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Abstract

Probabilistic answer set programming has recently
been extended to manage imprecise probabilities
by means of credal probabilistic facts and credal
annotated disjunctions. This increases the expres-
sivity of the language but, at the same time, the
cost of inference. In this paper, we cast inference
in probabilistic answer set programs with credal
probabilistic facts and credal annotated disjunc-
tions as a constrained nonlinear optimization prob-
lem where the function to optimize is obtained via
knowledge compilation. Empirical results on dif-
ferent datasets with multiple configurations show
the effectiveness of our approach.

1 INTRODUCTION

Uncertainty pervades every aspect of every day’s life. Repre-
senting these situations with an expressive yet comprehensi-
ble language is crucial to understand them. Logic languages,
such as Prolog [Sterling and Shapiro, 1994] and Answer Set
Programming (ASP) [Brewka et al., 2011] are considered
interpretable by design, since users can often encode the do-
main of interest with few lines of codes. In particular, ASP
can compactly describe combinatorial problems. However,
these languages can only represent certain data. Several
semantics have been proposed to extend logic languages
with constructs to represent uncertain data. One of the first
was the distribution semantics (DS) [Sato, 1995] that gave
the birth to the field of Probabilistic Logic Programming
(PLP) and to languages such as ProbLog [De Raedt et al.,
2007] and Logic Programs with Annotated Disjunctions
(LPADS) [Vennekens et al., 2004]. The credal semantics
(CS) [Cozman and Mauá, 2020] applies the ideas of the DS
to ASP, obtaining Probabilistic Answer Set Programming
(PASP).

Inference in PLP and PASP can be performed via knowl-

edge compilation [Darwiche and Marquis, 2002], where
the program is converted in an alternative form which al-
lows inference in (possibly) faster way. Recently, Mauá and
Cozman [2023] extended PASP with imprecise probabili-
ties, allowing the representation of any credal network with
finitely generated credal sets, and propose a solver called
dpasp based on vertex enumeration.

In this paper, we propose to solve the inference task in prob-
abilistic answer set programs with imprecise probabilities
via optimization, by extracting an equation from the result
of knowledge compilation and optimizing it subject to some
constraints. Empirical results on 4 different datasets with
multiple configurations show that this approach is signifi-
cantly faster than enumeration adopted in Mauá and Cozman
[2023]. Furthermore, our solver is also able to manage anno-
tated disjunctions with imprecise probabilities, which dpasp
cannot manage.

The paper is structured as follows: Section 2 introduces
background concepts involving PLP and PASP. In Section 3
we discuss how to cast inference in probabilistic answer set
programs with imprecise probabilities as an optimization
problem. Section 4 presents the experiments conducted to
assess the performance of the developed solver. Related
works are surveyed in Section 5 and Section 6 concludes
the paper.

2 BACKGROUND

ProbLog [De Raedt et al., 2007] allows probabilistic facts
of the form

Π :: a

where a is a ground atom and Π ∈ [0, 1] is its probability,
with the meaning that a is true (resp. false), with probability
Π (resp. 1−Π). The distribution semantics (DS) [Sato, 1995]
is based on the concept of world, a normal logic program
obtained by including or not each probabilistic fact. If there
are l probabilistic facts, then the number of worlds is 2l. The
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probability of a world w is computed as

P (w) =
∏
ai∈w

Πi ·
∏

ai ̸∈w

(1−Πi) (1)

where the Πi :: ai are the probabilistic facts. The probability
of an atom q, called query, is computed as the sum of the
probabilities of the worlds where q is true. That is,

P (q) =
∑
w|=q

P (w) (2)

To clarify, consider Example 1.

Example 1 The following probabilistic logic program has
two probabilistic facts: a with probability 0.3 and b with
probability 0.4.

0.3::a.
0.4::b.
q:- a.
q:- b.

It has four worlds: w1 where both a and b are false, with
P (w1) = (1− 0.3) · (1− 0.4) = 0.42; w2 where a is false
and b is true, with P (w2) = (1 − 0.3) · 0.4 = 0.28; w3

where a is true and b is false, with P (w3) = 0.3·(1−0.4) =
0.18; and w4 where both a and b are true, with P (w4) =
0.3 · 0.4 = 0.12. The probability of the query q is given by
P (q) = P (w2)+P (w3)+P (w4) = 0.28+0.18+0.12 =
0.58, since q is true in all the worlds except for w1.

Annotated disjunctions were introduced by Vennekens
et al. [2004] with the syntax h1 : Π1; . . . ;hm :
Πm :− b1, . . . , bn, where

∑
i Πi = 1. The meaning is that,

when the conjunction of the literals bj in the body is true,
one of the head atoms hi is true with the corresponding
probability Πi. We consider the notation

Π1 :: h1; . . . ; Πm :: hm :− b1, . . . , bn

for uniformity with ProbLog. Annotated disjunctions can be
converted into probabilistic facts [De Raedt et al., 2008] as
follows: for each annotated disjunction Π1 :: h1; . . . ; Πm ::
hm :− B (with B the body) with m heads we add m − 1
probabilistic facts and m rules:

π1 :: f1.

. . .

πm−1 :: fm−1.

h1 :− B, f1.

h2 :− B,not f1, f2.

. . .

hm :− B,not f1, . . . , not fm−1.

(3)

where π1 = Π1 and πi = Πi/
∑i−1

j=1(1 − πi) for i > 0.
For example, the probabilistic facts obtained by converting

the annotated disjunction 0.2 :: a; 0.3 :: b; 0.5 :: c have
probability 0.2 and 0.3/(1− 0.2) = 0.375.

The credal semantics (CS) assigns a meaning to probabilistic
answer set programs [Cozman and Mauá, 2020], i.e., answer
set programs [Brewka et al., 2011] extended with ProbLog
probabilistic facts. In this setting, a world may have zero
or more stable models (also called answer sets). A stable
model is a minimal model under set inclusion of the reduct
of an answer set program P , where the reduct of P w.r.t.
an interpretation I is obtained by removing from P all the
rules that have the body false in I . An interpretation is called
model if it satisfies all the groundings of the rules of P . The
CS requires that every world has at least one answer set.
The probability of a query q under the CS is described by a
probability range, defined by a lower (P(q)) and an upper
(P(q)) bound. A world w contributes to both the lower and
upper bound if the query is true in every answer set of w.
Conversely, a world w contributes to only the upper bound
if the query is true in at least one answer set of w. This can
be expressed in formulas as

P(q) =
∑

wi|∀m∈AS(wi), m|=q

P (wi) (4)

P(q) =
∑

wi|∃m∈AS(wi), m|=q

P (wi) (5)

Example 2 The following probabilistic answer set program
is a variation of the probabilistic logic program shown in
Example 1.

0.3::a.
0.4::b.
q:- a.
q ; r :- b.

Consider, as in Example 1, the query q. w2 (where a is false
and b is true) has 2 answer sets, {q, b} and {r, b}, and it
only contributes to the upper probability for q, since q is
true only in the first. w3 and w4 have a unique answer set
each ({a, q} and {a, b, q}, respectively) where q is true, so
they contribute to both lower and upper probability. w1 has
a unique answer set with no atoms, so it does not contribute.
Overall, P (q) = [P(q),P(q)] = [P (w3)+P (w4), P (w2)+
P (w3) + P (w4)] = [0.3, 0.58].

Inference in probabilistic answer set programs can be
performed via Second Level Algebraic Model Counting
(2AMC) [Kiesel et al., 2022]. 2AMC is an abstract frame-
work that comprises several well-known problems, such as
inference, decision theoretic inference, and MAP inference.
The task considers two commutative semirings [Gondran
and Minoux, 2008] Ri = {Di,⊕i,⊗i, n⊕i , n⊗i} and
Ro = {Do,⊕o,⊗o, n⊕o , n⊗o}, a propositional theory T
whose variables are split into two disjoint sets, Vo and Vi,
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two weight functions wi and wo, and a transformation func-
tion f , and requires solving:

2AMC(T ) =
⊕o

Io∈µ(Vo)

⊗o

a∈Io
wo(a)⊗o

f(
⊕i

Ii∈φ(Π|Io)

⊗i

b∈Ii
wi(b))

(6)

where µ(Vo) is the set of possible assignments to the vari-
ables in Vo and φ(T | Io) is the set of possible assignments
to the variables in T that satisfy Io. Said otherwise, for every
assignment of the variables Vo, we need to solve an inner
AMC [Kimmig et al., 2017] task on the variables Vi. The
result of the inner AMC is converted through the transfor-
mation function f into a value coherent with the ones of
the variables in the outer semiring and we need to solve
a second AMC task, this time by considering Vo. Kiesel
et al. [2022] also introduced a tool called aspmc [Eiter et al.,
2021] to solve 2AMC problems, based on a conversion
guided by the treewidth of the program into a compact
form via knowledge compilation [Darwiche and Marquis,
2002]. The target of the compilation is negation normal
form (NNF), a rooted directed acyclic graph where internal
nodes are associated with conjunction (AND-nodes) or dis-
junctions (OR-nodes) and leaves are associated with literals,
true, or false. Furthermore, the obtained NNF has the prop-
erties of decomposability, determinism, smoothness, and
X-first modulo definability. In particular, the last property
imposes an hierarchical structure on the appearance of the
variables, allowing to consider them according to the speci-
fied semiring. This tree can be traversed bottom up to solve
the 2AMC task.

Azzolini and Riguzzi [2023] introduced aspcs, a solver
built on top of aspmc, to perform inference in proba-
bilistic answer set programs. To do so, they instantiate
Equation 6 by considering as inner semiring Rin =
(N2,+, ·, (0, 0), (1, 1)) with wi mapping not q (assuming
that we are interested in computing the probability of the
query q) to (0, 1) and all other literals to (1, 1), where opera-
tions are performed component-wise. In this inner semiring,
we have a fixed world. Practically, Rin counts the number
of answer sets where the query is true and the total number
of answer sets. The transformation function is f(n1, n2)
returning a pair (vlp, vup) where vlp = 1 if n1 = n2,
0 otherwise, and vup = 1 if n1 > 0, 0 otherwise. This
function checks the bounds to which the considered world
contributes. The outer semiring is an extension of the proba-
bility semiring [Kimmig et al., 2017] to two dimensions, i.e.,
Rout = ([0, 1]2,+, ·, (0, 0), (1, 1)) (the operations are still
considered component-wise), with wo associating (p, p) and
(1− p, 1− p) to a and not a, respectively, for every proba-
bilistic fact p :: a and (1, 1) to all the remaining literals. In
other words, in Rout, we multiply the probabilities of the
probabilistic facts and sum them to obtain the probability of
q.

Mauá and Cozman [2023] introduced probabilistic facts

with an imprecise probability, that in this paper we call
credal facts. These are expressed with the syntax [α, β] :: a
with the meaning that a (a ground atom) has a probability
ranging between α and β, with α, β ∈ R, 0 ≤ α ≤ β ≤ 1.
Mauá and Cozman [2023] also discussed annotated disjunc-
tions with imprecise probabilities, that we call credal anno-
tated disjunctions, for uniformity with credal facts. Their
syntax is

[α1, β1] :: h1; . . . ; [αm, βm] :: hm :− b1, . . . , bn (7)

where each hi is an atom and each bj is a literal. The mean-
ing is that, when the conjunction of the literals in the body
is true, one of the head atoms is true with the corresponding
probability range. To ensure well definedness, the reacha-
bility property must be met, i.e., αi +

∑
j ̸=i βj ≥ 1 and

βi +
∑

j ̸=i αj ≤ 1 for all i.

3 INFERENCE WITH CREDAL FACTS
AND CREDAL ANNOTATED
DISJUNCTIONS

In this section, we first discuss how to cast inference in
programs with credal facts only (and possibly probabilistic
facts) as an optimization problem. Then, we extend that
approach to also manage credal annotated disjunctions.

3.1 INFERENCE WITH CREDAL FACTS

Inference in programs with credal facts and without credal
annotated disjunctions can be cast as inference in proba-
bilistic answer set programs with only probabilistic facts,
by converting (as described by [Mauá and Cozman, 2023])
each credal fact [α, β] :: a into an annotated disjunction
α :: a1; 1 − β :: a2;β − α :: a3 and three rules a :− a1,
na :− a2, and a;na :− a3. To clarify, consider Example 3.

Example 3 The following probabilistic answer set program
is a variation of one shown in Example 2. Now, a and b are
credal facts.

[0.3,0.4]::a.
[0.4,0.9]::b.
q:- a.
q ; r :- b.

This program is converted into

0.3 :: a1 ; 0.6 :: a2 ; 0.1 :: a3.
a :- a1.
na :- a2.
a ; na :- a3.
0.4 :: b1 ; 0.1 :: b2 ; 0.5 :: b3.
b :- b1.
nb :- b2.
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b ; nb :- b3.
q:- a.
q ; r :- b.

The probability of the query q is [0.3, 0.94].

However, this conversion greatly increases the number of
probabilistic facts and rules, possibly slowing down the
inference process. We propose an alternative approach
based on 2AMC. We consider as inner semiring and trans-
formation function the same of Azzolini and Riguzzi
[2023] and described in Section 2. For the outer semir-
ing Rout we propose an extension to two dimensions of
the sensitivity semiring [Kimmig et al., 2017]: Rout =
(R[X],+,−, (0, 0), (1, 1)), with wo associating (pi, pi) and
(1−pi, 1−pi) to ai and not ai, respectively, for every prob-
abilistic fact pi :: ai; (πi, πi) and (1 − πi, 1 − πi) to vi
and not vi, respectively, for every credal fact [α, β] :: vi,
where the πi are symbolic variables representing the proba-
bility of the credal facts. The remaining literals are assigned
(1, 1). In this way, by solving the 2AMC, we obtain two
non-linear formulas with at most k variables, where k is the
number of credal facts, composed by summations and prod-
ucts only (except for trivial cases). Let us call them flp(X)
and fup(X), where X = {π1, . . . , πk}. Their general form
is flp/up(X) =

∑
w

∏
ai∈w πi

∏
aj ̸∈w(1 − πj). If we re-

place each variable with a value, we get the lower and upper
probability for the query when the facts have the chosen
values. Now, the lower probability for q can be obtained by
minimizing flp(X) where the variables π1, . . . , πk have the
range described by the credal fact they represent. That is, if
π1 is associated to the credal fact [0.2, 0.6] :: ai, π1 must be
in the range [0.2, 0.6]. Similarly, the upper probability for
q can be obtained by maximizing fup(X) (or, equivalently,
minimizing −fup(X)) where the bounds of the variables
are the same as before. In other words, we cast inference
in programs with credal facts as a nonlinear optimization
problem. That is, P(q) can be obtained by solving

minimize flp(X)

s.t . πi ∈ [li, ui],∀i ∈ {1, . . . , k}
(8)

while P(q) by solving

maximize fup(X)

s.t . πi ∈ [li, ui],∀i ∈ {1, . . . , k}
(9)

In this way, we avoid the explosion of the size of the program
due to the introduction of auxiliary annotated disjunctions.

Example 4 Consider the program with credal facts shown
in Example 3. It is converted into

pa::a.
pb::b.
q:- a.
q ; r :- b.

By traversing the NNF for the query q we extract two equa-
tions: flp(pa) = pa and fup(pa, pb) = pa− pb · (pa− 1),
the former for the lower probability and the latter for the
upper probability. To compute P(q), we need to minimize
flp(pa) with pa ∈ [0.3, 0.4]. Clearly, the minimum value
of flp(pa) is 0.3. Consider now the computation of P(q).
We need to maximize fup(pa, pb), or equivalently, minimize
−fup(pa, pb) with pa ∈ [0.3, 0.4] and pb ∈ [0.4, 0.9]. In
this case, the maximum value of fup(pa, pb) is 0.94. Thus,
[P(q),P(q)] = [0.3, 0.94].

3.2 INFERENCE WITH CREDAL ANNOTATED
DISJUNCTIONS

When credal annotated disjunction are present in a program,
the conversion between annotated disjunctions and proba-
bilistic facts (see Section 2) does not preserve the equiv-
alence, as discussed in [Mauá and Cozman, 2023]. Still
in [Mauá and Cozman, 2023], to perform inference, the au-
thors propose to convert each credal annotated disjunction
with k disjunctions in the head into a set of k credal facts
with vacuous intervals (i.e., α = 0 and β = 1), a set of
deterministic rules, and a set of annotated disjunctions rep-
resenting all the vertices of the induced credal set. The set
of annotated disjunctions (as well as the set of deterministic
rules) obtained with this conversion may be exponential in
the number of credal facts, making inference very expensive.
If we consider the example discussed in [Mauá and Cozman,
2023], the credal annotated disjunction D = [0.1, 0.3] ::
red; [0.2, 0.4] :: green; [0.4, 0.6] :: blue, is converted into
three credal facts with vacuous intervals, 10 deterministic
rules, and 6 annotated disjunctions with 3 atom each in the
head.

Here we follow another path: we convert each credal anno-
tated disjunction into a set of probabilistic facts and rules,
as explained in Section 2. However, we do not compute
the probabilities of the obtained probabilistic facts but we
leave them symbolic. More precisely, for a credal annotated
disjunction of the form of Equation 7, we get the rules of
Equation 3. That is, from D discussed few lines above we
obtain: π1 :: f1, π2 :: f2, red :− f1, green :− not f1, f2,
and blue :− not f1, not f2. Note again that the probability
of f1 and f2 is kept symbolic. To compute the probability of
a query q, we extract, as described in Section 3.1, two sym-
bolic equations, one for the lower, flp(X), and one for the
upper probability, fup(X). As before, we treat the inference
process as an optimization problem: P(q) can be computed
by minimizing flp(X) while P(q) by maximizing fup(X).
Both problems, however, require imposing an additional
set of nonlinear constraints that mimics the probability con-
version between annotated disjunctions and probabilistic
facts (Section 2). With nad credal annotated disjunctions of
the form of Equation 7, the constraints can be compactly
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expressed as

minimize f(X)

s.t. πl
i ·

∏
j<i

(1− πl
j)− αl

i ≥ 0,

βl
i − πl

i ·
∏
j<i

(1− πl
j) ≥ 0,

∀l ∈ {1, . . . , nad}, ∀i ∈ {1, . . . ,ml}

assuming πml
i = 1, where πk

i is the probability associ-
ated to the i-th probabilistic fact related to the i-th head of
the k-th annotated disjunction. Overall, for a credal anno-
tated disjunction with m heads we add 2 · m constraints.
So, the problem of inference can be cast as two nonlin-
ear optimization problems with nonlinear constraints. For
example, with a credal annotated disjunction of the form
[α1, β1] :: h1; [α2, β2] :: h2; [α3, β3] :: h3 call π1 and π2

the probabilities associated with the probabilistic facts ob-
tained via the conversion discussed in Section 2, we have
π1 − α1 ≥ 0, β1 − π1 ≥ 0, (1 − π1) · π2 − α2 ≥ 0,
β2 − (1− π1) · π2 ≥ 0, (1− π1) · (1− π2)− α3 ≥ 0, and
β3 − (1 − π1) · (1 − π2) ≥ 0. More concretely, with the
credal annotated disjunction D, we obtain the set of con-
straints: c1−0.1 ≥ 0, 0.3−π1 ≥ 0, (1−π1) ·π2−0.2 ≥ 0,
0.4 − (1 − π1) · π2 ≥ 0, (1 − π1) · (1 − π2) − 0.4 ≥ 0,
and 0.6− (1− π1) · (1− π2) ≥ 0. Note that this approach
can be straightforwardly extended to support parameterized
annotated disjunctions, i.e., annotated disjunctions where
the probabilities of the heads are specified via a set of con-
straints, for example A :: a;B :: b;C :: c :− A < B,B <
C,C > 0.1, where A, B and C are the probabilities to be
determined. In our framework, this consists in adding the
set of constraints specified in the body to the optimization
problem.

4 EXPERIMENTS

We implemented the proposed algorithm in Python on top
of the aspcs solver [Azzolini and Riguzzi, 2023] and lever-
aged the SciPy library [Virtanen et al., 2020] to solve the
optimization problems and SymPy [Meurer et al., 2017] to
simplify the equation extracted from the NNF1. We tested
both the COBYLA [Powell, 1994] and SLSQP [Kraft, 1994]
algorithms for nonlinear constrained optimization, without
changing the default parameters. We compare it against
dpasp [Mauá and Cozman, 2023], which adopts vertex enu-
meration and only supports credal facts (not credal anno-
tated disjunctions). We run the evaluation on a machine
running at 2.40 GHz with an execution time limit of 8 hours
and 16 GB of RAM.

We set up two different set of experiments: in a first round,
call it E1, we consider four datasets with probabilistic and

1Source code and datasets available at: https://github.
com/damianoazzolini/aspmc.

credal facts and compare aspcs against dpasp; in a second
round, call it E2, we consider a variation of the same four
datasets but with credal annotated disjunctions instead of
credal facts. dpasp does not support these, so we only report
the results for aspcs. All the instances for all the datasets
have at least one answer set per world, as required by the
credal semantics.

Let us start by describing the four datasets for E1, adapted
from [Azzolini and Riguzzi, 2023]. The programs for aspcs
and dpasp only differ in the negation symbol: \+ for the
former and not for the latter. The following snippets show
the aspcs version. The first dataset, coloring, encodes a
graph coloring scenario, a well-known problem that can be
easily modeled in ASP. Here, some nodes can be associated
with three distinct colors, namely red, green, and blue, and
others have a fixed color. Nodes are connected by credal
probabilistic facts edge/2 and connected nodes must have
different colors. All the instances have the same following
rules:

red(X) :- node(X), \+ green(X),
\+ blue(X).

green(X) :- node(X), \+ red(X),
\+ blue(X).

blue(X) :- node(X), \+ red(X),
\+ green(X).

e(X,Y) :- edge(X,Y).
e(Y,X) :- edge(Y,X).
:- e(X,Y), red(X), red(Y).
:- e(X,Y), green(X), green(Y).
:- e(X,Y), blue(X), blue(Y).

but they differ in the number of nodes and number of
edges (this value denotes the size of the instance). Each
instance has an additional set of rules qr :− blue(i), ∀i ∈
{1, . . . , n}, where n is the number of nodes. The query is
qr.

The smoke dataset, introduced in Totis et al. [2023], encodes
a network of people where some of them are smokers while
other smoke only due to the influence of their friends. All
the programs have the following rules:

asthma_r(X):- smokes(X), asthma_f(X).
asthma(X):- asthma_f(X).
asthma(X):- asthma_r(X).
asthma_and_stress(X):-
stress(X), stress_f(X), asthma(X).

smokes(X):- infl(Y,X), smokes(Y).
smokes(X):- asthma_and_stress(X),
\+ no_smokes(X).

no_smokes(X):- asthma_and_stress(X),
\+ smokes(X).

where asthma_f/1, stress/1, stress_f/1, and
asthma_f/1 are probabilistic with a sharp probabil-
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ity value associated (and there is one of them for each
people involved) while the infl/2 facts are credal proba-
bilistic facts. The instances have an increasing number of
people, and thus an increasing number of probabilistic and
credal facts. The query is smokes(1).

The dataset irl contains a set of instances with three clauses
with an increasing number of credal probabilistic facts ai in
the body: qr :− ∧i<k,i evenai, qr :− ∧i<k,i oddai, \+nqr,
and nqr :− ∧i<k,i odd ai, \+ qr, where k denotes the size
of the instance. The instance of size 5 is

qr:- a0, a2, a4.
qr:- a1, a3, \+ nqr.
nqr:- a1, a3, \+ qr.

where the ai, i ∈ {0, . . . , 4}, are credal facts. The query is
qr.

Each instance k of the fourth dataset, irn, contains a set
of qr :− ai rules ∀i ∈ {0, . . . , k − 1} even, qr :− ai, \ +
nqr ∀i ∈ {0, . . . , k − 1} odd, and nqr :− ai, \ + qr ∀i ∈
{0, . . . , k − 1} odd. For example, the instance of size 5 is

qr:- a0. qr:- a2. qr:- a4.
qr :- a1, \+ nqr. nqr :- a1, \+ qr.
qr :- a3, \+ nqr. nqr :- a3, \+ qr.

The query is qr.

For all the datasets we consider two variations, called loose
and strict: for the former, all the credal facts are associated
with the probability range [0.05,0.95]; for the latter, the
range is [0.45,0.55]. This is because we want to evaluate the
optimization process with different types of constraints.

Since the equations extracted from the NNF usually involve
many products and summations and this may possibly slow
down the optimization process, in a preliminary test on
the coloring dataset we compared the execution time of as-
pcs with and without simplifying them by using Sympy. In
particular, we are interested in assessing whether the extra
execution time spent to simplify the equations effectively
speeds up the overall execution time. Table 1 shows the
total execution time of running aspcs with the COBYLA
algorithm on the coloring dataset in both strict and loose ver-
sion with and without simplification: for the largest solvable
instance (size 16) the execution time with simplification
is 6 times less than the one without. This proves that the
simplification is a crucial step in the pipeline. Note that
the simplification is performed twice, once for the lower
and once for the upper probability. So, in the remaining
experiments, we always consider aspcs with simplification.

To investigate even further the impact of the different steps
involved, Table 2 reports the NNF computation time, equa-
tions simplification time, and optimizations time for the
COBYLA algorithm on the loose configuration of the col-
oring dataset. For bigger instances, the simplification time

Table 1: Impact of the simplification process on the prob-
ability computation with the COBYLA algorithm on the
coloring dataset. The columns represent, respectively, the
size of the instance (size), the execution time (seconds) for
the strict version with simplification (s. w.), the execution
time (seconds) for the strict version without simplification
(s. wo.), the execution time (seconds) for the loose version
with simplification (l. w.), and the execution time (seconds)
for the strict version without simplification (l. wo.).

size s. w. s. wo. l. w. l. wo.

8 4.428 5.727 5.39 6.612
9 5.094 6.981 5.071 7.436
10 7.536 13.284 8.014 14.505
11 13.406 26.228 12.836 27.313
12 33.116 47.158 32.947 47.298
13 46.987 103.322 46.778 126.434
14 46.995 164.814 46.747 172.029
15 84.338 308.938 84.876 362.038
16 104.057 627.793 104.631 675.879

Table 2: Impact in seconds and percentage on the total ex-
ecution time of NNF construction (NNF ), simplification
(simpl), and optimization (opt) on the probability computa-
tion with the COBYLA algorithm on the loose configuration
of the coloring dataset. The percentages do not sum to 100
due to other internal operations.

size NNF (s) simpl.(s) opt.(s)

8 2.192 (40.66%) 1.449 (26.88%) 0.058 (1.07%)
9 3.250 (64.08%) 0.546 (10.76%) 0.064 (1.26%)

10 4.399 (54.89%) 2.008 (25.05%) 0.134 (1.67%)
11 9.252 (72.07%) 2.257 (17.58%) 0.095 (0.74%)
12 29.68 (90.08%) 1.859 (5.642%) 0.076 (0.23%)
13 35.04 (74.90%) 10.27 (21.95%) 0.162 (0.34%)
14 35.88 (76.75%) 9.303 (19.90%) 0.212 (0.45%)
15 43.17 (50.86%) 39.97 (47.09%) 0.226 (0.26%)
16 46.31 (44.26%) 56.56 (54.05%) 0.321 (0.30%)

requires more than half of the total execution time (again,
the reported value is the sum of two simplifications, one for
the equation for the lower probability and one for the equa-
tion for the upper probability). However, this makes solving
the optimizations (also here the time represents optimization
applied on both equations) very quick (less than a second),
compared to the hundreds of seconds required in the case
the equation is not simplified (see Table 1). We report these
detailed values only for the coloring dataset, due to space
restrictions. However, these considerations apply to all the
datasets.

We are now ready to discuss the results for E1. Figure 1
shows the results on the coloring dataset for all the con-
figurations. aspcs is faster than dpasp and COBYLA and
SLSQP for both loose and strict configurations have similar
execution times. The instance of size 16 was the largest
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solvable one. For dpasp, as expected, the loose and strict
configurations require the same time to query. The figure
also reports the execution times for the converted instances,
where credal facts were converted into annotated disjunc-
tions. Also in this case aspcs outperforms dpasp, and, for
both, inference in the program with credal facts is substan-
tially faster than inference in the converted program. This is
probably due to the large number of probabilities introduced
by the annotated disjunctions. In this case, the largest solv-
able instance had size 13 for both. For dpasp we only plot
up to size 11 since 12 and 13 required respectively 3340 and
25083 seconds and would have made all the other curves in
the figure unreadable.

Figure 2 shows the results on the smoke dataset. As for
the coloring dataset, aspcs is faster than dpasp. For dpasp,
the loose configuration of instance 6 is approximately 500
seconds faster than the strict. aspcs requires approximately
60 seconds to run the converted version. dpasp was also
able to solve it in 26861 seconds (that we do not plot).
Interestingly, the converted version for the strict SLSQP
configuration is slightly faster than the non-converted one:
this may be due to knowledge compilation that can find a
good NNF structure for the program.

The results for irl are shown in Figure 3. Here, aspcs can
solve the instance of size 20 with both COBYLA and
SLSQP in both configurations in less than 10 seconds, while
dpasp requires more than 1500 seconds. For the converted
version, the largest solvable instance size was 15: also in
this case aspcs shows better performances than dpasp. This
proves that knowledge compilation can find a good repre-
sentation of the program, since, for example, the equation
for the upper probability is composed by the product of all
the probabilities of the credal facts.

Lastly, Figure 4 shows the results for irn: it confirms the
trend of the three previous datasets, where aspcs is faster
than dpasp and the converted version is slower than the
version with credal probabilistic facts.

For E2, we modify the four datasets to include credal an-
notated disjunctions. For the coloring dataset, we add a
credal annotated disjunction [0.1, 0.3] :: c0(X); [0.2, 0.4] ::
c1(X); [0.4, 0.6] :: c2(X) for every node X and
modify the constraint :− e(X,Y ), blue(X), blue(Y )
into :− e(X,Y ), blue(X), blue(Y ), c2(X), c2(Y ). Fur-
thermore, edges are now considered probabilistic facts.
The remaining rules are the same. For smoke, as for col-
oring, we add a credal annotated disjunction [0.1, 0.3] ::
c0(X); [0.2, 0.4] :: c1(X); [0.4, 0.6] :: c2(X) and replace
the rule smokes(X) :− infl(Y,X), smokes(Y ) with
smokes(X) :− infl(Y,X), smokes(Y ), c0(X), c1(Y )
and consider the infl facts probabilistic with a sharp proba-
bility value. Lastly, for irl and irn we replace each credal
probabilistic fact ai with: i) [0.1, 0.3] :: ai; [0.2, 0.4] ::
ai1(X); [0.4, 0.6] :: ai2(X) if i%3 = 0; ii) [0.1, 0.3] ::
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Figure 1: Execution times for the coloring datasets for aspcs
(solid lines) and dpasp (dash-dotted lines). Dotted lines are
the results obtained in programs where the credal facts are
converted into annotated disjunctions.
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Figure 2: Execution times for the smoke datasets for aspcs
(solid lines) and dpasp (dash-dotted lines). Dotted lines
represent the results obtained in the programs where the
credal facts were converted into annotated disjunctions.

ai1; [0.2, 0.4] :: ai(X); [0.4, 0.6] :: ai2(X) if i%3 = 1; or
ii) [0.1, 0.3] :: ai1; [0.2, 0.4] :: ai2(X); [0.4, 0.6] :: ai(X)
if i%3 = 2. The rules are the same as for E1.

Table 3 shows the results. The algorithm can solve fewer
instances than the version with only credal facts: this is due
to the increasing number of probabilistic facts that need
to be considered, whose number is indicated in the fourth
column. Furthermore, the COBYLA algorithm is always,
except for one case, faster than SLSQP.

5 RELATED WORK

Apart from the credal semantics, there exist various alter-
natives to represent uncertainty with answer set programs,
such as LPMLN [Lee and Wang, 2016], P-log [Baral et al.,
2009], and diff SAT [Nickles, 2018], but imprecise probabil-
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Figure 3: Execution times for the irl datasets for aspcs (solid
lines) and dpasp (dash-dotted lines). Dotted lines represent
the results obtained in the programs where the credal facts
were converted into probabilistic facts.
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Figure 4: Execution times for the irn datasets for aspcs (solid
lines) and dpasp (dash-dotted lines). Dotted lines represent
the results obtained in the programs where the credal facts
were converted into probabilistic facts.

ities have not been proposed for these. Also the approaches
of Totis et al. [2023] and Rocha and Cozman [2022] are
probabilistic extensions of ASP, both targeting argumenta-
tion, but they still do not consider probabilistic fact with
imprecise probabilities. As previously discussed, Mauá and
Cozman [2023] introduced credal probabilistic facts and
credal annotated disjunctions and developed a solver based
on vertex enumeration, that, however, does not yet support
credal annotated disjunctions. Azzolini and Riguzzi [2021]
integrated constrained optimization within probabilistic log-
ical inference, but they considered PLP, not PASP, and a
different optimization framework. Constraints are a standard
component of ASP solvers, but they are limited to integers
(i.e., floating points are usually not supported, even if some
alternatives are under development [Pacenza and Zangari,
2023]) and probabilities are not managed. Some works on

Table 3: Execution times in seconds for the experiments
with credal annotated disjunctions. The last two columns
contain the number of probabilistic facts and the number of
rules in each instance, respectively. Lowest execution times
are in bold.

size cobyla (s) slsqp (s) #pf #rules

coloring
8 45.135 55.151 20 14
9 104.984 105.839 23 15

10 503.691 504.313 24 15
irl

5 5.084 12.438 10 18
10 24.915 56.726 20 33
15 755.598 877.51 30 48
20 12132.332 11956.459 40 63

irn
10 264.298 284.184 20 45
11 1339.725 2184.979 22 49
12 4525.672 4837.060 24 54
13 4752.085 5994.453 26 58
14 14627.982 15384.466 28 63

smoke
1 9.67 11.45 14 8
2 23.025 24.024 18 8
3 168.59 172.355 22 8
4 408.532 408.542 25 8

this line can be found in [Arias et al., 2018, Lierler, 2023].

Knowledge compilation is a well-known technique in prob-
abilistic (logical) settings, used to perform probabilistic
inference [De Raedt et al., 2007, Dries et al., 2015] also in
programs with both discrete and continuous random vari-
ables [Zuidberg Dos Martires et al., 2019], and to solve
decision theoretic problems [Van den Broeck et al., 2010],
allowing a compact representation of the program at hand.

6 CONCLUSION

In this paper, we discussed how to perform inference in
probabilistic answer set programs with imprecise probabil-
ities via optimization. Our pipeline consists of four steps:
construction of a NNF representation of the query, extrac-
tion of two equations from the NNF, one for the lower and
one for the upper probability, simplification of the equations,
and solution of two constrained nonlinear optimization prob-
lems (minimization for the lower probability and maximiza-
tion for the upper probability). Empirical results show that
our approach is significantly faster than an already existing
solver. Future works involve the study of related inference
tasks, such MAP inference with imprecise probabilities.
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