.,
2020) decomposing classes into channels for few-shot learn-
ing, (Purushwalkam et al., 2019) breaking down visual fea-
tures into attributes for zero-shot learning, (Kato et al., 2018)
decomposing human-object interactions into actions and ob-
jects, (Cao et al., 2021) learning a dictionary for visual
concepts, and (Tang et al., 2020) aligning object parts with
pose normalization. However, there has been limited explo-
ration in the FSCIL task. In contrast, our decomposition
operates within the spatial dimension and does not need ad-
ditional annotations for primitives. Due to space limitations,
we present further details on related works in the appendix.

3. Method
We first define primitive composition by set similarities and
then design each component to implement compositional
few-shot class-incremental learning (FSCIL) (Fig.2).

3.1. Preliminaries

FSCIL (Zhang et al., 2021; Zhou et al., 2022) aims to
continually learn from novel classes with only a few sam-
ples in incremental sessions, after (pre-)training on base
classes with abundant training data in the base session.
Initially, the model is trained on the base session dataset
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Figure 2. We take image patches as candidate primitives, and utilize a set of prototypes to construct the primitive set for each class. Given
an input sample, our method tries to compose it with primitive sets (e.g., ZA and ZB) from different classes (e.g., class A and B), which
is measured as the composition score by the CKA similarity. These composition scores are then utilized to be the classification score for
the model training and evaluation. To improve the reusability of primitives across classes, each primitive is replaced with the closest
primitive in other classes. The replaced primitive sets (e.g., Z̃A and Z̃B) will then be applied in the classification with the composition
score. Finally, our model is trained with the combination of Lcls, Lcmp, and Lrcmp during both the base and incremental sessions.

D0 = {(xi, yi)}n0
i=1 with the label space Y0, by minimiz-

ing the loss
∑

(xi,yi)∈D0 L(φ(W,xi), yi), where L(·, ·) de-
notes the cross-entropy loss and φ(·, ·) gets the prediction
of xi. Typically, φ(·, ·) consists of a feature extractor f(·)
and a classifier (e.g., fully connected (FC) layer) with the
parameter W , where φ(W,x) ∈ R1×|Y0|, W ∈ R|Y0|×d

and f(x) ∈ R1×d. During the kth incremental session,
the model learns from the dataset Dk = {(xi, yi)}nki=1

with the label space Yk. The classifier’s weight W will
be extended by incorporating the classifier obtained from
Dk as W = {w0

1, w
0
2, ..., w

0
|Y0|} ∪ ... ∪ {w

k
1 , ..., w

k
|Yk|} ∈

R
∑k
i=0 |Yi|×d where wkj ∈ R1×d denotes the classifier

weight for the jth class in the kth session. A prevailing
baseline method (Zhang et al., 2021) freezes f(·) during
incremental sessions and only trains the classifier. Finally,
the model will be applied to classify test samples from all
encountered

∑k
i=0 |Yi| classes.

3.2. Defining the Compositional Recognition

Humans’ compositional learning first divides knowledge
into primitives (Hoffman & Richards, 1984; Zou et al.,
2020), and then composes novel knowledge using these
primitives (Fodor, 1975). This learning mechanism avoids
forgetting by maintaining learned primitives, and facilitates
few-shot learning by efficiently learning the composition of
reused primitives. To imitate this human ability, we begin
with the following definition.

Definition 3.1. Given a class y, compositional learning di-
vides it into a set of primitives {P yi }Ni , representing shared
components in this class. Each sample x is divided into a set
of components {Ci(x)}ni , where components shared with

other samples in this class construct {P yi }Ni , while other
components are specific to this sample.

Therefore, we refer to Ci(x)
n
i as the candidate primitive set.

We use the notations Zy and X as abbreviations for {P yi }Ni
and Ci(x)

n
i , respectively. Note that primitives should be

transferable or even reusable across classes. Considering
that each sample and class are represented by sets, if all
elements in set X are present in set Zy, we can assert that
X is composed of elements from Zy . Therefore, we define
composition using the Jaccard Similarity as:

Definition 3.2. Set X = {Ci(x)}ni is composed of ele-
ments from set Zy = {P yi }Ni if |Z

y∩X|
|Zy∪X| = 1.0.

However, this criterion is strict and hard to apply due to two
reasons: (1) the term |Zy ∩X| is not continuous, and (2)
achieving |Z

y∩X|
|Zy∪X| = 1.0 is difficult because X may include

elements specific to the sample (e.g., background).

Therefore, we relax this criterion to |Z
y∩X|

|Zy∪X| > t. Consider-
ing the sparsity of primitives (Zou et al., 2020), we assume
|Zy| << |X| and simplify the Jaccard Similarity as

|Zy ∩X|
|Zy ∪X| =

|Zy ∩X|
|X|+ |Zy| − |Zy ∩X| ≈

|Zy ∩X|
|X| , (1)

since |X| >> |Zy| > |Zy|− |Zy ∩X|. Moreover, we relax
the concrete union of sets to the similarity between sets as

|Zy ∩X| ≈ sim(X,Zy) =
∑|X|

i

∑|Zy|

j
s(Xi, Z

y
j ), (2)

where s denotes the similarity between primitives. Ideally,
s(·, ·) outputs 1 if Xi could totally match Zyi , and 0 if Xj
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and Zyi are not matched (e.g., cosine similarity). Since
sim(X,Zy) is continuous, we can utilize it to represent the
probability of classifying the sample x into the class y as

P (y|x) = eτ ·sim(X,Zy)/|X|∑
k e

τ ·sim(X,Zk)/|X|
. (3)

where τ is a temperature parameter. Naturally, P (y|x) can
be used in training and evaluation. Therefore, there remain
three issues to implement the compositional learning: (1)
designing the primitives; (2) designing the set similarity
function sim(·, ·) and (3) designing the reuse of primitives.

3.3. (Candidate) Primitive Design

To achieve this goal, we look back into the FSCIL base
method (Fig.2). Given an input image x, this model extracts
its feature as f(x) ∈ R1×d, and then forwards it to the
classifier with the parameter W ∈ R|Y0|×d, where Wy ∈
R1×d is viewed as the prototype of the yth class. Typically,
these features have been processed by the Global-Average-
Pooling layer, such as ResNet (He et al., 2016) and Swin
Transformer (Liu et al., 2021). Therefore, we have f(x) =
1
S

∑S
i F (x)i, where F (x) ∈ RS×d denotes the feature map

and S is the spatial dimension of the map. Given that the
object in the input image is partitioned into image patches,
the patch features F (x) can be seen as compositionally
representing the input x. Therefore, it can be regarded as
the candidate primitive set containing object parts, i.e.,

X = {Ci(x)}ni = {F (x)i}Si . (4)

Furthermore, this design satisfies the transferability require-
ments of primitives, as patch features are more readily trans-
ferable compared with image features. With this design,
the term |X| in Eq.3 is a constant number S. Therefore,
the designing of the compositional model is simplified into
finding a suitable similarity function between X and Zy .

On the other hand, since Wy inherently learns to represent
the centroid of class y during the training of the base model,
it captures the shared patterns of the class y while disre-
garding the sample-specific patterns like the background.
Similarly, in line with Eq.4, we replace Wy of class y with
a collection of prototypes to be the primitive set {P yi }Ni
where P yi ∈ R1×d. With this choice of primitive set, simi-
larly, {P yi }Ni would also learn the common image patches
(i.e., candidate primitives) that are shared among different
samples from the class y, which serves as the centroid of
candidate primitives and ignores sample-specific candidate
primitives such as background. Therefore, this choice of
primitive set satisfies the definition 3.1.

Consequently, based on the above designs, we can directly
modify the architecture of the baseline network to imple-
ment our compositional model, by replacing f(x) ∈ R1×d

with X ∈ Rn×d where n = S, and replacing W ∈ R|Y0|×d

with Z ∈ R|Y0|×N×d.

3.4. Set Similarity Function Design

Next, we need to design the similarity function sim(·, ·),
with a crucial issue to find matches between two sets. A
straightforward way is to enumerate all matches as:

1

nN

n,N∑
i,k

Xi
||Xi||

Zyk
||Zyk ||

= (
1

n

n∑
i

Xi
||Xi||

)(
1

N

N∑
k

Zyk
||Zyk ||

), (5)

whereZy ∈ RN×d and the cosine similarity is used as s(·, ·)
to measure the similarity between primitives.

However, Eq.5 indicates that this strategy degenerates the
separated primitives into the averaged feature 1

n

∑n
i

Xi
||Xi||

which closely resembles f(x) = 1
S

∑S
i F (x)i. This ap-

proach lacks the flexibility to capture the compositional
information inherent in each class and sample. Further-
more, it may incorporate sample-specific candidate primi-
tives, such as the background, into the primitive set, because
the matching score between these sample-specific candidate
primitives and Zy could be mistakenly high.

Therefore, we set a weight for each matching as

sim(X,Zy) =
1

nN

∑
i,k

wAik
Xi
||Xi||

Zyk
||Zyk ||

(6)

whereWA = {wAik}N ·nik ∈ Rn×N is a weight matrix, which
filters out sample-specific candidate primitives in X by as-
signing low weights to their similarity with the primitive set,
and highlights important ones.

Inspiration from Representation Comparison

To obtain WA, we draw inspiration from a related field:
comparing representations across different models (Korn-
blith et al., 2019). This area focuses on comparing out-
puts from various neural networks to study the behavior
of deep models, typically based on features extracted from
the same set of images (Kornblith et al., 2019). However,
as representations extracted by different models may not
share the same set of channels, simple calculations like Eu-
clidean or cosine similarity may not be effective. There-
fore, various approaches have been proposed to handle
unmatched channels, including linear regression(Romero
et al., 2015), CCA(Raghu et al., 2017), SVCCA(Raghu
et al., 2017), DeepEMD(Oh et al., 2022), etc. Among these,
CKA(Kornblith et al., 2019) shows better reliability and
lower computational cost(Davari et al., 2022).

To compare representations of different models (RC), the
same batch of inputs is employed, but channels are disor-
dered and challenging to compare directly. In the compari-
son betweenX and Zy , (candidate) primitives are described
by the same set of channels, but primitives are disordered
and hard to be compared directly. Such symmetry inspires
us to view the channel dimension in RC as the primitive
dimension in sim(X,Zy) and the batch dimension in RC
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as the channel dimension in sim(X,Zy). Therefore, we
propose to use CKA as a better similarity function to obtain
WA in Eq.6 by simply transposing X and Zy. In sum-
mary, CKA captures the correlation between channels given
an ordered batch, and we propose to use it to capture the
correlation between primitives given ordered channels.

Specifically, in RC, given two models h(·) and g(·) for
comparison, features are extracted from Xr with the batch
size br as h(Xr) ∈ Rbr×dh and g(Xr) ∈ Rbr×dg to obtain
the CKA similarity as

CKA =
HSIC(h(Xr), g(Xr))√

HSIC(h(Xr), h(Xr)) ·HSIC(g(Xr), g(Xr))
,

HSIC(K,L) =
1

(br − 1)2
tr(KHLH) (7)

where K and L denotes h(Xr) and g(Xr), H is the center-
ing matrix Hn = In − 1

n11
> (Kornblith et al., 2019).

For our sim(X,Zy), we follow Eq.7 to replace h(Xr) and
g(Xr) with X> and Zy> respectively. Then, the similarity
between X and Zy can be obtained as

sim(X,Z) =
HSIC(X>, Zy>)√

HSIC(X>, Zy>) ·HSIC(X>, Zy>)
(8)

linear
=

||X̃Z̃y>||2

||X̃X̃>|| · ||Z̃Z̃y>||
. (9)

Recent studies have demonstrated that the linear CKA sim-
ilarity exhibits reliability comparable to the kernel CKA
similarity. Hereafter, we employ the linear CKA similar-
ity as our CKA-based similarity function to approximate
|Zy∩X| in Eq.2. In the linear CKA, Eq.9 is expressed equiv-
alently with the centered features X̃ = X − 1

d

∑
j X:,j and

Z̃y = Zy − 1
d

∑
j Z

y
:,j , where the dot product is computed

in the channel dimension instead of the primitive dimension.

Benefiting Compositions with Less Computational Over-
head and Robustness to Primitive Noises

By expanding Eq.9, we have

sim(X,Zy) =

n,N∑
i,k

(X̃iZ̃y
>
k )

||X̃X̃>|| · ||Z̃yZ̃y>||
· (X̃iZ̃y

>
k ) (10)

=

n,N∑
i,k

(
X̃i

||X̃i||
Z̃yk

||Z̃yk||

>
)

|| X̃
||X̃||

X̃
||X̃||

>
|| · || Z̃y

||Z̃y||
Z̃y

||Z̃y||

>
||︸ ︷︷ ︸

(wA
ik

)

· ( X̃i

||X̃i||
Z̃yk

||Z̃yi||

>

)︸ ︷︷ ︸
(
Xi

||Xi||
Z
y
k

||Zy
k
||

>
)

(11)

where ||X̃|| and ||Z̃|| denotes the row-wise norm.

Compare Eq.6 and Eq.11, we can see Eq.11 well matches
Eq.6 by automatically generating the WA

ik and replacing X
and Z with X̃ and Z̃ respectively. Since WA

ik is obtained
through the matrix multiplication, no extra computations are

Table 1. Evaluation of models trained by the baseline method.
CKA and the power transformed CKA shows less computational
overhead and better robustness to primitive noises.

FRN DeepEMD CKA Power transformed CKA

Last session accuracy (%) ↑ 18.15 24.03 38.42 39.47
Time (sec. / 100 images) ↓ 0.0233 12.3166 0.0139 0.0161

needed, reducing the computational overhead compared
with DeepEMD or FRN(Wertheimer et al., 2021).

Moreover, since DeepEMD or FRN obtain the matching
weight by globally taking all patches into account, it makes
them vulnerable to primitive noises. Such noise exists for
two reasons: (1) each sample contains sample-specific can-
didate primitives, but the features for them are not well
trained, due to their marginal contribution to classification;
(2) features are not discriminative enough at the early of
training. Such noises would make the complex linear pro-
gramming in DeepEMD or FRN fragile, harming the set
comparison. In contrast, in Eq.11, each matching weight
is generated by mainly taking the local comparison of two
patches (X̃i and Z̃yk ). Such simplicity makes the comparison
less vulnerable to noisy patch features and more robust.

To verify the computational efficiency and the noise robust-
ness, we train a model with only the baseline classification
loss on CIFAR100, and then conduct an evaluation based on
CKA, DeepEMD, and FRN. The average time and accuracy
of the last session are reported in Tab.1. Since the model is
not trained with the corresponding distance metric, the fea-
ture extracted by it could be understood to be ineffective and
thus noisy. We can see CKA shows the highest performance
under such noisy features with the lowest time cost.

As CKA is robust to patch noises, we further propose to
apply a power transformation on it to enhance such robust-
ness. Specifically, we introduce the transformation on fea-
ture maps by replacing Xi with Xα

i element-wisely, where
α < 1.0. This action smooths the distribution of matching
weights to avoid outliers caused by primitive noises.

Based on Eq.3 and Eq.11, we can classify x by trying to
compose it with primitive sets from different classes, which
also brings the training loss as

Lcmp = −ln e
sim(Xα,Zy)

|X|∑
k e

sim(Xα,Zk)
|X|

= −ln eτ ·sim(Xα,Zy)∑
k

eτ ·sim(Xα,Zk)
(12)

where τ is a temperature parameter to absorb |X| since |X|
is a constant. Since we have |Zy ∩ X| ≈ sim(X,Zy) in
Eq.2, we call sim(Xα, Zy) the composition score.

3.5. Primitive Reuse Design

Primitives are shared among classes, enhancing the inter-
pretability of the compositional model. However, in the
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Table 2. Comparison on the miniImageNet dataset. PD: lower performance drop indicates less forgetting.
Backbone Method S0 S1 S2 S3 S4 S5 S6 S7 S8 PD ↓

ResNet18

DeepEMD(Zhang et al., 2020) 69.77 64.59 60.21 56.63 53.16 50.13 47.79 45.42 43.41 26.36
CLOM(Zou et al., 2022) 73.08 68.09 64.16 60.41 57.41 54.29 51.54 49.37 48.00 25.08
SoftNet(Yoon, 2023) 76.63 70.13 65.92 62.52 59.49 56.56 53.71 51.72 50.48 26.15
ALICE(Can Peng, 2022) 80.60 70.60 67.40 64.50 62.50 60.00 57.80 56.80 55.70 24.90
SAVC(Song et al., 2023) 81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11 24.01

Comp-FSCIL 82.78 77.82 73.70 70.57 68.26 65.11 62.19 60.12 59.00 23.78

ResNet12 NC-FSCIL(Yibo Yang, 2023) 84.02 76.80 72.00 67.83 66.35 64.04 61.46 59.54 58.31 25.71

Comp-FSCIL 84.00 78.49 74.44 71.51 69.30 66.61 63.66 61.64 60.61 23.39

Table 3. Dataset (Zhang et al., 2021). Every dataset provides fixed
training and test sets, so the sampling of episodes is not needed.

Dataset Total Base Novel Inc. Sessions Shot Image Size

miniImageNet 100 60 40 8 5 84 × 84
CUB200 200 100 100 10 5 224 × 224
CIFAR100 100 60 40 8 5 32 × 32

current design, primitive sets are learned independently in
each class, restricting the reuse of primitives. To address
this limitation, we introduce a primitive-reuse module to
enhance the correlation between primitives across classes.

During the base-session training, given the primitive set
Zy = {P yi }Ni from the class y, we use primitives from other
base classes to replace Zy. Denote primitives from other
base classes as {P ok }

N ·(|Y0|−1)
k , for each P yi , we obtain its

similarity with other primitives as sr(P
y
i , P

o
k ) = −||P

y
i −

P ok ||2. Then we calculate the attention on P ok against all
other base-class primitives as

atty,ik =
eγ·sr(P

y
i ,P

o
k )∑N·(|Y0|−1)

k=1 eγ·sr(P
y
i ,P

o
k
)
, (13)

where γ is a pre-defined hyper-parameter. The replacement
is then calculated as a weighted sum of all primitives as

P̂ yi =
∑N·(|Y0|−1)

k=1
atty,ik P ok . (14)

By setting a large γ (e.g., 64), we push the model to focus on
only the closest primitive from other classes. Then, we use
P̂ yi to replace P yi . The above replacement will be carried
out on all primitives Z ∈ R|Y0|×N×d to obtain the replaced
primitive sets Ẑ. Finally, a classification loss will be applied
to the input sample based on the replaced primitive set Ẑ as

Lrcmp = −ln eτ ·sim(Xα,Ẑy)∑
i e
τ ·sim(Xα,Ẑi)

, (15)

where τ is a temperature parameter. During training, as X
can be effectively classified by the original primitive sets,
minimizing Lrcmp pushes the model to generate optimal
replacements for each primitive P yi by reducing its distance
with the nearest primitives from different classes, facilitating
the reuse of primitives across classes.

In the incremental session, primitives from all base classes
are employed to replace novel-class primitive sets.

3.6. Model Training and Evaluation

During the base session, we incorporate the baseline classi-
fication loss to ensure the stability of model training. The
ultimate model encompasses two classifiers: one for the
ordinary classification (with parameters W ∈ R|Y |×d) and
another for the compositional classification (with parameter
Z ∈ R|Y |×N×d). In the baseline classification loss, we
utilize the standard feature (i.e., the global-average-pooling
feature or the CLS token feature, f(x)) to compute the loss

Lcls = −ln
eτ ·s(f(x),Wy)∑
i e
τ ·s(f(x),Wi)

. (16)

In all, the model is trained with all three losses as

L = Lcls + λ1Lcmp + λ2Lrcmp. (17)

In the incremental session, we fix the backbone network
and only train the novel-class primitive set Znovel by Eq.17.
The base-class primitives are reused in novel classes, both
implicitly by the transferring of the backbone network and
explicitly byLrcmp. During this period, the model learns the
composition of reused primitives by training Znovel suitable
for composition. Finally, the model will be deployed to
classify all encountered classes based on all primitive sets
using the composition score.

4. Experiments
4.1. Dataset and Implementation Details

Datasets are listed in Tab.3. Our method is based on the code
of CEC (Zhang et al., 2021). For miniImageNet, we follow
NC-FSCIL (Yibo Yang, 2023) to utilize ResNet12 (He et al.,
2016) as the backbone network, and we set λ1 = λ2 = 2.0,
α = 0.8. For CIFAR100, we follow NC-FSCIL (Yibo Yang,
2023) to utilize ResNet12 as the backbone network, and
we remove the pooling operation for the first two residual
blocks following ResNet20 used in (Zhang et al., 2021),
to keep the spatial resolution of the output map. We set
λ1 = λ2 = 2.0, α = 0.6. For CUB200, we follow
CLOM (Zou et al., 2022) to scale the learning rate of the
backbone network to 10% of that in the FC layer, due to the
pretraining from ImageNet following (Zhang et al., 2021).
We set λ1 = λ2 = 0.01, α = 0.5.
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Table 4. Comparison on the CIFAR100 dataset.
Backbone Method S0 S1 S2 S3 S4 S5 S6 S7 S8 PD ↓

ResNet20

DeepEMD(2020) 69.75 65.06 61.20 57.21 53.88 51.40 48.80 46.84 44.41 25.34
WaPR(2023) 74.21 69.96 65.86 61.92 58.74 55.79 53.50 51.51 49.33 24.88
MetaFSCIL(2022a) 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 24.53

Comp-FSCIL 76.00 71.75 67.67 63.76 60.99 57.98 55.98 54.09 51.61 24.39

ResNet18

SoftNet((Yoon, 2023)) 72.62 67.31 63.05 59.39 56.00 53.23 51.06 48.83 46.63 25.99
ALICE(2022) 79.00 70.50 67.10 63.40 61.20 59.20 58.10 56.30 54.10 24.90
WaPR(2023) 80.31 75.86 71.87 67.58 64.39 61.34 59.15 57.10 54.74 25.57

Comp-FSCIL 80.93 76.52 72.69 68.52 65.50 62.62 60.96 59.27 56.71 24.22

ResNet12 NC-FSCIL(2023) 82.52 76.82 73.34 69.68 66.19 62.85 60.96 59.02 56.11 26.41

Comp-FSCIL 82.30 78.58 74.47 70.27 67.29 64.49 62.78 61.38 59.05 23.25

Table 5. Comparison with state-of-the-art works on the CUB200 dataset. PD: lower performance drop indicates less forgetting.
Backbone Method S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 PD ↓

ResNet18

D-DeepEMD (Zhang et al., 2020) 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60 27.75
MetaFSCIL (Chi et al., 2022b) 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 23.26
SoftNet(Yoon, 2023) 78.07 74.58 71.37 67.54 65.37 62.60 61.07 59.37 57.53 57.21 56.75 21.32
WaPR(Kim et al., 2023) 77.74 74.15 70.82 66.90 65.01 62.64 61.40 59.86 57.95 57.77 57.01 20.73
GKEAL(Zhuang et al., 2023) 78.88 75.62 72.32 68.62 67.23 64.26 62.98 61.89 60.20 59.21 58.67 20.21
NC-FSCIL (Yibo Yang, 2023) 80.45 75.98 72.30 70.28 68.17 65.16 64.43 63.25 60.66 60.01 59.44 21.01
CLOM (Zou et al., 2022) 79.57 76.07 72.94 69.82 67.80 65.56 63.94 62.59 60.62 60.34 59.58 19.99

Comp-FSCIL 80.94 77.51 74.34 71.00 68.77 66.41 64.85 63.92 62.12 62.10 61.17 19.77

Swin-T CLOM (Zou et al., 2022) 86.28 82.85 80.61 77.79 76.34 74.64 73.62 72.82 71.24 71.33 70.50 15.78

Comp-FSCIL 87.67 84.73 83.03 80.04 77.73 75.52 74.32 74.55 73.35 73.15 72.80 14.87

4.2. Comparison with State-of-the-Art Methods

The comparison with state-of-the-art works is in Tab.2, 4 and
5, with all sessions in the incremental learning. From these
tables, we can see that we consistently outperform current
works by over 1.5% in terms of the last session’s perfor-
mance, where all classes are taken into account. Moreover,
we utilize the Swin Transformer (Liu et al., 2021) (the tiny
version, denoted as Swin-T) as an example to evaluate our
method given the pretraining of Large Vision Model (LVM,
ImageNet1k in our experiments). For a fair comparison,
experiments of Transformers are conducted on CUB200
where the ImageNet pretraining is utilized by other works.
To compare with current works, we implement CLOM (Zou
et al., 2022) as the state-of-the-art method that has the high-
est last-session accuracy in Tab.5. We can still outperform
it by 2.0% in terms of the last-session accuracy. PD de-
notes the Performance Drop. It means the first session’s
accuracy subtracts the last session’s accuracy, with lower
values indicating less forgetting. We can also achieve the
least forgetting due to the reuse of primitives.

4.3. Ablation Study

The ablation study is reported in Tab.6. We include the
performance of the Overall accuracy, referring to the last-
session accuracy; the Base accuracy, referring to the base-
session accuracy (S0); and the Novel accuracy, referring to
the accuracy of classifying all novel-class samples into novel

Figure 3. Visualization of class-activation-map (CAM). BL: Base-
line model; CF: Our compositional model. CF-CAM activates
smaller regions than BL-CAM and filters out sample-specific re-
gions such as background, validating the focus on shared patches.

classes, equivalent to the k-way n-shot evaluation in few-
shot learning. We can see each module has its contribution
for all training scenarios and all performance measurements,
by means of avoiding forgetting via maintaining learned
primitives and fast learning of compositions. We also report
the sensitivity study of the power transformation parame-
ter α in Fig.4, indicating it could further enhance model
robustness to primitive noises.

4.4. Primitive Effectiveness

4.4.1. QUANTITATIVE ANALYSIS

Quantitatively, we test the recognition by throwing away
sample-specific candidate primitives through WA, and re-
port the performance against the number of remaining prim-
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Table 6. Ablation study of modules on the last incremental session of three datasets.

Method CUB200 CUB200 (Swin-T) CIFAR100 miniImageNet

Overall Base Novel Overall Base Novel Overall Base Novel Overall Base Novel

Baseline 57.18 79.48 45.67 69.18 85.65 61.71 53.98 79.92 44.07 57.72 82.53 42.82
+ Composition 59.25 80.13 49.01 71.42 87.08 63.75 55.30 81.43 47.52 58.84 82.85 44.37
+ Reusing 61.17 81.06 51.40 72.80 87.79 65.12 59.05 82.30 51.05 60.61 84.00 46.52

Figure 4. Sensitivity study of the power transformation parameter
α, which further improves model robustness to primitive noises.

Figure 5. Quantitatively validating our method focuses more on
important primitives by only maintaining them on CIFAR100.

itives in Fig.5. We can see our model achieves higher per-
formance given the same number of remaining primitives,
indicating our model focuses more on important patches.

4.4.2. QUALITATIVE ANALYSIS

To qualitatively validate the discovered primitives, we com-
pare the activation map of the baseline model (BL) and our
compositional FSCIL model (CF), by the class-activation-
map (CAM) (Zhou et al., 2016). Since CAM relies on the
dot-product betweenWy andX which cannot be directly ap-
plied to our CKA-based model, we rewrite the numerator in
CKA as

∑n
i [
∑N
k (

∑d
j X̃ijZ̃kj)

2] where the [·] denotes the
designed CF-CAM. Based on the CF-CAM visualization in
Fig.3, we can see CF-CAM shows smaller activated regions
compared with BL-CAM, which filers out sample-specific
regions such as background areas. This phenomenon vali-
dates that our compositional FSCIL method could filter out
sample-specific patches and highlight important (shared)
ones, which improves primitives and compositions.

Then, we visualize primitives by retrieving image patches
according to WA, which is the importance value in Eq.11,
for each class with samples from this class. We report the re-
trieved patches in Fig.6 sorted by the importance values. We
can see that candidate primitives with large importance val-
ues can indeed represent shared patterns of each class, such
as furs, eyes, and beaks. In contrast, patches at the end of

Figure 6. Image patches retrieved in each class, where important
patches (candidate primitives) can represent shared patterns.

Table 7. Verification of primitive reuse on CIFAR100.

Ratio (%) Baseline All Match Max Match + Comp + Reuse

1 100.0 100.0 100.0 100.0 100.4
2 99.80 99.69 99.44 100.0 100.04
5 99.63 99.56 99.50 100.04 100.10

10 98.14 98.14 98.44 100.14 100.10
20 93.56 95.72 96.01 100.35 101.30
50 82.18 90.83 92.17 99.02 99.74
80 69.80 80.42 82.39 87.86 89.48
90 62.38 67.28 70.01 73.14 76.83

the sort refer to sample-specific patterns such as grass, sand,
or other patterns irrelevant to the class, which are filtered
out by our model through the small importance value. This
phenomenon further validates that our compositional model
can effectively focus on important candidate primitives and
filter out sample-specific ones.

4.5. Primitive Reusability and Composition

4.5.1. QUANTITATIVE ANALYSIS

To verify our model can better transfer and reuse primitives
than ordinary methods, we replace novel-class primitives
with the nearest primitives in base classes. For the ordi-
nary method, we use the class prototype as their primitives.
We plot the ratio of replaced primitives and the ratio of re-
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Figure 7. Image patches are retrieved across classes to validate the
composition of primitives, where each row refers to a primitive.
Based on it, we can interpret novel-class recognition such as The
spider web is composed of a net and a spider like an ant (P8, P9).
An extended version is included in the appendix.

maining novel-class performance in Tab.7. We can see our
model can achieve higher performance when primitives are
replaced, validating the reusability of primitives, which lays
the ground for our interpretation by primitives.

We also compare our method with other set-similarity-based
methods (Afrasiyabi et al., 2022) in Tab.7. We can see the
compositional structure (i.e., reuse of primitives) is lower
than ours (the last row, when reusing ratio=90%, the recov-
ered ratio is much lower than ours). Therefore, the naturally
arisen reusability is far from being perfect, which needs to
be strengthened by our methods.

Moreover, since in Tab.7 the performance begin to drop
only when the replace ratio reaches 80%, we only need
to re-learn 20 of primitives and can reuse other base-class
primitives. Since the base session is fixed for each novel
class, this means the novel-class primitive space has been
compressed to 20 of its original size. These verify the
potential to compress the primitive size.

4.5.2. QUALITATIVE ANALYSIS

Finally, in Fig.7, we retrieve primitives across classes to
validate the composition of primitives. We first retrieve

Table 8. Ablate the primitive number on CIFAR100.
Ratio (%) Base Classes Novel Classes All Classes

1 57.20 34.90 33.20
4 75.01 40.22 48.32
9 75.35 41.47 51.55
16 76.00 42.57 51.61
25 75.25 42.32 51.49
36 75.50 42.00 51.28
49 76.16 41.37 51.23
64 76.18 42.27 51.60
81 76.28 41.27 51.06

100 75.76 41.10 51.37

important primitives within each class according to the im-
portance value in each column. Then, primitives retrieved
across classes with the smallest distances are in the same
row. × denotes the primitive is not activated in the given
class. We can see although classes are not the same, the im-
age patches of primitives are similar, validating the reusabil-
ity of primitives. Moreover, primitives reused across classes
can be viewed to compose each novel class, therefore we
can interpret the recognition of each novel class in the fol-
lowing way: P8 + P9: The spider web is composed of a net
and a spider like an ant. P1 + P2 + P3: A tank is composed
of a vehicle with armor and a gun barrel.

4.5.3. NUMBER OF PRIMITIVES

We report experiments on CIFAR in Tab. 8 to ablate primi-
tive numbers. Since the feature map of CIFAR is at the size
of 8×8, we increase the number of primitives squarely. We
can see the performance reaches the top after the primitive
num reaches 9 or 16, which is not a heavy burden compared
with the parameters in the deep networks (e.g., 512 * 9 = 4k
parameters in the primitive size vs. millions of parameters
in the ResNet backbone). If the primitive size is too small,
the model will lack the flexibility to represent base knowl-
edges. If the primitive size keeps increasing, although the
capacity is larger, it also imports less effective primitives
and thus fails to keep improving the performance. In our
experiments, we choose 16 as the primitive size.

5. Conclusion
To imitate human’s ability of compositional learning, we
propose a compositional FSCIL method to divide knowl-
edge into primitives and learn novel knowledge by the com-
position of primitives. Experiments on three datasets vali-
date the rationale and effectiveness of our method.
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Impact Statement
We propose a cognitive-inspired method to handle the FS-
CIL problem by simulating humans’ ability to composi-
tional learning. This work can also be adopted in other
fields like few-shot learning, and image retrieval, since the
compositional structure of knowledge exists in many other
domains. The limitation of this work is the neglect of the
many-shot scenarios where the update of primitives cannot
be ignored. However, as our method can provide a good
initialization for the future update of primitives, it will also
benefit the many-shot scenarios.
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Appendix for Compositional Few-Shot Class-Incremental Learning

A. Detailed Dataset Description
miniImageNet (Vinyals et al., 2016) contains 100 classes
with 600 samples in each class randomly sampled from
ImageNet (Deng et al., 2009), which is relevant to the recog-
nition of general objects such as cats, dogs, instruments and
so on. Some samples of miniImageNet are shown in Fig. 1.
Following current works (Zhang et al., 2021; Zhou et al.,
2022), images are resized to 84 × 84, and 60 classes are
utilized as base classes, while the remaining 40 classes are
divided into 8 sessions for incremental learning, where only
5 training samples are available for each novel class.

Figure 1. Samples of miniImageNet.

CIFAR100 (Krizhevsky et al., 2009) also contains 100
classes relevant to the recognition of general objects. Sam-
ples are shown in Fig. 2, where each image is at the size
of 32 × 32. Similar to miniImageNet, following current
works (Zhang et al., 2021; Zhou et al., 2022), 60 classes are
selected as base classes, and the remaining 40 classes are
divided into 8 incremental sessions with 5 training samples
in each novel class.

CUB-200-2011 (CUB200) (Wah et al., 2011) is a fine-
grained dataset of birds with 200 classes in all. Samples are
shown in Fig. 3, where the input size for each image is 224
× 224. Following current works (Zhang et al., 2021; Zhou
et al., 2022), 100 classes are selected as base classes, and
the remaining 100 classes are separated into 10 sessions for
incremental learning.

B. More Experiments
B.1. Extended Primitive Visualization

We provided an extended visualization of primitive across.
Similar to section 4.5.2, in Fig.4, each column refers to a

Figure 2. Samples of CIFAR100.

Figure 3. Samples of CUB200.

miniImageNet class, and each row refers to a primitive. We
can see that primitives are reused across classes by sharing
similar semantic meanings.

B.2. Sensitivity Study

We also provide the sensitivity study of hyper-parameters
from the primitive diversification module on CIFAR100,
miniImageNet and CUB200 in Fig.5. We can see these
three datasets show similar trends. Take CIFAR100 for
an example. λ, as the importance of the CKA similarity,
achieves the highest accuracy around 2.0, meaning both
the classical and CKA similarity are important in learning
effective primitives. Moreover, on the CUB200 dataset,
the optimal λ is significantly smaller than that on the other
datasets. This is because the ImageNet pretraining is utilized
on CUB200, which requires the model to make better use
of the pretraining. Since the pretraining is based on the
classical similarity function, the weight of the loss generated
by the classical similarity function should be larger.
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Figure 4. Extended primitive visualization across classes. Image patches are retrieved across classes to validate the composition of
primitives, where each row refers to a primitive. Based on it, we can interpret novel-class recognition such as The spider web is composed
of a net and a spider like an ant (P10, P11).

Figure 5. Sensitivity study of hyper-parameters λ.

B.3. Comparison with Compositional Learning Works

To compare our work with other compositional-learning-
based works, we also implemented CPDE (Zou et al., 2020)
and RPC (Mishra et al., 2022) on the CIFAR100 dataset
following the setting provided in section 4.1. The results
are reported in Tab. 1, where we can outperform it in terms
of the accuracy on each session. This is because CPDE

build primitives from the aspect of channels, but we build
primitives based on image patches. Although each chan-
nel can indeed represent semantic patterns, it still takes the
whole image as input, which makes it vulnerable to noisy
patches such as background. Moreover, the comparison
between primitive sets of CPDE, however, is still modeled
as the cosine similarity between every two holistic features,
which can hardly prevent it from being affected by noisy
patterns. In contrast, our method can efficiently filter out
noisy patches and highlight important ones, which there-
fore benefits our model with higher performance. For the
RPC method, this method also learns primitives from the
spatial dimension. However, it forces the model to learn and
recognize through a fixed dictionary of primitives, which
lacks the flexibility to capture the sample-specific primitives.
Therefore, our method can also outperform RPC.
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Table 1. Comparison with compositional learning works on the CIFAR100 dataset.

Method S0 S1 S2 S3 S4 S5 S6 S7 S8 PD ↓
CPDE (Zou et al., 2020) 80.85 76.09 71.67 67.69 64.31 61.49 59.08 56.79 54.54 26.31
RPC (Mishra et al., 2022) 80.65 76.22 72.11 68.04 64.61 61.93 59.60 57.41 55.28 25.37
Ours 82.30 78.58 74.47 70.27 67.29 64.49 62.78 61.38 59.05 23.25

C. Extended Related Work
Few-shot class-incremental learning (FSCIL) can be
roughly grouped into adaptation-based (Hou et al., 2019;
Rebuffi et al., 2017; Castro et al., 2018; Tao et al., 2020)
and metric-based methods (Zhang et al., 2021; Zou et al.,
2022). The first group adapts the model during novel-class
training, but the backbone network may be frozen to avoid
catastrophic forgetting (Zhou et al., 2022). For example,
CEC (Zhang et al., 2021) meta-trains the the graph network
for propagating the classifier information according to con-
texts on base classes, and then transfers the propagation
mechanism to novel classes for generating novel-class clas-
sifiers. FACT (Zhou et al., 2022) reserves feature space for
novel classes to avoid the conflicts between novel classes
and base classes, so as to alleviate the catastrophic forget-
ting brought by the novel-class finetuning. The second
group represents each class through prototypes averaged
from samples (Zou et al., 2022), which also freezes network
parameters to avoid catastrophic forgetting. For example,
CLOM (Zou et al., 2022) learns a margin-based feature ex-
tractor to improve the representations, and recognizes novel
classes by the distance between prototypes and each sam-
ple’s representation. However, most of current works learn
a holistic feature for each input sample, and seldom works
studied the compositional structure of the FSCIL models.
To the best of our knowledge, we are the first to discover the
compositional components of the learned knowledge, and
build a compositional model with both higher performance
and better interpretability.

Compositional learning aims to learn through primitives
(components) of knowledge, which has been well studied in
cognitive science (Biederman, 1987; Hoffman & Richards,
1984; Fodor, 1975). Some works applied this concept in
other domains. For example, CompCos (Zou et al., 2020) de-
composes classes into channels for few-shot learning, which
views the cosine similarity between prototypes and input
samples as the element-wise comparison between primitive
sets. CORL (He et al., 2021) decomposes knowledge into
pre-defined visual prototypes learned on base classes, and
utilizes pre-defined activation maps for novel-class compo-
sition. (Purushwalkam et al., 2019) decomposes visual fea-
tures to attributes for zero-shot learning, which encourages
the visual features to be close to the combination of attribute
features. (Kato et al., 2018) decomposes human-object in-
teractions into actions and objects. However, seldom effort

has been made for the FSCIL task so far, and most of the
current works (Purushwalkam et al., 2019; Kato et al., 2018)
rely on the extra attribute or part annotations. Compared
with them, our decomposition is from the spatial dimension
and does not require additional annotations for primitives.
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