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Abstract

In our study, we present an algorithm for publish-
ing the count of walks and Katz centrality under
local differential privacy (LDP), complemented by
a comprehensive theoretical analysis. While pre-
vious research in LDP has predominantly focused
on counting subgraphs with a maximum of five
nodes, our work extends this to larger subgraphs.
The primary challenge in such an extension lies in
managing the exponentially increasing noise asso-
ciated with LDP as the size of the subgraph grows.
Our solution involves an algorithm for publish-
ing the count of walks originating from each node
in the graph, which subsequently enables us to
publish the Katz centrality of all nodes. This algo-
rithm incorporates multiple communication rounds
and employs a clipping technique. Through both
theoretical and empirical evaluation, we demon-
strate that our algorithm achieves a relatively small
bias and variance, showing significant improve-
ments over both the randomized response method
and non-clipping algorithms. Additionally, our ap-
proach to estimating Katz centrality successfully
identifies up to 90% of the nodes with the highest
centrality values.

1 INTRODUCTION

As discussed in Narayanan and Shmatikov [2009], Back-
strom et al. [2007], Zheleva and Getoor [2009], preserving
the privacy of social network users’ information is gaining
in importance, especially when disclosing data or apply-
ing data mining algorithms to these networks. The typi-
cal method of ensuring privacy involves the obfuscation of
the original social networks or the results of data mining.
Various privacy concepts have been established to ensure
that these obfuscated networks or outcomes provide suffi-

cient privacy for users. A number of these concepts, such
as k-diversity discussed in Campan and Truta [2008] and
ℓ-diversity discussed in Zhou and Pei [2011], are notions
designed for tabular data.

In the realm of tabular data, differential privacy discussed
in Dwork [2006], Dwork et al. [2014] is among the most
widely adopted privacy notions, as it provides a quantifiable
measure of the amount of user information disclosed in a
given publication, referred to as the privacy budget. The
broad interest in this concept comes from its relative sim-
plicity in calculating this privacy budget, even for complex
data mining operations and data publications as discussed
in McSherry [2009].

Numerous variations of differential privacy such as Soria-
Comas et al. [2017], Mironov [2017] are presented in lit-
erature. Among them, local differential privacy (LDP) dis-
cussed in Evfimievski et al. [2003], Cormode et al. [2018] is
one of the most prominent. In differential privacy, the default
assumption is that unaltered data is aggregated at a central
server, and the obfuscation is performed on this complete
data. However, LDP aims to safeguard user information
during its transmission to the central server. Therefore, the
data obfuscation occurs locally. Because the central server
does not have access to the unmodified data at any time,
it is typically more challenging to apply any data mining
algorithm to the data that is protected under LDP.

Edge LDP, an augmentation of LDP proposed in Qin et al.
[2017], has been put forth specifically for the publication of
social network information. Under the protection of edge
LDP, it becomes hard to discern the presence of an edge or
relationship within the input social network based on the
published information. Multiple graph data mining algo-
rithms such as Hidano and Murakami [2022], Sajadmanesh
and Gatica-Perez [2021], Ye et al. [2020] have been devel-
oped within the edge LDP framework. These algorithms
include algorithms for subgraph counting in Imola et al.
[2021, 2022a,b], Hillebrand et al. [2023a].

To the best of our understanding, all existing LDP-based

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:377–393.

mailto:<vorapong@is.s.u-tokyo.ac.jp>?Subject=Your UAI 2024 paper


counting algorithms attempt to count subgraphs identifi-
able via the local information, such as adjacency vectors,
of a single node or a small number of nodes. This includes
subgraphs like k-stars, triangles, or 4-cycles. No work, how-
ever, has been conducted on subgraphs which require con-
sideration of adjacency vectors of multiple nodes. This is
attributable to the fact that in LDP, these vectors are obfus-
cated independently. Despite the low probability of addition
or removal of an edge from an adjacency list, the chance
of obfuscation of an edge in a larger subgraph can be quite
significant, which can result in a considerable error in the
counted number.

1.1 OUR CONTRIBUTION

Our contribution in this paper is as follows:

We propose an algorithm to estimate the number
of walks with specific length in a social network
under LDP, and apply this algorithm to provide
an estimation of Katz centrality (Katz [1953]), a
prevalent social network centrality measure. Ad-
ditionally, we carry out a thorough theoretical
analysis of the algorithm.

Although walks with long lengths involve several nodes
in the graph, we can estimate the number using multiple
rounds of communications and local clipping method. Our
algorithm is discussed in Section 3.

While the utilization of the clipping method is not a new
concept and has been previously employed in Imola et al.
[2022a], we are the first to offer a theoretical guarantee for
multiple rounds of communications in Section 4. Here, we
give upper bounds for the variance and bias of our algorithm.
Both of the upper bounds are relatively small. Our analysis
facilitates the proposal of the optimal parameter for the
clipping. A key factor in our analysis is our assumption that
only a small number of nodes possess a large degree. It is
worth noting that several practical social networks, such as
those discussed in Stephen and Toubia [2009], Clauset et al.
[2009] meet our assumption. Several works in differential
privacy such as Kasiviswanathan et al. [2013] have been
conducted under comparable assumptions.

Section 5 confirms our theoretical results through experi-
mental validations. This section illustrates that the bias and
variance in our estimation of the number of walks and Katz
centrality significantly decrease compared to the classical
randomized response technique in Warner [1965]. More-
over, our Katz centrality estimation effectively recalls up to
90% of the nodes with peak Katz centrality. Consequently,
it provides precise recommendations of the most influential
nodes in the social networks, as gauged by Katz centrality.

Calculating walk counts and Katz centrality present diffi-
culties not only to the LDP notion, but also to the general

concept of differential privacy. The reason for this is that
the number of walks can undergo massive shifts with the
addition or removal of a single edge. This results in high
sensitivity and requires the addition of substantial noise
to the count in order to protect user information. We have
attempted to use similar proof methods as in Section 4 to
arrive at a lower upper bound on sensitivity. However, de-
spite the improved upper bound, all the differential privacy
notion algorithms we experimented with failed to surpass
our Section 3 algorithm. Hence, we believe that not only
is this algorithm optimal for LDP, but it is also the best
differential privacy algorithm for estimating the number of
walks and Katz centrality.

1.2 RELATED WORKS

The domain of graph data mining under LDP is compara-
tively new, whereas mining under differential privacy has
been a subject of investigation for several researchers over
the years. Some of those works include Gupta et al. [2010],
Olatunji et al. [2021]. As discussed in Imola et al. [2021],
except for special cases such as Zhang et al. [2020], LDP
generally only allows for the concealment of an edge or re-
lationship, while differential privacy, as in Hay et al. [2009],
Raskhodnikova and Smith [2016], can also be used to hide
whether an individual or node is part of a social network. In
essence, there exists edge differential privacy and node dif-
ferential privacy, but the concept of node differential privacy
is not applicable in the context of LDP.

There are algorithms publishing centrality of graphs under
differential privacy such as Laeuchli et al. [2022], Task and
Clifton [2012]. The most notable one is the differentially pri-
vate algorithm for publishing PageRank centrality in Epasto
et al. [2022]. One might think that the publication of PageR-
ank and Katz centrality are similar as both of them are
based on the repetition of matrix multiplication. We believe
that publishing PageRank centrality under local differential
privacy presents a significant challenge. Despite the central-
ity’s sensitivity being relatively low, the PageRank value at
a given node is deeply influenced by the network’s overall
information. This dependency on global data complicates
the computation of PageRank in LDP. Nevertheless, we are
of the view that our efforts on Katz centrality could serve as
a foundational step towards enabling PageRank calculation
under local differential privacy.

2 PRELIMINARIES

2.1 NOTATIONS

An input social network is denoted by G = ([n], E) when
[n] = {1, 2, ..., n} and E ⊂ [n]2. We use Gn to represent
the collection of graphs consisting of n nodes. For every v ∈
[n], denote av ∈ {0, 1}n as the adjacency vector of node v.
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In this context, av[u] = 1 signifies that nodes v and u are
neighbors, otherwise it is 0. For each vector a ∈ {0, 1}n, let
Γ(a) ⊂ {0, 1}n correspond to the collection of lists that are
different from a by a single bit. The set η(v) ⊂ [n] denotes
the set of nodes adjacent to v and deg(v) < n denotes the
degree of v in the graph G.

Two graphs, G = ([n], E) and G′ = ([n], E′), are said to
differ by a single edge if an edge e ∈ [n]2 exists such that
E = E′ ∪ {e} or E′ = E ∪ {e}. The set of all graphs
differing from G by one edge is represented as Γ(G) ⊂ Gn.

For every δ ∈ R≥0, the Laplacian noise centered at 0 with
a scale of δ is represented as Lap(δ). For any k > 0 and
a ∈ Rk, the 1-norm of a is denoted by |a|.

2.2 LOCAL DIFFERENTIAL PRIVACY FOR
GRAPH DATA MINING

Definitions of the local differential privacy (LDP) for graph
and social network information used in this paper are as
follows:

Definition 1 (ϵ-edge LDP in Qin et al. [2017]). Let us
consider a positive real number, denoted as ϵ, a node v
within the set [n], a randomized algorithm Rv that maps
{0, 1}n to a set S, and another algorithm A that maps Sn to
a set S. Define an algorithm A such that A(a1, . . . , an) =
A(R1(a1), . . . , Rn(an)). This algorithm A is said to pro-
vide ϵ-edge local differential privacy (LDP) if, for any node
v, for any two adjacent lists av and a′v differing in only one
bit, and for any subset S of S, the probability P[Rv(a

′
v) ∈ S]

is at most exp(ϵ)× P[Rv(av) ∈ S].

Next, we give the definition of sensitivity:

Definition 2 (Sensitivity). Let R be a deterministic al-
gorithm of which the domain is {0, 1}n and the range is
Rk for k > 0, we say that R has a sensitivity of σ if

max
a∈{0,1}n,a′∈Γ(a)

|R(a)−R(a′)|≤ σ

In the next definition, we give an algorithm which satisfies
the ϵ-edge LDP. This algorithm is commonly referred to as
the Laplacian mechanism.

Definition 3 (Laplacian Mechanism in Dwork et al. [2006]).
Let Ri : {0, 1}n → Rk be a deterministic algorithm, let σi

be the sensitivity of Ri, and let Yi = (Yi1, . . . , Yik) where
the Yij are drawn independently from Lap(σi/ϵ). We say
that R′

i : {0, 1}n → Rk is a publication of Ri under the
Laplacian mechanism if R′

i(ai) = Ri(ai) + Yi.

The following theorem can be straightforwardly derived
from Proposition 1 of Dwork et al. [2006].

Theorem 1. For all i, let R′
i be a publication of Ri un-

der the Laplacian mechanism. Then, for any algorithm A :

(
Rk

)n → S, an algorithm A such that A(a1, . . . , an) =
A(R′

1(a1), . . . , R
′
n(an)) provides ϵ-edge LDP.

Next, we introduce the composition theorem for the edge
LDP. The result can be straightforwardly derived from
Dwork et al. [2010].

Theorem 2 (Composition Theorem from Dwork et al.
[2010]). Let A1, . . . ,Ap be edge LDP mechanism with pri-
vacy budget ϵ1, . . . , ϵp. Then, the mechanism Ap ◦ · · · ◦ A1

is (ε1 + · · ·+ εp)-edge LDP.

2.3 NUMBER OF WALKS AND KATZ
CENTRALITY

For every v ∈ [n] and k ∈ N, our goal is to compute the
vector P (k) where P (k)[v] denotes the number of walks of
length k originating from v. We can determine P (k)[v] for
each v ∈ [n] based on the principle that, for all k > 0 and
v ∈ [n], P (k)(v) =

∑
u∈η(v)

P (k−1)(u).

Introduced in Katz [1953], Katz centrality is a widely rec-
ognized method for assessing the significance of nodes in
networks. Let α be a constant, referred to as the attenuation
factor. For a node v ∈ [n], its Katz centrality is defined as

Katz[v] =
∞∑
k=1

αkP (k)[v].

For any positive integer i and a vertex v in a set of n ver-
tices, define K(i)[v] as αiP (i)[v]. It follows that K(i)[v] =
α ·

∑
u∈η(v) K

(i−1)[u] and the Katz centrality of v is ex-
pressed as Katz[v] =

∑∞
k=1 K

(k)[v]. Considering a finite
number of steps S, the Katz centrality can be approximated
by Katz[v] =

∑S
k=1 K

(k)[v]. An instance of this calcula-
tion can be found in the appendix, specifically in Example 1.

One can calculate the Katz centrality vector as Katz =
((I − αAT )−1 − I)J, where I is the identity matrix and
J is an n-dimensional vector filled with ones. This can be
computed by a single matrix inversion, but the algorithm
mentioned in the previous paragraph is easier to adapt to an
LDP framework. It is important to note that K(i) = P (i) for
all i if we set α = 1.

3 OUR ESTIMATOR

Our estimation approach for Katz centrality values is pre-
sented in Algorithm 1, and an illustrative example of this
can be found in Example 1 within the appendix. If we set
α = 1, the algorithm gives us an estimator of the number of
walks where K̃(i) is an estimator of P (i).

The underlying principle of the algorithm recognizes that
while Katz centrality inherently depends on the global graph
topology, the iterative calculation of K(i)[v] for each node v
are autonomous, relying solely on its immediate neighbors.
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Consequently, the algorithm can be decentralized, allowing
each node to perform its computations independently. In
other words, since every node u ∈ [n] requires K(i−1) to
determine K(i)[u], nodes relay their results after each step
to a centralized server. This server, in turn, disseminates the
entire vector K(i−1) to all nodes before initiating step i.

To ensure differential privacy, each node u incorporates
Laplacian noise into K(i)[u] prior to its transmission and
also before it contributes to the Katz centrality estimation (as
seen in line 11). The central server remains unaware of the
graph’s edge details and serves solely as a communication
facilitator, ensuring that our algorithm is secure under the
LDP notion.

The initial version of Algorithm 1, excluding lines 12-13,
represents our preliminary design and will serve as a com-
parison standard in our Section 5 experiments. However,
this iteration presents an inherent flaw. The magnitude of
the Laplacian noise must align with the sensitivity, denoted
as max

v∈[n]
|K̃(i−1)[v]|. This becomes problematic as this mag-

nitude can escalate considerably, potentially compromising
the accuracy of our estimator from both theoretical and
practical perspectives.

Motivated by Epasto et al. [2022], we incorporated a clip-
ping strategy (as presented in lines 12-13). By constraining
K(i) during the ith step, we aim to diminish the sensitivity
when deriving K(i+1) in the subsequent step. This adap-
tation holds potential to enhance the estimator’s efficacy
by minimizing noise and, consequently, variance, though it
might introduce a certain bias. It is important to clarify that
this clipping is executed subsequent to the incorporation of
K(i) into K̃atz (as detailed in line 11). The primary intent
behind the clipping is not the preservation of differential
privacy during the i-th phase but rather the attenuation of
sensitivity for the i+ 1 step.

It is evident that the magnitude of noise appended to K̃(i)[v]
can be significantly high in comparison to its original value
determined at line 9. Specifically, for a node v with only
one neighbor, it follows that K̃(i)[v] is bounded by S

ϵ × π.
Given that S

ϵ typically exceeds one, the standard deviation
of the added noise is often greater than the original value.
Conversely, a node v with a higher degree exhibits a larger
K̃(i)[v], where its magnitude usually surpasses that of the
noise. As a result, the algorithm delivers precise Katz cen-
trality calculations for nodes with higher centrality values,
yet it becomes less accurate for nodes with lower centrality.
This characteristic of the algorithm makes it suitable for
identifying nodes with the top k centrality values, but it is
not as effective for ranking the centrality of all nodes.

In practical applications, Algorithm 1 functions as a dis-
tributed algorithm. Considering D as the highest degree of
the input graph, each user faces a computational complexity
of O(D) in every step of the algorithm. As each node has

Algorithm 1: Algorithm to estimate Katz centrality un-
der ϵ-edge LDP
Input :Graph G = ([n], E), attenuation factor α, clipping

factor X , privacy budget ϵ, number of step S

Output :Vector K̃atz of size n where K̃atz[v] is the
estimated Katz centrality of node v ∈ [n] under
ϵ-edge LDP

1 for v ∈ [n] do
2 [User v] K̃atz[v]← 0;
3 [User v] K̃(0)[v]← 1 ;
4 end
5 for i = 1 to S do
6 [Server] π ← αS

ϵ
·max

v
|K̃(i−1)[v]| ;

7 [Server] Distribute π and K̃(i−1) to all users ;
8 for v ∈ [n] do
9 [User v] K̃(i)[v]← α ·

∑
u∈η(v)

K̃(i−1)[u];

10 [User v] K̃(i)[v]← K̃(i)[v] + Lap(π) ;

11 [User v] K̃atz[v]← K̃atz[v] + K̃(i)[v];
12 [User v] K̃(i)[v]← min{K̃(i)[v], (αX)i} ;
13 [User v] K̃(i)[v]← max{K̃(i)[v],−(αX)i} ;
14 [User v] Communicate K̃(i)[v] to the central server.
15 end
16 end
17 return K̃atz

to upload one real number to the server and download O(n)
real numbers per iteration, the communication complexity
per step is O(n). Typically, the number of steps is set to
O(log n), leading to an overall computational complexity
for each user of O(D log n) and a communication complex-
ity of O(n log n). The communication complexity could be
reduced by the sampling technique proposed in Hillebrand
et al. [2023b], but that reduction is out of scope for this
work.

When α is 1, K̃(i)[v] can be regarded as an estimate of the
number of walks with length i beginning from node v.

3.1 PRIVACY

From the following lemma, we show that Algorithm 1 is
ϵ-edge LDP. We begin by discussing the privacy of the
communication at Line 14 of the algorithm.

Lemma 1. The communication of K̃(i)[v] at Line 14 of
Algorithm 3 is (ϵ/S)-edge LDP.

Proof. Consider av and a′v as adjacency vectors of node
v, differing by a single bit. Let K̃max := max

v
|K̃(i−1)[v]|,

and suppose K̃(i)[v] and K̃ ′(i)[v] are the computation re-
sults acquired from Lines 9 and 12-13 of the algorithm
when the adjacency vector is av and a′v. We find that
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|K̃(i)[v] − K̃ ′(i)[v]|≤ α · K̃max. Therefore, the sensitivity
of transmitting K̃(i)[v] is σ = α · K̃max. Given that we
set the Laplacian noise parameter to σS

ϵ · K̃max, the Lapla-
cian mechanism at Line 10 exhibits (ϵ/S)-edge LDP. Any
post-processing not related on the edge set will not alter
the privacy outcome. Hence, the communication at Line
14 ensures (ϵ/S)-edge LDP, despite the post-processing at
Lines 11-13 of the algorithm.

We are now ready to show the privacy of Algorithm 1 in the
following theorem.

Theorem 3. Algorithm 1 is an ϵ-edge LDP.

Proof. The private information K̃(i)[v] is communicated
S times. According to Lemma 1, each communication en-
sures (ϵ/S)-edge LDP. Applying the composition theorem,
it follows that Algorithm 1 is ϵ-edge LDP.

4 LOSS OF OUR ESTIMATOR

In the following discussion, we conduct a theoretical eval-
uation of the accuracy of the algorithm proposed in the
previous section. We observed that in the majority of social
networks, a handful of nodes exhibit a considerably larger
degree than the rest, as affirmed several works including
Stephen and Toubia [2009], Clauset et al. [2009]. This obser-
vation motivates our assumption in the following analysis.
Here, we assume that the maximum degree of the input
graph G = ([n], E) is D, and there is at most N ≪ n nodes
exhibit a degree greater than d ≪ D.

Let us revisit the clipping factor X as outlined in the pre-
ceding section. For this section, we select parameters d and
X such that they satisfy the conditions NX + Dd ≤ X2

and X ≤ D. As previously stated, we operate under the
assumption that N and d is small, thus intuitively setting X

to O
(√

D
)

.

It is noteworthy that it is always possible to identify param-
eters d and X that fulfil the condition, specifically when
X = d = D. This results in N = 0, and consequently,
both of the conditions are satisfied. However, by assigning
X = D, the computation at lines 12-13 of Algorithm 2 be-
comes nearly insignificant as K̃(i)[v] is typically less than
(αD)i. For the computation to be utilized effectively, we
generally aim to set the parameter of X to the lowest possi-
ble value. The most ideal situation is when we can assign
X a value approximately equal to

√
D.

4.1 BIAS OF ALGORITHM 1

In this section, we give an upper bound of the bias of Al-
gorithm 1 as an estimator of Katz centrality. Let ϕ be the
golden ratio. The main results of this section are as follows:

Theorem 4 (Bias of counting number of walks). For Algo-
rithm 1, when considering an attenuation factor of α = 1,
a number of steps S such that S ≥ i, and satisfying
the condition X2/D + X ≤ X2, the bias of the esti-
mator for the number of walks of length i is given by
max
v∈[n]

E[P (i)[v]− K̃(i)[v]] ≤ 2(ϕX)i−1D S
ϵ .

For the node with large Katz centrality, the number of walks
of length i originating from node v can scale as Di. When
X ≪ D, it is evident that the upper bound presented in
Theorem 4 is significantly less than the trivial upper bound.
Thus, while the clippings in lines 12-13 do introduce a
certain level of bias, this bias is not large compared to the
genuine number of walks.

Theorem 5. The bias of the Katz centrality estimator in
Algorithm 1 with attenuation factor α < 1/ϕX , number
of step S, and privacy budget ϵ such that S/ϵ ≥ 1 and
X2/D+X ≤ X2 is max

v∈V
E[Katz(G)[v]−K̃atz(G)[v]] ≤

αS
ϵ

(
1 + 2αϕDX

1−αϕX

)
.

For values of α less than 1/2ϕX , the expression
α
(
1 + 2αϕDX

1−αϕX

)
approaches a minimal constant. Conse-

quently, the bias of the Katz centrality estimator becomes
linearly proportional to S/ϵ. This suggests that, for those α,
our bias does not escalate rapidly with additional steps in
Algorithm 1 and with a better level of differential privacy.
The proof of Theorem 4 and 5 can be found in the appendix.

It is established that the factor α must be less than 1/λn,
where λn is the largest eigenvalue of the adjacency ma-
trix (see Page 78 of Junker and Schreiber [2008]). There
are currently no known methods to estimate λn in a Lo-
cal Differential Privacy (LDP) setting. However, λn can
be upper bounded by the maximum degree D of the graph
(refer to Lemma 3.4.1 of Spielman [2012]), which can be ap-
proximated using the method described in Hillebrand et al.
[2023b]. Consequently, α should not exceed 1/D. Addi-
tionally, according to Theorem 5, our method permits α to
reach up to 1/(2ϕX), also estimable through the method in
Hillebrand et al. [2023b]. This value is significantly greater
than 1/D since X = O(

√
D). Thus, our approach not only

minimizes bias in the estimation but also permits a larger α
value in estimating Katz centrality under LDP.

4.2 VARIANCE OF ALGORITHM 1

Let L = max(ND,X2). The following theorems provide
the upper bound of the variance for the number of walks
and Katz centrality that Algorithm 1 publishes.

Theorem 6. For the estimator of the number of walks of
length i obtained from Algorithm 1, given an attenuation
factor α = 1, number of steps S ≥ i, and satisfying the
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condition X2/D +X ≤ X2, the variance is bounded by
max
v∈[n]

Var[K̃(i)[v]] ≤ 16S2(D2+X2)(4L)i−2

ϵ2 .

The theorem suggests that the standard deviation of our
publication scales as (2X)i−1. Given that X ≪ D and
the typical walk can scale as Di, the upper bound of the
standard deviation is not large compared to the actual walk
count.

Theorem 7. The variance of the Katz estimator pub-
lished by Algorithm 1 using attenuation factor α ≤
1/(2

√
L), number of step S and privacy budget ϵ is

max
v∈V

Var[K̃atz(G)[v]] ≤ 4S2α2(D2+X2)

Lϵ2(1−2α
√
L)2

.

For values of α such that α ≤ 1
4
√
L

, the term 8α2(D2+X2)

L(1−2α
√
L)2

tends toward a negligible constant. As a result, the standard
deviation of the Katz estimator produced by our algorithm
aligns with the order of S

ϵ . This observation indicates that,
for these values of α, the variance remains relatively stable
even as the step count S and privacy parameter ϵ vary. The
proofs of Theorem 6 and 7 can be found in the appendix.

In Theorems 6 and 7, the standard deviation increases lin-
early with S/ϵ. In contrast, Theorem 8 in Section 10 of the
appendix shows an exponential growth in noise. The size
of the noise is Ω

(
(log n)S

)
for any value of α and ϵ. This

suggests that the unclipped variant will have considerably
greater variance. Even though clipping introduces a bias, its
presence greatly diminishes the algorithm’s variance. As a
result, our algorithm is anticipated to perform notably better
than its unclipped counterpart.

Theorem 7 confirms that the variance of our algorithm re-
mains relatively low when α ≤ 1/2

√
L = O(1/X) =

O(1/
√
D). This finding aligns with the results from Theo-

rem 5. Together, these theorems assure us that the algorithm
can accommodate a significantly large factor α.

5 EXPERIMENTS

In this section, we enhance our theoretical insights with
empirical evaluations of our algorithm. Specifically, we ex-
amine its efficacy in estimating the Katz centrality and the
number of walks.

Dataset : We conducted our experiments using two graphs
sourced from the Stanford Network Analysis Platform
(SNAP) in Leskovec and Krevl [2014]. The first graph rep-
resents the social circles from Facebook, as described in
Leskovec and Mcauley [2012]. This undirected graph has
4,039 nodes and 88,234 edges. Its average degree is at 43.69,
with the highest degree is 1,045, and a maximum eigenvalue
of EF = 162.37. The second graph illustrates voting pat-
terns on Wikipedia, based on references Leskovec et al.
[2010b,a]. This directed graph has 7,115 nodes and 103,663

edges. Its average degree is 14.57, with the highest degree
of 1,167, and its maximum eigenvalue is EW = 45.14. In
this manuscript, for ease of reference, we refer to the first
graph as the “Facebook graph” and the second graph as the
“Wikipedia graph.” Besides these two graphs, we have also
carried out experiments on various subgraphs derived from
them. We specifically selected these two graphs as they ex-
emplify two distinct types of social networks. The Facebook
graph typifies a social network characterized by multiple
clusters, whereas the Wikipedia graph is representative of
social networks that revolve around a few central nodes.

Privacy Budget: Unless specified otherwise, we adopted
a privacy budget set at ϵ = 0.5, a commonly accepted
benchmark Imola et al. [2021]. Based on our theoretical
findings, we anticipate analogous outcomes for different
values of ϵ.

Attenuation Factor: As discussed after Theorem 5, the
reciprocal of the graph’s maximum eigenvalue acts as an
upper limit for the attenuation factor. We opted for attenua-
tion factors near this threshold, setting αF = 0.85/EF and
αW = 0.85/EW . Such values render the Katz centrality
estimation more challenging. Specifically, for small values
of α, the relation Katz[v] ≈ α× deg(v) holds true for all
nodes v ∈ [n].

Number of Steps: We set the number of steps S for our
algorithm at 5, except the experiments in Figures 1, 2, and 6.

5.1 COMPARISONS WITH THE RANDOMIZED
RESPONSE TECHNIQUE

In the absence of existing research on publishing the
number of walks and Katz centrality under LDP, we
opted to benchmark our results against the conventional
randomized response technique, as described in Warner
[1965]. We define this technique as A(a1, . . . , an) =
A(R1(a1), . . . , Rn(an)), where Ri([ai,1, . . . , ai,n]

t) re-
sults in [aRR

i,1 , . . . , aRR
i,n ]t. Each element aRR

i,j retains its orig-
inal value ai,j with a probability of eϵ

1+eϵ and switches to
1 − ai,j with a probability of 1

1+eϵ . The function A then
publishes the number of walks and Katz centrality for the
graph G′, which is represented with the adjacency vector
(a′i,j)1≤i,j≤n. For i < j, the values of a′i,j and a′j,i are set
to aRR

i,j .

In all the figures, we refer to the randomized response al-
gorithm as “randomized”, while refer to our algorithm as
“clipping”.

In our analysis, we initially evaluate the loss and variance of
our method relative to the randomized response technique,
as illustrated in Figure 1. The “loss” and “variance” are
defined as the sum of the ℓ2-loss and the sum of variances
across all nodes in the graph, respectively. For each node
v, let Katz[v] denote its Katz centrality and K̃atz[v] de-
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(a) Varying the number of steps
S on the Facebook graph

(b) Varying the number of steps S
on the Wikipedia graph

Figure 1: Loss and variance of our Katz estimators (Algorithm 1)
compared with the randomized response technique

(a) Varying the number of steps
S on the Facebook graph

(b) Varying the number of steps
S on the Wikipedia graph

Figure 2: Recall of nodes with largest Katz centrality by our
estimator (Algorithm 1) compared with the randomized response

technique

note the centrality estimated by our algorithm. The reported
loss is given by

∑
v
(Katz[v] − K̃atz[v])2, while the re-

ported variance is
∑
v
V ar[K̃atz[v]]. Across all the number

of steps and for both input graphs, our algorithm consis-
tently achieves a notably lower loss and variance compared
to the conventional approach.

Our variance results matches with Theorem 7. The variance
grows linearly with S2 in both of the social networks. On the
other hands, contrary to the upper limit set in Theorem 5, the
bias of our algorithm — which represents the discrepancy
between the loss and the variance — generally diminishes
with an increasing number of steps.

The variance and bias of the randomized response algorithm
exhibit an increasing trend with the growth of S. This effect
is particularly pronounced in the Wikipedia graph, where
both variance and loss demonstrate exponential growth in
relation to S. Such a pattern suggests that, while Katz cen-
trality converges in the original input graph G, it fails to
do so in the randomized graph G′. This outcome is likely a
frequent occurrence with the traditional technique, given the
substantial alterations it introduces to the adjacency matrix.

While the previous results provide valuable insights, in many
practical scenarios, the primary concern is not the estima-
tor’s loss but its capability to identify the top k nodes with

(a) Loss and Variance (b) Recall of the top k nodes

Figure 3: Results of our estimator (Algorithm 1) compared with
the randomized response technique varying the graph size

the highest Katz centrality. Our next experiment focuses
on this aspect. We ranked nodes based on the true Katz
centrality values and compared them to rankings from our
estimators. For specific values of k, we evaluated the per-
centage of top k nodes, according to the real Katz centrality,
that also appeared in the top k nodes of each estimator. Fig-
ure 2 display the recall of these top k nodes, considering k
values of 10 and 100, along with confidence intervals.

With our Katz centrality estimator applied to the Facebook
graph, we successfully identified approximately 90% of the
top 100 nodes and around 80% of the top 10 nodes. For
the Wikipedia graph, our estimator achieved a 91% identi-
fication rate for both the top 10 and top 100 nodes. These
recall rates are significantly higher than those achieved us-
ing the randomized response technique. In the Facebook
graph, the recall of the standard technique for the top 10
and top 100 nodes is only about 20% and 0%, respectively.
For the Wikipedia graph, the standard technique’s recall
rates are 89% for the top 10 nodes and 79% for the top 100
nodes. The number of iterations S plays a crucial role in
influencing recall rates. In the Facebook graph, we achieve
maximum recall at S = 5, while in the Wikipedia graph,
the peak recall is attained at S = 9.

As noted in Section 3.1, our methodology accurately com-
putes the Katz centrality for nodes with higher centrality
values, whereas it tends to be less precise for nodes of lesser
importance. Consequently, our estimator is not ideally suited
for ranking the centrality of all nodes in a network, but
rather for identifying those with the highest centrality. As
discussed in Olsen et al. [2014], Bergamini et al. [2019],
pinpointing the top k nodes is crucial, as it holds significant
relevance for numerous applications in social networks.

In Figure 3, we explored whether our results are scalable
with the size of the graph. The figure showcases an analy-
sis where we selected subsets of nodes from the Facebook
graph through random walks and computed the Katz cen-
trality on the subgraphs induced by these node sets. We
then compared the performance of our method in terms of
loss, variance, and recall of the top k nodes against the ran-
domized response technique. While our approach exhibits
a higher variance compared to the classical technique in
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(a) Loss and Variance (b) Recall of the top k nodes

Figure 4: Results of our estimator (Algorithm 1) compared with
the randomized response technique varying the privacy budget

these subgraphs, it demonstrates significantly lower loss
and larger recall. The plot also reveals that, as the subgraph
size increases, the performance of the randomized response
deteriorates, whereas our results remain consistent across
various subgraph sizes. This suggests that the improvements
we reported in Figures 1 and 2 are likely to be even more
pronounced in larger graphs.

We opted for generating subgraphs through random walks
due to our belief that this method effectively maintains the
graph’s structural integrity, especially in the context of Katz
centrality. Random sampling techniques tend to yield much
sparser graphs, potentially degrading the performance of
all estimators. In contrast, using breadth-first search for
subgraph generation often results in subgraphs dominated
by a few high-degree nodes. These high-degree nodes are
typically those with the highest Katz centrality, rendering
the task of identifying top nodes overly simplistic. Therefore,
random walks strike a balance by preserving the essential
characteristics of the original graph, which is crucial for our
analysis.

Finally, as illustrated in Figure 4, our algorithm consistently
outperforms the randomized response across all privacy
budget values ϵ. Notably, when the privacy requirement is
more stringent (indicated by a smaller ϵ), the performance of
the randomized response tends to decline due to an increase
in the flipping of relationships within the graph. In contrast,
the performance of our algorithm remains relatively stable
regardless of the ϵ value. Consequently, our approach shows
a more pronounced improvement, especially at lower values
of ϵ.

5.2 RESULTS RELATED TO CLIPPING FACTOR

This section is dedicated to verifying the impact of the
clipping process implemented in lines 12-13 of Algorithm 1.
We aim to determine the most optimal value for the clipping
factor X . Our findings are presented in Figures 5a and 5b.

As anticipated, a smaller clipping factor X results in re-
duced variance. This occurs because the noise added in our
process is relatively minor in such cases. However, on the
flip side, both the loss and bias are significantly higher due

(a) Loss and variance on the
Facebook graph

(b) Loss and Variances on
Wikipedia graph

(c) Recall on the Facebook
graph

(d) Recall on the Wikipedia
graph

Figure 5: Performance evaluation of Algorithm 1 across various
clipping factor X values

to the aggressive clipping of results when X is small. As we
increase X , a higher variance and lower bias are observed.
Initially, we notice a rapid decrease in bias with a compar-
atively slower increase in variance, leading to a reduction
in overall loss for larger values of X . Yet, beyond a certain
threshold, the bias ceases to decrease, while the variance
continues to escalate, causing the loss to increase as X is fur-
ther augmented. In summary, there exists an optimal value
of the clipping factor X that minimizes the loss for both
the Facebook and Wikipedia networks. We notice that the
optimal point is around the maximum eigenvalues (denoted
by EF and EW ) in both of the input graphs.

In Algorithm 1, if the clipping is omitted in lines 12-13, the
outcome is equivalent to setting X → ∞. This is supported
by the evidence in Figure 5, which shows a deterioration in
results as the value of X surpasses the maximum eigenval-
ues. A significant decline in performance is expected with-
out clipping, as elaborated in Section 10 of the appendix.
Specifically, with an increased number of steps S, the re-
sults tend to degrade. For instance, at S = 9, the loss in the
Facebook graph is approximately tripled without clipping.
Furthermore, in the Wikipedia graph, the loss escalates by
over 104 times.

5.3 NUMBER OF WALKS

Our assessment included an analysis of the algorithm’s pro-
ficiency in estimating walk counts. As depicted in Figure 6,
a notable exponential increase in loss is observed relative to
the walk lengths within both networks. This trend is likely
attributable to the term Xi mentioned in Theorem 4, which
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introduces a significant bias. However, it is important to note
that since the value of X remains considerably lower than
the maximum degree D, the relative loss of our algorithm
remains modest. A key observation is the better performance
of the algorithm when clipping is applied, compared to its
absence. In scenarios where αSHn/ϵ > 1, the variance
of the algorithm without clipping escalates exponentially.
This sharp increase is specifically seen when S ≥ 12 in the
Facebook network and S ≥ 4 in the Wikipedia network.

(a) On the Facebook graph (b) On the Wikipedia graph

Figure 6: Loss in estimators of the number of walks

6 CONCLUSION

In this study, we developed an estimator to calculate both
the number of walks and Katz centrality, leveraging mul-
tiple communication rounds and a clipping method. This
approach maintains local differential privacy while effec-
tively managing error. We provided an upper bound for the
bias and variance associated with certain attenuation factor
values, denoted as α. Our findings also highlighted that,
without the clipping method, the variance of our algorithm
can escalate exponentially, even on the simplest graphs. Our
experiments further demonstrated that our algorithm per-
forms well in ranking tasks, successfully identifying up to
90% of the top k nodes with the highest Katz centrality—a
key metric in our research.
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Publishing Number of Walks and Katz Centrality under
Local Differential Privacy (Appendix)
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7 EXAMPLE

We give an example how the Algorithm 1 works in this section.

Example 1. Assuming the input graph G is a path graph with length 5, that is G = ([5], {{1, 2}, {2, 3}, {3, 4}, {4, 5}}),
and the attenuation factor α is 0.1. The number of walks of length 1 from each node, represented as P (1)[1], . . . , P (1)[5],
are 1, 2, 2, 2, 1 respectively. For walks of length 2, denoted as P (2)[1], . . . , P (2)[5], the counts are 2, 3, 4, 3, 2.
Similarly, for walks of length 3, indicated by P (3)[1], . . . , P (3)[5], the values are 3, 6, 6, 6, 3. Consequently, we
have that [K(1)[1], . . . ,K(1)[5]] = [0.1, 0.2, 0.2, 0.2, 0.1], [K(2)[1], . . . ,K(2)[5]] = [0.02, 0.03, 0.04, 0.03, 0.02], and
[K(3)[1], . . . ,K(3)[5]] = [0.003, 0.006, 0.006, 0.006, 0.003]. When the number of steps S = 3, the approximate Katz
centrality for the entire graph, denoted as Katz, is [0.123, 0.236, 0.246, 0.236, 0.123].

Now, let us assume the privacy budget ϵ = 1, the clipping factor X = 2, and the number of steps S = 3. Initially,
K̃(0)[v] = 1 for all vertices v, leading to a noise magnitude of αS/ϵ = 0.3 at the first step. Each user v then independently
computes K̃(1)[v]. Focusing on user 2, at line 9 of the algorithm, they find K̃(1)[2] = 0.2. Subsequently, at line 10, the user
adds a randomly chosen noise of magnitude 0.3; suppose this noise is 0.7. Therefore, the updated value of K̃(i)[v] at line 10
becomes 0.9. This result updates the K̃atz[2] value to 0.9 at line 11. However, since the value of (αX)i at lines 12-13 is
0.2, the K̃(1)[2] value is clipped to 0.2.

Assuming the values of K̃(1) sent to the central server at line 14 are [−0.2, 0.2, 0.18, 0.2,−0.2], the noise magnitude for the
second step becomes αS/ϵ×maxv|K̃(i)[v]|= 0.06. This information, along with the noise size, is communicated back to
all users, including user 2. At line 9, user 2 calculates the initial value of K̃(2)[2] as -0.002. Assuming the Laplacian noise
generated is -0.01, the value, when added with noise, becomes -0.012, which remains unclipped due to the clipping factor
(αX)2 = 0.04. Consequently, the value of K̃atz[2] is updated to 0.9 − 0.012 = 0.888. The progression of Algorithm 1
mandates that the user transmit the noisy value of K̃(2)[2] to the central server prior to commencing the third iteration of the
algorithm. Nonetheless, these specifics will not be elaborated in this manuscript.

8 PROOFS OF THEOREM 4 AND 5

We skip the proof of Theorem 4, as the proof can be obtained from the arguments of Theorem 5’s proof. The statement of
Theorem 4 can be deduced by setting the value of α in the upper bound Bi, as outlined in the proof of Theorem 5, to 1.

Firstly, it is evident that 0 ≤ E[K̃(i)[v]] ≤ K(i)[v] for all i > 0 and v ∈ [n]. This implies that both K̃(i) and K̃atz possess
a negative bias relative to the actual values. Given that the clipping at line 13 elevates E[K̃(i)[v]], it reduces the bias (in
terms of magnitude). As our objective is to present an upper boundary for this bias, we can disregard the effect of line 13.

The bias introduced by the Laplacian mechanism at Line 10 of Algorithm 1 is not easy to analyze. To facilitate analysis,
we make a substitution throughout all analyses in this section. Specifically, we replace the Laplacian distribution with an
alternative one that simplify our analysis and always yields a greater bias. This substitution allows us to establish an upper
bound for the bias from the algorithm.
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Recall that we draw the noise from the Laplacian distribution Lap
[
αS
ϵ max

v
K̃(i−1)[v]

]
in Algorithm 1. Let Li,v be the

noise we have drawn. The noise is clipped to min{Li,v, (αX)i − K̃(i)[v]} at Line 12 of the algorithm. It is straightforward
to see that the clipped noise does not introduce more bias than min{Li,v, 0}. Hence, to facilitate the proof in this section,
we assume that the alternative noise is obtained by the Laplacian distribution clipped by 0. We know that ζi,v ≤ 0. With the
alternative noise, we obtain the following lemma:

Lemma 2. For all i ≥ 2 and v ∈ V , max
v∈V

K̃(i)[v] < (αX)i.

Proof. To prove this lemma, we proceed by induction on the number of step i.

Define Mi := max
v∈V

K̃(i)[v] and mi = max
v∈V :deg(v)≤d

K̃(i)[v]. After the calculation at line 12 of Algorithm 1, we have

M1 ≤ αX and m1 ≤ αd. Therefore, for all v ∈ V ,

K̃(2)[v] =
∑

u∈η(v)

αK̃(1)[u] + ζi,v

≤
∑

u∈η(v)|deg(u)>d

αK̃(1)[u] +
∑

u∈η(v)|deg(u)≤d

αK̃(1)[u]

≤ αNM1 + αDm1

≤ α2(NX +Dd)

≤ (αX)2

This proves that M2 = max
v∈V

K̃2[v] ≤ (αX)2.

Then, for all i > 1 and v ∈ {u ∈ [n] : deg(u) ≤ d}, we have that

K̃(i)[v] =
∑

u∈η(v)

αK̃(i−1)[u] + ζi,v ≤ αdMi−1.

This means that mi ≤ αdMi−1.

To show the induction step, we assume that K̃(j)[v] < αjXj for all j < i and v ∈ [n]. By the assumption, for all i > 2 and
v ∈ [v]:

K̃(i)[v] =
∑

u∈η(v)

αK̃(i−1)[u] + ζi,v

≤
∑

u∈η(v)|deg(u)>d

αK̃(i−1)[u] +
∑

u∈η(v)|deg(u)≤d

αK̃(i−1)[u]

≤ αNMi−1 + αDmi−1

≤ αNMi−1 + α2dDMi−2

≤ αN(αX)i−1 + α2dD(αX)i−2

≤ αiXi−2(NX + dD)

≤ (αX)i

The previous lemma implies that, by the alternative noise used in this section, the calculation at Line 12 changes the results
only at the first step. We are now ready to prove our main theorem.

Proof of Theorem 5. The expected value of the alternative noise is E[ζi,v] ≥ −αiXi−1S/ϵ. We obtain that, for i > 1,

E[K(i)[v]− K̃(i)[v]] ≤
∑

u∈η(v)

αE[K(i−1)[u]− K̃(i−1)[u]] +
αiXi−1S

ϵ
.
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Let bi = max
v∈V |deg(v)≤d

E[K(i)[v]− K̃(i)[v]] and Bi = max
v∈V

E[K(i)[v]− K̃(i)[v]]. By using the similar argument as in the

proof of Lemma 2, we can obtain that, for all i > 1,

Bi ≤ α(NBi−1 +Dbi−1) +
αiXi−1S

ϵ

and, for all i > 2,
bi−1 ≤ αdBi−2 + αi−1Xi−2S/ϵ.

Combining the above two equations, we obtain that, for all i > 2,

Bi ≤ αNBi−1 + α2dDBi−2 + αi(Xi−1 +DXi−2)
S

ϵ
.

We will now prove by induction that Bi ≤ 2αi(ϕX)i−1DS/ϵ. By the assumption that S/ϵ ≥ 1, we have

B1 ≤ α(D −X) + αS/ϵ ≤ 2αDS/ϵ.

Recall the assumption that NX +Dd ≤ X2 and X ≤ D. The assumptions imply that N ≤ X and d ≤ X . It follows that
b1 ≤ αS/ϵ. Hence, by α < 1/ϕX:

B2 ≤ α(NB1 + (D −N)b1) + α2X
S

ϵ

≤ α2N(D −X) + α2D
S

ϵ
+ α2X

S

ϵ

≤ α2N(D −X) + α2(D +X)S/ϵ.

Recall that N ≤ X and 1 ≤ S/ϵ. We obtain that N(D − X) ≤ ND ≤ XDS/ϵ. Also, recall the assumption that
X2/D +X ≤ X2. We obtain that X +D ≤ XD. Hence,

B2 ≤ α2XDS/ϵ+ α2XDS/ϵ ≤ 2α2ϕXDS/ϵ.

We will now consider the case when i ≥ 3. Assume by induction that, for all k < i, Bk ≤ 2αk(ϕX)k−1DS/ϵ, then

Bi ≤ αNBi−1 + α2dDBi−2 + αi(Xi−1 +DXi−2)S/ϵ

≤ 2αiSD(ϕX)i−3

ϵ

[
NϕX + dD +

(X2 +DX)

Dϕi−2

]
≤ 2αiSD(ϕX)i−3

ϵ
(N(ϕ− 1)X + (NX + dD) + (X2/D +X))

≤ 2αiSD(ϕX)i−3

ϵ
((ϕ− 1)X2 +X2 +X2)

≤ 2αiSDϕi−3Xi−1

ϵ
(ϕ+ 1)

=
2αiSD(ϕX)i−1

ϵ
.

This concludes the induction.

The discrepancy in the Katz centrality estimated by our algorithm is from three components:

1. The bias derived from the initial step, which does not exceed αS/ϵ;

2. The bias from the second up to the S-th step, which is not larger than the sum
S∑

i=2

Bi; and

3. The bias resulting from the limitation that our computation does not extend past the S-th calculation step.
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Therefore,

max
v∈V

E[Katz(G)[v]− K̃atz(G)[v]] ≤ αS

ϵ
+

S∑
i=2

Bi +

∞∑
i=S+1

K(i)[v]

≤ αS

ϵ
+

S∑
i=2

2αDS(αϕX)i−1

ϵ
+

∞∑
i=S+1

(αX)i

≤ αS

ϵ
+

2α2DSϕX

ϵ

S−2∑
i=0

(αϕX)i +
(αX)S+1

1− αX

≤ αS

ϵ
+

2α2DSϕX(1− (αϕX)S−1)

ϵ(1− αϕX)
+

(αX)S+1

1− αX

≤ αS

ϵ
(1 +

2αϕDX

1− αϕX
)− 2αDS(αϕX)S

ϵ(1− αϕX)
+

(αX)S+1

1− αX
.

By 2S/ϵ > 1, X ≤ D, and ϕ > 1, we obtain the theorem statement from the previous derivation because

2αDS(αϕX)S

ϵ(1− αϕX)
≥ (αX)S+1

1− αX
.

9 PROOFS OF THEOREMS 6 AND 7

This section gives only the proof of Theorem 7. We can show Theorem 6 by the upper bound of Vi provided in the proof of
Theorem 7.

Proof of Theorem 7. First, let us examine the variance of the number of walks, K̃(i)[v]. It is clear that the computation at
Lines 12-13 in Algorithm 1 can only decrease the variance, so we can disregard this step when establishing the upper bound
for the variance. Consequently, the upper bound for V ar[K̃(i)[v]] is made up of two components:

1. The variance of the Laplacian noise added at Line 10: By Lemma 2, we have that

π ≤ αS

ϵ
·max
v∈V

K̃(i−1)[v] <
αiXi−1S

ϵ
.

Hence, the variance of the Laplacian noise at Line 10 is not larger than 2 · π2 = 4α2iX2i−2S2/ϵ2.

2. The collective sum of covariances between the variable α · K̃(i−1)[u] and α · K̃(i−1)[w] for every u,w within η(v): Let
Vi = max

v∈V
Var[K̃(i)[v]] and νi = max

v∈V :deg(v)≤d
Var[K̃(i)[v]]. By the Cauchy-Schwartz inequality in Cauchy [1821],

we obtain that

Cov[K̃(i)[u], K̃(i)[w]] ≤


νi if deg(u), deg(w) ≤ d,√
νi · Vi if min{deg(u), deg(w)} ≤ d,

Vi Otherwise.

Given that the maximum number of nodes in η(v) is D, and among these D nodes, at most N nodes have a degree
exceeding d: ∑

u,w ∈η(v)

Cov[α · K̃(i)[u], α · K̃(i)[w]] ≤ α2(N2Vi−1 + 2ND
√

νi−1Vi−1 +D2νi−1).

There is no need to account for the covariance between K̃(i)[u] and the Laplacian noise, since the noise is generated
independently of the value of K̃(i)[u].

Hence, for all i > 1,

Vi ≤
4α2iX2i−2S2

ϵ2
+ α2

(
N2Vi−1 + 2ND

√
νi−1Vi−1 +D2νi−1

)
,
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and, for all i > 2,

νi−1 ≤ 4α2(i−1)X2i−4S2

ϵ2
+ α2d2Vi−2.

By combining the above inequalities and by νi ≤ Vi, we have that, for all i > 2,

Vi ≤ α2(N2 + 2ND)Vi−1 + α4d2D2Vi−2 +
4α2iX2i−4S2

ϵ2
(D2 +X2).

By defining L = max{X2, ND}, we will now prove by induction that, for all i ≥ 1, Vi ≤ 16S2α2i

ϵ2 (D2 +X2)(4L)i−2.

First, because the variance at the first step V1 comes only from the Laplacian noise, we have that

V1 =
4α2S2

ϵ2
≤ 16α2S2(D2 +X2)

ϵ2(4L)
.

By that, the covariance sum at the second step is no more than α2D2V1 = 4α4S2D2/ϵ2. Because the variance of the
Laplacian noise is 4α4X2S2/ϵ2, we have that

V2 =
4α4S2(D2 +X2)

ϵ2
<

16α4S2(D2 +X2)

ϵ2
.

For i > 2, we assume that, for all k < i, Vk ≤ 16S2α2k

ϵ2 (D2 +X2)(4L)k−2, then, by N2 ≤ X2 ≤ L, dD ≤ X2 ≤ L, and
ND ≤ L:

Vi ≤
16S2α2i(4L)i−4(D2 +X2)

ϵ2
(
4L(N2 + 2ND) + d2D2 +X4/4i−3

)
≤ 16S2α2i(4L)i−4(D2 +X2)

ϵ2
(
12L2 + L2 + L2

)
≤ 16S2α2i

ϵ2
(D2 +X2)(4L)i−2.

Finally, considering that K̃atz(G)[v] =
∑S

i=1 K
i[v], and leveraging the Cauchy-Schwartz inequality, combined with the

understanding that
∑∞

i=0

∑∞
j=0 x

i+j = 1
(1−x)2 for all x in R, we deduce the following:

Var[K̃atz[v]] =

S∑
i=1

S∑
j=1

Cov[K(i)[v],K(j)[v]]

≤
S∑

i=1

S∑
j=1

√
Var[K(i)[v]]Var[K(i)[v]]

≤ 16S2α2

4Lϵ2
(D2 +X2)

S−1∑
i=0

S−1∑
j=0

(2α
√
L)i(2α

√
L)j

≤ 16S2α2

4Lϵ2
(D2 +X2)

∞∑
i=0

∞∑
j=0

(2α
√
L)i(2α

√
L)j

≤ 4S2α2(D2 +X2)

Lϵ2(1− 2α
√
L)2

10 VARIANCE OF THE ALGORITHM WITHOUT CLIPPING

We will now proceed to evaluate the algorithm without clipping, essentially examining Algorithm 1 while omitting lines 12
and 13. Given that the bias of this algorithm converges to 0 as the number of steps S approaches infinity, our analysis will
predominantly concentrate on its variance. We will explore its variance over the graph G0 = ([n], ∅) — a representation
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with n nodes and devoid of edges. Our theorem indicates that, even with this simple graph structure, the variance amplifies
at such a rate that the utility of the publication becomes questionable.

Let Ni represent the scale of the noise at the ith step, as seen in line 6 of Algorithm 1. The underlying principle here is that
when drawing n Laplacian noises of scale Ni, it is highly probable that one of them will be considerably large, causing Ni+1

to also be large. If we consider (Li(v))v∈[n] as the n Laplacian noises drawn at the ith step, each with a scale of Ni, and
given that G0 lacks any edges, we can deduce that K(i)[v] = Li(v). This leads to the expression Ni+1 = αS

ϵ max
v∈[n]

|Li(v)|.

We will employ the subsequent lemma for further analysis:

Lemma 3 (Eisenberg [2008]). Let n > 0, δ > 0 and (Lv)v∈[n] be n independent Laplacian noise with scale δ. Then
E[max

v∈[n]
|Lv|] = δHn where Hn =

∑n
i=1 1/i is the Harmonic series with n terms.

Given the algorithm without clipping applied to graph G0, we can now determine the expected noise at step i.

Theorem 8. Considering the algorithm without clipping, and given parameters G0, α, S, and ϵ. Define Hn =
∑n

i=1 1/i as
the Harmonic series with n terms, where n represents the total number of nodes. The anticipated noise for step i is expressed
as (αS/ϵ)SHS−1

n .

Proof. We proceed with the proof of the theorem using induction. For the base case, consider step 1. Given that K̃(0)[v] = 1
for every v ∈ [n], it follows that E[N1] = αS/ϵ.

Now, let us assume for some arbitrary step i > 0 that E[Ni] = (αS/ϵ)iHi−1
n . Given that Ni+1 = αS

ϵ max
v∈[n]

|Li(v)|

where each Li(v) represents an independent Laplacian noise with scale Ni, and by employing Lemma 3, we can express
E[Ni+1|Ni] as αS

ϵ HnNi. Consequently, we have

E[Ni+1] = E[E[Ni+1|Ni]] =
αS

ϵ
HnE[Ni] = (αS/ϵ)i+1Hi

n.

This establishes the induction hypothesis, completing the proof.
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