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Abstract

We study learning adversarial Markov decision
process (MDP) in the episodic setting under the
constraint of differential privacy (DP). This is mo-
tivated by the widespread applications of reinforce-
ment learning (RL) in non-stationary and even ad-
versarial scenarios, where protecting users’ sen-
sitive information is vital. We first propose two
efficient frameworks for adversarial MDPs, span-
ning full-information and bandit settings. Within
each framework, we consider both Joint DP (JDP),
where a central agent is trusted to protect the sensi-
tive data, and Local DP (LDP), where the informa-
tion is protected directly on the user side. Then, we
design novel privacy mechanisms to privatize the
stochastic transition and adversarial losses. By in-
stantiating such privacy mechanisms to satisfy JDP
and LDP requirements, we obtain near-optimal re-
gret guarantees for both frameworks. To our knowl-
edge, these are the first algorithms to tackle the
challenge of private learning in adversarial MDPs.

1 INTRODUCTION

Reinforcement learning (RL) is a prominent sequential
decision-making framework, where an agent learns to mini-
mize its long-term loss by interacting with an environment1.
It has gained remarkable attraction in real-world applica-
tions across several fields such as healthcare [Gottesman
et al., 2019], online recommendation [Afsar et al., 2022],
and language model [Ouyang et al., 2022]. However, in
these applications, the learning agent continuously improves

*Corresponding author
1We consider the setting of “losses” instead of “rewards” to be

consistent with the adversarial online decision-making literature
[Jain et al., 2012, Jin et al., 2020a]. One can translate between
losses and rewards by simply taking negation.

its performance by learning from users’ personal data and
feedback, which usually contain sensitive information. With-
out privacy protection mechanisms in place, the learning
agent can memorize information of users’ interaction his-
tory [Carlini et al., 2019], which makes the learning agent
vulnerable to various privacy attacks [Lei et al., 2023].

Over the past decade, differential privacy (DP) [Dwork
et al., 2006] has been extensively applied in various private
decision-making settings, e.g., private multi-armed bandits
[Basu et al., 2019, Tao et al., 2022]. Under DP, the learning
agent collects users’ raw data to train algorithms while en-
suring that the output is indistinguishable from its output
returned by an alternative universe where any individual user
is replaced, thereby mitigating the aforementioned privacy
risk. Despite such a promise, [Shariff and Sheffet, 2018] and
[Vietri et al., 2020] show that standard DP is incompatible
with sub-linear regret performance for contextual bandits
and RL. Therefore, they embrace joint differential privacy
(JDP) [Kearns et al., 2014], a variant of DP, ensuring that
the output of all other users will not leak much information
about any specific user. In some situations, they even adopt
local differential privacy (LDP) [Duchi et al., 2013] in pri-
vate RL [Garcelon et al., 2021] due to its stronger privacy
guarantee, where each user’s raw data must be privatized
before being sent to the learning agent.

Nonetheless, private RL is still far from being well-
understood. All of the previous work assumes that the losses
are generated by a stochastic distribution that is stationary
throughout the learning process. This assumption is quite
restrictive for plenty of real-world systems since the loss
function may depend on additional variables controlled by a
complex and unpredictable part of the environment. These
extra variables may be challenging to model and predict
using a stochastic distribution and only impact the loss in-
curred by the user. Specifically, the loss function might
unpredictably vary across episodes and even be generated
by a potential adversary. In these scenarios (with privacy
concerns), modeling loss functions as adversarial would be
more relevant; examples include recommendation system
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[Zhou et al., 2019], medicine trials [Liu et al., 2020], and
portfolio management [Luo et al., 2018]. For instance, in
recommendation systems, the agent recommends items (cor-
responding to actions) according to users’ search input (cor-
responding to states) and improves its performance based
on users’ rating (corresponding to rewards), and the rating
may depend on some complex and hard-to-model historical
variable of each user and reflect different preferences.

Motivated by these facts, in this paper, we focus on one
fundamental model in online RL under DP constraints, i.e.,
private adversarial MDPs [Even-Dar et al., 2009], where the
transition function is unknown and stochastic, but where the
loss function can be arbitrarily determined by an oblivious
adversary. To solve this problem, we are required to design
private algorithms in such non-stationary environments, es-
pecially for adversarial loss functions. Moreover, we must
deal with the dual complexities of adversarially changing
and noisy interaction histories, which makes it challeng-
ing to utilize and generalize past experiences and adapt to
evolving circumstances. To the best of our knowledge, this
paper is the first to consider adversarial MDPs with both
JDP and LDP guarantees. Our contributions are summarized
as follows.

1. We begin with the full-information setting where the loss
for every state-action pair is observed after each interaction.
We present a general algorithm, “Private-UC-O-REPS”,
which uses tighter confidence bounds on components of
the transition function than existing ones in the adversar-
ial MDP literature, and enjoys refined regret bounds under
JDP and LDP constraints by adopting our Central and Local
Privatizer, respectively. Notably, these bounds are problem-
dependent in the sense that they make appear a notion of
effective support of the underlying transition function, and
adapt to the difficulty of the transition dynamics. Further,
they match the best bounds of non-private algorithm [Rosen-
berg and Mansour, 2019a] in the worst case.

2. We then consider the bandit setting where only the loss
of each visited state-action pair is revealed after each in-
teraction. We propose the “Private UOB-LBPS” algorithm,
which involves a novel private and optimistic loss estimator,
and a log-barrier regularizer for private OMD making the
algorithm more stable. Meanwhile, we obtain near-optimal
problem-dependent regret bounds under both JDP and LDP
constraints. In particular, they also match the near-optimal
regret bounds of the best non-private algorithm [Jin et al.,
2020a] in the worst case.

3. We introduce novel Privatizers designed to privatize both
the transition function and the adversarial losses under full-
information and bandit-feedback settings. These Privatizers
satisfy several key properties (see Assumptions 2.3, 3.2 and
4.1 for details), which play a critical role in the analysis to
help obtain privacy guarantee and the regret bounds, and
could be of interest beyond this work.

We summarize our theoretical results in Table 1. Due to
space limitations, algorithms and all proof details are in-
cluded in the appendix.

1.1 RELATED WORK

Private online decision-making in adversarial environments
has been studied for over a decade, with follow-the-leader
type algorithms commonly employed to address these chal-
lenges. Examples of such scenarios include private online
convex learning [Jain et al., 2012, Agarwal et al., 2023],
private expert prediction [Agarwal and Singh, 2017, Asi
et al., 2023], and private (contextual) adversarial bandits
[Tossou and Dimitrakakis, 2017, Agarwal and Singh, 2017,
Zheng et al., 2020], etc.

Regarding private RL with regret guarantees, previous re-
search primarily focused on MDPs in stochastic stationary
environments. Notable approaches include private value-
based algorithms [Vietri et al., 2020, Garcelon et al., 2021,
Qiao and Wang, 2023a,b] and private policy-optimization-
based algorithms [Chowdhury and Zhou, 2022a, Wu et al.,
2023], particularly in tabular MDPs. Initial investigations
into private linear (mixture) MDPs were also undertaken
in Luyo et al. [2021], Ngo et al. [2022], Zhou [2022], Liao
et al. [2023]. However, the machinery and techniques used
in these papers cannot be directly applied in an adversarial
environment.

Adversarial MDPs have received extensive attention, ad-
dressing non-stationary environments with both known and
unknown transition functions, and considering both full-
information and bandit feedback settings. While a number
of algorithms with regret guarantees have been proposed
for this problem recently [Rosenberg and Mansour, 2019a,b,
Jin et al., 2020a, Luo et al., 2021, Zhao et al., 2023], we
are not aware of any existing works on private adversarial
MDPs. Thus, we believe this paper makes the first attempts
at designing algorithms for adversarial MDPs with privacy
and regret guarantees simultaneously.

2 PRELIMINARY

2.1 ADVERSARIAL MDPS

An episodic loop-free adversarial MDP is defined by a
tuple

(
X ,A, P, {ℓk}Kk=1 , H

)
, where X ,A are state and

action spaces with respective cardinalities X and A. P :
X × A × X → [0, 1] is the transition function, with
P (x′|x, a) being the probability of transferring to state x′

when executing action a in state x, and ℓk : X×A→ [0, 1] is
the loss function for episode k. Finally,H denotes the length

2Under the loop-free tabular MDP in this paper, the result in
episodic MDP [Jin et al., 2018] will have additionalH dependence.
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Feedback Algorithm Regret (ϵ-JDP) Regret (ϵ-LDP) Lower bound without Privacy

Full-info Theorem 3.3 Õ
(
HCM

√
K + X2AH2

ε

)
Õ
(
HCM

√
K + X2AH2

√
K

ε

)
Ω(

√
XAHK)

Bandit Theorem 4.2 Õ
(
HCM

√
K + AH

√
X3K
ε

)
Õ
(
HCM

√
K + X4AH2

√
K

ε

)
Ω
(√

XAH2K
)

Table 1: Regret comparisons for private online RL on loop-free adversarial MDP2 under both full-information and bandit
settings with ε-JDP and ε-LDP guarantees. CM :=

∑H−1
h=0

√∑
(x,a)∈Xh×A Cx,a denotes the cumulative effective support,

where Cx,a := [
∑
x′∈Xh(x)+1

√
P (x′|x, a)(1− P (x′|x, a))]2 denotes the effective support of P (·|x, a). Finally, the lower

bound follows from Jaksch et al. [2010], Jin et al. [2018]. Note that CM ≤ X
√
A always holds, implying that our bounds

are never worse than Õ(HX
√
AK) of non-private setting [Rosenberg and Mansour, 2019a, Jin et al., 2020a].

of an episode. We assume that the state space X can be de-
composed into H + 1 non-intersecting layers X0, . . . ,XH
such that the first and the last layers are singletons, i.e.,
X0 = {x0} and XH = {xH}. Furthermore, the loop-free
assumption means that transitions are only possible between
consecutive layers3. In the following, we may write h(x) to
refer to the index of the layer to which x belongs.

The learner interacts with the MDP for K episodes without
knowing P . Before the interaction starts, an oblivious adver-
sary selects the loss functions for all episodes ℓk arbitrarily.
In episode k, the learner starts at state x0 and decides a pol-
icy πk : X ×A → [0, 1], where we write πk (a|x) to denote
the probability of taking action a at state x. Then the learner
executes πk in the MDP, generating H state-action pairs{(
xkh, a

k
h

)}H−1

h=0
, where for h∈ [H−1]4, akh ∼ πk(·|xkh) and

xkh+1 ∼ P (·|xkh, akh). At the end of episode k, the learner
observes the loss feedback, which is the entire loss function
ℓk under the full-information setting, or the incurred losses{
ℓk(x

k
h, a

k
h)
}H−1

h=0
under the bandit setting.

The goal of the learner is to minimize the incurred loss in
K episodes in expectation. More formally, for any policy π
and loss function ℓ, we define the corresponding expected
cumulative loss per episode as

V (π, ℓ) = E

[
H−1∑
h=0

ℓ(xh, ah)

∣∣∣∣P, π
]
, (2.1)

where the expectation is taken over trajectories
{(xh, ah)}H−1

h=0 generated by following π. The per-
formance of a given learning algorithm A deciding
(πk)k≥1 is measured through the notion of regret, which
compares the cumulative expected loss under A to that
incurred by the best stationary policy in hindsight, i.e.,

3This assumption – also known as layered, loop-free assump-
tion – is a standard one in the adversarial MDP literature [Neu
et al., 2012, Jin et al., 2020a].Although not necessary, it will sim-
plify some arguments. This model is a strict generalization of the
episodic setting studied in Azar et al. [2017], Jin et al. [2018],
where the transitions are stationary across episode steps.

4For n∈N, we define [n] :={1, . . . , n}.

π∗ ∈ argminπ
∑K
k=1 V (π, ℓk). That is,

RA
K =

K∑
k=1

V (πk, ℓk)−
K∑
k=1

V (π∗, ℓk). (2.2)

Alternatively, the goal is to minimize the regret. By default,
A is omitted unless explicitly noted.

2.1.1 Occupancy Measures

Learning in adversarial MDPs can be reformulated as an
online linear optimization problem, using the notion of occu-
pancy measures [Zimin and Neu, 2013]. Given π and P , the
occupancy measure qP,π : X ×A×X → [0, 1] is defined
as follows:

qP,π (x, a, x′) = P [xh = x, ah = a, xh+1 = x′|P, π] ,

where h = h (x) is the index of the layer to which x belongs.
With slight abuse of notation, we define the probability of
visiting state-action pair (x, a) and that of visiting state x as
follows,

qP,π(x, a)=
∑

x′∈Xh(x)+1

qP,π (x, a, x′) , qP,π(x)=
∑
a∈A

qP,π(x, a).

As established in [Zimin and Neu, 2013], a valid occupancy
measure q satisfies: For all h∈ [H−1],

(i) :
∑
x∈Xh

∑
a∈A

∑
x′∈Xh+1

q (x, a, x′) = 1,

(ii) :
∑

x′∈Xh−1

∑
a∈A

q (x′, a, x)=
∑

x′∈Xh+1

∑
a∈A

q(x, a, x′) ,∀x∈Xh.

Both (i) and (ii) follow from the loop-free structure: (i)
holds since each layer is visited exactly once, whereas (ii)
holds due to conservation law across layers. Further, any
function q :X ×A×X→ [0, 1] satisfying (i)-(ii) induces
the following transition function and policy [Rosenberg and
Mansour, 2019a]:

P q (x′|x, a) = q (x, a, x′)

q(x, a)
, πq(a|x) = q(x, a)

q(x)
. (2.3)
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∆ denotes the set of all valid occupancy measures. For a
fixed transition function P , ∆(P ) denotes the set of occu-
pancy measures whose induced transition P q equals P . Sim-
ilarly, given a set of transition functions P , ∆(P) denotes
the set of occupancy measures whose induced transition P q

belongs to P .

Equipped with these definitions, we can rewrite

V (π, ℓ) =

H−1∑
h=0

∑
x∈Xh

∑
a∈A

qP,π(x, a)ℓ(x, a) =
〈
qP,π, ℓ

〉
.

Thus, the regret of the learner can be rewritten as

RA
K =

K∑
k=1

〈
qP,πk − q∗, ℓk

〉
, (2.4)

where q∗ ∈ argminq∈∆(P )

∑K
k=1 ⟨q, ℓk⟩ is the optimal oc-

cupancy measure in ∆(P ).

When the transition function is known and the loss function
is revealed at the end of each episode, this problem can
be solved by an online linear optimization method [Hazan,
2016]. However, in our setting, both P and ∆(P ) are un-
known, and we face noisy and even partial information on
ℓk under the bandit setting.

2.2 DIFFERENTIAL PRIVACY IN ADVERSARIAL
MDPS

In adversarial MDPs, each episode k ∈ [K] can be viewed
as a trajectory representing a specific user. Let U denote
the set of all users, and let UK = (u1, . . . , uK) ∈ UK
denote a sequence of K users participating in the private
adversarial MDP protocol with an RL agentM. Each user
uk is identified by her interaction trajectory Sk, including
the visited state-action pairs and the observed losses. We
denote M (UK) :=

(
a11, · · · , aKH

)
∈ AKH as the set of

all actions chosen by M when interacting with the user
sequence UK , and M−k (UK) :=M (UK) \

(
akh
)H
h=1

as
all the actions chosen byM excluding those recommended
to uk. Then, we first consider the notion of JDP [Kearns
et al., 2014, Vietri et al., 2020].

Definition 2.1 (Joint Differential Privacy (JDP)) For
any ε > 0, a mechanism M : UK → AKH is ε-Joint
Differentially Private (ε-JDP) if for all k ∈ [K], for all user
sequences UK , U ′

K ∈ UK differing only on the k-th user,
and for all sets of actions E0 ⊂ A(K−1)H ,

P [M−k (UK) ∈ E0] ≤ exp (ε) · P [M−k (U
′
K) ∈ E0] .

JDP ensures that even if an adversary can observe the rec-
ommended actions to all users but uk, it is still statistically
difficult to identify the trajectory of uk accurately. JDP

assumes that the agentM is allowed to access the raw tra-
jectories from users. However, in some scenarios, the users
may not be willing to share their data with the agent directly,
which motivates LDP [Duchi et al., 2013]. In this setting,
the agentM sends policy πk to the user uk, and the user
executes πk and gets her trajectory Sk, and then privatizes it
to S̃k and sends it toM. We denote the privacy mechanism
on the users’ side byM′ and recall the definition of local
differential privacy below.

Definition 2.2 (Local Differential Privacy (LDP)) For
any ε ≥ 0, a mechanism M′ is ε-Local Differentially
Private (ε-LDP) if for all trajectories S, S′ ∈ S and for all
possible subset E0 ⊂ {M′ (S) |S ∈ S},

P [M′ (S) ∈ E0] ≤ exp (ε) · P [M′ (S′) ∈ E0] ,

where S is the set of all possible trajectories.

LDP ensures that if any adversary observes the privacy reply
of user uk, it is still impossible to identify her trajectory.
LDP is first introduced and analyzed under RL by Garcelon
et al. [2021].

We introduce some notations for later analysis. Ik {x, a}
denotes an indicator function whose value is 1 if (x, a)
is visited in episode k and 0 otherwise. Similar definition
also applies to Ik {x, a, x′}. Denote Sk:=

{(
xkh, a

k
h

)}H−1
h=0
∪

{ℓk (x, a)}(x,a) and Sk :=
{(
xkh, a

k
h, ℓk

(
xkh, a

k
h

))}H−1

h=0
as

the trajectory of episode k under full-information setting
and bandit setting, respectively.

Under a given algorithm, denote Nk(x, a, x
′) :=∑k−1

i=1 Ik {x, a, x′} as the number of visits to the state-
action pair (x, a) followed by a visit to x′ before episode
k, and denote Nk(x, a):=

∑
x′∈Xh+1

Nk(x, a, x
′). Finally,

Lk(x, a) :=
∑k−1
i=1 ℓi (x, a) denotes the cumulative loss of

taking action a at state x before episode k. In non-private
learning, these counters are sufficient to find estimates of the
transition function P to design a policy πk for each episode
k by using model-based algorithms [Neu et al., 2012]. How-
ever, these counters are derived from the raw user trajecto-
ries, which may contain sensitive information. Therefore,
we must release the counts in a privacy-preserving way,
namely Privatizer, on which the learning agent would rely.
Let Ñk(x, a), Ñk(x, a, x′), and L̃k(x, a) denote the priva-
tized versions of Nk(x, a), Nk(x, a, x′), and Lk(x, a), re-
spectively. Assumption 2.3 below requires that the private
visitation counts closely approximate the true counts. The
private loss for full-information and bandit settings will be
specified in Section 3 and Section 4, respectively. All of
the private counters will be justified by our Privatizers in
Section 5.

Assumption 2.3 (Private visitation counts) For any pri-
vacy budget ε > 0 and failure probability δ ∈ (0, 1],
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the private visitation counts returned by Privatizer sat-
isfy, for some Eε,δ > 0, with probability at least 1 − 2δ,

uniformly over all (x, a, x′, k),
∣∣∣Ñk(x, a)−Nk(x, a)∣∣∣ ≤

Eε,δ,
∣∣∣Ñk(x, a, x′)−Nk(x, a, x′)∣∣∣≤Eε,δ and Ñk(x, a) =∑

x′∈Xh(x)+1
Ñk(x, a, x

′) ≥ Nk(x, a), Ñk(x, a, x′) > 0.

Using Assumption 2.3, we introduce the following private
estimation of P built using data available up to episode k:

P̃k (x
′|x, a) := Ñk (x, a, x

′)

Ñk(x, a)
. (2.5)

Note that by construction of Privatizer, P̃k (·|x, a) is a valid
probability distribution.

3 FULL-INFORMATION SETTING

Similar to the non-private algorithms [Rosenberg and Man-
sour, 2019a], we propose a general framework, Private
Upper Confidence Online Relative Entropy Policy Search
(Private-UC-O-REPS). The core idea is to solve an online
convex optimization problem within the occupancy measure
space, which combines two key elements: tighter confidence
bounds on components of the transition estimate, and i.i.d.
perturbations with bounded maxima on private cumulative
loss functions. The complete algorithm details can be found
in the appendix, and we give a brief description below.

In episode k, we first utilize the private counters Ñk+1 to
establish a confidence set Pk+1 that contains the true tran-
sition function with high probability, whose radius shrinks
as more data is collected. Then, the occupancy measure
qk+1 is updated by solving an online optimization prob-
lem within Pk+1 using the Follow-the-Regularized-Leader
(FTRL) method [Hazan, 2016]. This approach is employed
due to our utilization of private cumulative loss L̃k+1. Fi-
nally, the induced policy πqk+1 is chosen and executed in
the next episode.

Specifically, the confidence set Pk is defined as

Pk=
{
P ∈△X

X×A :
∣∣(P−P̃k) (x′|x, a) ∣∣ ≤ βk(x′|x, a) ,

∀ (x, a, x′) ∈ Xh ×A×Xh+1, h ∈ [H]
}
,

(3.1)
where△X

X×A denotes the set of all transition functions for
the state-action space X × A, and where the confidence
width associated to (x, a, x′) is defined as βk(x′|x, a) =

min

{
1,

√
2P̃k(x′|x,a)(1−P̃k(x′|x,a)) ln ι

Ñk(x,a)
+

4Eε,δ+7 ln ι

Ñk(x,a)

}
, with

ι= XAK
δ for parameter δ ∈ (0, 1). We have the following

lemma, thanks to Bernstein-type concentration:

Lemma 3.1 LetK > 0. Then, with P ∈ Pk uniformly over
all k ∈ [K].

Moreover, one can show that the confidence bound above is
strictly tighter than those used in Rosenberg and Mansour
[2019a,b], Jin et al. [2020a], which proves instrumental in
obtaining problem-dependent regret bounds.

Different from the non-private adversarial MDPs, we fol-
low the FTRL method to choose the occupancy measure qk,
which is a standard technique to tackle the online optimiza-
tion problem, while striking a balance between exploiting
past knowledge and exploring new options. Formally, given
a parameter η > 0,

qk+1 = argmin
q∈∆(Pk+1)

〈
L̃k+1, q

〉
+

1

η
ψ (q) , (3.2)

where we use the negative entropy regularizer,

ψ(q)=

H−1∑
h=0

∑
x∈Xh

∑
a∈A

∑
x′∈Xh+1

q (x,a,x′) ln q (x,a,x′) . (3.3)

Note that the update can be implemented efficiently by solv-
ing an unconstrained optimization problem which has a
closed-form solution, and then solving a convex projection
problem which can be solved in polynomial time. (See Ap-
pendix C.2 for details.)

To privatize the loss function and achieve optimal regret
guarantee in private online learning, we introduce one gen-
eral assumption on the Privatizer of the loss function, which
will be satisfied by our design in Section 5.

Assumption 3.2 (Private loss in full-information setting)
For any privacy budget ε > 0 and all (x, a, k),
Zk(x, a) := L̃k(x, a)−Lk(x, a) are i.i.d. random variables,
satisfying E [maxx,a Zk(x, a)−minx,a Zk(x, a)] ≤ Eε,
for some Eε > 0.

Assumption 3.2 guarantees i.i.d perturbations with bounded
maxima on cumulative loss, which can convert the effect of
perturbed loss on regret bound to an additive and bounded
bias term in the regret bound.

To provide a problem-dependent regret, we recall from
[Bourel et al., 2020] the notion of effective sup-
port, which for a pair (x, a) is defined as Cx,a :=(∑

x′∈Xh(x)+1

√
P (x′|x, a) (1− P (x′|x, a))

)2
. Further,

the cumulative effective support is defined as CM :=∑H−1
h=0

√∑
(x,a)∈Xh×A Cx,a. Both notions characterize the

local structure and difficulty of the MDPs, which are always
more refined than the worst case. As Bourel et al. [2020]
show, Cx,a is controlled by the number Gx,a of succes-
sor states of (x, a)5, and one has: Cx,a ≤ Gx,a − 1 ≤
Xh(x)+1 − 1 and CM ≤ X

√
A.

5For a pair (x, a), we define Gx,a := |supp (P (·|x, a)) |.
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The following theorem presents a general regret bound for
Private-UC-O-REPS when instantiated with any Privatizer
that satisfies Assumption 2.3 and Assumption 3.2.

Theorem 3.3 Fix any ε > 0 and K > 1, and set η =√
ln(XA/H)

K , δ = XA
K . Under Assumptions 2.3 and 3.2, the

regret of Private-UC-O-REPS is

E [RK ] ≤ Õ
(
HCM

√
K +HX2AEε,δ +HEε

)
.

Proof We decompose the regret as the sum of the follow-
ing two terms, ERROR =

∑K
k=1

〈
qP,πk − qk, ℓk

〉
, REG =∑K

k=1 ⟨qk − q∗, ℓk⟩, and then bound them separately.

ERROR quantifies the cumulative difference between the
loss incurred by the agent’s chosen policy in the true
transition P and the “optimistic” MDP transition Pk
induced by qk, where Pk = P qk ∈ Pk ensuring
that qk = qPk,πk by definition of πk and Eq. (2.3).
Specifically, the agent selects occupancy measures within
the confidence set, which are not exactly the occu-
pancy measures of P . Since all losses are in [0, 1], we
have ERROR ≤

∑K
k=1

∑
x,a

∣∣qP,πk (x, a)− qPk,πk (x, a)
∣∣,

and with probability at least 1 − 7δ, ERROR ≤
Õ
(
HCM

√
K +X2AHEε,δ

)
.

The core idea of controlling REG is introducing a pseudo-
private algorithm as an intermediate step. Instead of
injecting identically distributed noise Zk(x, a) at each
episode in our algorithm, the pseudo-private algorithm
uses a one-shot noise injection at the very start of the
algorithm, i.e., L̃k(x, a) − Lk(x, a) = Ẑ (x, a) for all
(x, a), and then applies the same FTRL method in Eq. (3.2)
to obtain pseudo occupancy measure q̂k. Benefiting from
Assumption 3.2, the noise injected in both algorithms
follow the same distribution, then the distribution of qk
is identical to that of q̂k. Therefore, we can bound REG
by bounding the regret of the pseudo algorithm. Applying
a similar FTRL analysis used in private online learning
[Agarwal and Singh, 2017], the regret bound of the pseudo
algorithm consists of three key components: a stability
term that constrains the change in q̂ per episode and two
bias terms arising from regularization and the one-shot
noise injection. With the help of Assumption 3.2, we derive

E [REG] ≤ O
(
H
√
K ln XA

H +HEε

)
.

4 BANDIT SETTING

In this section, we turn to investigate the private adversarial
RL algorithm under the bandit setting. We propose Private
Upper Occupancy Bound Log-Barrier Policy Search (Pri-
vate UOB-LBPS) framework based on the non-private ver-
sion in Jin et al. [2020a]. However, there are three main dif-

ferences in our algorithm. Firstly, we apply a new confidence
set of the transition function defined in Eq. (3.1), which is
strictly tighter and helps achieve problem-dependent regret
bound. Secondly, we introduce a novel private loss esti-
mator that maintains nice properties, i.e., optimistic esti-
mation, bounded perturbation, and non-negativity. Thirdly,
we involve a log-barrier regularizer to update occupancy
measures, which helps us attain a tighter stability term.

We provide a brief description of the algorithm, deferring
the full pseudo-code to the appendix. In each episode k, we
obtain the private loss ℓ̃k(x, a) for all (x, a) by privatizing
the observed loss with the privacy mechanism, which may be
unbounded and negative. To make the loss function bounded,
we require the perturbations on the observed loss not to
exceeda specific threshold E′

ε,δ with high probability, as
formally specified in Assumption 4.1. Then, we scale the
private loss to [0, 1] to obtain

ℓ̈k (x, a) =
ℓ̃k (x, a) + E′

ε,δ

2E′
ε,δ + 1

, (4.1)

and then construct an optimistic loss estimators ℓ̂k(x, a)
using the (efficiently computable) upper occupancy bound
uk, similar to Jin et al. [2020a]:

ℓ̂k(x, a) =
ℓ̈k (x, a)

uk (x, a)
, (4.2)

where uk(x, a) = maxP∈Pk
qP,πk(x, a).

Next, we construct confidence set Pk+1 in the same way as
in the full-information setting (Eq. (3.1)). Finally, we find
qk+1 via Online Mirror Descent (OMD):

qk+1 = argmin
q∈∆(Pk+1)

〈
ℓ̂k, q

〉
+

1

η
Dψ(q∥qk), (4.3)

whereDψ is the Bregman divergence of a log-barrier regular-
izer ψ, which leads to a better stability term in the analysis,

ψ(q) =

H−1∑
h=0

∑
x∈Xh

∑
a∈A

∑
x′∈Xh+1

log
1

q (x, a, x′)
. (4.4)

Note that this optimization problem can also be solved effi-
ciently via, e.g., Algorithm 4 in Lee et al. [2020].

Formally, the Privatizer for the loss function should satisfy
the following assumption.

Assumption 4.1 (Private loss in bandit feedback setting)
For all (x, a, k), Zk(x, a) := ℓ̃k(x, a) − ℓk (x, a) Ik(x, a)
are i.i.d. zero-mean random variables; and for some
E′
ε,δ > 0, with probability at least 1− δ uniformly over all

(x, a, k), |Zk(x, a)| ≤ E′
ε,δ .

When instantiated with any Privatizer satisfying Assumption
2.3 and Assumption 4.1, a general regret bound for Private
UOB-LBPS can be obtained as stated below.
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Theorem 4.2 Fix any ε > 0 and set η =
√

X
K , δ = XA

K .
Then, under Assumption 2.3 and Assumption 4.1, the regret
of Private UOB-LBPS satisfies

E [RK ] ≤ Õ

(
HCM

√
K +HX4AEε,δ +AE′

ε,δ

√
X3K

)
.

Proof We decompose the regret as the sum of the following
three terms: ERROR=

∑K
k=1⟨qP,πk− qPk,πk , ℓk⟩, BIAS =∑K

k=1⟨qPk,πk − q∗, ℓk − ℓ̂k⟩, and REG =
∑K
k=1⟨qPk,πk −

q∗, ℓ̂k⟩.

To bound ERROR, we directly borrow the analysis in The-
orem 3.3. To deal with bias caused by the scaling step, we
define an intermediate variable gk (x, a) =

ℓk(x,a)
2E′

ε,δ+1 , which
allows for having the following decomposition:

BIAS =

K∑
k=1

⟨qPk,πk − q∗, ℓk − gk⟩+
K∑
k=1

⟨qPk,πk , gk − ℓ̂k⟩

+

K∑
k=1

⟨q∗, ℓ̂k − gk⟩.

The first term is bounded byRK − ERROR by basic decom-
position. With the help of the upper occupancy measure and
the intermediate variable, the second term mainly depends
on
∑K
k=1

∑
x |uk(x)− qP,πk(x)|, which can be nicely con-

trolled by using our confidence set in Eq. (3.1). Besides, the
third term is non-positive by the definition of our biased loss
and upper occupancy measure.

Regarding REG term, benefiting from our non-negative loss
estimator and the log-barrier regularizer, we have a smaller
“stability” term compared with negative entropy regularizer,
in the form of E[

∑
k

∑
x,a qk(x, a)

2ℓ̂2k(x, a)]. The result
comes from a standard analysis in Agarwal et al. [2017].

5 PRIVACY AND REGRET GUARANTEES

In this section, we design the Privatizers that satisfy the
required assumptions for the considered feedback settings
(full-information and bandit) and privacy constraints (JDP
or LDP).

5.1 ACHIEVING JDP USING CENTRAL
PRIVATIZER

The Central Privatizer protects the information of all individ-
ual users by privatizing all the visitation counters and losses.
Specifically, given privacy budget ε > 0, we construct the
Central Privatizer as follows:

(1) For all (x, a, x′), we privatize {Nk(x, a)}k∈[K] and
{Nk(x, a, x′)}k∈[K] by the Binary Mechanism [Chan et al.,

2011] with ε′ = ε
3H logK . Denoting the output of the Binary

Mechanism by N̈k, the private counts Ñk are obtained by
the procedure in Section 5.1.1.

(2) Under the full-information setting, for all (x, a), we
privatize {Lk(x, a)}k∈[K] by a variant of the Binary Mech-
anism with ε′ = ε

3H logK (see Section 5.1.1).

(3) Under the bandit setting, for all (k, x, a), we directly use
the Laplace Mechanism [Dwork et al., 2014] with ε′ = ε

3H ,
i.e., ℓ̃k(x, a) = ℓk(x, a)Ik (x, a) + Lap

(
3H
ε

)
6.

We summarize the properties of Central Privatizer in the
following lemma.

Lemma 5.1 For any ε > 0, the Central Privatizer un-
der both full-information and bandit settings is ε-DP. For
any δ ∈ (0, 1], and K >

√
XA, it satisfies privacy

assumptions with Eε,δ = O
(
3H
ε log1.5K log ι

)
, Eε =

O( 3Hε
√
log3K ln (XA)), and E′

ε,δ =
3H
ε log ι.

Using Lemma 5.1, as corollaries of Theorem 3.3 and The-
orem 4.2, we obtain the regret and privacy guarantees for
Private-UC-O-REPS and Private-UOB-LBPS instantiated
using the Central Privatizer.

Theorem 5.2 (Problem-dependent Regret under JDP)
For any ε > 0, if instantiated using the Central Privatizer,
Private-UC-O-REPS and Private-UOB-LBPS both satisfy
ε-JDP. Furthermore, we obtain

E
[
RFull
K

]
≤ Õ

(
HCM

√
K +

X2AH2

ε

)
,

E
[
RBandit
K

]
≤ Õ

(
HCM

√
K +

AH
√
X3K

ε

)
.

Remark 5.3 The Private-UC-O-REPS and Private-UOB-
LBPS with JDP guarantee improve over the best existing
results in non-private settings for both full-information and
bandit settings [Rosenberg and Mansour, 2019a, Jin et al.,
2020a] by making appear a problem-dependent term and
also match them in the worst case, i.e., Õ

(
HX
√
AK

)
.

Remark 5.4 Compared to the lower bound for the stochas-
tic RL with the JDP guarantee in Vietri et al. [2020],
Ω
(
H
√
XAK + XAH logK

ϵ

)
, our bounds have an optimal

dependency on the privacy budget ε. In terms of K, the
privacy cost in the full-information setting is a lower order
term compared with the non-private term, which is domi-
nated by the estimation error on the transition function due
to private visitation counters. However, the privacy cost is

6Here, we slightly overloaded notation, and used Lap (·) to
represent a zero-mean Laplace variable with parameter ·.
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sub-optimal in the bandit setting, and the dominant factor
is regret associated with the private loss estimator, given
the stronger privacy guarantee for loss in Lemma 5.6. This
gap may be attributed to the inefficiency of our privacy
mechanism but might also arise due to a loose lower bound.

5.1.1 Post-processing steps

During the k-th episode, given the noisy counts N̈k(x, a),
N̈k(x, a, x

′), L̈k(x, a) for all (x, a, x′) from the classical
Binary Mechanism [Chan et al., 2011], we construct the
following private counters as follows.

Private visitation counters. To satisfy Assumption 2.3, we
use the techniques from Qiao and Wang [2023a]. Firstly, we
solve the optimization problem7 for all (x, a) below.

min t s.t. n(x′) ≥ 0, ∀x′,∣∣∣n(x′)− N̈k(x, a, x′)∣∣∣ ≤ t, ∀x′,∣∣∣∣∑x′∈Xh(x)+1

n(x′)− N̈k(x, a)
∣∣∣∣ ≤ Eε,δ

4
.

(5.1)
Letting N̄k(x, a, x′) denote a minimizer of this problem, we
define N̄k(x, a) =

∑
x′∈Xh(x)+1

N̄k(x, a, x
′). By adding

an additional term, as done below, we make sure that the
private counts Ñk(x, a) never underestimate the respective
true counts:

Ñk(x, a) = N̄k(x, a) +
Eε,δ
2
,

Ñk(x, a, x
′) = N̄k(x, a, x

′) +
Eε,δ

2Xh+1
.

(5.2)

The private counts Ñk satisfy the following property.

Lemma 5.5 Suppose N̈k
h satisfy∣∣∣N̈k(x, a, x′)−Nk(x, a, x′)∣∣∣ ≤ Eε,δ

4
,∣∣∣N̈k(x, a)−Nk(x, a)∣∣∣ ≤ Eε,δ

4
,

(5.3)

for all (h, k, x, a, x′), with probability 1 − 2δ. Then, Ñk
derived from Eq. (5.1) and Eq. (5.2) satisfy Assumption 2.3.

Private loss in full-information setting. We use a variant
of the Binary Mechanism which maintains the same privacy
guarantee as the standard Binary Mechanism but has bet-
ter distributional properties for our problem (see Lemma
F.1). That is, for all (k, x, a), we post-process L̈k(x, a) by
injecting more noise such that the perturbation on Lk(x, a)

7Note that Problem (5.1) is a linear program with O(Xh(x)+1)
variables and O(Xh(x)+1) linear constraints, which can be solved
efficiently using existing algorithms for linear programming. A fast
implementation could be via the simplex method [Ficken, 2015].

is a summation of ⌈logK⌉ i.i.d. Laplace variables. Thus,
Assumption 3.2 is satisfied by the maxima of the sum of
i.i.d. Laplace variables (see Lemma E.7).

Private loss in bandit setting. Assumption 4.1 is satisfied
by the concentration of Laplace variables [Boucheron et al.,
2003]. Moreover, the following lemma for private loss is
also held by using the property of the Laplace Mechanism.

Lemma 5.6 As defined in Section 5.1, the sequence{
ℓ̃k (x, a)

}
(x,a,k)

satisfies both ε/3-DP and ε/3-LDP.

5.2 ACHIEVING LDP USING LOCAL PRIVATIZER

The Local-Privatizer, at each episode k, releases the private
counts by perturbing the statistics computed from the tra-
jectory generated in that episode. Given the privacy budget
ε > 0, we construct Local Privatizer as follows:

(1) For all (k, x, a, x′), we perturb the true count
σk(x, a) := Ik(x, a) by injecting independent Laplace
noises: σ̃k(x, a) = σk(x, a)+Lap (3H/ε). Then, the noisy
counts are calculated by N̈k(x, a) =

∑k−1
i=1 σ̃i(x, a). The

counter N̈k(x, a, x′) is obtained in a similar way. To this
end, through the post-processing in Section 5.1.1, we get
the private counts Ñk.

(2) Under the full-information setting, for all (k, x, a, x′),
we perturb the observed loss by adding independent Laplace
noise: ℓ̃k (x, a) = ℓk (x, a) + Lap (3H/ε). The accumula-
tive statistic is calculated by L̃k(x, a) =

∑k−1
i=1 ℓ̃k (x, a).

(3) Under the bandit setting, we apply the same mechanism
as in Section 5.1, with the help of Lemma 5.6.

The properties of the Local-Privatizer are as follows.

Lemma 5.7 For any ε > 0, the Local Privatizer under
both full-information and bandit settings is ε-LDP. For
any δ ∈ (0, 1], and K > ln (XA) /2, it satisfies pri-
vacy assumptions with Eε,δ = O

(
3H
ε

√
K log ι

)
, Eε =

O
(

3H
ε

√
K ln (XA)

)
, and E′

ε,δ =
3H
ε log ι.

Combining Lemma 5.7, Theorem 3.3, and Theorem 4.2, we
obtain the following regret bound:

Theorem 5.8 (Problem-dependent Regret under LDP)
For any ε > 0, if instantiated using the Local Privatizer,
Private-UC-O-REPS and Private-UOB-LBPS both satisfy
ε-LDP. Furthermore, we obtain the expected regret,

E
[
RFull
K

]
≤ Õ

(
HCM

√
K +

X2AH2
√
K

ε

)
,

E
[
RBandit
K

]
≤ Õ

(
HCM

√
K +

X4AH2
√
K

ε

)
.
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Remark 5.9 Similar to the JDP case, the Private-UC-O-
REPS and Private-UOB-LBPS with LDP guarantee also
enjoy the problem-dependence efficiency, and match the
best regret bounds in non-private settings for both full-
information and bandit settings [Rosenberg and Mansour,
2019a, Jin et al., 2020a] in the worst case.

Remark 5.10 In the case of LDP, Garcelon et al. [2021]
implies a lower bound of Ω

(
H

√
XAK
ε

)
for the stochastic

episodic RL, for the privacy-related term assuming small
enough ϵ (corresponding to high privacy regime). Our
bounds also have an optimal dependency on privacy budget
ε and episode number K, but a worse dependency on the
size of the size of the state-space. In the full-information
setting, this gap is mainly due to the L1-norm estimated er-
ror on the transition function. In comparison, in the bandit
setting, the main factor is the bias between the upper occu-
pancy measure and the true occupancy measure, influenced
by our component-wise confidence set.

5.3 FURTHER DISCUSSIONS

Our Privatizer for visitation counters in Assumption 2.3 is
the same as the previous work [Qiao and Wang, 2023a],
but the motivation is different. In our setting, we apply the
post-processing step for N̈k to ensure that P̃k is a valid
probability distribution so that we can construct a valid
occupancy measure space for online optimization (Eq. (3.2)
and Eq. (4.3)). Meanwhile, the novel Assumption 3.2 for
private cumulative loss L̃k helps separate the impact of noise
on regret for online optimization. The Assumption 4.1 for
private loss estimators also bridges the privacy protection
between DP and LDP and plays a vital role in the regret
minimization procedure.

The Laplace noise involved in our Privatizer can also be
replaced with other noises like Gaussian noise [Dwork et al.,
2014]. According to Theorem 3.3 and Theorem 4.2, the
regret bounds can be easily derived by plugging in the cor-
responding precision level Eε,δ , Eε, and E′

ε,δ .

6 CONCLUSION AND FUTURE WORK

In this paper, we presented the first differentially private
algorithms for adversarial MDPs with unknown transitions
under both full information and bandit settings. Our designs
rely on tighter confidence bounds on the components of the
transition function, novel central and local Privatizers for
transition functions, and adversarial losses separately. By
instantiating the proposed Privatizers, both algorithms are
proven to achieve near-optimal problem-dependent regret
bounds, satisfying JDP or LDP privacy guarantees. Further,
the bounds also match non-private state-of-the-art bounds
in the worst case.

A natural direction of future work is to close the gap between
the upper and lower bounds on regret. A similar gap remains
open without privacy considerations, which requires new
progress in the non-private setting. We believe designing
refined privacy mechanisms for adversarial MDPs or estab-
lishing a lower bound here also leads to interesting technical
questions in this domain.

Considering that occupancy-measure-based algorithms are
computationally intensive, it will be a promising direction
to privatize policy-optimization-based algorithms, e.g., Luo
et al. [2021], Dann et al. [2023]. Besides, considering MDPs
with function approximation [Jin et al., 2020b, Sherman
et al., 2023] also has considerable potential for real-world
applications.
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A EXTENDED RELATED WORK

Regret minimization for adversarial MDPs. Over the past decade, research on adversarial (tabular) Markov Decision
Processes has covered various scenarios, including known and unknown transition functions, as well as full-information and
bandit feedback settings. In a scenario with a known transition function, Zimin and Neu [2013] introduces the O-REPS
algorithm, which employs Online Mirror Descent over the space of occupancy measures. This approach yields regret bounds
of Õ(H

√
K). To tackle the challenges posed by unknown transition functions, Rosenberg and Mansour [2019a] combine

confidence sets and Online Mirror Descent. This hybrid approach achieves the best-known regret bound of Õ(
√
X2AH2K)

under the full-information setting. In the bandit setting, Rosenberg and Mansour [2019b] develop inverse importance-
weighted loss estimators and obtain regret bounds of Õ(

√
X2AH2K

α ) under the α-reachability assumption. Building on
these works, Jin et al. [2020a] further improves the regret bounds by introducing biased and optimistic loss estimators
along with a tighter confidence set. These advancements lead to the best regret bound of Õ(

√
X2AH2K). Additionally,

policy-optimization-based methods have been developed by Shani et al. [2020] and Luo et al. [2021]. In particular, [Luo
et al., 2021] matches the best regret bound achieved through the OMD methods.

Private online learning. Private online learning has been a subject of extensive research for over a decade, and follow-the-
leader type algorithms have been employed in various scenarios. For instance, Guha Thakurta and Smith [2013] introduce a
private follow-the-approximate-leader method for online convex learning. Additionally, Agarwal and Singh [2017] and
Kairouz et al. [2021] propose private follow-the-regularized-leader algorithms for online linear optimization and online
federated learning, respectively. In the context of private bandit learning, Tossou and Dimitrakakis [2017] design a private
variant of the EXP3 algorithm for adversarial bandits, while Agarwal and Singh [2017] and Zheng et al. [2020] explore
private adversarial linear bandits and private convex bandit learning. Their works offered general reduction frameworks
that could achieve nearly optimal regret. Furthermore, a substantial body of research has focused on private online learning
with contextual information, spanning areas like private contextual bandit problems Shariff and Sheffet [2018], Zheng et al.
[2020], Chowdhury and Zhou [2022b], Charisopoulos et al. [2023], as well as private stochastic reinforcement learning
Vietri et al. [2020], Garcelon et al. [2021], Qiao and Wang [2023a], Liao et al. [2023]. Notably, despite the advancements
in private online learning, none of the existing work has addressed the specific challenges posed by private reinforcement
learning in the context of Adversarial Markov Decision Processes. This uncharted territory introduces the unique challenge
of private online learning within an adversarial environment characterized by contextual dynamics.

*Corresponding author
††Corresponding author
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B TABLE OF NOTATION

Symbol Descriptions

X state space with cardinality X
A action space with cardinality A
P transition function
K number of episodes
H episode length

∆(P ) the set of occupancy measure induced by transition P
P confidence set of transition function
πk policy at episode k
qP,πk occupancy measure of policy πk under transition P
Pk transition function induced by occupancy measure qk at episode k

qPk,πk occupancy measure of policy πk under transition Pk, i.e., qk
uk upper occupancy measure within ∆(Pk)
π∗ optimal policy
q∗ optimal occupancy measure
ε privacy budget
δ failure probability
η learning rate for online learning algorithms

ψ (q) regularizer function of q for online learning algorithm
Nk(x, a) count of visiting state-action pair (x, a) before episode k
Nk(x, a, x

′) count of going to state x′ from x upon playing action a before episode k
ℓk (x, a) loss of the state-action pair (x, a) at episode k
Lk(x, a) cumulative loss of the state-action pair (x, a) before episode k
Ñk(x, a) the privatized version of Nk(x, a)

Ñk(x, a, x
′) the privatized version of Nk(x, a, x

′)

N̂k(x, a) an optimistic value defined over Ñk(x, a) in Eq.D.1
L̃k(x, a) the privatized version of Lk(x, a)

ℓ̃k(x, a) the privatized version of observed loss ℓk (x, a) Ik (x, a)
ℓ̈k (x, a) the scaled version of private loss ℓ̃k(x, a)
ℓ̂k(x, a) the final loss estimator of (x, a)
P̄k transition function estimated by using true counts at episode k
P̃k transition function estimated by using private counts at episode k
βk confidence width for the element of private transition estimation at episode k
Eε,δ precision level for visitation counters
Eε precision level for loss counter in full-information setting
E′

ε,δ precision level for loss estimator in bandit-feedback setting

Table 2: List of Notation
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C OMITTED DETAILS FOR THE ALGORITHM

C.1 PRIVATE UC-O-REPS ALGORITHM

Algorithm 1 Private UC-O-REPS
Parameters: state space X , action spaceA, episode numberK, episode lengthH , learning rate η > 0, confidence parameter
δ ∈ (0, 1], privacy budget ε > 0 and a Privatizer
Initialization:
Initialize confidence set P1 as the set of all transitions.
For all (x, a, x′) ∈ X ×A×Xh(x)+1, initialize private counts, Ñ1 (x, a, x

′) = Ñ1 (x, a) = L̃1 (x, a) = 0, and occupancy
measure, q1 (x, a, x′) = 1

Xh(x)AXhx+1
.

Initialize policy π1 = πq1 .
Set precision levels Eε,δ and Eε for Privatizer.

1: for k = 1 to K do
2: Execute policy πk for H steps and obtain interaction history

{(
xkh, a

k
h

)}H−1

h=0
, and observe loss function ℓk.

3: Recieve private counts L̃k+1 (x, a), Ñk+1 (x, a), Ñk+1 (x, a, x
′) from Privatizer.

4: Compute private transition estimate, for all (x, a, x′) ∈ X ×A×Xh(x)+1,

P̃k+1 (x
′|x, a) = Ñk+1 (x, a, x

′)

Ñk+1(x, a)
.

5: Update the confidence set Pk+1 based Equation (3.1).

Pk+1 =
{
P :

∣∣∣P (x′|x, a)− P̃k+1 (x
′|x, a)

∣∣∣ ≤ βk+1 (x
′|x, a) , ∀ (x, a, x′) ∈ Xh ×A×Xh+1, h ∈ [H]

}
.

6: Update the occupancy measure

qk+1 = argmin
q∈∆(Pk+1)

〈
L̃k+1, q

〉
+

1

η
ψ (q) ,

where ψ (q) =
∑

(x,a,x′)∈X×A×X q (x, a, x
′) ln q (x, a, x′) .

7: Update the policy
πk+1 = πqk+1 .

8: end for
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C.2 UPDATING OCCUPANCY MEASURE EFFICIENTLY FOR PRIVATE-UC-O-REPS

This subsection explains how to implement the update defined in (3.2) for Algorithm 1, Private-UC-O-REPS, efficiently.

Similar to the approaches in Neu et al. [2012], Rosenberg and Mansour [2019a], Jin et al. [2020a], we provide details of the
modification here for completeness. Based on the property of FTRL, this optimization can be reformulated as first solving
the unconstrained optimization problem,

q′k+1 = argmin
q

〈
L̃k+1, q

〉
+

1

η
ψ (q) , (C.1)

and then projecting the result
qk+1 = argmin

q∈∆(Pk+1)

Dψ(q∥q′k+1), (C.2)

where ψ (q) is negative entropy regularizer function defined in Eq. (3.3), and Dψ(q∥q′) =∑
(x,a,x′)∈X×A×Xh(x)+1

(
q (x, a, x′) ln

q(x,a,,x′)
q′(x,a,x′) − (q (x, a, x′)− q′ (x, a, x′))

)
is the corresponding Bregman di-

vergence. For the unconstrained optimization, we have the optimal solution directly through the Lagrange method,

q′k+1 (x, a, x
′) =

exp(−ηL̃k+1(x,a))∑
(x,a,x′)∈Xh×A×Xh+1

(exp(−ηL̃k+1(x,a)))
for all (x, a, x′) ∈ X ×A×Xh(x)+1.

For the second step, we can rewrite this constrained optimization problem with the following set of linear equations, which
can be solved in polynomial time.

min
q

Dψ(q∥q′k+1)

s.t.
∑

(x,a,x′)∈Xh×A×Xh+1
q (x, a, x′) = 1 ∀h∑

a∈A,x′∈Xh+1
q (x, a, x′) =

∑
x′∈Xh−1,a∈A q (x

′, a, x) ∀h,∀x ∈ Xh(
P̃k+1 (x

′|x, a) + βk+1 (x, a, x
′)
)
·
∑
x′∈Xh+1

q (x, a, x′) ≥ q (x, a, x′) ∀h,∀ (x, a, x′) ∈ Xh ×A×Xh+1(
P̃k+1 (x

′|x, a)− βk+1 (x, a, x
′)
)
·
∑
x′∈Xh+1

q (x, a, x′) ≤ q (x, a, x′) ∀h,∀ (x, a, x′) ∈ Xh ×A×Xh+1

q (x, a, x′) ≥ 0 ∀h,∀ (x, a, x′) ∈ Xh ×A×Xh+1

This problem can be further reformulated into a dual problem, which is a convex optimization problem with only non-
negativity constraints and thus can be solved more efficiently.

Lemma C.1 The dual problem of (C.2) is

µ+
k , µ

−
k , νk = argmin

µ+,µ−,ν≥0

H−1∑
h=0

ln

 ∑
(x,a,x′)∈Xh×A×Xh+1

Sµ
+,µ−,ν

k,h (x, a, x′)

 , (C.3)

where µ+ := {µ+ (x, a, x′)}(x,a,x′) , µ
− := {µ− (x, a, x′)}(x,a,x′) and ν := {ν (x)}x are dual variables and

Sµ
+,µ−,ν

k,h (x, a, x′) =
1∑

(x,a,x′)∈Xh×A×Xh+1
exp

(
−ηL̃k+1 (x, a)

) exp
(
−ηL̃k+1 (x, a) +Bµ

+,µ−,ν
k,h (x, a, x′)

)
,

Bµ
+,µ−,ν

k,h (x, a, x′) = −ν (x) + ν (x′)− µ+ (x, a, x′) + µ− (x, a, x′)

+
∑

y∈Xh(x)+1

[
P̃k+1 (y|x, a)

(
µ+ (x, a, y)− µ− (x, a, y)

)
+ βk+1 (x, a, y)

(
µ+ (x, a, y) + µ− (x, a, y)

)]
.

Furthermore, the optimal solution to this projection is given by, for any (x, a, x′) ∈ Xh ×A×Xh+1,

qk+1 (x, a, x
′) =

Sµ
+,µ−,ν

k,h (x, a, x′)∑
(x,a,x′)∈Xh×A×Xh+1

Sµ
+,µ−,ν

k,h (x, a, x′)
. (C.4)
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Proof In the following proof, we omit the non-negativity constraints of Problem (C.3). This is without loss of generality
since the optimal solution for the modified version without non-negativity constraints turns out to always satisfy the
non-negativity constraints. We write the Lagrangian as,

L(q, λ,ν, µ+, µ−) = Dψ(q∥q′k+1) +

H−1∑
h=0

λh

 ∑
(x,a,x′)∈Xh×A×Xh+1

q (x, a, x′)− 1


+

H−1∑
h=1

∑
x∈Xh

ν (x)

 ∑
a∈A,x′∈Xh+1

q (x, a, x′)−
∑

x′∈Xh−1,a∈A
q (x′, a, x)


+

H−1∑
h=0

∑
(x,a,x′)∈Xh×A×Xh+1

µ+ (x, a, x′)

q (x, a, x′)− (P̃k+1 (x
′|x, a) + βk+1 (x, a, x

′)
)
·
∑

y∈Xh+1

q (x, a, y)


+

H−1∑
h=0

∑
(x,a,x′)∈Xh×A×Xh+1

µ− (x, a, x′)

(P̃k+1 (x
′|x, a)− βk+1 (x, a, x

′)
)
·
∑

y∈Xh+1

q (x, a, y)− q (x, a, x′)


where λ := {λh}h , ν := ν(x)x and µ := {µ+ (x, a, x′) , µ− (x, a, x′)}(x,a,x′) are Lagrange multipliers. We denote
ν(x0) = ν(xK) = 0 to avoid addressing the edge cases explicitly. Now, we consider the derivative with respect to
q (x, a, x′).

∂L
∂q (x, a, x′)

= ln q (x, a, x′)− ln q′ (x, a, x′) + λh + ν (x)− ν (x′) + µ+ (x, a, x′)− µ− (x, a, x′)

−
∑

y∈Xh(x)+1

[
P̃k+1 (y|x, a)

(
µ+ (x, a, y)− µ− (x, a, y)

)
+ βk+1 (x, a, y)

(
µ+ (x, a, y) + µ− (x, a, y)

)]
= ln q (x, a, x′)− ln q′ (x, a, x′) + λh −Bµ

+,µ−,ν
k,h (x, a, x′) .

Setting the gradient to zero and using the explicit form of q′k+1 (x, a, x
′) we obtain,

qk+1 (x, a, x
′) =q′k+1 (x, a, x

′) · exp
(
−λh +Bµ

+,µ−,ν
k,h (x, a, x′)

)
=

1∑
(x,a,x′)∈Xh×A×Xh+1

exp
(
−ηL̃k+1 (x, a)

) exp
(
−ηL̃k+1 (x, a)− λh +Bµ

+,µ−,ν
k,h (x, a, x′)

)
.

Using the first constraint
∑

(x,a,x′)∈Xh×A×Xh+1
q (x, a, x′) = 1 to discover that

eλh =
∑

(x,a,x′)∈Xh×A×Xh+1

1∑
(x,a,x′)∈Xh×A×Xh+1

exp
(
−ηL̃k+1 (x, a)

) exp
(
−ηL̃k+1 (x, a) +Bµ

+,µ−,ν
k,h (x, a, x′)

)
=

∑
(x,a,x′)∈Xh×A×Xh+1

Sµ
+,µ−,ν

k,h (x, a, x′) .

Taking λh back, we obtain the explicit form of the solution,

qk+1 (x, a, x
′) =

Sµ
+,µ−,ν

k,h (x, a, x′)∑
(x,a,x′)∈Xh×A×Xh+1

Sµ
+,µ−,ν

k,h (x, a, x′)
.

We note the equivalent formula of Lagrangian,

L(q, λ,ν, µ+, µ−µ) =

H−1∑
h=0

∑
(x,a,x′)∈Xh×A×Xh+1

((
∂L

∂q (x, a, x′)
− 1

)
q (x, a, x′) + q′k+1 (x, a, x

′)

)
−
H−1∑
h=1

λh.

It is straightforward to check that strong duality holds, and thus the optimal dual variables of µ+, µ−, ν are given by

µ+∗, µ−∗, ν∗ =argmax
µ+,µ−,ν

max
λ

min
q
L
(
q, λ, ν, µ+, µ−) = argmax

µ+,µ−,ν

L
(
q∗, λ∗, ν, µ+, µ−) (C.5)
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=argmax
µ+,µ−,ν

−H +

H−1∑
h=0

∑
(x,a,x′)∈Xh×A×Xh+1

q′k+1 (x, a, x
′)−

H−1∑
h=0

λh

 (C.6)

=argmin
µ+,µ−,ν

H−1∑
h=0

λh = argmin
µ+,µ−,ν

H−1∑
h=0

ln

 ∑
(x,a,x′)∈Xh×A×Xh+1

Sµ
+,µ−,ν

k,h (x, a, x′)

 . (C.7)

We apply ∂L
∂q(x,a,x′) = 0 to Eq. (C.6), and in Eq. (C.7) the first two terms are independent of dual variables. Thus, combing

all equations for qk+1, λ
∗, µ+∗, µ−∗, ν∗ finishes the proof.

The pseudo-code of this efficient algorithm for Private-UC-O-REPS is as follows.

Algorithm 2 Updating Occupancy Measure and Policy Procedure

Input: transition function estimate P̃k+1, cumulative private loss function L̃k+1

1: Solve optimization problem C.3

µ+
k , µ

−
k , νk = argmin

µ+,µ−,ν≥0

H−1∑
h=0

ln

 ∑
(x,a,x′)∈Xh×A×Xh+1

Sµ
+,µ−,ν

k,h (x, a, x′)

 ,

where µ+ := {µ+ (x, a, x′)}(x,a,x′) , µ
− := {µ− (x, a, x′)}(x,a,x′) and ν := {ν (x)}x, and Sµ

+,µ−,ν
k,h is defined by C.4.

2: Compute next occupancy measure for all (x, a, x′):

qk+1 (x, a, x
′) =

Sµ
+,µ−,ν

k,h (x, a, x′)∑
(x,a,x′)∈Xh×A×Xh+1

Sµ
+,µ−,ν

k,h (x, a, x′)
,

where h = h (x) is the index of the layer of the state x.
3: Compute next policy for all (x, a)

πk+1 (a|x) =
∑
x′ qk+1 (x, b, x

′)∑
b∈A

∑
x′ qk+1 (x, b, x′)

.

4: output: (qk+1, πk+1)
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C.3 PRIVATE UOB-LBPS ALGORITHM

Algorithm 3 Private UOB-LBPS
Parameters: state space X , action spaceA, episode numberK, episode lengthH , learning rate η > 0, confidence parameter
δ ∈ (0, 1], privacy parameter ε > 0 and a Privatizer
Initialization:
Initialize confidence set P1 as the set of all transitions.
For all (x, a, x′) ∈ X × A × Xh(x)+1, initialize private counts, Ñ1 (x, a, x

′) = Ñ1 (x, a) = 0, and occupancy measure,
q1 (x, a, x

′) = 1
Xh(x)AXh(x)+1

.
Initialize policy π1 = πq1 .
Set precision levels Eε,δ and E′

ε,δ for Privatizer.
1: for k = 1 to K do
2: Execute policy πk for H steps and obtain interaction history

{(
xkh, a

k
h

)}H−1

h=0
, and observe losses

{
ℓk
(
xkh, a

k
h

)}H−1

h=0
.

3: Receive private counts Ñk+1 (x, a), Ñk+1 (x, a, x
′) and private loss ℓ̃k (x, a) from Privatizer.

4: Scale private loss to [0, 1], for all (x, a) ∈ X ×A,

ℓ̈k (x, a) =
ℓ̃k (x, a) + E′

ε,δ

2E′
ε,δ + 1

.

5: Compute optimistic loss estimator ℓ̂k(x, a) for all (x, a) ∈ X ×A using upper occupancy measure bound uk,

ℓ̂k(x, a) =
ℓ̈k (x, a)

uk (x, a)
,

where uk(x, a) = maxP∈Pk
qP,πk(x, a).

6: Compute private transition estimate, for all (x, a, x′) ∈ X ×A×Xh(x)+1,

P̃k+1 (x
′|x, a) = Ñk+1 (x, a, x

′)

Ñk+1(x, a)
.

7: Update confidence set Pk+1 using Equation (3.1),

Pk+1 =
{
P :

∣∣∣P (x′|x, a)− P̃k+1 (x
′|x, a)

∣∣∣ ≤ βk+1 (x
′|x, a) , ∀ (x, a, x′) ∈ Xh ×A×Xh+1, h ∈ [H]

}
.

8: Update the occupancy measure

qk+1 = argmin
q∈∆(Pk+1)

〈
ℓ̂k, q

〉
+

1

η
Dψ(q∥qk).

where ψ (q) is a log-barrier regularizer defined in Eq. 4.4, and Dψ(q∥qk) is the Bregman divergence of ψ between q
and qk.

9: Update the policy
πk+1 = πqk+1 .

10: end for
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D OMITTED DETAILS FOR THE ANALYSIS

Important Notations For convenience, we define

N̂k(x, a) = max
{
Ñk(x, a), 4Eε,δ + 7 ln ι

}
, (D.1)

and it can be verified that the confidence width defined in Eq. 3.1 can be equivalently written as

βk (x
′|x, a) = min

1,

√√√√2P̃k (x′|x, a)
(
1− P̃k (x′|x, a)

)
ln ι

Ñk(x, a)
+

4Eε,δ + 7 ln ι

Ñk(x, a)

 ,

= min

1,

√√√√2P̃k (x′|x, a)
(
1− P̃k (x′|x, a)

)
ln ι

N̂k(x, a)
+

4Eε,δ + 7 ln ι

N̂k(x, a)


since whenever N̂k(x, a) ̸= Ñk(x, a), the two definitions both lead to a value of 1.

D.1 REGRET GUARANTEE IN THE FULL-INFORMATION SETTING

We decompose the regret in the same way as the non-private setting [Rosenberg and Mansour, 2019a], and bound ERROR
and REG terms separately:

RK =

K∑
k=1

〈
qP,πk − q∗, ℓk

〉
=

K∑
k=1

〈
qP,πk − qPk,πk , ℓk

〉
︸ ︷︷ ︸

ERROR

+

K∑
k=1

〈
qPk,πk − q∗, ℓk

〉
︸ ︷︷ ︸

REG

, (D.2)

where qPk,πk := qk is an intermediate variable that helps bound the regret, and the transition estimate Pk is associated with
the occupancy measure qk.

D.1.1 Bounding ERROR

Lemma D.1 With Assumption 2.3 and Assumption 3.2, with high probability 1− 7δ, we have

ERROR ≤ O
(
HCM

√
K +HX2A ln ι logK +HX2AEε,δ logK

)
.

Proof For this proof, we consider that events in Lemma E.15 and EEST in Proposition E.23 hold with high probability.
Since for every state-action pair and episode ℓk (x, a) ∈ [0, 1], and by Hölder’s inequality, we have

K∑
k=1

〈
qP,πk − qPk,πk , ℓk

〉
≤

K∑
k=1

H−1∑
h=0

∑
x∈Xh

∑
a∈A

∣∣qPk,πk (x, a)− qP,πk (x, a)
∣∣

=

K∑
k=1

H−1∑
h=0

∑
x∈Xh

∣∣qPk,πk (x)− qP,πk (x)
∣∣

≤
K∑
k=1

H−1∑
h=0

∑
x∈Xh

h−1∑
h′=0

∑
(u,v,w)∈W ′

h

qP,πk(u, v) |Pk(w|u, v)− P (w|u, v)| qPk,πk(x|w)

≤ H
K∑
k=1

H−1∑
h=0

∑
u∈Xh

∑
v∈A

qP,πk(u, v) ∥Pk(·|u, v)− P (·|u, v)∥1
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≤ H
H−1∑
h=0

K∑
k=1

∑
u∈Xh

∑
v∈A

qP,πk(u, v) · O

(√
Cu,v ln ι

N̂k(u, v)
+
Xh+1 (Eε,δ + ln ι)

N̂k(u, v)

)

≤ O

H H−1∑
h=0

√ln ι
∑

(x,a)∈Xh×A

Cx,aK +
(√

Xh+1 ln ι+Xh+1 (Eε,δ + ln ι)
)
(XhA logK + ln ι)


≤ O

(
HCM

√
K +HX2A ln ι logK +HX2AEε,δ logK

)
, (D.3)

where the third step applies Lemma E.19 and the fourth step rearranges the summation and uses the fact that∑H−1
h=0

∑
x∈Xh

qPk,πk (x|w) ≤ H; the fifth step follows the bound of L1 norm error between transitions within the
confidence set in Lemma E.16; the final steps follows the corollary of EEST in Lemma E.24.

D.1.2 Bounding REG

To bound REG, we apply a technique similar to that utilized in the private Follow-The-Regularized-Leader (FTRL) algorithm
for private online learning as described in Theorem 3.4 in Agarwal and Singh [2017] and Lemma 30 in Agarwal et al. [2023].

Lemma D.2 With private loss satisfying Assumption 3.2, and parameter η =
√

ln(XA/H)
K and δ = XA

K , we have

E [REG] ≤ 2H

√
K ln

(
XA

H

)
+HEε. (D.4)

Proof Note that Zk(x, a) is the difference between the cumulative loss of state-action pair Lk(x, a) and its private version
L̃k(x, a) in k-th episode, i.e., Zk(x, a) = L̃k(x, a)− Lk(x, a). In accordance with Assumption 3.2 for private cumulative
losses, we can infer that Zk(x, a) follows the same distribution and is sampled independently at each step for all (k, x, a).

For ease of analysis, we introduce a pseudo-private algorithm that performs a one-shot noise injection, which follows the
same distribution as Zk(x, a), but is sampled only once at the beginning of the algorithm. The learning agent then operates
based on the loss with this one-shot noise. Although the pseudo-private algorithm may not be differentially private, it
experiences the same expected regret as our private algorithm due to the equal expected loss.

Formally, consider a one-shot sampled noise Ẑ (x, a) that is independently sampled before the interaction begins. Using this
one-shot noise, we define a pseudo-private cumulative loss L̂k (x, a) = Lk(x, a)+ Ẑ (x, a) for all (x, a) pair at all episodes.
Next, we establish the sequence of pseudo occupancy measures q̂ as follow:

q̂1 ≜ q1, q̂k ≜ argmin
q∈∆(Pk)

〈
L̂k, q

〉
+

1

η
ψ (q) .

In expectation, it can be observed that EZk
[⟨qk, ℓk⟩] = EẐ [⟨q̂k, ℓk⟩] since q̂k has the same distribution as qk. This leads to

the following equality,

EZ1,··· ,ZK

[
K∑
k=1

⟨qk, ℓk⟩

]
= EZ

[
K∑
k=1

⟨q̂k, ℓk⟩

]
.

Therefore, the pseudo-private algorithm experiences the same regret in expectation as our private algorithm, and it is
sufficient to bound the regret of sequence {q̂k}Kk=1. The proof follows the standard template of FTRL analysis in Hazan
[2016], and the key intuition is that the addition of one-shot noise does not impact the stability term of the FTRL analysis,
but incurs a cost in the bias term instead.

We define an augmented series of loss function as ℓ0 (q) =
〈
Ẑ, q

〉
+ 1

ηψ (q). By applying the “Be the Leader" Lemma in
Hazan [2016], we obtain that for any fixed u ∈ ∩k∆(Pk) in the confidence set,

K∑
k=0

⟨u, ℓk⟩ ≥
K∑
k=0

⟨q̂k+1, ℓk⟩ .
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Consequently, we can conclude that

K∑
k=1

⟨q̂k − u, ℓk⟩ ≤
K∑
k=1

⟨q̂k − q̂k+1, ℓk⟩+ ⟨u− q̂1, ℓ0⟩

≤
K∑
k=1

⟨q̂k − q̂k+1, ℓk⟩+
1

η
Rψ +RẐ ,

where the two bias terms are Rψ ≜ maxq∈∆(P ) ψ (q) − minq∈∆(P ) ψ (q), and RẐ ≜ maxq∈∆(P )

〈
q, Ẑ

〉
−

minq∈∆(P )

〈
q, Ẑ

〉
. Via Jensen’s inequality, we have Rψ ≤ H ln XA

H . By Assumption 3.2, we have E
[
RẐ
]
≤ HEε.

Following Hazan [2016], the stability term is bounded by the L∞ norm of the loss function,

⟨q̂k − q̂k+1, ℓk⟩ ≤ η ∥ℓk∥2∞ ≤ ηH. (D.5)

Using Lemma 3.1, we have q∗ ∈ ∩k∆(Pk) with probability at least 1− 6δ. Thus, putting everything together and letting

η =
√

ln(XA/H)
K , we obtain the following expected bound, with probability at least 1− 6δ (with probability of at most 3δ,

we can bound it as KH and setting δ = XA
K eliminates this term),

E [REG] ≤ 2H

√
K ln

(
XA

H

)
+HEε.

Putting everything together and using Lemma E.1, we obtain the expected regret bound (Theorem 3.3),

E[RK ] =E [ERROR] + E [REG] .

≤O
(
HCM

√
K +HX2AEε,δ +HEε

)
.

D.2 REGRET GUARANTEE IN THE BANDIT SETTING

Our analysis starts from a decomposition similar to Appendix C.3 in Lee et al. [2020] as follows.

RK =

K∑
k=1

〈
qP,πk − q∗, ℓk

〉
=

K∑
k=1

〈
qP,πk − qPk,πk , ℓk

〉
︸ ︷︷ ︸

ERROR

+

K∑
k=1

〈
qPk,πk − q́, ℓk − ℓ̂k

〉
︸ ︷︷ ︸

BIAS

+

K∑
k=1

〈
qPk,πk − q́, ℓ̂k

〉
︸ ︷︷ ︸

REG

+

K∑
k=1

⟨q́ − q∗, ℓk⟩ .

(D.6)

Here, the q́ is defined as

q́ =

(
1− 1

K

)
q∗ +

1

AK

∑
a∈A

qP0,πa ,

where πa is the policy that chooses action a at every state, and a specific transition P0 is defined in Lemma C.4 in Lee et al.
[2020], satisfying P0 ∈ ∩kPk and P0 (x

′|, x, a) ≥ 1
KX for all h < H, (x, a, x′) ∈ Xh ×A×Xh+1. Besides, according to

Lemma C.4 in Lee et al. [2020], we also have qP0,πa ∈ ∩k∆(Pk), and q́ is also in that convex set due to convex combination
rule. Note that the last term can be trivially bounded by,

K∑
k=1

⟨q́ − q∗, ℓk⟩ ≤
1

AK

K∑
k=1

〈
qP0,πa , ℓk

〉
≤ H.

Then, we bound each term as follows.
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D.2.1 Bounding ERROR

Since we use the same estimator for the transition function for both the full-information setting and bandit-feedback setting,
the term ERROR can be bounded by using Lemma D.1. That is, with probability at least 1− 7δ,

ERROR ≤ O
(
HCM

√
K +HX2A ln ι logK +HX2AEε,δ logK

)
.

D.2.2 Bounding BIAS

For all k, x, a, we define intermediate variables gk(x, a) =
ℓk(x,a)
2E′

ε,δ+1 . Thus, BIAS term can be decomposed as follows,

BIAS =

K∑
k=1

〈
qPk,πk − q́, ℓk − ℓ̂k

〉
=

K∑
k=1

〈
qPk,πk − q́, ℓk − gk

〉
︸ ︷︷ ︸

BIAS1

+

K∑
k=1

〈
qPk,πk , gk − ℓ̂k

〉
︸ ︷︷ ︸

BIAS2

+

K∑
k=1

〈
q́, ℓ̂k − gk

〉
︸ ︷︷ ︸

BIAS3

.

Before we bound the three terms, we restate the construction of our loss estimator. We first privatize the observed loss
ℓk (x, a) Ik (x, a) to ℓ̃k(x, a), and then scale it to [0, 1] to get the intermediate loss ℓ̈k. By using the upper occupancy measure
uk, we finally get the loss estimator ℓ̂k(x, a). That is,

ℓ̂k(x, a) =
ℓ̈k(x, a)

uk (x, a)
=

1

uk (x, a)
·
ℓk (x, a) Ik (x, a) + Zk(x, a) + E′

ε,δ

2E′
ε,δ + 1

. (D.7)

Observe that the estimated loss ℓ̂k is biased when given previous trajectories S1:k−1, since Pk may be different from the true
transition function P and the losses are perturbed by noise and then scaled. The randomness comes from the random policy,
stochastic transition function, and zero-mean injected noise.

E
[
ℓ̂k (x, a) |S1:k−1

]
=

1

uk (x, a)
·

E′
ε,δ

2E′
ε,δ + 1

+
qP,πk (x, a)

uk (x, a)
· ℓk (x, a)
2E′

ε,δ + 1
. (D.8)

BIAS1: By definition and nice decomposition, we have BIAS1 controlled byRK − ERROR.

BIAS1 =

K∑
k=1

〈
qPk,πk − q́, ℓk − gk

〉
=

2E′
ε,δ

2E′
ε,δ + 1

K∑
k=1

〈
qPk,πk − q́, ℓk

〉
≤

2E′
ε,δ

2E′
ε,δ + 1

K∑
k=1

〈
qPk,πk − q∗, ℓk

〉
=

2E′
ε,δ

2E′
ε,δ + 1

[
K∑
k=1

〈
qP,πk − q∗, ℓk

〉
−

K∑
k=1

〈
qP,πk − qPk,πk , ℓk

〉]

=
2E′

ε,δ

2E′
ε,δ + 1

[RK − ERROR] .

BIAS2: In expectation, we have,

E [BIAS2] = E

[
K∑
k=1

〈
qPk,πk , gk − ℓ̂k

〉]

= E

[
K∑
k=1

∑
x,a

qPk,πk (x, a)

(
ℓk (x, a)

2E′
ε,δ + 1

− 1

uk (x, a)
·

E′
ε,δ

2E′
ε,δ + 1

− qP,πk (x, a)

uk (x, a)
· ℓk (x, a)
2E′

ε,δ + 1

)]

= E

[
K∑
k=1

∑
x,a

qPk,πk (x, a)

(
uk (x, a)− qP,πk (x, a)

uk (x, a)
· ℓk (x, a)
2E′

ε,δ + 1
− 1

uk (x, a)
·

E′
ε,δ

2E′
ε,δ + 1

)]

≤ E

[
1

2E′
ε,δ + 1

·
K∑
k=1

∑
x

∣∣uk (x)− qP,πk (x)
∣∣− K∑

k=1

∑
x,a

1

uk (x, a)
·

E′
ε,δ

2E′
ε,δ + 1

]
,
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where the second equality applies the expectation of private loss estimator in Eq. D.8; and the fourth inequality is due to the
definition of the upper occupancy measure, i.e., uk (x, a) ≥ qPk,πk ; Lemma 3.1, i.e., P ∈ Pk with high probability, and
ℓk (x, a) ∈ [0, 1] for all (x, a, k).

Similar to the proof of Lemma D.1, we consider that the event in Lemma E.15 and EEST in Proposition E.23 hold with high
probability. Then, we have

∑
x∈X

∣∣uk (x)− qP,πk(x)
∣∣

≤O

∑
x∈X

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) ·

√
P (w|u, v) (1− P (w|u, v)) ln ι

N̂k (u, v)
· qP,πk(x|w)


+O

X3
∑
u̸=xH

∑
v∈A

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)


≤O

H h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) ·

√
P (w|u, v) (1− P (w|u, v)) ln ι

N̂k (u, v)


+O

X3
∑
u̸=xH

∑
v∈A

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)


≤O

(
H

H−1∑
h=0

∑
u∈xh

∑
v∈A

qP,πk(u, v) ·
√
Cu,v ln ι

N̂k (u, v)

)
+O

X3
∑
u̸=xH

∑
v∈A

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)

 ,

where the first step applies the occupancy difference lemma in Lemma E.21, and the second inequality is due to the fact that∑
x∈X q

P,πk(x|w) ≤ H .

Taking the summation over all episodes yields the following:

K∑
k=1

∑
x∈X

∣∣uk (x)− qP,πk(x)
∣∣

≤O

(
H

K∑
k=1

H−1∑
h=0

∑
u∈xh

∑
v∈A

qP,πk(u, v) ·
√
Cu,v ln ι

N̂k (u, v)

)
+O

X3
K∑
k=1

∑
u̸=xH

∑
v∈A

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)


≤O

H H−1∑
h=0

√
ln ι

√ ∑
(x,a)∈Xh×A

Cx,aK +
√
Xh+1XhA logK +

√
Xh+1 log ι


+O

(
X3

H−1∑
h=0

(Eε,δ + ln ι) (XhA logK + log ι)

)
≤O

(
HCM

√
K ln ι+X4A (Eε,δ + ln ι) ln ι

)
,

where the second inequality follows the corollary of EEST in Lemma E.24. Thus, we derive the upper bound of BIAS2,

E [BIAS2] ≤ O

(
1

2E′
ε,δ + 1

·
(
HCM

√
K +X4AEε,δ

))
− E

[
K∑
k=1

∑
x,a

1

uk (x, a)
·

E′
ε,δ

2E′
ε,δ + 1

]
.

BIAS3: We apply the Eq.D.8 and the definition of upper occupancy measure uk (x, a) and Lemma 3.1 directly, then obtain
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BIAS3 bounded.

E [BIAS3] = E

[
K∑
k=1

〈
q́, ℓ̂k − gk

〉]

= E

[
K∑
k=1

∑
x,a

q́ (x, a) ·

(
1

uk (x, a)
·

E′
ε,δ

2E′
ε,δ + 1

+
qP,πk (x, a)

uk (x, a)
· ℓk (x, a)
2E′

ε,δ + 1
− ℓk (x, a)

2E′
ε,δ + 1

)]

= E

[
K∑
k=1

∑
x,a

q́ (x, a) ·

(
qP,πk (x, a)− uk (x, a)

uk (x, a)
· ℓk (x, a)
2E′

ε,δ + 1
+

1

uk (x, a)
·

E′
ε,δ

2E′
ε,δ + 1

)]

≤ E

[
K∑
k=1

∑
x,a

1

uk (x, a)
·

E′
ε,δ

2E′
ε,δ + 1

]
.

D.2.3 Bounding REG

Lemma D.3 With private loss estimator satisfying Assumption 4.1, and let η =
√

X
K , δ =

XA
K , we have,

E [REG] ≤ O

( √
XK

2E′
ε,δ + 1

·
(
AXE′

ε,δ +H
))

Proof Using the standard analysis of OMD with log-barrier (e.g., Lemma 12 in Agarwal et al. [2017]), we have, for any
u ∈ ∩k∆(Pk),

K∑
k=1

〈
qPk,πk − u, ℓ̂k

〉
≤ Dψ(u∥q1)

η
+ η

K∑
k=1

∑
x,a,x′

qPk,πk (x, a, x′)
2
ℓ̂k(x, a)

2

=
Dψ(u∥q1)

η
+ η

K∑
k=1

∑
x,a,x′

(
qPk,πk (x, a)Pk (x

′|x, a)
)2
ℓ̂k(x, a)

2

≤ Dψ(u∥q1)
η

+ η

K∑
k=1

∑
x,a

qPk,πk (x, a)
2
ℓ̂k(x, a)

2 ·

(∑
x′

Pk (x
′|x, a)2

)

≤ Dψ(u∥q1)
η

+ η

K∑
k=1

∑
x,a

qPk,πk (x, a)
2
ℓ̂k(x, a)

2,

(D.9)

where the first step is due to ηqPk,πk (x, a, x′) ℓ̂k(x, a) ≥ 0 under the Assumption 4.1, and the second step uses the fact that
qPk,πk (x, a, x′) = qPk,πk (x, a)Pk (x

′|x, a); the final step follows the fact that
∑
x′ Pk (x

′|x, a) = 1.

Eq. D.9 also applies for q́, since q́ ∈ ∩k∆(Pk) by definition. Therefore, by direct calculation, we have

Dψ(q́∥q1) =
H−1∑
h=0

∑
(x,a,x′)∈Wh

(
log

(
q1 (x, a, x

′)

q́ (x, a, x′)

)
+

q́ (x, a, x′)

q1 (x, a, x′)
− 1

)

=

H−1∑
h=0

∑
(x,a,x′)∈Wh

log

(
q1 (x, a, x

′)

q́ (x, a, x′)

)
+

H−1∑
h=0

∑
(x,a,x′)∈Wh

(XhAXh+1q́ (x, a, x
′)− 1)

=

H−1∑
h=0

∑
(x,a,x′)∈Wh

log

(
q1 (x, a, x

′)

q́ (x, a, x′)

)
≤ 3X2A log ι,

where the second step uses the definition of q1 (x, a, x′) = 1
XhAXh+1

for all horizon h, and the fourth step uses the
lower bounds q́ (x, a, x′) ≥ 1

X2AK3 from Lemma C.10 in Lee et al. [2020], and then q́ (x, a, x′) ≥ 1
ι3 and upper bounds
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q1 (x, a, x
′) ≤ 1. For the second term, we have

E

[
K∑
k=1

∑
x,a

qPk,πk (x, a)
2
ℓ̂k(x, a)

2

]

= E

[
K∑
k=1

∑
x,a

qPk,πk (x, a)
2 · ℓ̈k(x, a)
uk (x, a)

· ℓ̂k(x, a)

]

≤ E

[
K∑
k=1

∑
x,a

qPk,πk (x, a) · ℓ̂k(x, a)

]

≤ E

[
K∑
k=1

∑
x,a

qPk,πk (x, a) ·

(
1

uk (x, a)
·

E′
ε,δ

2E′
ε,δ + 1

+
qP,πk (x, a)

uk (x, a)
· ℓk (x, a)
2E′

ε,δ + 1

)]

≤ E

[
K∑
k=1

∑
x,a

(
E′
ε,δ

2E′
ε,δ + 1

+ qP,πk (x, a) · ℓk (x, a)
2E′

ε,δ + 1

)]

≤
XAKE′

ε,δ +HK

2E′
ε,δ + 1

,

where the first equality applies the definition of ℓ̂k(x, a), and the second inequality follows the definition of uk and the fact
that ℓ̈k (x, a) ∈ [0, 1] for all (x, a) due to the scaling procedure; the third inequality follows the expectation of ℓ̂k(x, a) in
Eq.D.8, and the fourth inequality applies the definition of uk again, and the fact that ℓk ∈ [0, 1].

Thus, setting η =
√

X
K , δ =

XA
K we obtain the bound of REG,

E

[
K∑
k=1

〈
qPk,πk − q́, ℓ̂k

〉]
≤ O

( √
XK

2E′
ε,δ + 1

·
(
AXE′

ε,δ +H
))

(D.10)

Putting everything together and using Lemma E.1, we obtain the expected regret bound (Theorem 4.2),

E[RK ] =E [ERROR] +
(
2E′

ε,δ + 1
)
· (E [BIAS2] + E [REG]) .

≤Õ
(
HCM

√
K +HX4AEε,δ +AE′

ε,δ

√
X3K

)
.

E SUPPLEMENTARY LEMMAS

E.1 USEFUL RESULTS

Lemma E.1 (Expectation, Lemma D.3.6 in Jin et al. [2021]) Suppose that a random variable Z satisfies the following
conditions:

• Z < R where R is a constant.

• Z < Y conditioning on event E, where Y ≥ 0 is a random variable.

Then, it holds that E [Z] ≤ E [Y ] + P [Ec] ·R where Ec is the complementary event of E.

Lemma E.2 (Concentration of Laplace variable) Suppose random variable Z ∼ Lap (λ), then for any t > 0 we have,

P [|Z| ≥ λ ln t] ≤ 1

t
.

260



Definition E.3 (Sub-Exponential variables) A random variable X with mean µ = E[X] is sub-exponential if there are
non-negative parameters (ν, b) such that

E
[
eλ(X−µ)

]
≤ eλ2ν2

2 ∀|λ| < 1

b
.

Lemma E.4 (Laplace variable is sub-exponential) A Laplace variable with parameter (µ, β), i.e., its probability density

function is f(x) = 1
2β exp

(
− |x−µ|

β

)
, is also a sub-exponential variable with parameter (2β, β).

Lemma E.5 (Linear combination rule for sub-exponential variables) Consider an independent sequence of {Xk}nk=1

of random variables, such that Xk has mean µk, and is sub-exponential with parameter (νk, bk). Then the variable
Z =

∑n
k=1Xk is sub-exponential with parameters (ν∗, b∗), where

ν∗ :=

√√√√ n∑
k=1

v2k b∗ := max
k=1,...,n

bk.

Lemma E.6 (Maxima of sub-exponential variables) Let Z ≜ (Z1, · · · , Zn), and for all i ∈ [n], Zi is a independent
identical distributed sub-exponential random variable with parameter (ν, b). Then, if b

√
2 lnn < ν, we have

E
[
max
i∈[n]

Zi

]
≤ ν
√
2 lnn.

Proof With the definition of sub-exponential variables in Def. E.3, the following inequality holds for all λ with |λ| < 1
b , by

using Jensen’s inequality,

exp

(
λEmax

i∈[n]
Zi

)
≤ E exp

(
λmax
i∈[n]

Zi

)
= Emax

i∈[n]
eλZi ≤

∑
i∈[n]

EeλZi ≤ neλ2ν2

2 .

Taking logarithms on both sides, we have Emaxi∈[n] Zi ≤ lnn
λ + λν2

2 . Therefore, the upper bound is minimized when

λ =
√
2 lnn
ν ≤ 1

b , which yields

E
[
max
i∈[n]

Zi

]
≤ ν
√
2 lnn.

Lemma E.7 (Maxima of the sum of i.i.d. Laplace variables) Let Z ≜ (Z1, · · · , Zn), and Zi =
∑m
j bij for all i ∈ [n],

where for all i ∈ [n], j ∈ [m], bij is independent identical distributed Laplace variable Lap (0, β) with parameter (0, β).
Then, if m > lnn

2 , we have

E
[
max
i∈[n]

Zi

]
= E

max
i∈[n]

∑
j∈[m]

bij

 ≤ 2β
√
2m lnn. (E.1)

Proof Since Laplace variable is also sub-exponential (refer to Lemma E.4), the sum of i.i.d. Laplace variable is also a
sub-exponential variable with parameter (2β

√
m,β) according to the linear combination rule of sub-exponential variables

in Lemma E.5. Then, we can obtain the lemma by using the maxima of sub-exponential variables in Lemma E.7.

Lemma E.8 (Revised Lemma 11 in Bourel et al. [2020]) Consider x and y satisfying |x− y| ≤ α
√
y(1− y) + β. Then√

y(1− y) ≤
√
x(1− x) + 1.9α+ 1.5

√
β.

261



Proof By Taylor’s expansion, we have

y(1− y) = x(1− x) + (1− 2x)(y − x)− (y − x)2

= x(1− x) + (1− x− y)(y − x)

≤ x(1− x) + |1− x− y|
(
α
√
y(1− y) + β

)
≤ x(1− x) + α

√
y(1− y) + β

Using the fact that a ≤ b
√
a+ c implies a ≤ b2 + b

√
c+ c for non-negative numbers a, b and c, we get

y(1− y) ≤ α2 + α
√
x(1− x) + β + x(1− x) + β

≤ α2 + α
√
x(1− x) + α

√
β + x(1− x) + β

=
(√

x(1− x) + α

2

)2
+

3α2

4
+ α

√
β + β,

where we use
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0. Taking square-root from both sides, and applying

√
ab ≤ a+b

2 , we have
the desired result:√

y(1− y) ≤
√
x(1− x) + α

2
+

√
3α

2
+
α

2
+

√
β

2
+
√
β ≤

√
x(1− x) + 1.9α+ 1.5

√
β.

Lemma E.9 (Lemma 19 in Jaksch et al. [2010], Lemma 24 in Talebi and Maillard [2018]) For any sequence of num-
bers z1, z2, . . . , zn with 0 ≤ zk ≤ Zk−1 := max

{
1,
∑k−1
i=1 zi

}
, it holds

(1)

n∑
k=1

zk√
Zk−1

≤
(√

2 + 1
)√

Zn,

(2)

n∑
k=1

zk
Zk−1

≤ 2 log (Zn) + 1.

The next one is a standard Bernstein-type concentration inequality for martingale (Theorem 1 in Beygelzimer et al. [2011]).

Lemma E.10 Let Y1, . . . , YK be a martingale difference sequence with respect to a filtration F1, . . . ,FK . Assume Yk ≤ R
a.s. for all k. Then for any δ ∈ (0, 1) and λ ∈ [0, 1/R], with probability at least 1− δ, we have

K∑
k=1

Yk ≤ λ
K∑
k=1

Ek
[
Y 2
k

]
+

ln(1/δ)

λ
.

E.2 CONFIDENCE BOUND WITH PRIVACY

We first define the non-private empirical transition probability and the private empirical transition probability as follows,

P̄k (x
′|x, a) := Nk(x, a, x

′)

Nk(x, a)
, P̃k (x

′|x, a) := Ñk(x, a, x
′)

Ñk(x, a)
.

Lemma E.11 (Lemma 2, [Jin et al., 2020a]) With probability at least 1− 4δ, we have a good event

∀ (x, a, x′) ∈Wh,∀h, k,
∣∣P (x′|x, a)− P̄k (x′|x, a)

∣∣ ≤ β̄k (x′|x, a) ,
and β̄k (x′|x, a) for any (x, a, x′) ∈Wh and h ∈ [H] is defined as

β̄k (x
′|x, a) = min

1,

√
2P̄k (x′|x, a)

(
1− P̄k (x′|x, a)

)
ln ι

Nk(x, a)
+

14 ln ι

3Nk(x, a)

 .
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Then, we have the difference lemmas between the private transition estimate and the non-private transition estimate as
follows.

Lemma E.12 For all (x, a, x′) ∈Wh, h ∈ [H], k ∈ [K], we have∣∣∣P̃k (x′|x, a)− P̄k (x′|x, a)∣∣∣ ≤ 2Eε,δ

Ñk(x, a)
.

Proof By definition, we have

∣∣∣P̃k (x′|x, a)− P̄k (x′|x, a)∣∣∣ ≤
∣∣∣∣∣Ñk(x, a, x′)Ñk(x, a)

− Nk(x, a, x
′)

Ñk(x, a)

∣∣∣∣∣+
∣∣∣∣∣Nk(x, a, x′)Ñk(x, a)

− Nk(x, a, x
′)

Nk(x, a)

∣∣∣∣∣
≤ Eε,δ

Ñk(x, a)
+

Nk(x, a, x
′)Eε,δ

Nk(x, a) · Ñk(x, a)

≤ 2Eε,δ

Ñk(x, a)
.

Lemma E.13 For all (x, a, x′) ∈Wh, h ∈ [H], k ∈ [K], we have,∣∣∣P̃k (x′|x, a)(1− P̃k (x′|x, a))− P̄k (x′|x, a) (1− P̄k (x′|x, a))∣∣∣ ≤ 4Eε,δ

Ñk(x, a)
.

Proof Similar to Lemma E.12, we have,∣∣∣P̃k (x′|x, a)(1− P̃k (x′|x, a))− P̄k (x′|x, a) (1− P̄k (x′|x, a))∣∣∣
=

∣∣∣∣∣Nk(x, a, x′)Nk(x, a)
· Nk(x, a)−Nk(x, a, x

′)

Nk(x, a)
− Ñk(x, a, x

′)

Ñk(x, a)
· Ñk(x, a)− Ñk(x, a, x

′)

Ñk(x, a)

∣∣∣∣∣
≤

∣∣∣∣∣Nk(x, a)−Nk(x, a, x′)Nk(x, a)

[
Nk(x, a, x

′)

Nk(x, a)
− Nk(x, a, x

′)

Ñk(x, a)

]∣∣∣∣∣
+

∣∣∣∣∣Ñk(x, a)− Ñk(x, a, x′)Ñk(x, a)

[
Ñk(x, a, x

′)

Ñk(x, a)
− Nk(x, a, x

′)

Ñk(x, a)

]∣∣∣∣∣
+

∣∣∣∣∣Nk(x, a, x′)Ñk(x, a)

[
Ñk(x, a, x

′)

Ñk(x, a)
− Nk(x, a, x

′)

Nk(x, a)

]∣∣∣∣∣
≤ Nk(x, a, x

′)Eε,δ

Nk(x, a) · Ñk(x, a)
+

Eε,δ

Ñk(x, a)
+
Nk(x, a, x

′)

Nk(x, a)
· 2Eε,δ

Ñk(x, a)

≤ 4Eε,δ

Ñk(x, a)
.

With the help of the lemmas above, it’s ready to prove Lemma 3.1 now.

Lemma E.14 (Restatement of Lemma 3.1) With probability at least 1− 6δ, we have a good event,

∀ (x, a, x′) ∈Wh,∀h, k,
∣∣∣P (x′|x, a)− P̃k (x′|x, a)

∣∣∣ ≤ βk (x′|x, a) ,
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and βk (x′|x, a) for any (x, a, x′) ∈Wh and h ∈ [H] is defined as

βk (x
′|x, a) = min

1,

√√√√2P̃k (x′|x, a)
(
1− P̃k (x′|x, a)

)
ln ι

Ñk(x, a)
+

4Eε,δ + 7 ln ι

Ñk(x, a)


= min

1,

√√√√2P̃k (x′|x, a)
(
1− P̃k (x′|x, a)

)
ln ι

N̂k(x, a)
+

4Eε,δ + 7 ln ι

N̂k(x, a)

 .

Proof [Proof of Lemma E.14] With standard decomposition, we have,∣∣∣P̃k (x′|x, a)− P (x′|x, a)
∣∣∣ ≤ ∣∣∣∣∣Ñk(x, a, x′)−Nk(x, a, x′)Ñk(x, a)

∣∣∣∣∣+
∣∣∣∣∣Nk(x, a, x′)Ñk(x, a)

− P (x′|x, a)

∣∣∣∣∣
≤ Eε,δ

Ñk(x, a)
+

∣∣∣∣∣Nk(x, a, x′)Nk(x, a)
· Nk(x, a)
Ñk(x, a)

− P (x′|x, a)

∣∣∣∣∣
≤ Eε,δ

Ñk(x, a)
+

∣∣∣∣∣Nk(x, a)Ñk(x, a)
·
(
Nk(x, a, x

′)

Nk(x, a)
− P (x′|x, a)

)∣∣∣∣∣+
∣∣∣∣∣P (x′|x, a)

(
Nk(x, a)

Ñk(x, a)
− 1

)∣∣∣∣∣
≤ 2Eε,δ

Ñk(x, a)
+
Nk(x, a)

Ñk(x, a)
·
∣∣P̄k (x′|x, a)− P (x′|x, a)

∣∣
≤ 2Eε,δ

Ñk(x, a)
+
Nk(x, a)

Ñk(x, a)
·

√2P̄k (x′|x, a)
(
1− P̄k (x′|x, a)

)
ln ι

Nk(x, a)
+

14 ln ι

3Nk(x, a)


≤ 2Eε,δ

Ñk(x, a)
+

√√√√2
(
P̃k (x′|x, a)

(
1− P̃k (x′|x, a)

)
+

4Eε,δ

Ñk(x,a)

)
ln ι

Ñk(x, a)
+

14 ln ι

3Ñk(x, a)

≤

√√√√2P̃k (x′|x, a)
(
1− P̃k (x′|x, a)

)
ln ι

Ñk(x, a)
+

2Eε,δ + 5 ln ι+ 4
√
Eε,δ ln ι

Ñk(x, a)

≤

√√√√2P̃k (x′|x, a)
(
1− P̃k (x′|x, a)

)
ln ι

Ñk(x, a)
+

4Eε,δ + 7 ln ι

Ñk(x, a)
,

where the fifth inequality follows Lemma E.11, and the sixth inequality follows Lemma E.13. The seventh and eighth step
use
√
x+ y ≤

√
x +
√
y and 2

√
xy ≤ x + y for x, y ≥ 0. The second equality in the lemma follows the definition of

N̂k(x, a) in the Eq.D.1.

Lemma E.15 Conditioning on event in Lemma E.14, it holds for any episode k and any transition P ′ ∈ Pk,

|P ′ (x′|x, a)− P (x′|x, a)| ≤ min

{
1,

√
2P (x′|x, a) (1− P (x′|x, a)) ln ι

N̂k(x, a)
+

7Eε,δ + 26 ln ι

N̂k(x, a)

}
.

Proof We have for any episode k and any transition P ′ ∈ Pk,∣∣∣P ′ (x′|x, a)− P (x′|x, a)
∣∣∣ ≤√2P ′ (x′|x, a) (1− P ′ (x′|x, a)) ln ι

N̂k(x, a)
+

4Eε,δ + 7 ln ι

N̂k(x, a)

≤
√

2 ln ι

N̂k(x, a)
·

(√
P (x′|x, a) (1− P (x′|x, a)) + 3.8

√
ln ι

N̂k(x, a)
+ 1.5

√
4Eε,δ + 7 ln ι

N̂k(x, a)

)
+

4Eε,δ + 7 ln ι

N̂k(x, a)

≤

√
2P (x′|x, a) (1− P (x′|x, a)) ln ι

N̂k(x, a)
+

7Eε,δ + 26 ln ι

N̂k(x, a)
,
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where we apply Lemma E.8 to Lemma E.14 for the second step, and the third step follows from the fact that√
x+ y ≤

√
x+
√
y and

√
xy ≤ 1

2 (x+ y) for any x, y ≥ 0.

Corollary E.16 Conditioning on event in Lemma E.14, it holds for any episode k and any transition P ′ ∈ Pk,

∥P ′ (·|x, a)− P (·|x, a)∥1 ≤ min

(
2,

√
2Cx,a ln ι

N̂k(x, a)
+
Xh(x)+1 (7Eε,δ + 26 ln ι)

N̂k(x, a)

)
,

where for all (x, a) as Cx,a :=
(∑

x′∈Xh(x)+1

√
P (x′|x, a) (1− P (x′|x, a))

)2
from Bourel et al. [2020].

Proof We introduce local effective support as Cx,a from Bourel et al. [2020]. We have for any episode k and any transition
P ′ ∈ Pk,

∥P ′ (·|x, a)− P (·|x, a)∥1 ≤
∑

x′∈Xh(x)+1

(√
2P (x′|x, a) (1− P (x′|x, a)) ln ι

N̂k(x, a)
+

7Eε,δ + 26 ln ι

N̂k(x, a)

)

≤
√

2Cx,a ln ι

N̂k(x, a)
+
Xh(x)+1 (7Eε,δ + 26 ln ι)

N̂k(x, a)
.

Lemma E.17 (Local effective support, Lemma 4 in Bourel et al. [2020]) For any state-action pair (x, a), the local ef-
fective support is bounded,

Cx,a ≤ Xh(x)+1 − 1.

Lemma E.18 (Lower bound of upper occupancy measure) For any episode k and state x ̸= xH , it always holds that
uk (x) ≥ 1

XK .

Proof Similar to Lemma D.28 in Jin et al. [2023], one can construct a specific transition P̂ ∈ Pk, such that qP̂ ,π(x) ≥ 1
XK

for any π given episode k and x, which suffices due to the definition of uk (x).

For any tuple (x, a, x′) ∈ Wh and h = 0, · · · , H − 1, P̂ (x′|x, a) = P̃k (x
′|x, a) ·

(
1− 1

K

)
+ 1

Xh+1K
. It is easy to verify

that P̂ is a valid transition function and belongs to the confidence set Pk. Finally, we have the lower bound of the upper
occupancy measure,

qP̂ ,π(x) =
∑

u∈Xh−1

∑
v∈A

qP̂ ,π(u, v)P̂ (x′|u, v) ≥
∑

u∈Xh−1

∑
v∈A

qP̂ ,π(u, v) · 1

XK
=

1

XK
.

E.3 DIFFERENCE LEMMA

Lemma E.19 (Occupancy Measure Difference, Lemma D.3.1 of Jin et al. [2021]) For any transition functions P1, P2

and any policy π,

qP1,π(x)− qP2,π(x) =

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP1,π(u, v) (P1(w|u, v)− P2(w|u, v)) qP2,π(x|w)
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=

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP2,π(u, v) (P1(w|u, v)− P2(w|u, v)) qP1,π(x|w),

where qP
′,π(x|w) is the probability of visiting x starting w under policy π and transition P ′.

Lemma E.20 (Lemma C.5 of Dann et al. [2023]) For any policies π1, π2 and any transition function P, P ,∑
x ̸=xH

∑
a∈A

∣∣qP,π1(x, a)− qP,π2(x, a)
∣∣ ≤ H ∑

x ̸=xH

∑
a∈A

qP,π1(x) |π1(a|x)− π2(a|x)| ,

Following the same idea in the proofs of Lemma C.4 in Dann et al. [2023], and Lemma D.3.8 in Jin et al. [2023], we consider
a tight bound of the difference between occupancy measures in the following lemma.

Lemma E.21 Suppose the event in Lemma 3.1 holds. For any state x ̸= xH , episode k and transition P ′ ∈ Pk, policy πk,
we have∣∣∣qP ′,πk(x)− qP,πk(x)

∣∣∣ ≤O
h(x)−1∑

h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) ·

√
P (w|u, v) (1− P (w|u, v)) ln ι

N̂k (u, v)
· qP,πk(x|w)


+O

X2
∑
u ̸=xH

∑
v∈A

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)

 .

Proof According to Lemma E.19, we have∣∣∣qP ′,πk(x)− qP,πk(x)
∣∣∣ ≤ h(x)−1∑

h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) |P ′(w|u, v)− P (w|u, v)| qP
′,πk(x|w)

=

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) |P ′(w|u, v)− P (w|u, v)| qP,πk(x|w)

+

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) |P ′(w|u, v)− P (w|u, v)|
(
qP

′,πk(x|w)− qP,πk(x|w)
)

≤
h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) |P ′(w|u, v)− P (w|u, v)| qP,πk(x|w)

︸ ︷︷ ︸
TERM (A)

+

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) |P ′(w|u, v)− P (w|u, v)|
h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(m,n|w) |P ′(o|m,n)− P (o|m,n)|

︸ ︷︷ ︸
TERM (B)

≤O

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) ·

√
P (w|u, v) (1− P (w|u, v)) ln ι

N̂k (u, v)
· qP,πk(x|w)

 (TERM (A.1))

+O

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)
· qP,πk(x|w)

 (TERM (A.2))

+O

(
h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) ·

√
P (w|u, v) (1− P (w|u, v)) ln ι

N̂k (u, v)

·
h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(m,n|w)

√
P (o|m,n) (1− P (o|m,n)) ln ι

N̂k (m,n)

) (TERM (B.1))
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+O

(
h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) ·

√
P (w|u, v) (1− P (w|u, v)) ln ι

N̂k (u, v)

·
h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(m,n|w) · Eε,δ + ln ι

N̂k (m,n)

) (TERM (B.2))

+O

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)
·
h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(m,n|w)

 , (TERM (B.3))

where the second step firstly subtracts and adds qP,πk (x|w) and then applies Lemma E.19 again for∣∣∣qP ′,πk(x|w)− qP,πk(x|w)
∣∣∣ to obtain TERM (A) and TERM (B). Following Lemma E.15, we can decompose them into five

terms as TERM (A.1), (A.2), and TERM (B.1), (B.2), (B.3). Then, we bound these terms separately.

Clearly, we can bound TERM (A.2) by letting x be xH ,

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)
· qP,πk(x|w) ≤ X

∑
x ̸=xH

∑
a∈A

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)
.

For TERM (B.1), we have

TERM (B.1) =
h(x)−1∑
h=0

∑
(u,v,w)∈Wh

h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(u, v) ·

√
P (w|u, v) (1− P (w|u, v)) ln ι

N̂k (u, v)

· qP,πk(m,n|w)

√
P (o|m,n) (1− P (o|m,n)) ln ι

N̂k (m,n)

≤
h(x)−1∑
h=0

∑
(u,v,w)∈Wh

h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(u, v) · P (w|u, v) (1− P (o|m,n)) ln ι
N̂k (m,n)

· qP,πk(m,n|w)

+

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(u, v) · qP,πk(m,n|w) · P (o|m,n) (1− P (w|u, v)) ln ι
N̂k (u, v)

=

h(x)−1∑
h=0

∑
(m,n,o)∈Wh

(1− P (o|m,n)) ln ι
N̂k (m,n)

h(x)−1∑
h′=0

∑
(u,v,w)∈Wh′

qP,πk(u, v) · P (w|u, v) · qP,πk(m,n|w)


+

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) (1− P (w|u, v)) ln ι
N̂k (u, v)

h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(m,n|w) · P (o|m,n)


≤
h(x)−1∑
h=0

∑
(m,n,o)∈Wh

HqP,πk(m,n) ln ι

N̂k (m,n)
+

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

HqP,πk(u, v) ln ι

N̂k (u, v)

≤O

(
HX

H−1∑
h=0

∑
x∈Xh

∑
a∈A

qP,πk(x, a) ln ι

N̂k (x, a)

)
,

where the second step applies
√
xy ≤ x + y for any x, y ≥ 0; the third step rearranges the summation order,

and the fourth step follows the facts that
∑

(u,v,w)∈Wh′ q
P,πk(u, v) · P (w|u, v) · qP,πk(m,n|w) = qP,πk(m,n) and∑

m∈X ′
h

∑
a∈A q

P,πk(m,n|w) · P (o|m,n) = qP,πk (o|w).
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Similarly, we have TERM (B.2) bounded as

TERM (B.2) =
h(x)−1∑
h=0

∑
(u,v,w)∈Wh

h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(u, v) ·

√
P (w|u, v) (1− P (w|u, v)) ln ι

N̂k (u, v)

· qP,πk(m,n|w) · Eε,δ + ln ι

N̂k (m,n)

≤
h(x)−1∑
h=0

∑
(u,v,w)∈Wh

h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(u, v) · P (w|u, v) · qP,πk(m,n|w) · Eε,δ + ln ι

N̂k (m,n)

+

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(u, v) · (1− P (w|u, v)) ln ι
N̂k (u, v)

· qP,πk(m,n|w)

≤
H−1∑
h′=0

∑
(m,n,o)∈Wh′

Eε,δ + ln ι

N̂k (m,n)

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) · P (w|u, v) · qP,πk(m,n|w)


+

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) (1− P (w|u, v)) ln ι
N̂k (u, v)

h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(m,n|w)


≤
H−1∑
h′=0

∑
(m,n,o)∈Wh′

h(x)−1∑
h=0

qP,πk(m,n) · Eε,δ + ln ι

N̂k (m,n)
+X

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) ln ι

N̂k (u, v)

≤HX
∑
x ̸=xH

∑
a∈A

qP,πk (x, a)
Eε,δ + ln ι

N̂k (x, a)
+X2

∑
x ̸=xH

∑
a∈A

qP,πk (x, a) ln ι

N̂k (x, a)
,

where the first inequality uses the fact that N̂k(x, a)k (x, a) ≥ O (Eε,δ + ln ι) according to the definition in Eq.D.1;
the second inequality follows the facts that

∑
(u,v,w)∈Wh

qP,πk(u, v) · P (w|u, v) · qP,πk(m,n|w) = qP,πk(m,n) and∑
m∈Xh′

∑
a∈A q

P,πk(m,n|w) ≤ 1. For TERM (B.3), we have

TERM (B.3) =
h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)
·
h(x)−1∑
h′=h+1

∑
(m,n,o)∈Wh′

qP,πk(m,n|w)

=

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)
·

h(x)−1∑
h′=h+1

∑
o∈Xh′+1

1


≤ X2

∑
u ̸=xH

∑
v∈A

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)
.

Putting all the bounds for these terms together yields the bound of the lemma,

∣∣∣qP ′,πk(x)− qP,πk(x)
∣∣∣ ≤O

h(x)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πk(u, v) ·

√
P (w|u, v) (1− P (w|u, v)) ln ι

N̂k (u, v)
· qP,πk(x|w)


+O

X2
∑
u ̸=xH

∑
v∈A

qP,πk(u, v) · Eε,δ + ln ι

N̂k (u, v)

 .
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E.4 ESTIMATION ERROR

Lemma E.22 (Lemma 10 in Jin et al. [2020a]) With probability at least 1− δ, we have for all h ∈ [H],

K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)

max {Nk(x, a), 1}
= O

(
XhA logK + log

(
H

δ

))
,

and
K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)√
max {Nk(x, a), 1}

= O
(√

XhAK +XhA logK + log

(
H

δ

))
.

Proposition E.23 Let EEST be the event such that we have for all h ∈ [H] simultaneously

K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)

max {Nk(x, a), 1}
= O (XhA logK + log ι) ,

and
K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)√
max {Nk(x, a), 1}

= O
(√

XhAK +XhA logK + log ι
)
.

We have P [EEST ] ≥ 1− δ.

Proof The proof directly follows from the definition of ι, which ensures that ι ≥ H
δ .

Based on the event EEST , we introduce the following lemma which is critical in analyzing the estimation error.

Lemma E.24 Suppose the event EEST defined in Proposition E.23 holds. Then we have for all h ∈ [H],

K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)

N̂k(x, a)
= O (XhA logK + log ι) ,

and

K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)√
N̂k(x, a)

√
Cx,a ≤ O

√ ∑
(x,a)∈Xh×A

Cx,aK +
√
Xh+1XhA logK +

√
Xh+1 log ι


Proof Since N̂k(x, a) ≥ Nk(x, a) always holds by definition, the first equation directly follows Proposition E.23.

For the second equation, similar to the proof of Lemma 10 in Jin et al. [2020a], we decompose the term as

K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)√
N̂k(x, a)

√
Cx,a ≤

K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)√
Nk(x, a)

√
Cx,a

=

K∑
k=1

∑
(x,a)∈Xh×A

Ik (x, a)√
Nk(x, a)

√
Cx,a +

K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)− Ik (x, a)√
Nk(x, a)

√
Cx,a.

The first term is bounded by

K∑
k=1

∑
(x,a)∈Xh×A

Ik (x, a)√
Nk(x, a)

√
Cx,a = O

 ∑
(x,a)∈Xh×A

√
Cx,a ·

√
NK (x, a)
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≤ O

√ ∑
(x,a)∈Xh×A

Cx,aK

 , (E.-6)

according to Lemma E.9 and Cauchy-Schwarz inequality.

For the second term, we apply Lemma E.10 with Yk =
∑

(x,a)∈Xh×A
qP,πk (x,a)−Ik(x,a)√

Nk(x,a)
≤ 1, λ = 1, and the fact

Ek
[
Y 2
k

]
≤ Ek


 ∑

(x,a)∈Xh×A

Ik (x, a)√
Nk(x, a)

2
 =

∑
(x,a)∈Xh×A

qP,πk(x, a)

Nk(x, a)
,

and combine the upper bound of Cx,a in Lemma E.17 and Lemma E.22,

K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)− Ik (x, a)√
Nk(x, a)

√
Cx,a ≤

√
Xh+1 ·

 K∑
k=1

∑
(x,a)∈Xh×A

qP,πk(x, a)

Nk(x, a)
+ ln ι

 .

Combining both terms, we prove the result.

F MISSING DETAILS FOR SECTION 5

In this section, we present the proof of privacy guarantees in Section 5. Recall that for visitation counters, Nk(x, a) is the
original count, N̈k(x, a) is the noisy count after step (1) of both Privatizers and Ñk(x, a) is the final private counts. For
losses, Lk(x, a) is the original cumulative loss in full-information setting, and ℓ̈k (x, a) is the non-private loss estimator in
bandit-feedback setting, and L̃k(x, a) and ℓ̃k(x, a) are the private version of Lk(x, a) and ℓ̈k (x, a).

F.1 A VARIANT OF THE BINARY MECHANISM

Firstly, we introduce a variant of the Binary Mechanism (Algorithm 4), which has also been introduced in Agarwal and
Singh [2017]. This variant of Binary Mechanism deals with a continual observation {σk}k∈[K] with each σk ∈ [0, 1]. In each

step, the mechanism releases a number denoted as Σ̃k, which is the private version of the sum of the previous k observed
number, i.e., Σk =

∑k
i=1 σi. Initialized with privacy budget level ε, this mechanism follows the properties in Lemma F.1.

Lemma F.1 (Guarantees of the Variant of Binary Mechanism) The following claims hold true:

(1) Privacy: The sequence
{
Σ̃k

}K
k=1

is ε-differentially private.

(2) Distribution: For all k ∈ [K], the injected noise Σ̃k−Σk =
∑⌈logK⌉
i=1 bi, and each bi is i.i.d. sampled from Lap (logK/ε).

Proof Our privacy guarantee is established through the Binary Mechanism with Laplace noise, accompanied by the
post-processing property as outlined in Dwork et al. [2014]. We introduce additional noise beyond the standard Bi-
nary Mechanism, ensuring the injection of an exact ⌈logK⌉ number of noise samples, in line with our distribution property.

F.2 PRIVACY GUARANTEES

First, we demonstrate that our private loss for the bandit-feedback setting simultaneously satisfies LDP and DP in the
streaming setting.

Proof [Proof of Lemma 5.6] First, we focus on a single episode k, and consider the private version ℓ̃k (x, a) of the observed
loss ℓk (x, a) Ik (x, a). This private version ℓ̃k (x, a) is obtained from ℓk (x, a) Ik (x, a) via the Laplace mechanism with
noise level 3H

ε . Since the sensitivity of the input function is 1, the Laplace mechanism satisfies ε
3H -DP and ε

3H -LDP (refer
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Algorithm 4 A Variant of the Binary Mechanism

Input: Time upper bound K, privacy budget ε > 0, online stream σ ∈ [0, 1]
K , binary tree B

Initialization: ε′ = ε/ logK, noisy sum Σ̃k = 0, initialize the binary tree B over K leaves with all nodes

1: for k = 1 to K do
2: Express k in binary form: sk, where k =

∑⌈log2K⌉
j=1 sk (j) · 2⌈log2K⌉−j . For example, if sk = 110, then sk (1) =

1, sk (2) = 1, sk (3) = 0
3: Populate the sk-th entry of B: Bsk ← σk
4: Perturb the sk-th entry of B: B̂sk ← Bsk + bsk , where bsk ∼ Lap

(
1
ε′

)
5: Let Sk be the set of all ancestors s of sk in the tree B, such that all the leaves in the sub-tree rooted at s are already

populated
6: for all s ∈ Sk do
7: Update the value of the node with the values of its children: Bs ← Bs◦0 + Bs◦1
8: Perturb the value of the node: B̂s ← Bs + bs, where bs ∼ Lap

(
1
ε′

)
9: end for

10: for j = 1 to ⌈log2K⌉ do
11: if sk (j) = 1 then
12: Form binary string sq = sk (1) ◦ sk (2) ◦ · · · ◦ sk (j − 1) ◦ 0 of length j
13: Σ̃k ← Σ̃k + B̂sq
14: else
15: Σ̃k ← Σ̃k + b, where b ∼ Lap

(
1
ε′

)
16: end if
17: end for
18: output: Σ̃k
19: end for

to Dwork et al. [2014]). Additionally, since every episode involves at most H bandit losses, according to [Hsu et al., 2014,
Lemma 34], the composition of all these XAK different Laplace mechanisms are ε

3 -LDP and ε
3 -DP.

Now, let’s proceed to establish the proof for the JDP guarantee.

Proof [Proof of Lemma 5.1] Under the full-information setting, the release of
{
N̈k(x, a)

}
(k,x,a)

satisfies ε
3 -DP according

to [Chan et al., 2011, Theorem 3.5] and [Hsu et al., 2014, Lemma 34]. Similarly, the releases of
{
N̈k(x, a, x

′)
}
(k,x,a,x′)

and{
L̈k(x, a)

}
(k,x,a)

also satisfy ε
3 -DP. Therefore, the release of all these counts satisfies ε-DP. Due to post-processing [Dwork

et al., 2014, Proposition 2.1], the release of all private counts
{
Ñk(x, a)

}
(k,x,a)

,
{
Ñk(x, a, x

′)
}
(k,x,a,x′)

,
{
L̃k(x, a)

}
(k,x,a)

also satisfy ε-DP.

Under the bandit setting, and with the help of Lemma 5.6 and post-processing property, the release of all private counts{
Ñk(x, a)

}
(k,x,a)

,
{
Ñk(x, a, x

′)
}
(k,x,a,x′)

,
{
ℓ̃k (x, a)

}
(k,x,a)

also satisfy ε-DP.

For utility analysis, we analyze the visitation counters and losses, separately.

Private visitation counters. By applying [Chan et al., 2011, Theorem 3.6] and setting ε′ = ε
3H logK in Binary mechanism,

and using a union bound, we can establish that with probability 1− 2δ, for all (k, x, a, x′),∣∣∣N̈k(x, a, x
′)−Nk(x, a, x

′)
∣∣∣ ≤ O

(
3H

ε
log1.5K log

(
X2AK

δ

))
,
∣∣∣N̈k(x, a)−Nk(x, a)

∣∣∣ ≤ O

(
3H

ε
log1.5K log

(
XAK

δ

))
.

Referring to the post-processing procedures and Lemma 5.1 in Qiao and Wang [2023a], the Central Privatizer satisfies
Assumption 2.3 with Eε,δ = O

(
H
ε log1.5K log

(
XAK
δ

))
, and Nk(x, a) ≤ Ñk(x, a) ≤ Nk(x, a) + Eε,δ. Furthermore, in

accordance with the constraints of the optimization problem, we also observe that N̈k(x, a) =
∑
x′∈Xh+1

N̈k(x, a, x
′),

which implies that Ñk(x, a) =
∑
x′∈Xh+1

Ñk(x, a, x
′).
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Private loss in full-information setting. In the full-information setting, we have constructed a variant of the Bi-
nary Mechanism (Algorithm 4) to obtain L̃k(x, a) in Section F.1. Since the cumulative loss Lk(x, a) is privatized
by this variant with privacy budget ε/3H , the injected noise Zk(x, a) is a sample of the summation of ⌈logK⌉
i.i.d. Laplace variables with parameter for all (k, x, a). Therefore, for any episode k, when K >

√
XA, we have

E [maxx,a Zk(x, a)−minx,a Zk(x, a)] ≤ O
(
H
ε

√
log3K ln (XA)

)
, which follows the maxima property of the sum

of i.i.d. Laplace variables as demonstrated in Lemma E.7.

Private loss in bandit-feedback setting Under the bandit setting, we directly apply the Laplace Mechanism, and the
noise injected is Zk(x, a) = ℓ̃k(x, a) − ℓk (x, a) Ik (x, a), where Zk(x, a) ∼ Lap (3H/ε). Then using the concentration
of the Laplace variable (refer to Lemma E.2) and a union bound, we can conclude that with probability at least 1 − δ,∣∣∣ℓ̃k(x, a)− ℓk (x, a) Ik (x, a)∣∣∣ ≤ 3H

ε ln
(
XAK
δ

)
for all (k, x, a).

Proof [Proof of Theorem 5.2] With ε-DP guarantee for private counters and losses, the release of all πk is also ε-DP
according to post-processing property under both full-information and bandit settings. Finally, the guarantee of ε-JDP for
final action sequences follows the Billboard Lemma [Hsu et al., 2014, Lemma 9]. Besides, the regret bound is obtained by
plugging Eε,δ , and corresponding Eε, E′

ε,δ in Lemma 5.1 into Theorem 3.3 and Theorem 4.2.

Proof [Proof of Lemma 5.7] The privacy guarantee directly results from properties of Laplace Mechanism and composition
of DP [Dwork et al., 2014], and Lemma 5.6. For utility analysis, we also analyze the visitation counters and losses as below.

Private visitation counters. According to Dwork et al. [2014] Corollary 12.4 and a union bound, with probability 1− 2δ,
for all (k, x, a, x′),

∣∣∣N̈k(x, a, x
′)−Nk(x, a, x

′)
∣∣∣ ≤ O

(
3H

ε

√
K log

(
X2AK

δ

))
,
∣∣∣N̈k(x, a)−Nk(x, a)

∣∣∣ ≤ O

(
3H

ε

√
K log

(
XAK

δ

))
.

(F.1)

Together with Lemma 5.5, the Local Privatizer satisfies Assumption 2.3 with Eε,δ = O
(
H
ε

√
K log

(
XAK
δ

))
.

Private loss in full-information setting. Under the full-information setting, we apply the Laplace Mechanism with privacy
budget ε′ = ε

3H directly on the point-wise loss ℓk (x, a) and make summation to obtain L̃k(x, a). Thus, the noise injected
Zk(x, a) is a realization of a summation of K Laplace variables for all (k, x, a). Therefore, for any episode k, when
K > ln(XA)

2 , E [maxx,a Zk(x, a)−minx,a Zk(x, a)] ≤ O
(
H
ε

√
K ln (XA)

)
, which follows Lemma E.7.

Private loss in bandit-feedback setting. Under the bandit setting, the utility is the same as the JDP setting.

Proof [Proof of Theorem 5.8] The regret bound is obtained by plugging Eε,δ, and corresponding Eε, E′
ε,δ in Lemma 5.7

into Theorem 3.3 and Theorem 4.2.
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