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Abstract

We show that existing approaches to Linearly Con-
strained Gaussian Processes (LCGP) for regres-
sion, based on imposing constraints on a finite set
of operational points, can be seen as Skew Gaus-
sian Processes (SkewGPs). In particular, focusing
on inequality constraints and building upon a re-
cent unification of regression, classification, and
preference learning through SkewGPs, we extend
LCGP to handle monotonic preference learning
and desirability, crucial for understanding and pre-
dicting human decision making. We demonstrate
the efficacy of the proposed model on simulated
and real data.

1 INTRODUCTION

Preference learning [18] aims at learning predictive prefer-
ence models from data. Unlike regression or classification,
where the target variable is a scalar, preference data is in
the form of pairwise comparisons, which express a subject’s
preference between alternative options. Applications of pref-
erence learning are ubiquitous in recommendation systems
across diverse domains, such as e-commerce, social media,
and entertainment platforms. Consider a set X ⊂ Rn and a
binary relation R on X expressed by a subject (that is R is
a subset of X ×X ). Mathematically, a strict preference1

is a binary relation, denoted by ≻, which is asymmetric and

1This paper focuses on strict preference rather than weak pref-
erence. Learning weak preference would result in a zero denom-
inator in Bayes’ rule when using continuous distributions like
Gaussian Processes (GPs), as opposed to discrete distributions. In
strict prefrence, we could incorporate a ‘just noticeable difference’
threshold to model situations, where a subject judges two options
equivalent because the difference in their utility is small (below a
threshold).

negatively transitive [26, Ch. 2].2 For instance, imagine you
are planning a trip from destination A to destination B and
have three train options. What is your preference?

Option 1: cost=5C, travel-time=15min,
Option 2: cost=7C, travel-time=10min,
Option 3: cost=3C, travel-time=20min.

In this case X = R2 and x1 = [5,15]⊤, x2 = [7,10]⊤, x3 =
[3,20]⊤ ∈ X . Stating that Option 1 is preferred to Option
2 is denoted as x1 ≻ x2. Then, asymmetry implies that if
x1 ≻ x2 then x2 ⊁ x1. Negative transitivity implies that if
x1 ≻ x2 then either x1 ≻ x3 or x3 ≻ x2 or both. These are the
minimum consistency properties defining a strict preference
relation. However, in many applications, it is reasonable
to assume further properties. For instance, in the above
example, it seems natural to assume that any subject should
prefer Option 5 to Option 4:

Option 4: cost=3C, travel-time=9min,
Option 5: cost=2C, travel-time=4min.

This property is called strict monotonicity: if x,y ∈ X and
x ≤ y, x ̸= y then x ≻ y, (where ≤ means that any element
of x is at least as small as the corresponding component
y).3 Our objective is to learn strictly monotonic preferences
from pairwise data. Assuming also continuity of the pref-
erence relation [26, Ch. 2], one can prove that any strictly
monotonic preference is representable by a strictly mono-
tone utility function f . Therefore, learning a preference
can be formulated as the problem of learning monotonic
utility functions that represents it.4 In real-world scenar-
ios, individuals, when expressing their preferences, often

2Asymmetric: ∀x,y ∈ X if xRy then not yRx. Negatively tran-
sitive: if xRy then for any other element z ∈ X either xRz or zRy
or both.

3Depending on the application, we can obviously define strict
monotonicity by changing the direction x ≥ y, x ̸= y then x ≻ y.

4This representation is not unique. Utility functions are in-
variant under increasing transformations. We can define a new
utility function g(u(x)) for any increasing function g, that is
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deviate from these consistencies properties for different
reasons. Accurately representing erroneous preferences re-
quires modellings errors through tools like random utility
models [33, 34], i.e., a subject’s preference is determined by
a noisy utility function. This is crucial for learning because
it requires us to define a likelihood function for preference
data that accounts for these errors.

A powerful way to learn unknown functions is through
Gaussian Processes (GP)[40, 48], which are priors over
functions. A GP-based method to learn preference learning
was firstly proposed by [14, 25] with a probit likelihood (to
account for errors).5 This approach offers two advantages: a
nonlinear utility in the covariates and the representation of
uncertainty through the posterior. Since the posterior is not
Gaussian, Chu and Ghahramani [14] proposed the Laplace’s
approximation for inference. Other approximations were
considered in [25]. More recently, [9, 8] showed that the
posterior has a closed-form, called SkewGP, and exploited
this relationship to efficiently sample from the posterior.
Applications of preference learning for active learning and
Bayesian optimisation, have been investigated by [50, 23,
52, 10, 39, 11].

Many recent works [49, 58, 1, 15, 22, 30, 29, 28, 31, 27, 3]
developed GP models for regression that satisfy monotonic,
or more generally linear inequality constraints. In partic-
ular, [49, 58, 1, 15, 22] enforce monotonicity constraints
by imposing them on a finite set of operational points. The
works in [30, 29, 28, 31] exploit a finite-dimensional kernel
to extend the monotonicity constraint to the whole domain.
Other approaches [27, 3] impose shape constraints through
squared Gaussian process derivatives and series expansions.
Finally monotonic-GP-flow [55], imposes monotonicity on
GPs based on numerical solutions of stochastic differential
equations. We point the reader to [53] for a comprehensive
survey study of LCGP, including bound constraints, mono-
tonicity and linear partial differential operator constraints.
In this work we aim to bring the recent advances in mod-
elling monotonicity constraints with GPs for regression to
the preference learning setting.

The contributions of this work are the following:

• We show that linearly constrained Gaussian Processes
(LCGP) that impose monotonicity constraints with a finite
set of operational points are SkewGPs.

x ≻ y iff u(x)> u(y) iff g(u(x))> g(u(y)). So u and g(u) repre-
sent the same strict preference relation. We will go back to this
point later in in the paper.

5Due the probit likelihood, in the preference x ≻ y iff u(x)>
u(y), now also the magnitude of their utility difference u(x)−u(y)
is important (and not only the relative ranking of two items u(x)>
u(y)). The reason is that we are assuming that the probability of
errors is proportional to |u(x)− u(y)|, that is it is more difficult
for a subject to express a preference between two options with
close utility. This makes the scale of the utility function to be
identifiable.

• Exploiting the conjugacy of SkewGPs with the normal
and probit likelihood (and their product) [8], we ex-
tend LCGP models to preference learning and classifi-
cation tasks, deriving a novel nonparametric model for
monotonic preference learning and desirability learning
(which is equivalent to a monotonic classification problem
[37, 13]).

• We compare our SkewGP-formulation of monotonic re-
gression and preference learning against monotonic-GP-
flow on 7 1D benchmark functions. Our SkewGP outper-
forms monotonic-GP-flow in both accuracy and uncer-
tainty quantification.

• We apply SkewGP to two preference datasets demonstrat-
ing that models without monotonicity constraints can pro-
duce wrong predictions, thus highlighting the importance
of incorporating monotonicity constraints.

In this work, we focus on monotonicity constraints, we leave
the extension to any linear inequality constraint for future
work.

2 SKEW-NORMAL DISTRIBUTION AND
SKEW-GAUSSIAN PROCESSES

The unified skew-normal distribution [4, 6, 17, 2] gener-
alises the normal distribution by allowing for non-zero
skewness. A vector z distributed as skew-normal can be
constructed from a multivariate normal which is truncated
in part of its component, see [6, Ch.7]. Consider two vectors
z0 ∈ Rs,z1 ∈ Rp such that:[

z1
z0

]
∼ N(0s+p,M), M =

[
Ω ∆

∆⊤ Γ

]
, (1)

where M is a full-rank covariance matrix. Define ζζζ to be
distributed as N(z1|z0 + γγγ > 0s), where γγγ ∈ Rs and the in-
equality z0 + γγγ > 0s holds component-wise.6 Then, given
a location vector ξξξ ∈ Rp, z = ξξξ +ζζζ ∈ Rp is distributed as
a multivariate unified skew-normal distribution with latent
skewness dimension s. We denote z ∼ SUNp,s(ξξξ ,Ω,∆,γγγ,Γ)
and its Probability Density Function (PDF) is given by:

p(z) = φp(z−ξξξ ;Ω)

Φs
(
γγγ +∆⊤Ω−1(z−ξξξ );Γ−∆⊤Ω−1∆

)
Φs (γγγ;Γ)

, (2)

where φp(z − ξξξ ;Ω) denotes the PDF of a multivariate
normal distribution with mean ξξξ ∈ Rp and covariance
Ω ∈ Rp×p. Φs(a;M) represents the Cumulative Distribu-
tion Function (CDF) of a s-dimensional multivariate normal
distribution with zero mean and covariance matrix M evalu-
ated at a ∈ Rs. The parameters γγγ ∈ Rs,Γ ∈ Rs×s,∆ ∈ Rp×s

6Note that, in the standard construction of the SUN distribution
[6, Ch.7], the matrix M is a correlation matrix. However, we can
obtain the standard construction from (1) by a change of variables.
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control the skewness of the distribution, in particular ∆ is
called skewness matrix. When ∆ = 0, eq. (2) reduces to
φp(z− ξξξ ;Ω), i.e. a skew-normal with zero skewness ma-
trix is a normal distribution. Moreover, we assume that
Φ0(·) = 1, so that, for s = 0, eq. (2) becomes a multivariate
normal distribution. Figure 1 shows the density of a uni-
variate SUN distribution with latent dimensions s = 1 and
s = 2.

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5
SUN = 0.7
N(0,1)
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SUN = ( 0.7
0.2 )

s = 1, Γ = 1 s = 2, Γ = diag([0.8,0.8])

Figure 1: Density plots for SUN1,s(0,1,∆,γ,Γ). For all plots
Γ is a correlation matrix, γ = 0, dashed lines are the contour
plots of y ∼ N1(0,1).

A SkewGP [7, 8] is a generalisation of a SUN distribution
to a stochastic process which becomes a GP when skewness
is zero, see Appendix A for a quick recap on GPs. To define
a SkewGP, we consider here a location function ξ : Rd →R,
a scale (kernel) function Ω : Rd ×Rd → R, a skewness
vector function ∆ : Rd →Rs and the parameters γγγ ∈Rs,Γ ∈
Rs×s. A real function f : Rd → R is SkewGP-distributed
with latent dimension s, if for any sequence of n points
x1, . . . ,xn ∈Rd , the vector [ f (x1), . . . , f (xn)]

⊤ ∈Rn is SUN
distributed with parameters γγγ,Γ and location, scale and
skewness matrices, respectively, given by

ξ (X) = [ ξ (x1),ξ (x2),...,ξ (xn) ]
⊤ ,

Ω(X ,X) =


Ω(x1,x1) Ω(x1,x2) ... Ω(x1,xn)
Ω(x2,x1) Ω(x2,x2) ... Ω(x2,xn)

...
... ...

...
Ω(xn,x1) Ω(xn,x2) ... Ω(xn,xn)

 ,
∆(X) = [∆(x1),∆(x2),...,∆(xn) ] ,

(3)

where X = [x1,x2, . . . ,xn]
⊤. In this case, we write f (x) ∼

SkewGPs(ξ (x),Ω(x,x),∆(x),γγγ,Γ). SkewGPs are conju-
gate with both the normal and affine probit likelihood and,
more in general, with their product. This allows us to derive
their posterior for nonparametric regression, classification,
preference learning and mixed problems.

In particular, consider the affine-probit-normal product like-
lihood:

p(Y,Z,W | f (X)) = Φma(Z +W f (X);Σ)

·φmr(Y −C f (X);R).
(4)

where mr (the subscript r stands for regression) denotes
the number of regression-type observations and ma the
number of binary/preference-type observations (the sub-
script a stands for affine) . Therefore, we have that Y ∈

Rmr , C ∈ Rmr×n, W ∈ Rma×n, Z ∈ Rma×1. The matrices
Σ ∈Rma×ma , R ∈Rmr×mr are covariance matrices. This like-
lihood encompasses all the standard likelihood functions
used in regression, classification and preference-learning.
For instance, a standard regression is obtained by setting
C = Imr , R= σ2Imr and ma = 0; classification is obtained for
W = diag(2Y −1), Z = 0ma , Σ = Ima and mr = 0, where Y
is the vector containing the observed class values Yi ∈ {0,1}.
Preference learning is obtained with Z = 0ma , Σ = Ima and
mr = 0 and W ∈Rma×n whose s-th row is all zero apart from
Wi = 1,Wj =−1 if the data includes the preference xi ≻ x j.

We now report this result from [8, Theorem 3].

Proposition 1. Let us assume a SkewGP prior f (x) ∼
SkewGPs(ξ (x),Ω(x,x),∆(x),γγγ,Γ), the likelihood (4), then
a-posteriori f (x) is SkewGP with mean, covariance and
skewness functions:

ξ̃ξξ (x) = ξξξ (x)

+Ω(x,X)CT (CΩ(X ,X)CT +R)−1(Y −Cξ (X)),

Ω̃(x,x) = Ω(x,x)

−Ω(x,X)CT (CΩ(X ,X)CT +R)−1CΩ(X ,x),
∆̃(x) =

[
∆(x) Ω(x,X)W T ]

−Ω(x,X)CT (CΩ(X ,X)CT +R)−1C

·
[
∆(X) Ω(X ,X)W T ] ,

γ̃γγ = γγγ p +
[
∆(X) Ω(X ,X)W T ]T

·Ω(X ,X)−1(ξ̃ξξ (X)−ξξξ (X))

Γ̃ = Γp −
[
∆(X) Ω(X ,X)W T ]T

Ω
−1(X ,X)

[
∆(X) Ω(X ,X)W T ]

+∆
T
p Ω̃(X ,X)−1

∆p,

∆p = Ω̃(X ,X)Ω−1(X ,X)

·
[
∆(X) Ω(X ,X)W T ] ,

γγγ p = [γγγ, Z +Wξ (X)]T ,

Γp =

[
Γ ∆(X)TW T

W∆(X) (WΩ(X ,X)W T +Σ)

]
.

The computation of predictive inference (posterior mean,
credible intervals etc.) can be achieved by sampling
the posterior SkewGP. Recall [6, Ch.7] that z ∼
SUNp,s(ξξξ ,Ω,∆,γγγ,Γ) can be written as z = ξξξ + r0 +
∆Γ−1r1,−γ with r0 ∼ φp(0;Ω̄−∆Γ−1∆T ) and r1,−γ is the
truncation below γ of r1 ∼ φs(0;Γ). Note that sampling r0
can be achieved efficiently with standard methods, and r1,−γ

can be obtained efficiently using methods such as Gibbs
sampling [54] linear elliptical slice sampler [20], minimax
tilting method accept-reject sampler [12] and Hamiltonian
Monte-Carlo [42].

Similarly to GPs, the functions and matrices defining a
SkewGP, SkewGPs(ξ (x),Ω(x,x),∆(x),γγγ,Γ) may depend

335



on hyperparameters θθθ . These parameters are chosen by
maximising the marginal likelihood, which is equal to:

p(Y ) = φmr(Y −Cξ (X);CΩ(X ,X)CT +R)
Φs+ma(γ̃γγ; Γ̃)

Φs(γγγ; Γ)
,

(5)
with γ̃γγ, Γ̃ are defined in Proposition 1. This involves the
computation of a high-dimensional multivariate CDFs
Φs+ma(·),Φs(·). We use a variational inference technique
to approximate the posterior distribution with a Gaussian
distribution. This provides a lower bound for (5), which we
maximise to find the hyperparameters.

3 A LINEARLY CONSTRAINED GP IS A
SKEWGP

We recall [48, Sec. 9.4] that if f : RD →R is GP distributed,
that is f ∼ GP(0,k) with kernel k, then its first derivative
∂ fi
∂xik

is also GP-distributed with covariance (kernel):

kI(xi,x j) := cov
(

fi,
∂ f j
∂x jl

)
=

∂k(xi,x j)

∂x jl
, (6)

kII(xi,x j) := cov
(

∂ fi
∂xil

,
∂ f j
∂x je

)
=

∂k(xi,x j)

∂xil∂x je
, (7)

for each i, j, l,e ∈ {1,2, . . . ,D}.

We introduce a vector U = [u1,u2, . . . ,ur]
⊤, with

ui ∈ RD, of operational points and define f′(ui) =
[ ∂

∂ui1
f (ui), . . . ,

∂

∂uiD
f (ui)]

⊤. We assume that the vector
[ f (x1), . . . , f (xn), f (u1), . . . , f (ur), f′(u1)

⊤, . . . , f′(ur)
⊤]⊤

is GP distributed with zero-mean and covariance matrix

M =

 K(X ,X) K(X ,U) KI(X ,U)
K(X ,U)⊤ K(U,U) KI(U,U)
KI(X ,U)⊤ KI(U,U) KII(U,U)

 . (8)

We define a linearly constrained GP by imposing:

L


f (u1)

...
f (ur)

f′(u1)

...
f′(ur)

+ γγγ > 0. (9)

It is immediate to verify that, by suitably selecting L,γγγ , (9)
allows us to impose bound and monotonicity constraints on
f at U . We could similarly impose constraints on the second
derivative, integral of f or on other affine operators, which
preserve Gaussianity.

Theorem 1. Assume that
[ f (x), f(u1), . . . , f(ur), f′(u1)

⊤, . . . , f′(ur)
⊤]⊤ is GP dis-

tributed with zero-mean and covariance matrix (8). Then,

subject to the constraint (9), f (x)+ ξξξ (x) is SkewGP dis-
tributed with parameters γγγ,ξξξ (x),

Γ =

[
LK(U,U)LT LKI(U,U)L⊤

LKI(U,U)L⊤ LKII(U,U)L⊤

]
, (10)

∆(x) =
[
K(x,U)L⊤ KI(x,U)L⊤] , (11)

and scale function Ω(x,x) = k(x,x).

The proof of this and next theorems is in Appendix B. This
result allows us to leverage the SkewGP as a prior distribu-
tion over functions and compute posteriors for regression,
classification, and preference learning tasks (as shown in
Proposition 1). These posteriors are guaranteed to satisfy
the specified linear constraint at all operational points. In the
next section, we will illustrate this theorem with a concrete
example related to monotonicity.

4 MONOTONIC GP

In this section, we demonstrate how SkewGPs offer a unified
approach to imposing monotonicity constraints on GPs. We
achieve this by showing how SkewGPs can encompass vari-
ous existing methods from the literature. This unification,
combined with the conjugacy property of SkewGPs estab-
lished in Proposition 1 and Theorem 1, enables us to extend
these approaches beyond regression, which has been the
primary focus of previous work on linearly constrained GPs.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0 f(x)
evaluated

Figure 2

As a simple illustration
of imposing mono-
tonicity constraints
in regression and
preference learning,
we will consider the
function f (x) = 3/(1+
exp(−20x + 10)) for
x ∈ [0,1] shown in
Figure 2. We generated
a regression and a preference learning dataset as follows.
We first evaluated f at 50 equally spaced points in [0,0.45]
and at 50 equally spaced points in [0.75,1]. The 100
points {xl}100

l=1 were used to generate regression data with
yi = f (xi)+ εi where εi ∼ N(0,0.0225). From {xl}100

l=1 we
also generated 200 pairwise preferences as follows: xi ≻ x j
if f (xi) + εi > f (x j) + ε j with εi,ε j ∼ N(0,0.0225), for
randomly selected xi,x j ∈ {xl}100

l=1.7

4.1 INFINITE-DIMENSIONAL KERNEL

Existing approaches [49, 58, 1, 15, 22] enforce monotonic-
ity constraints by holding them at specific operational points,

7∫ I f (xi)+εi> f (x j)+ε j
(εi,ε j)dN(εi,0,σ2)dN(ε j,0,σ2) =

Φ1(
f (xi)− f (x j)√

2σ
), which gives rise to the probit likelihood in

preference learning.
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denoted as U . These approaches can be applied with any
kernel, including infinite-dimensional ones, but in general,
they guarantee global monotonicity only with high probabil-
ity. Specific methods for imposing constraints and inference
vary across these works. For a detailed comparison, please
refer to Agrell [1, Table 1]. Our SkewGP-based approach
incorporates methods like [58, 15] that perfectly enforce
monotonicity constraints at operational points. Note that,
for both regression and preference learning, all computa-
tions are performed analytically as described in Proposition
1. By leveraging the analytical derivations, we efficiently ob-
tain the posterior samples (and so mean and credible region)
using tailored MCMC methods as described in Section 2.
This translates to fast inference. It is worth noting that meth-
ods using soft constraints with indicators replaced by probit
function (or Normal likelihood) can also be formulated as
SkewGP with different parameters, which will reduce to the
frameworks in [49, 1, 22].

In order to apply these methods with SkewGPs therefore we
only need to define k,kI ,kII . For instance, the D-dimensional
squared-exponential (SE) kernel is

k(xi,x j) = σ
2
0 exp

(
−

D

∑
d=1

(xid − x jd)
2

2ℓ2
d

)
,

kI(xi,x j) =−σ
2
0 exp

(
−

D

∑
d=1

(xid − x jd)
2

2ℓ2
d

)
ℓ−2

l (xil − x jl),

kII(xi,x j) = σ
2
0 exp

(
−

D

∑
d=1

(xid − x jd)
2

2ℓ2
d

)
ℓ−2

l

(
δlh − ℓ−2

h (xil − x jl)(xih − x jh)
)
,

respectively, where δlh = 1 if l = h and 0 otherwise and
σ0, ℓd for d = 1, . . . ,D are the hyperparameters of the ker-
nel. Figure 3 reports the sampled posterior SkewGP for
both regression and preference learning using the dataset
generated from the function in Figure 2. We used a SE ker-
nel with ℓ = 0.15, σ0 = 1 for regression and σ0 = 90 for
preference and imposed the constraints on equally spaced
operational points. Note that this approach can be applied
directly to multi-dimensional functions. Figure 3 shows that
the posterior inference improves in the constrained case
(given the original function f is monotonic) compared to
the unconstrained case. In the constrained case, however,
the samples do not preserve monotonicity globally. This is
a known drawback of the approaches [49, 58, 1, 15, 22].
Several techniques exist for selecting the location of op-
erational points U . We refer to [1] for a review of these
techniques. Appendix C details how they are selected in the
experimental section.

4.2 FINITE-DIMENSIONAL KERNEL

A way to impose constraints in the whole domain was pro-
posed by [30, 29, 28, 31]. They achieve this through finite-

dimensional approximations of the GP that converge uni-
formly at the increase of the number of the knots. Here
we follow [28] and consider degree 2 monotone splines
(M-spline, [47]). To define a M-spline of degree 2, we
consider l + 1 grid points (knots) (t0, . . . , tl+1) such that
t0 < t1 < · · ·< tl < tl+1. M-spline are piecewise polynomi-
als defined as:

Mi(x) =

{ x−ti−1
ti−ti−1

ti−1 ≤ x ≤ ti
ti+1−x
ti+1−ti

ti ≤ x ≤ ti+1
(12)

for i = 1, . . . , l. Figure 4 shows the polynomial for l = 8 and
{ti}ℓi=1 equally spaced in [0,1] (and t0 =−1, tℓ+1 = 2).

0.0 0.2 0.4 0.6 0.8 1.0
x

order=2

Figure 4: M-spline.

Then, the finite-
dimensional GP is
defined as

f (x) =
l

∑
i=1

βiMi(x),

(13)
where βi are Gaussian
distributed with zero-
mean and covariance matrix E[βi,β j] = ǩ(ti, t j), where ǩ
is a kernel. In the rest of the paper, we assume that ǩ is
the SE kernel. It is then immediate to verify that f is GP
distributed with zero-mean and covariance kernel

k(x,x′) =
l

∑
i=1

l

∑
j=1

Mi(x)ǩ(ti, t j)M j(x′). (14)

We call k in eq. (14) the ‘MSP’ kernel. We now show how
we can impose monotonicity using SkewGP.

Theorem 2. Consider l operational points [u1, . . . ,ul+1]
defined as ui = (ti + ti−1)/2, then the SkewGP obtained
from Theorem 1 with L = diag([0r, Ir]) and kernel defined
as in (14) is monotone increasing in [t1, tl ].

Therefore, we can also include the approaches [30, 29,
28, 31] into the SkewGP framework exploiting Proposi-
tion 1 ad Theorem 1. As before, we only need to compute
kI(x,x′),kII(x,x′). Figure 5 shows the posterior SkewGP ob-
tained with the kernel (14). Compared to Figure 3, it can be
noticed that the mean and trajectories are piecewise linear
and, more importantly, the monotonicity constraint holds
globally in the interval [0,1], i.e., all sampled trajectories
are monotonic in [0,1].

In [28], the extension to the multidimensional case x =
[x1, . . . ,xD]

⊤ ∈ RD is obtained by considering an additive
model f (x) = ∑

D
d=1 f (xd) and, therefore, an additive kernel

k(x,x′) =∑
D
d=1 ∑

l
i=1 ∑

l
j=1 Mdi(xd)ǩ(tdi, td j)Md j(x′d). This is

the approach we will follow in the rest of the paper. Note
that, it is also possible to use the product kernel, similar
to [30] or the ANOVA kernel (including both sums and
products). The additive kernel holds the advantage of scaling
more effectively to high dimensions.
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Figure 3: SkewGP with RBF kernel, ℓ= 0.15, σ = 1 for regression and σ = 90 for preference. The thick red line shows
the posterior mean, and the shaded region represents the 95% credible interval. Ten sampled functions are also included to
illustrate the uncertainty. Vertical lines denote the operational points where the monotonicity constraint is enforced.
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Figure 5: SkewGP with MSP kernel, ℓ = 0.1, σ = 1 for regression and σ = 90 for preference. The thick red line shows
the posterior mean, and the shaded region represents the 95% credible interval. Ten sampled functions are also included to
illustrate the uncertainty. Vertical lines denote the operational points where the monotonicity constraint is enforced.

4.3 TRANSFORMED GP

The works [27, 3] designed methods for imposing shape
constraints on functions through squared Gaussian pro-
cess derivatives and basis expansions. In particular, they
approximate the kernel with a basis expansion k(x,x′) ≈
Cov(h(x),h(x′)) with h(x) = ∑

m
i=1 βiφi(x) where βi are in-

dependent Gaussian distributed variables and φi are basis
functions derived from the eigenfunctions of the Laplace
operator. Then they build a monotonic function as

h+(x) =
∫ x

−∞

(
m

∑
i=1

βiφi(z)

)2

dz, (15)

which is equal to h+(x) = ∑
m
i=1 ∑

m
j=1 βiβ j

∫ x
−∞

φi(z)φ j(z)dz.
Note the nonlinearity introduced by the multiplication
between the coefficients βi. This breaks the connection
with SkewGP and, therefore, the conjugacy with normal
and probit-affine likelihoods. Moreover, the basis function∫ x
−∞

φi(z)φ j(z)dz loses interpretability. We will show next
that we can build on the same ideas proposed in [27, 3],
while preserving linearity and interpretability.

First, we note that, Mi(x) in (12) is an unnormalised tri-
angular distribution and, therefore, nonnegative. We can
integrate it in [ti−1, ti] to get a monotone-increasing function

(an unnormalised CDF) Ii(x) =
∫ x

ti−1
Mi(z)dx:

Ii(x) =


(x−ti−1)

2

2(ti−ti−1)
ti−1 ≤ x ≤ ti,

ti+1−ti−1
2 − (ti+1−x)2

2(ti+1−ti)
ti ≤ x ≤ ti+1.

(16)

These are so-called I-splines [47]. Note the quadratic poly-
nomials which play a similar role to the quadratic transfor-
mation in (15). The difference is that we do not transform
the coefficients βi, i.e., we still consider f (x) =∑

l
i=1 βiIi(x)

thus preserving linearity. Therefore, we define the kernel

k(x,x′) =
l

∑
i=1

l

∑
j=1

ǩ(ti, t j)Ii(x)I j(x′). (17)

Theorem 3. Consider l operational points [u1, . . . ,ul ] de-
fined as ui = ti, then the SkewGP obtained from Theorem
1 with L = diag([Ir,0r]) and kernel defined as in (17) is
monotone increasing in [t1, tl ].

It is worth noticing that in this case we are imposing
the monotonicity constraint through [ f (u1), . . . , f (ur)]> 0
which does not involve the derivatives. This is due to the
choice of the I-spline basis function. This approach can
also be applied to the multivariate case by using the same
techniques discussed at the end of the previous section.
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5 DESIRABILITY AS CLASSIFICATION

In desirability theory [57, 46, 5], decision making under
uncertainty can be viewed as a choice between gambles.
Formally, a gamble is a real-valued function on the possi-
bility space: it represents a positive or negative pay-off that
is uncertain in the sense that it depends on the unknown
outcome. For instance, consider a simple coin toss, where
the possible outcomes are Heads (H) and Tails (T). We
can represent a gamble, g, as a two-dimensional vector, i.e.
g = [1,−2]. This means you win 1 unit if it lands on Heads
and lose 2 units if it lands on Tails. By choosing to accept
or reject such gambles, a subject reveals their beliefs about
the outcomes of the uncertain event. Consider buying a call-
put option in finance as a tangible example of accepting a
gamble.

Assume a subject has accepted the gambles A = {g1 =
[1,0],g2 = [0,1]} and rejected R = {g3 = [−1,2],g4 =
[2,−1],g5 = [−0.5,3.5],g6 = [3.5,−0.5]}, are they willing
to accept the gamble g7 = [−1,0]?

This prediction task can be cast as a classification problem
where we aim to predict the subject’s acceptance (class 1)
or rejection (class 0) of the gamble g7. Here, consistency
(rationality of the gambler) means that if the subject accepts
the gamble g = [ga,gb] they should also accept any gamble
g+h where h > 0 element-wise. Similarly, a subject should
always reject gambles g≤ 0, because they are not favourable.
These additional consistency constraints can be satisfied by
finding a monotonic classifier that separates the augmented
sets A ′ = A ∪{[−ε,−ε]} and R ′ = R∪{[0,0]} for some
small ε > 0. In linear desirability theory, we consider linear
classifiers. It is well-known that linearity [62, 36, 16] is a
strong assumption, being violated for instance in domains
with budget constraints, problems with lack of liquidity,
wealth effects and risk-aversion [38, 43, 44, 59]. We can
then consider a more general nonlinear classifier and learn
the subject’s behaviour. Figure 6 shows in blue the region
classified as 1 (accepted) for two nonlinear classifiers (we
used the MSP kernel). It can be noted that the left one vio-
lates consistency: it implies the subject would accept nega-
tive gambles (third orthant) and reject positive gambles (first
orthant). The right figure shows the accepted region after
imposing monotonicity, which now satisfies consistency.8

Note that, while this example employs the MSP kernel with
an additive combination across the dimensions of the gam-
ble, a product kernel could be used to capture interactions
between the two dimensions.

8Technically, consistency holds within an error margin of ε .
SkewGPs are continuous model. In the example, this means that
around the origin (0,0) the classifier may exclude some positive
gambles, like (ε/2,ε/2) for instance.
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Figure 6: Blue region: set of desirable gambles implied
by an unconstrained classifier (left) versus a constrained
classifier (right). The blue circles are the gambles in A and
the red triangles those in R.

Table 1: 1-D monotonic benchmark functions.

g1(x) = 0.32(10x+ sin(10x)) g2(x) = 3(x < 0.8)+6(x ≥ 0.8)
g3(x) = 3x g4(x) = 0.15e6x−3

g5(x) = 3/(1+ e−20x+10) g6(x) = 5x2

g7(x) = 10(x+1)

6 NUMERICAL RESULTS

We assess the performance of our SkewGP formulation of
monotonic constrained GP in simulated and real datasets.
We will use the M-spline kernel defined in Section 4.2.
Hyperparameters estimation is discussed in Appendix C.
Appendix D provides an algorithmic description of the pre-
dictive posterior computation.

6.1 1D MONOTONIC BENCHMARK FUNCTIONS

To assess the performance of our SkewGP formulation for
both regression and preference learning tasks, we lever-
age 7 established benchmark functions from prior works
[27, 31, 51, 55], reported in table 1. As our method includes
several previous approaches for imposing monotonicity (de-
tails in Section 4), we only compare it with monotonic-GP-
flow (MF, [55]), which uses the numerical solution of a
particular stochastic differential equation to impose mono-
tonicity. Notably, we extend their model to preference learn-
ing by employing a probit likelihood.

For the regression task, the training data is generated by
evaluating these functions at 100 randomly generated
points in [0,1] and adding independent Gaussian noise
with variance σ2 calculated using SNR={10,30}, that
is: σ2 = signal variance/SNR. We generated 400 testing
data from each gi to evaluate the performance of the
models using the root-mean-square-error (RMSE) and
the continuous-ranked-probability-score (CRPS) for the
evaluation of probabilistic predictions. Table 2 shows the
performance on test data evaluated with CRPS (lower is bet-
ter) in the case SNR=10. SkewGPc denotes a monotonically

339



constrained model while SkewGPu is the unconstrained one.

Table 2: Results on regression task (CRPS).

fun MF SkewGPu SkewGPc

g1 0.36±0.14 0.25± 0.03 0.15± 0.01
g2 0.82±0.12 0.74± 0.14 0.54±0.03
g3 0.28±0.17 0.19± 0.02 0.1±0.01
g4 0.44±0.11 0.19± 0.02 0.20±0.01
g5 0.62±0.16 0.29± 0.03 0.30±0.02
g6 0.56±0.31 0.31± 0.04 0.21±0.02
g7 1.80±0.44 1.96± 0.37 0.74± 0.21

For the preference task, the training data is generated
by evaluating these functions at 50 randomly generated
points in [0,1] and then generating preference as xi ≻ x j
if gl(xi) + εi > gl(x j) + ε j where εi,ε j are independent
Gaussian noises with the same variance of the regression
task. We generated 100 pairwise comparison between
randomly selected xi in the training data. We also generated
additional 400 pairwise comparison for testing and
used the logarithmic-score (LogP) for the evaluation of
probabilistic predictions. The definition of CRPS and LogP
are provided in Appendix E.1 together with additional
details about the numerical experiments. Table 3 shows
the performances evaluated with LogP (higher is better)
for the preference learning task with SNR=10. SkewGPc
denotes a monotonically constrained model, SkewGPu the
unconstrained one.

Table 3: Results on preference task (LogP).

fun MF SkewGPu SkewGPc

g1 -0.50± 0.02 -1.04± 0.50 -0.48± 0.09
g2 -0.63± 0.04 -0.88± 0.11 -0.62± 0.05
g3 -0.50± 0.03 -1.04± 0.50 -0.45± 0.03
g4 -0.52± 0.02 -1.13± 0.06 -0.44± 0.04
g5 -0.50± 0.02 -0.92± 0.52 -0.40± 0.03
g6 -0.47± 0.03 -0.84± 0.37 -0.38± 0.08
g7 -0.62± 0.02 -0.96± 0.20 -0.63± 0.03

In both regression and preference learning, it can be noticed
that SkewGPc outperforms MF in probabilistic predictions.
This is not fully surprising, because of the conjugacy of
SkewGPs with both the normal and probit-affine likelihood.
In Appendix E.1, we reported the timings for the algorithms
and the results for SNR=30 and the RMSE.

6.2 SWISS ROUTE CHOICE DATA

In stated preference surveys, participants choose between
options with trade-offs (like cost, time, or reliability), re-
vealing their preferences in hypothetical scenarios. This
approach is widely used in transportation for understanding
how people value different features. We consider a dataset
that includes the choices made by subjects regarding their
preferred railway connections/routes in Switzerland. Each

scenario includes two alternatives described in terms of
travel time (tt), cost (tc), headway (hw) and number of inter-
changes (ch) [56]. There are also subject specific variables:
household income, car-availability (binary) and purpose
of the trip (commute, shopping, business, leisure). Table
9 in Appendix shows a subset of the dataset. An example
of a scenario where the subjects were asked to state their
preference is:

Option1 : tt = 14, tc = 3, hw = 15, ch = 0,
Option2 : tt = 15, tc = 4, hw = 15, ch = 0.

It is clear that Option1 should be preferable to Option2.
The dataset includes 3,492 pairwise preferences expressed
by 388 individuals. In this type of analysis, it is common
to learn a preference model for each group. For instance,
hereafter we focus on commuters with car availability and
compare an unconstrained SkewGP versus a constrained
SkewGP, where we impose monotonicity (less is better) on
all the covariates. We used 10-fold CV to compare the two
models and we assessed the LogP score.

Table 4: Swiss route choice data (LogP).

LogP SkewGPu SkewGPc

other-options −0.53 −0.53
monotone-options −0.30 −0.15

Focusing on the options where one option is monotonically
better than the other, SkewGPu achieves a worse average
LogP value of −0.30 compared to −0.15 for SkewGPc, as
shown in table 4. This is due to the uncertainty as shown
in Figure 7 for the two options above. When one option is
monotonically better than the other, SkewGPu often exhibits
high uncertainty, predicting a utility difference near zero. In
contrast, SkewGPc predicts the correct preference with high
probability (the utility of the monotonically better option is
always higher). As expected, the two models perform simi-
larly for pairwise comparisons that are not monotonically
dominated (LogP around −0.53).
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Figure 7: Posterior distribution of the utility difference be-
tween the two options. A positive difference denotes the
correct prediction.
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6.3 RISKY CHOICE DATASET

Understanding and predicting human decision-making be-
comes increasingly crucial as automated systems interact
more closely with people. Building on this need, [45] col-
lected a large dataset (10,000 preference-pairs) of human
decisions. Each problem involved choosing between two
gambles with distinct payoff-probability combinations.

Option1 : g1 = [26,−1], p1 = [0.95,0.05],
Option2 : g2 = [21, 23], p2 = [0.95,0.05].

For this choice-problem, 10 out of 15 subjects (67%) chose
Option2. Expected Utility (EU) theory dictates that Option1
is preferable to Option2 because 26 ·0.95−1 ·0.05 = 24.65
is higher than 21 · 0.95 + 23 · 0.05 = 21.1. However, in
Option2, we never lose money, so it is preferable in
the worst case. There are other aspects to consider such
as the way the payouts gi j are viewed by the decision-
makers, if they use linearity when combining payoffs and
probabilities, if they evaluate each gamble separately or
jointly. However, also in this case, assuming monotonicity
on g seems to be reasonable: for instance, Option3
g = [27,−0.5], p = [0.95,0.05] should be preferable to
Option1. Note that, this choice problem is related to
desirability discussed in Section 5 - in desirability the
probabilities are not given explicitly. We will use the dataset
to learn a model to predict preferences for options by
using g1, p1,g2, p2,g1 · p1,g2 · p2 as covariates. This will
allow us to understand in which way the human choices
deviates from EU theory. We will compare SkewGPu versus
SkewGPc to understand the effect of monotonicity. We used
10-fold CV assessed the LogP score, the results are shown
in table 5. We can reach similar conclusions to the ones for
the Swiss route data: SkewGPc provides better estimates of
the probability of the preference for monotone options.

Table 5: Risky choice data (LogP).

LogP SkewGPu SkewGPc

other-options −0.31 −0.31
monotone-options −0.17 −0.13

Table 6 shows that SkewGPc outperforms the EU model in
terms of accuracy. This suggests that the underlying pref-
erences in the dataset deviate from the linear assumptions
of the EU model, and a nonlinear model like SkewGPc is
more appropriate for capturing these preferences.

Table 6: Risky choice data, comparison with EU (LogP).

Accuracy EU SkewGPc

other-options 0.75 0.83
monotone-options 0.97 0.99

7 CONCLUSIONS

We derived a unified framework for linearly constrained
Gaussian Processes (GPs) by using Skew GPs which in-
cludes regression, classification, and preference learning.
Our unified framework demonstrated strong performance
in both preference learning and modelling human decision-
making. As future work, we aim to apply this approach to
active learning and Bayesian optimisation, while including
a larger class of linear constraints, beyond monotonicity.
For human-decision making under risk, we plan to derive
application-specific basis functions and kernels and impose
constraints that are usually assumed in decision making,
such as both monotonicity and convexity.
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A GAUSSIAN PROCESSES

Gaussian Processes (GPs) are prior over functions [40, 48], that have attractive advantages over parametric (including neural
networks) models.1 They have a small number of tunable hyperparameters (and so they can be trained on small datasets),
and give a measure of prediction uncertainty. Moreover, by being kernel based, they provide a framework to learn utility
functions defined on any domain X on which we can define a kernel-function.

To define a prior over a function f : X → R, a GP assumes that, for every n, p( f (x1), . . . , f (xn)) is jointly Gaussian, with
mean [µ(x1), . . . ,µ(xn)] and covariance Cov( f (xi), f (x j)) = k(xi,x j), for i, j = 1, . . . ,n. µ(x) and k(x,x′) are the mean
function and, respectively, the (positive definite) kernel function of the GP. A GP is usually parameterised with a zero mean
function µ(x) = 0 and a covariance kernel kθθθ (x,x′) which depends on hyperparameters θθθ ∈ Θ. A typical example is the
automatic relevance determination (ARD) square-exponential kernel on Rc, c ∈ N. For x,x′ ∈ Rc it is defined as

kθθθ (x,x′) = σ
2
0 exp

(
−

c

∑
i=1

(xi − x′i)
2

2ℓ2
i

)
, (18)

where θθθ = [ℓ1, . . . , ℓc,σ
2
0 ] includes the lengthscales hyperparameters ℓi (one for each dimension) and the scale parameter σ2

0 .
GPs have a natural Bayesian interpretation that makes them ideal for regression problems. If we assume that the observed
values are the sum of a true function evaluated at some inputs plus Gaussian noise, i.e. yi = f (xi)+ εi with εi ∼ N(0,σ2)
for i = 1, . . . ,n, then we can analytically compute the posterior distribution of f . We can write the observation model more
compactly as the likelihood

p(y1, . . . ,yn| f (x1), . . . , f (xn)) = N(yn|f(X),σ2In),

where yn = [y1, . . . ,yn]
⊤, X = [x1, . . . ,xn]

⊤ and In is the identity matrix of dimension n. In particular, the predictive posterior
at a new test point x∗ ∈ X is GP(µp,kp), with mean and covariance kernel given by:

µp(x∗) = Kθθθ (x∗,X)(Kθθθ (X ,X)+σ
2In)

−1yn (19)

kp(x∗,x∗) = Kθθθ (x∗,x∗)−Kθθθ (x∗,X)(Kθθθ (X ,X)+σ
2In)

−1Kθθθ (X ,x∗), (20)

where Kθθθ (X ,X) is a matrix whose ij-th element is defined as (Kθθθ (X ,X))i j = kθθθ (xi,x j) (similar for Kθθθ (x∗,X)). Note that,
the variance of the likelihood σ2 is also considered to be a hyperparameter. The hyperparameters θθθ ,σ2 are commonly
estimated by maximising the marginal likelihood:

p((xi,yi)|θθθ ,σ2) = N(yn,Kθθθ (X ,X)+σ
2In).

In tasks with likelihoods different from the Gaussian, the posterior is not a GP. For Probit (classification/preference learning)
and Skew-Normal likelihoods, the posterior is a Skew GP [8]. For other likelihoods, in general the posterior does not

1GPs can be seen as single-layer neural networks with an infinite number of hidden units [60].
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have a closed-form and is approximated with a GP using three main approaches: (i) Laplace Approximation (LP) [32, 61];
(ii) Expectation Propagation (EP) [35]; (iii) Kullback-Leibler divergence (KL) minimization [41], comprising Variational
Bounding (VB) [21] as a particular case.

B PROOFS

The proofs are straightforward.

Theorem 1 By denoting with z1 = f (x) and z0 = [f(u1), . . . , f(ur), f′(u1), . . . , f′(ur)]
⊤, we can rewrite the constraint (9) as

Lz0 + γγγ > 0. Therefore, the distribution of z1 +ξξξ (x) = f (x)+ξξξ (x) conditioned on Lz0 + γγγ > 0 is SkewGP as derived in
Section 2. We just need to consider a change of variables to take into account of the matrix L.

Theorem 2 Consider f (x) = ∑
l
i=1 βiMi(x) and x′ ∈ (ti−1, ti) and observe that f (x′) = βi−1(ti − x′)/(ti − ti−1)+βi(x′−

ti−1)/(ti − ti−1). Therefore, we have that
d
dx

f (ui) = (βi −βi−1)
ti

ti − ti−1
.

Therefore, we have that d
dx f (ui)> 0 implies that βi −βi−1 > 0 for i = 1, . . . , l, which is equivalent to the constraint [28, Eq.

(7)].

Theorem 3 Consider f (x) = ∑
l
i=1 βiIi(x) and x′ ∈ (ti, ti+1) and observe that

f (x′) = βi

(
ti+2 − ti

2
− (ti+1 − x′)2

2(ti+1 − ti)

)
+βi+1

(x′− ti)2

2(ti+1 − ti)

Therefore, we have that f (ui) = βi−1

(
ti+2−ti

2 − ti+1−ti
2

)
. Therefore, we have that f (ui)> 0 implies that βi > 0 for i = 1, . . . , l

which ensures monotonicity.

C HYPERPARAMETERS’ ESTIMATION

We use the implementation of Variational Inference in GPytorch [19] to estimate the kernel hyperparameters. This is based
on [24] although in our case the inducing points are equal to the set of the covariates X plus the operational points (we
perform a full variational inference). We apply the variational inference considering as prior the Multivariate Normal in (1)
and we include the constraint Lf̃+ γγγ > 0 with

f̃ =


f(u1)

...
f(ur)

f′(u1)

...
f′(ur)

 , (21)

into the likelihood through a probit Φ( 1
τ
(Lf̃+ γγγ)) so to make the gradient to be continuous. τ is a constant. It is well known

that for τ → 0 the Gaussian CDF converges to an indicator function for its argument being positive, that is Lf̃+ γγγ > 0.
Therefore, we choose τ = 10−3 and we decrease it during the maximisation of ELBO in order to get even closer to the
indicator function (from τ = 10−3 up to τ = 10−6). Note that, we use this approximation of the constraint only for estimating
the kernel hyperpameters. The samples from the posterior are computed through the SkewGP derivations in Proposition 1
and Theorem 1.

We fix the operational points for the SE kernel and knots for the MSP kernel to n percentiles of the data and we do not
change them during hyperparameter optimisation. Approaches to optimally placing the operational points has been discussed
in previous literature [49, 58, 1, 15, 22, 30, 29, 28, 31].
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D SAMPLE FROM THE CONSTRAINED PREDICTIVE POSTERIOR

Algorithm 1 details how samples from the predictive posterior of SkewGPc are obtained. Note that the posterior parameters
(lines 1 and 2) and the truncated normal sampling (line 3) are computed once for all as they do not depend on x∗. The steps
at line 4-5 are sampling from a multivariate Gaussian and matrix-vector multiplications which are fast operations.
Algorithm 1: Predictive posterior for SkewGPc

Data: k kernel function, U ∈ Rr×D matrix of operational points, L matrix specifying monotonicity constraints,
W ∈ Rma×n matrix of preference data, m number of posterior samples, x∗ new input.

1 Compute the prior constrained parameters Γ, ∆(x) by using eqs. (10) and (11);
2 Compute the posterior functions and parameters ξ̃ξξ (x), Ω̃(x,x′), ∆̃(x), γ̃γγ , Γ̃ as in Prop. 1 ;
3 Sample r∗1,−γ̃γγ

from the multivariate normal N(0, Γ̃) truncated below γ̃γγ by using lin-ess ;

4 At the predictive input point x∗, sample r∗0 from the multivariate normal N(0,Ω̃(x∗,x∗)− ∆̃(x∗)Γ̃−1∆̃(x∗)T ) ;
5 Compute z̃ = ξ̃ξξ (x∗)+ r∗0(x

∗)+∆(x∗)Γ−1r∗1,−γ̃γγ
;

6 return Samples z̃;

E NUMERICAL RESULTS

E.1 1D SIMULATIONS

The logarithmic score is used to evaluate probabilistic prediction for binary observations. Consider a variable y with
possible values 1 or 0, denote the probability of y = 1 with p, then one can write the logarithmic scoring rule as LogP(p) =
y ln(p)+ (1− y) ln(1− p). Since we are comparing Bayesian methods, we computed the average logarithmic score by
averaging over the S samples from the posterior

LogP(y, p1, . . . , pS) =
S

∑
i=1

y ln(pi)+(1− y) ln(1− pi)

The continuous ranked probability score (CRPS) is a strictly proper scoring rule much used to assess probabilistic prediciton
for continuous variables. It is defined as

CRPS(F,y) =
∫
R
(F(x)−H(x ≥ y))2dx

where F is the predicted cumulative distribution function, H is the Heaviside step function and y ∈ R is the observation. We
computed the CRPS using the empirical CDF computed from the posterior samples and we used as y the true value of the
function (and not the noisy one).

For both monotonic-flow and SkewGP we used 20 inducing points and, respectively, Knots. We initialised them with
the percentiles of the data. For monotonic-flow, we used the SE kernel and T=1. For both the models, in regression, we
standardised the ys before ‘training’.

Table 7 reports the results with SNR=30 for the regression task (CRPS, lower better) and the preference task (LogP, higher
better).

In regression, it can be noted that SkewGPu and SkewGPc have a similar performance (the performance of the latter has
higher variability). This is mainly due to the small SNR (SkewGPu can learn the monotonicity of the functions from the
data) and variability of the numerical optimisation.

For preference learning, to compute the kernel hyperparameters and predict 2000 posterior samples, the running (wall-clock)
time is 330s for MF and 166s for SkewGPc.

For fixed hyperparameters, to predict 2000 posterior samples, the running (wall-clock) time is 180s for MF and 5s for
SkewGPc. Sampling with Monotonic GPflow requires solving a stochastic differential equation numerically.

Finally, table 8 reports the RMSE
√

1
n ∑

n
i=1(g j(xi)− ĝ j(xi))2 where ĝ j is the posterior mean, for j = 1, . . . ,7, for both the

SNR 10 and 30 case.
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Table 7: 1-D benchmark functions results with SNR=30.

CRPS regression LogP preference
fun MF SkewGPu SkewGPc MF SkewGPu SkewGPc

g1 0.59±0.04 0.19± 0.01 0.21± 0.06 -0.46± 0.04 -0.82± 0.40 -0.34± 0.03
g2 0.89±0.08 0.58± 0.10 0.53±0.06 -0.62± 0.04 -0.88± 0.21 -0.58± 0.08
g3 0.50±0.05 0.14± 0.01 0.16±0.05 -0.44± 0.04 -0.91± 0.40 -0.33± 0.05
g4 0.50±0.05 0.18± 0.01 0.20±0.03 -0.49± 0.03 -0.95± 0.46 -0.40± 0.06
g5 0.79±0.06 0.25± 0.02 0.34±0.11 -0.49± 0.03 -0.83± 0.34 -0.36± 0.04
g6 0.99±0.07 0.25± 0.02 0.34±0.14 -0.43± 0.04 -0.94± 0.48 -0.32± 0.08
g7 1.70±0.33 0.95± 0.2 0.57± 0.2 -0.55± 0.02 -0.88± 0.20 -0.53± 0.04

Table 8: Regression benchmark functions RMSE results.

RMSE SNR 10 RMSE SNR 30
fun MF SkewGPu SkewGPc MF SkewGPu SkewGPc

g1 0.55±0.17 0.43±0.05 0.25±0.02 0.78±0.06 0.33±0.026 0.35±0.1
g2 1.1±0.1 1.14±0.11 0.88±0.05 1.11±0.17 1.0±0.14 0.86±0.04
g3 0.44±0.24 0.35±0.04 0.11±0.05 0.71±0.05 0.25±0.03 0.25±0.1
g4 0.6±0.1 0.41±0.05 0.35±0.02 0.64±0.04 0.38±0.04 0.38±0.06
g5 0.92±0.21 0.49±0.06 0.53±0.05 1.1±0.09 0.41±0.03 0.67±0.12
g6 0.82±0.37 0.57±0.09 0.35±0.05 1.28±0.09 0.46±0.06 0.55±0.22
g7 2.67±0.54 2.7±0.3 1.30±0.46 2.5±0.4 1.65±0.3 0.90±0.48

SkewGPu outperforms MF. Note that, the RMSE for SNR=10 is sometimes lower than for SNR=30. This counter intuitive
result occurs because both RMSE and CRPS were calculated on the noise-free function values.

Our simulation results align with [55], where the method [3] achieved similar or even better performance than MF in some
benchmark function. As previously discussed, MSP kernels based on M-splines or MSP kernels based on I-splines provide
an improvement over [3] by preserving conjugacy with both the normal and affine-probit likelihood.

E.2 SWISS ROUTE CHOICE DATA

In the MSP kernel, we used 10 knots per covariate.

choice tt1 tc1 hw1 ch1 tt2 tc2 hw2 ch2 hh_inc_abs car_availability commute shopping business leisure
ID

2439 2 58 7 30 1 50 8 30 0 50000 1 1 0 0 0
2439 1 30 8 60 0 41 7 15 2 50000 1 1 0 0 0
2439 1 41 7 30 0 34 8 15 2 50000 1 1 0 0 0
2439 1 44 10 60 1 52 9 60 2 50000 1 1 0 0 0
2439 2 43 9 60 0 34 10 30 0 50000 1 1 0 0 0
2439 2 36 8 60 1 43 7 15 1 50000 1 1 0 0 0
2439 2 30 8 60 0 43 7 15 0 50000 1 1 0 0 0
2439 1 43 8 30 1 30 9 60 0 50000 1 1 0 0 0
2439 1 41 8 30 2 58 7 60 0 50000 1 1 0 0 0
5641 1 77 19 15 1 110 16 60 1 10000 0 0 0 0 1
5641 2 94 23 60 1 125 18 15 0 10000 0 0 0 0 1
5641 2 82 18 60 2 91 15 30 0 10000 0 0 0 0 1
5641 2 101 15 60 0 86 20 15 0 10000 0 0 0 0 1
5641 1 99 18 15 0 110 16 15 0 10000 0 0 0 0 1
5641 1 91 18 30 1 101 16 15 0 10000 0 0 0 0 1

Table 9: 10 pairwise options: each rows is a different scenario: tt1,tc1,hw1,ch1 against tt2,tc2,hw2,ch2.
Choice denotes the option selected by th user ID.

E.3 RISKY CHOICE DATA

We only focused on choice-pairs whose gambles have only two components (two-dimensional), as in the example in Section
6.3: a total of 5347 choices.
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