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Abstract

Personalized decision-making, tailored to individ-
ual characteristics, is gaining significant attention.
The optimal treatment regime aims to provide the
best-expected outcome in the entire population,
known as the value function. One approach to de-
termine this optimal regime is by maximizing the
Augmented Inverse Probability Weighting (AIPW)
estimator of the value function. However, the de-
rived treatment regime can be intricate and nonlin-
ear, limiting their use. For clarity and interoperabil-
ity, we emphasize linear regimes and determine
the optimal linear regime by optimizing the AIPW
estimator within set constraints.
While the AIPW estimator offers a viable path to
estimating the optimal regime, current methodolo-
gies predominantly focus on its asymptotic distri-
bution, leaving a gap in studying the linear regime
itself. However, there are many benefits to under-
standing the regime, as pinpointing significant co-
variates can enhance treatment effects and provide
future clinical guidance. In this paper, we explore
the asymptotic distribution of the estimated linear
regime. Our results show that the parameter asso-
ciated with the linear regime follows a cube-root
convergence to a non-normal limiting distribution
characterized by the maximizer of a centered Gaus-
sian process with a quadratic drift. When making
inferences for the estimated linear regimes with
cube-root convergence in practical scenarios, the
standard nonparametric bootstrap is invalid. As a
solution, we facilitate the Cattaneo et al. [2020]
bootstrap technique to provide a consistent dis-
tributional approximation for the estimated linear
regimes, validated further through simulations and
real-world data applications from the eICU Collab-
orative Research Database.

1 INTRODUCTION

The application of personalized decision-making, which
customizes decisions based on individual characteristics, is
garnering significant interest across various fields such as
economics [Behncke et al., 2009, Turvey, 2017], personal-
ized medicine [Young et al., 2011, Zhang et al., 2020], and
reinforcement learning [Jiang and Li, 2016, Munos et al.,
2016, Fujimoto et al., 2019]. Personalized medicine, in par-
ticular, tailors treatment decisions to the unique attributes of
individual patients. A treatment regime takes a patient’s spe-
cific characteristics as input and determines the appropriate
treatment options as output. The optimal treatment regime
(also known as an optimal policy, optimal strategy, individ-
ualized treatment rule, etc) is the one that maximizes the
overall benefit to the patient population, known as the value
function. This approach is closely related to a broad body of
research in reinforcement learning. Evaluating the expected
outcome of patients under a given treatment regime can
be viewed as off-policy evaluation (OPE) while identifying
the optimal treatment regime that yields the highest value
function can be considered off-policy learning (OFL).

Numerous methods have been developed to identify optimal
treatment regimes. One category involves the regression-
based approach, which estimates the outcome mean func-
tion, referred to as the Q function. It then determines the
optimal regime based on this estimated Q function. Tech-
niques in this category include Q-learning [Watkins and
Dayan, 1992, Murphy and Littman, 2005, Qian and Mur-
phy, 2011] and A-learning [Murphy, 2003, Shi et al., 2018],
which estimate the contrast function of outcome mean func-
tions with varying treatments instead of the original outcome
mean function. Another further category is policy search es-
timation, which is developed by maximizing the value func-
tion using either the Inverse Probability Weighting (IPW)
estimator, the Augmented Inverse Probability Weighting
(AIPW) estimator [Zhang et al., 2012, Zhao et al., 2012],
or the Targeted Minimum Loss-Based estimator (TMLE)
[van der Laan and Luedtke, 2015, Luedtke and van der
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Laan, 2016, Montoya et al., 2021, Poulos et al., 2024]. In
this paper, we focus on the policy search estimation for de-
termining the optimal regime, particularly highlighting the
AIPW estimator. This estimator is valued for its capability
to incorporate machine learning techniques for approximat-
ing nuisance parameters. Additionally, it provides double
robustness, meaning it remains consistent for the value func-
tion if either the outcome mean function or the propensity
score model is accurately specified.

Often, the resulting optimal treatment regime can be com-
plex and nonlinear, introducing high variability and posing
challenges for practical use. As a result, it’s a common prac-
tice to seek the optimal regime within a restricted class of
regimes. A frequent subset is decision lists [Zhang et al.,
2015], where regimes are sequences of decision rules. Each
rule is articulated as a series of if-then statements that guide
treatment recommendations. These regimes can be explored
using tree-based methodologies [Doove et al., 2015, Zhang
et al., 2015, Zhao et al., 2015]. In this paper, we focus on
linear treatment regimes. These regimes not only pave the
way for novel scientific discoveries and hypotheses but are
also more accessible for both clinicians and patients. The op-
timal linear regime is determined by optimizing the AIPW
estimator within the pre-specified linear regime constraints.

While some recent papers have made important contribu-
tions to estimating the treatment regimes, they focus on
studying the asymptotic distributions of the value function
[Zhang et al., 2018, Chu et al., 2023a], and have not stud-
ied the asymptotic distribution of the estimated treatment
regimes. However, there are many benefits to understanding
the regime, as identifying significant covariates can enhance
treatment effects and offer insights for future clinical prac-
tices. To infer the regime directly, it is valuable to determine
the asymptotic distributions of the estimated regime. We
prove that the estimated parameter indexing the linear treat-
ment regime converges at a cube-root rate to a non-normal
limiting distribution that is characterized by the maximizer
of a centered Gaussian process with a quadratic drift. Given
its cube-root convergence, larger datasets are beneficial for
real-world applications. The rise of electronic health records
(EHR) — comprehensive digital patient histories maintained
over time — offers vast datasets, encompassing demograph-
ics, clinical notes, medical histories, and more. This means
the requirement for large samples can be readily met using
resources like EHR. Hence our study emphasizes large sam-
ple scenarios: in simulations, we use a sample size of 20000,
and in real data analysis, we utilize the eICU Collaborative
Research Database (eICU-CRD) [Goldberger et al., 2000,
Pollard et al., 2018, 2019] with 9697 observations.

When constructing confidence intervals for the estimated
linear regimes, traditional bootstrap fails for the non-
normal cube root convergence estimators [Abrevaya and
Huang, 2005, Léger and MacGibbon, 2006, Cattaneo et al.,
2020]. Several existing studies have presented consistent

resampling-based distributional approximations for cube-
root-type estimators. One category of methods achieves con-
sistency by modifying the distribution used to generate the
bootstrap sample. This encompasses techniques like subsam-
pling [Seo and Otsu, 2018], which uses without-replacement
subsamples to estimate the cube root estimator distribution;
m out of n sampling [Lee and Pun, 2006, Bickel et al., 2012]
that employs with-replacement samples for this estimation.
Another category modifies the objective function used to
construct the bootstrap-based distributional approximation,
and then applies the standard nonparametric bootstrap to
this altered function, as delineated by Cattaneo et al. [2020].
In our research, we apply the bootstrap method proposed by
Cattaneo et al. [2020] to derive the confidence intervals, ap-
plying it to both simulation and real data analysis, yielding
promising results.

Our main contributions can be summarized as follows:

• Building on the research of Kim and Pollard [1990]
and Wang et al. [2018] regarding mean-optimal and
quantile-optimal criteria in randomized clinical trials,
we establish the linear treatment regime for the AIPW
estimator using observational data. We demonstrate
that the estimated optimal treatment regime converges
at a cube-root rate to a non-normal limiting distribution,
characterized by the maximizer of a centered Gaussian
process with quadratic drift.

• We utilize the bootstrap technique proposed by Cat-
taneo et al. [2020] to provide a consistent distribu-
tional approximation for the estimated optimal linear
regime, addressing the challenges of applying standard
nonparametric bootstrap methods to cube-root conver-
gence estimators in practical scenarios.

The rest of the paper is organized as follows. In Section 2,
we present the basic setup and introduce the AIPW estimator.
Section 3 derives the theorem of the asymptotic distributions
of the AIPW estimator and the estimated linear treatment
regime. Additionally, this section introduces the algorithm
based on the bootstrap method introduced by Cattaneo et al.
[2020] for the estimated linear regimes. We conduct simula-
tions in Section 4. Section 5 applies the proposed estimators
to an observational study from the eICU-CRD. Finally, we
conclude the paper with a discussion in Section 6.

2 BACKGROUND

Denote X ∈ X⊂ Rl as the vector of pre-treatment covari-
ates, A ∈ {0, 1} as the binary treatment, and Y ∈ R as
the outcome of interest. Following the potential outcomes
framework, let Y (a) be the potential outcome for the sub-
ject given the treatment a, a = 0, 1. The observed data are
then having n independent and identically distributed (i.i.d.)
subjects {(Xi, Ai, Yi) , i = 1, . . . , n} .
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Consider a treatment regime, denoted as d(X), that maps the
l-dimensional vector X to the set {0, 1}. As an illustration,
if we take l = 1 and define the treatment strategy as d(X) =
I(X > 0), then for X = 0.1, the assigned treatment would
be 1. Let Y (d) represent the outcome an individual would
achieve when assigned a treatment based on regime d(X) :

Y (d) = Y (1)d(X) + Y (0) {1− d(X)} .

Further, denote the value function of regime d(X) as

V (d) = E {Y (d)} = E [Y (1)d(X) + Y (0) {1− d(X)}] ,

which is the expected outcome under the regime d(X).
Assuming our focus is on a specific collection D of treat-
ment regimes, the optimal treatment regime is the one that
maximizes the value function dopt = argmaxd∈DV (d).
For practical applications, it’s beneficial to consider that
is both interpretable and straightforward to implement,
hence, in this paper, we focus on the linear regime class
Dβ = {d(X;β) = I(XTβ > 0);β ∈ B}, where dif-
ferent treatment regimes are indexed by β and B is a
compact subset of the parameter space. Notably, β is not
unique and is equivalent when scaled by scalar multipli-
ers. Therefore, we focus on B = {β, ∥β∥ = 1}, where
∥ · ∥ denotes the Euclidean norm. For brevity and clar-
ity, within the context of the linear regime class Dβ , we
represent its value function V (d) simply as V (β). Denote
β0 = argmaxβ∈BV(β), then the optimal regime within
regime Dβ is doptβ ∈ Dβ = d(X;β0) = I(XTβ0 > 0).

One of the fundamental challenges to identifying the value
function is that Y (1) and Y (0) cannot be observed simul-
taneously. To overcome this issue, we make the following
three common assumptions in the causal inference literature
[Rubin, 1978]:

Assumption 1 {Y (0), Y (1)} ⊥⊥ A | X almost surely,
where ⊥⊥ means “independent of”.

Assumption 2 Y = Y (1)A+ Y (0)(1−A).

Assumption 3 There exist constants c1 and c2 such that
0 < c1 ≤ Pr(A | X) ≤ c2 < 1 almost surely.

Assumption 1 tells us the assignment to treatment is uncon-
founded. Assumption 2, known as the Stable Unit Treatment
Value Assumption (SUTVA), suggests a lack of interference.
This means that the potential outcomes for one individual
remain unaffected by the treatments received or the potential
outcomes of other individuals. Under Assumption 1-2, the
conditional mean of the potential outcome Y (a) can be rep-
resented in terms of observed data. Specifically, the condi-
tional outcome mean function µA (X) = E {Y (A) | X} =
E(Y | X,A). Assumption 3 implies a sufficient overlap of
the covariate distribution between the treatment groups.

Denote the propensity score as e(X) = Pr(A | X). Given
the regime d(X;β) and under Assumptions 1-3, it is imper-
ative to highlight that

E
[
I {A = d(X;β)}

ρ(A | X)
{Y − µd(X;β)}

]
= 0,

where

ρ(A | X) = e(X)A+ {1− e(X)} (1−A),

µd(X;β) = µ1(X)I {d(X;β) = 1}
+ µ0(X)I {d(X;β) = 0} .

Consequently, the value function can be expressed as

V (β)

=E [Y {d(X;β)}]

=E {µd(X;β)}+ E
[
I {A = d(X;β)}

ρ(A | X)
{Y − µd(X;β)}

]
.

Further, if we denote

v(X,A, Y ;β)

=
I {A = d(X;β)}

ρ(A | X)
{Y − µd(X;β)}+ µd(X;β),

then V (β) can be written as V (β) = E {v(X,A, Y ;β)}.

Building upon this foundational understanding, Zhang et al.
[2012] proposed an AIPW estimator V̂n(β) for the value
function V (β) as

V̂n(β) =
1

n

n∑
i=1

v̂(Xi, Ai, Yi;β),

where

v̂(Xi, Ai, Yi;β)

=
I {Ai = d(Xi;β)}

ρ̂(Ai | Xi)
{Yi − µ̂d(Xi;β)}+ µ̂d(Xi;β),

and ê(X), µ̂A(X) are the estimates for e(X) and µA(X).
ρ̂(A | X) and µ̂d(X;β) are derived by substituting the
estimates ê(X) and µ̂A(X) into ρ(A | X) and µd(X;β),
respectively. Further, denote β̂ = argmaxβ∈BV̂n(β).

When using parametric models to estimate µA(X) (for
A = 0, 1) or e(X), the AIPW estimator consistently ap-
proximates V (β) if either the posited parametric model
for µA(X) (for A = 0, 1) or for e(X) is correctly specified.
Despite this advantageous property, real-world situations fre-
quently pose difficulties in correctly implementing paramet-
ric models. Recently, machine learning methods have gained
traction. Various semi-parametric or non-parametric ma-
chine learning algorithms can be utilized to consistently esti-
mate the unknown functions e(X) and µA(X) for A = 0, 1.
Consequently, in this paper we focus on the use of semi-
parametric or non-parametric machine learning models for
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estimating e(X) and µA(X) for A = 0, 1. Notably, these
findings can be extended to the scenario where e(X) and
µA(X) are estimated via parametric models, and a detailed
discussion is in Section 6.

3 METHODS

In this section, we delve into several key topics. Subsection
3.1.1 focuses on the derivation of the asymptotic distribu-
tions for the AIPW estimator. Meanwhile, subsection 3.1.2
explores the asymptotic distributions of the estimated linear
treatment regimes. Additionally, subsection 3.2 introduces
the algorithm based on the bootstrap method proposed by
Cattaneo et al. [2020] for the estimated linear regime.

3.1 THEOREM

3.1.1 Asymptotic distribution of the AIPW estimator

We begin by outlining the theorem related to the asymp-
totic properties of V̂n(β̂). First, we assume the following
regularity conditions:

Assumption 4 The support of X and Y are bounded.

Assumption 5 The function µa(x) is smooth, and continu-
ously differentiable and bounded for all (x, a).

Assumption 6 The optimal treatment regime β0 ∈ B satis-
fying ∥β0∥ = 1, is unique.

Assumption 7

[
E {ê(X)− e(X)}2

]1/2 1∑
a=0

[
E {µ̂a(X)− µa(X)}2

]1/2
=op(n

−1/2).

Assumptions 4-5 are standard regularity conditions used
to establish the convergence results. Assumption 6 is
an identifiability condition for β0 and ensures the
true targeted optimal regime d(X;β0) is uniquely de-
fined, similar to Wang et al. [2018]. To meet the cri-
teria of Assumption 7, one approach entails ensuring

both
∑1

a=0

[
E {µ̂a(X)− µa(X)}2

]1/2
= op(n

−1/4) and[
E {ê(X)− e(X)}2

]1/2
= op(n

−1/4). In this context,
purely nonparametric estimators, such as kernel or nearest-
neighbor methods, are generally not viable due to their
slower convergence rate, specifically below op(n

−1/4).
However, certain semi-parametric models, like generalized
additive models, can attain rates of n−2/5. For a comprehen-
sive list of estimators that can reach op(n

−1/4) convergence

rates, we refer to the book [Horowitz, 2009] and the review
article [Kennedy, 2016].

The result is as follows:

Theorem 1 Under Assumptions 1-7, as n → ∞, we have

1. ∥β̂ − β0∥ = Op(n
−1/3).

2.
√
n
{
V̂n(β̂)− V (β0)

}
D→ N (0, σ2),

where D→ represents convergence in distribution, and

σ2 = E

[
I {Ai = d(Xi;β0)}

ρ(Ai | Xi)
{Yi − µd(Xi;β0)}

+ µd(Xi;β0)− V (β0)

]2

.

The asymptotic distribution results provide valuable insights
for making inferences regarding V (β0). It’s important to
highlight that while V̂n(β̂) converges at a

√
n-consistent

rate, the convergence rate of regime β̂ is n1/3. This deviates
from many established statistical theorems, such as the cen-
tral limit theorem, which operates on the square root rate
Op(n

−1/2). Despite the extensive exploration of the
√
n-

consistent AIPW estimator V̂n(β̂) and its various modified
versions, the asymptotic distribution of β̂ remains relatively
unexplored due to its n1/3 convergence rate. In the follow-
ing section, we explore the asymptotic distribution of β̂.
Wang et al. [2018] investigated the linear treatment regime
for both the mean-optimal and quantile-optimal criteria in
randomized clinical trials. We build upon their findings to
deduce the linear treatment regime for the AIPW estimator
using observational data.

3.1.2 Asymptotic distribution of the estimated linear
regime

Kim and Pollard [1990] deduced the asymptotic distribution
related to cube root convergence, however, the result of
Kim and Pollard [1990] is not directly transferrable because
V̂n(β̂) incorporates the estimated ê(X) and µ̂A(X) for A =
0, 1. Hence, we examine the conditions outlined in Kim and
Pollard [1990] sequentially in the proof of Theorem 2, as
detailed in the Supplementary material. First, we introduce
the following conditions:

Assumption 8 X has a continuously differentiable density
f(·) and that the angular components of X, considered as
a random element of the unit sphere S in Rl, has a bounded
continuous density with respect to surface measure on S.
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Assumption 9

H =

∫ {
xTβ0 = 0

}{
ḟ(x)h(x) + f(x)ḣ(x)

}T

β0xx
Tdσ,

and H > 0, where σ is the surface measure on
the hyperplane {X : XTβ0 = 0} and h(x) =
E {Y (1)− Y (0) | X = x}. ḟ(x) and ḣ(x) denote the first-
gradient with respect to x.

Assumption 10 supx∈X |ê(X)−e(X)| = op(n
−1/3), and

supx∈X |µ̂A(X)− µA(X)| = op(n
−1/3) for A = 0, 1.

Assumptions 8-9 are technical conditions for evaluating the
first and second-order derivatives of the value function and
the kernel covariance which are used to characterize the
asymptotic distribution of β̂, similar in Example 6.4 in Kim
and Pollard [1990] and Wang et al. [2018]. Assumption 8
aids in deriving the first derivative of V (β0). Under Assump-
tion 9, as deduced from the proof of Theorem 2, the matrix
−H represents the second order derivative of value function
V (β0) at β = β0,

H =

∫ {
xTβ0 = 0

}{
ḟ(x)h(x) + f(x)ḣ(x)

}T

β0xx
Tdσ

= −∂2V (β0)/∂β∂β
T.

Ensuring H is positively definite is one crucial condition in
Kim and Pollard [1990] for the asymptotic distribution of
n1/3(β̂ − β0).

Assumption 10 requires ê(X) and µ̂A(X) to uniformly con-
verge to e(X) and µA(X) at a rate of op(n−1/3). It’s no-
ticeable that the requisite convergence rate of ê(X) and
µ̂A(X) for A = 0, 1 under Assumption 10 is faster than
the approach suggested following Assumption 7. Techni-
cally speaking, the reason for the faster op(n

−1/3) uni-
form convergence rate in Assumption 10 is to meet the
first condition set out in Kim and Pollard [1990], ensuring
the existence of the cube root asymptotic distribution of
β̂ exists. A perspective to understand this is by recogniz-
ing that when developing the

√
n-consistent rate asymp-

totic distribution of the value function V̂n(β̂), it is only
requiring the ∥β̂ − β0∥ = Op(n

−1/3), however, given
∥β̂ − β0∥ = Op(n

−1/3), it still needs further restriction
to guarantee the asymptotic distribution of β̂. That’s why
the conditions are more strict in Assumption 10 than the
approach suggested following Assumption 7.

To guarantee that there are estimators reaching this
op(n

−1/3) uniform convergence rate for estimating ê(X)
and µ̂A(X) for A = 0, 1, first assuming that both e(X) and
µA(X) for A = 0, 1 belong to the function class Σs, where
Σs represents the Holder classes of smoothness order s. For
s ∈ (0, 1], the Holder class Σs is defined as the set of all

functions f : X → R such that for C > 0,

|f(x)− f(x̃)| ≤ C


l∑

j=1

(xj − x̃j)
2


s/2

for all x, x̃ ∈ X . For s > 1, Σs is defined as follows.
For any α = (α1, · · · , αl) of nonnegative integers, denote
Dα = ∂α1

x1
· · · ∂αl

xl
. Then Σs is the set of all functions f :

X → R such that f is [s] times continuously differentiable
and for some C > 0,

|Dαf(x)−Dαf(x̃)| ≤ C


l∑

j=1

(xj − x̃j)
2


(s−[s])/2

and |Dβf(x)| ≤ C hold for all x, x̃ ∈ X , where α =
(α1, . . . , αl) and β = (β1, . . . , βl) are nonnegative in-
tegers satisfying α1 + · · ·αl = [s] and β1 + · · ·βl ≤
[s]. Given these assumptions, the optimal uniform rate
of convergence for ê(X) and µ̂A(X) (for A = 0, 1)
is Op

{
(lnn/n)s/(2s+l)

}
[Stone, 1982]. This rate can be

achieved using various estimators, such as series estimators
[Belloni et al., 2015] and local polynomial (kernel) estima-
tors [Takezawa, 2005]. Additionally, when e(X) and µA(X)
(for A = 0, 1) are determined using estimators that meet
this optimal uniform rate and if e(X) and µA(X) adhere to
the condition s > l, the uniform rate achieves op(n−1/3).
In such scenarios, it’s feasible to employ estimators that
realize this op(n

−1/3) rate to estimate e(X) and µA(X),
where A = 0, 1.

The theorem is as follows:

Theorem 2 Under Assumptions 1-6, and Assumptions 8-10,
we have

n1/3(β̂ − β0)
D→ argmaxt

{
−1

2
tTHt+W (t)

}
,

where D→ represents converge in distribution. H =
−∂2V (β0)/∂β∂β

T is a l × l positively definite matrix and
W (t) is a zero-mean Gaussian process with continuous sam-
ple paths and covariance kernel C(·, ·). The expressions for
C(·, ·) is in the Supplementary material.

3.2 BOOTSTRAP ALGORITHM

The distribution result in Theorem 2 sheds light on con-
structing inference on β0 as we develop in subsection
3.1.2. While we theoretically determine the asymptotic
distribution of β̂, applying these theoretical results for
inference in practice can be challenging. A straightfor-
ward approach in real-world scenarios might involve using
bootstrap methods to sample the distribution of β̂. How-
ever, the standard nonparametric bootstrap is often inade-
quate in approximating the cube root distribution. We pro-
vide a straightforward demonstration below. Let’s define
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Vn(β) = 1/n
∑n

i=1 v(Xi, Ai, Yi;β). According to Kim
and Pollard [1990], the cube root convergence for β̂ can be
written as n1/3(β̂ − β0) = argmaxt∈Rl{Ŵ (t) + V(t)},

Ŵ (t) = n2/3

{
Vn(β0 + tn−1/3)− Vn(β0)

−V (β0 + tn−1/3) + V (β0)

}

is a zero-mean random process and asymptotically con-
verges to W (t) and

V(t) = n2/3
{
V (β0 + tn−1/3)− V (β0)

}
asymptotically converges to −tTHt/2, where H =
−∂2V (β0)/∂β∂β

T. The standard nonparametric bootstrap
can replicate the shape of Ŵ (t), however, it fails to replicate
the shape of V(t), which results in the inconsistency of the
standard nonparametric bootstrap [Abrevaya and Huang,
2005, Léger and MacGibbon, 2006, Cattaneo et al., 2020].

To address this, a refined bootstrap methodology was pro-
posed by Cattaneo et al. [2020] to more accurately approxi-
mate the distribution for β̂. This method alters the objective
function to ensure that the bootstrap version of each em-
pirical process counterpart has a mean resembling its large
sample version. Specifically, Cattaneo et al. [2020] reshaped
the original objective function v̂(Xi, Ai, Yi;β) to

ṽ(Xi, Ai, Yi;β)

=v̂(Xi, Ai, Yi;β)− V̂n(β)−
1

2
(β̂ − β)THn(β̂ − β),

where Hn serves as an approximation of H. This adjust-
ment ensures the convergence of the bootstrap versions to
their population counterparts in large samples. For β̂, the
bootstrap samples are represented as β̂∗, given by

β̂∗ = argmaxβ∈BV̂
∗
n (β),

V̂ ∗
n (β) =

1

n

n∑
i=1

ṽ(X∗
i , A

∗
i , Y

∗
i ;β),

where {(X∗
i , A

∗
i , Y

∗
i ), i = 1, . . . , n} are random samples

from the empirical distribution (X,Y,A). It’s important
to highlight that during this bootstrap procedure, the nui-
sance parameters can either be refitted using the samples
{(X∗

i , A
∗
i , Y

∗
i ), i = 1, . . . , n} during the bootstrap process

or retain their initially estimated values from the original
datasets. Both approaches meet the conditions outlined
in Cattaneo et al. [2020]. Cattaneo et al. [2020] proved
that under certain regularity conditions, n1/3(β̂∗ − β̂) →
argmaxt{− 1

2 t
THt+W (t)} in distribution, therefore guar-

antees consistency of the bootstrap samples. Algorithm 1
outlines the detailed procedure for bootstrapping samples.
Regarding computational requirements, the complexity of

Algorithm 1 The proposed bootstrap algorithm.

Step 1: Using the sample (Xi, Yi, Ai), compute β̂ by ap-
proximately maximizing V̂n(β).

Step 2: Using β̂ and (Xi, Yi, Ai), compute Hn, where
each (k, l) element in Hn is defined as:

Hn,kl = − 1

4ϵ2n

{
V̂n(β̂ + ekϵn + elϵn)

− V̂n(β̂ + ekϵn − elϵn)− V̂n(β̂ − ekϵn + elϵn)

+ V̂n(β̂ − ekϵn − elϵn)

}
,

where ek is the k-th unit vector in Rl and ϵn is a positive
tuning parameter. Hn is a consistent estimator of H .

Step 3: Using β̂, Hn, and the bootstrap sample
{(X∗

i , A
∗
i , Y

∗
i ), i = 1, . . . , n}, compute β̂∗ by ap-

proximating maximizing V̂ ∗
n (β).

Step 4: Repeat Step 3 to generate draws from the distribu-
tion n1/3(β̂∗ − β̂).

this process is expressed as O(KB̃), where B̃ is the size of
bootstrap samples, and K denotes the algorithm’s complex-
ity for obtaining the estimate β̂ given V̂n(β). Specifically,
employing a genetic algorithm [Katoch et al., 2021] intro-
duces a complexity of K = O(GNn), with G indicating
the number of iterations and N the population size. Incor-
porating this methodology, we utilized it to determine the
95% confidence interval for β̂ in our simulations.

A key element of their approach revolves around the tuning
parameter, ϵn. Although Cattaneo et al. [2020] suggested
an optimal value for ϵn that minimizes the approximate
Mean Squared Error, this ideal value incorporates both the
H matrix and the covariance kernel C(·, ·). Determining the
best ϵn involves estimating both H and C(·, ·), a process
that is intricate and not feasible in our context.

Beyond this method, there exist other strategies that guar-
antee consistency for cube root convergence estimators by
adjusting the distribution from which the bootstrap sample
is drawn. Examples include subsampling methods, [Seo and
Otsu, 2018], which use subsamples without replacement,
and the m out of n sampling techniques [Lee and Pun, 2006,
Bickel et al., 2012], which rely on samples with replace-
ment for their estimates. Hong and Li [2020] introduced a
numerical bootstrap technique where bootstrap samples are
determined by the maximizer of the linear combination of
the empirical distribution and the bootstrapped empirical
process.

However, both the m out of n approach and subsampling
necessitate that the count of bootstrap samples be op(n).
In practical applications, when maximizing a non-regular
objective function to obtain the cube root convergence es-
timator, a limited count in the bootstrap samples can lead
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to results that deviate from true values, compromising the
outcomes. The numerical bootstrap method [Hong and Li,
2020], on the other hand, is also contingent on a tuning
parameter.

4 SIMULATION

In this section, we conduct one simulation study with
T = 100 simulation times. To effectively achieve the cube
root convergence in finite samples, a substantial number of
observations is essential. Thus, in each simulation time,
we generate n = 20000 observations (Xi, Yi, Ai), i =
1, . . . , n, where Xi = (1, Xi1, Xi2)

T and Xi1 and Xi2

are independent following the uniform distribution on[
1−

√
3, 1 +

√
3
]
; given Xi, the binary treatment indicator

Ai satisfies logit{e(Xi)} = −1.0+0.8Xi1+0.8Xi2, where
logit(u) = log{u/(1− u)}; and outcomes are generated as
Yi = 2− 1.5Xi1 − 1.5Xi2 +A× (2Xi1 +Xi2)+ ϵi, ϵi ∼
N (0, 1) . To estimate logit{e(X)} and µA(X) for A = 0, 1,
we apply the generalized additive model (GAM) using the
cubic smoothing spline for each univariate covariate. From
Eggermont et al. [2001], the cubic smoothing spline can
achieve the optimal uniform rate, therefore ê(X) and µ̂A(X)
(for A = 0, 1) can uniformly converge to e(X) and µA(X)
for A = 0, 1 with the rate op(n

−1/3).

For each individual, the optimal treatment regime is given
by I {µ1(Xi) > µ0(Xi)} , therefore in our example the op-
timal regime is d(Xi) = I(2Xi1+Xi2 > 0), which is a lin-
ear regime. The optimization process is facilitated using the
genoud function in the R package rgenoud [Mebane Jr
and Sekhon, 2011]. To achieve the uniqueness, we impose
the restriction ∥β∥ = 1, and the true optimal linear rule
β0 = (β01, β02)

T = (0.894, 0.447)T.

To determine the 95% confidence interval for β̂, we incor-
porate the Cattaneo et al. [2020] Bootstrap method, with the
use of 400 bootstrap samples. In each bootstrap sample, we
refit both e(X) and µA(X) to obtain the AIPW estimator
and derive the estimated linear regimes. Identifying the opti-
mal tuning parameter ϵn, which minimizes the approximate
Mean Squared Error, requires the estimated H matrix and
the covariance kernel C(·, ·). Considering the intricate na-
ture and challenges presented in this context, we evaluate
multiple ϵn values to identify the most suitable one.

Table 1 presents the estimates for β01 and β02 (denoted
as “Est”) and their 95% quantile confidence interval length
(denoted as “Length”) and coverage rate (denoted as “Cov-
erage”). The findings suggest that an optimal ϵn is approx-
imately 0.5, as it achieves a 95% coverage rate and the
shortest confidence interval length. This indicates that, with
a judicious selection of ϵn, the Cattaneo et al. [2020] boot-
strap method can present a reasonable inference of the β̂.

Table 1: Simulation results under different tuning parameters
ϵn based on 100 Monte Carlo times with 400 bootstrap
samples in each simulation time.

Est ϵn
0.05 0.1 0.2 0.5 0.7 0.9

β01 0.895 Coverage 0.750 0.900 1 0.95 1 1
Length 0.139 0.894 0.984 0.086 0.135 0.235

β02 0.443 Coverage 0.740 0.920 1 0.95 1 1
Length 0.207 0.864 1.170 0.176 0.261 0.416

5 REAL DATA APPLICATION

We demonstrate our proposed approach using data
sourced from the eICU-CRD, a multi-center repository
of anonymized health records spanning across the United
States from 2014 to 2015 [Goldberger et al., 2000, Pollard
et al., 2018, 2019].

We consider the 9 baseline covariates: age (years), Body
Mass Index (BMI), derived by dividing admission weight
(kg) by the square of admission height (meters), admission
temperature (Temp) value (Celsius), glucose level (mg/dL),
blood urea nitrogen (BUN) amount (mg/dL), creatinine
amount (mg/dL), white blood cell (WBC) count (K/uL),
bilirubin (mg/dL), mean blood pressure (BP) level (mmHg).
A treatment value of 1 indicates the patient was adminis-
tered vasopressor, while a value of 0 suggests other medical
interventions. We consider the cumulative balance (mL)
as the outcome of interest. A positive cumulative balance
means the fluid intake exceeds the output, leading to a con-
dition called hypervolemia or fluid overload. Excess fluid
can strain the heart, potentially causing heart failure [Golo-
gorsky and Roy, 2020], rapid decline in kidney function, and
an increased need for kidney replacement therapy [Palmer
and Clegg, 2020]. Conversely, a negative balance implies
the patient’s output exceeded their intake, labeled as hy-
povolemia or fluid deficit. Severe hypovolemic shock can
result in mesenteric and coronary ischemia that can cause
abdominal or chest pain [Taghavi et al., 2022]. For our study,
we use Y = −|cumulative balance| (CB) as the outcome,
where a higher value is preferable.

After filtering the abnormal values, a total of 9697 obser-
vations remained. Table 2 summarizes the mean and the
standard deviation of the outcome and covariates in the
samples. To utilize the bootstrap method proposed by Cat-
taneo et al. [2020], we generate 100 bootstrap samples to
derive the 95% confidence intervals for the estimated lin-
ear regimes and conduct sensitivity analysis across various
ϵn values, specifically within the set {0.3, 0.5, 0.7}. Due to
the widest confidence interval ranges observed at ϵn = 0.7,
which results in no findings for significant covariates, we
focus on presenting results for ϵn = 0.3 and 0.5 in the main
text. The corresponding results for ϵn = 0.7 are included in
the supplementary materials. Detailed estimates and confi-
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Table 2: Mean and the standard deviation (denoted as “sd”)
of the outcome and covariates in the samples.

age BMI Temp Glucose BUN
mean 64.95 28.94 36.04 149.73 29.55

sd 15.32 7.63 4.71 107.25 26.72
creatinine WBC bilirubin BP −|CB|

mean 1.52 12.23 0.33 75.83 -5929.21
sd 2.01 11.70 2.42 42.11 5822.28

Table 3: Estimates for the linear regime (denoted as ”est”),
the corresponding 95% confidence intervals (denoted as
“CI”) and the confidence interval lengths (denoted as
“Length”) when ϵn = 0.3 and 0.5.

Est ϵn
0.3 0.5

Int 0.489 CI (-0.609, 0.765) (-0.408, 0.675)
Length 1.374 1.082

age 0.254 CI (-0.129, 0.313) (-0.374, 0.445)
Length 0.442 0.819

BMI 0.087 CI (-0.162, 0.245) (-0.123, 0.501)
Length 0.407 0.624

Temp 0.424 CI (0.004, 0.637) (-0.009, 0.681)
Length 0.633 0.690

Glucose -0.382 CI (-0.422, 0.020) (-0.497, 0.066)
Length 0.442 0.564

BUN -0.279 CI (-0.416, 0.019) (-0.469, 0.235)
Length 0.435 0.704

creatinine -0.162 CI (-0.422, 0.273) (-0.286, 0.241)
Length 0.694 0.527

WBC 0.486 CI (-0.149, 0.721) (0.038, 0.971)
Length 0.869 0.934

bilirubin 0.133 CI (-0.586, 0.587) (-0.453, 0.697)
Length 1.173 1.150

BP 0.072 CI (-0.177, 0.224) (-0.317, 0.268)
Length 0.402 0.585

dence intervals for ϵn = 0.3 and 0.5 are shown in Table 3,
where the intercept is denoted as “Int”." Both ϵn = 0.3 and
ϵn = 0.5 produce comparable confidence interval lengths.
Given the challenges in pinpointing the optimal ϵn value
in real-world scenarios, it’s prudent to consider the results
from both ϵn = 0.3 and ϵn = 0.5, especially since their
confidence interval lengths are similar. For ϵn = 0.3, tem-
perature stands out as a significant covariate, exerting a
positive impact on the linear regime. This aligns with clini-
cal understanding, as sepsis often leads to fever [Schortgen,
2012]. On the other hand, with ϵn = 0.5, the white blood
cell (WBC) count becomes a significant covariate, also pos-
itively affecting the linear regime. This is consistent with
medical knowledge, as sepsis usually produces an elevated
white blood cell count [Munford, 2006].

6 DISCUSSION

In this paper, we focus on the linear regimes. We present the
asymptotic properties of the AIPW estimators and explore
the non-normal asymptotic distribution of the estimated lin-
ear regime with the cube root convergence rate. Recognizing
that the standard nonparametric bootstrap fails to approxi-
mate the cube root distribution, we implement the bootstrap
method in Cattaneo et al. [2020] to provide a valid bootstrap
sample for the linear regime converging to the non-normal
cube root distribution.

It’s important to highlight that while our primary focus is
on the semi-parametric models and non-parametric models
for estimating µA(X) (for A = 0, 1) and e(X), the findings
can be easily extended to the parametric models of µA(X)
and e(X). Parametric models can achieve a convergence
rate of Op(n

−1/2), which is faster than the rates observed in
both semi-parametric and non-parametric models. Theorem
1 remains valid provided at least one model among µA(X)
and e(X) is correctly specified [Chu et al., 2023a]. However,
to derive the cube root distribution of β̂, two prerequisites
are essential. Firstly, the nuisance parameters in µA(X)
and e(X) must achieve a convergence rate of op(n−1/3),
a feat readily accomplished by parametric models with a
convergence rate of Op(n

−1/2). Secondly, both the e(X)
and µA(X) models must be correctly specified, a stipu-
lation that might pose challenges in real-world scenarios.
Conversely, when centering on the parametric models, the
bootstrap approach in Cattaneo et al. [2020], which does not
consider the nuisance parameters, remains inapplicable. As
an alternative, one might look into the m out of n sampling
method [Lee and Pun, 2006], which remains valid even in
the presence of nuisance parameters.

Selecting the optimal ϵn can be challenging for the bootstrap
method in Cattaneo et al. [2020]. For practical applications,
we recommend choosing ϵn values that correspond to local
minima in the lengths of confidence intervals. This strategy
guided our choice of ϵn = 0.5 for the simulations in Section
4, where this value yielded the shortest confidence intervals
with a coverage rate close to 95%. Similarly, for the real
data analysis in Section 5, after evaluating ϵn values of
{0.3, 0.5, 0.7}, we identified {0.3, 0.5} as the local minima
for most variables tested.

There are some extensions we will consider in future work.
First, our study centers on a single-stage treatment regime
with two treatment options. While suitable for some research
scenarios, it doesn’t encompass the broader complexities of
treatment pathways. Extending our analysis to multi-stage
treatment regimes is possible by utilizing proof techniques
akin to those employed by Wang et al. [2018]. This approach
offers a promising direction for further research.

Second, our attention is centered on linear regimes, val-
ued for their interpretability and ease of communication.
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While decision lists [Zhang et al., 2015] are another popular
regime, current literature mainly investigates value function
estimates and offers efficient computational algorithms for
estimating these decision lists [Doove et al., 2015, Zhang
et al., 2015, Zhao et al., 2015]. However, there’s a notice-
able gap in the literature regarding the inference of these
regimes. Exploring the inference for decision lists could be
a compelling extension.

Third, our study predominantly focuses on the univariate
continuous outcome Y . Yet, the breadth of our investigation
can be extended to include diverse outcomes such as survival
rates, binary results, and counting processes. Furthermore,
our proposed inference framework applies readily to the
transfer learning approach of optimal linear regimes from a
source population to a target population [Chu et al., 2023a,b,
Colnet et al., 2024, Lee et al., 2022, 2023, 2024a,b, Wu and
Yang, 2022, 2023].

Finally, the foundational assumptions in our study include
the absence of unmeasured confounders (Assumption 1),
SUTVA (Assumption 2), and positivity (Assumption 3).
The violation of either assumption will lead to biases in our
results. Given this, it is essential for subsequent studies to
conduct sensitivity analyses to scrutinize the assumptions
against unmeasured confounders and SUTVA. Regarding
the positivity assumption, Zhao et al. [2024] introduced
a positivity-free policy learning, which can be our future
extension.
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The supplementary material is structured as follows: Section A and Section B provide proofs for the main theorems. Section
C displays additional tables for the confidence intervals for the estimated linear regimes in the eICU-CRD datasets when
ϵn = 0.7.

A PROOF OF THEOREM 1

We derive the asymptotic distribution of V̂n(β̂). We follow the similar proof in Chu et al. [2023a]

First, we show
V̂n(β) = Vn(β) + op(n

−1/2), ∀β.

We define a middle term as

v̄n(β) =
1

n

n∑
i=1

[
I {A = d(Xi;β)}

ρ(Ai | Xi)
{Y − µ̂d(Xi;β)}+ µ̂d(Xi;β)

]
,

and show V̂n(β) = v̄n(β) + op(n
−1/2) and v̄n(β) = Vn(β) + op(n

−1/2).

V̂n(β)− v̄n(β)

=
1

n

n∑
i=1

([
I {A = d(Xi;β)}

ρ̂(Ai | Xi)
− I {A = d(Xi;β)}

ρ(Ai | Xi)

]
{Y − µ̂d(Xi;β)}

)

=
1

n

n∑
i=1

(
(2Ai − 1) {e(Xi)− ê(Xi)}

[
I {A = d(Xi;β)}

ρ̂(Ai | Xi)ρ(Ai | Xi)

]
{Y − µ̂d(Xi;β)}

)

=
1

n

n∑
i=1

(
(2Ai − 1) {e(Xi)− ê(Xi)}

[
I {A = d(Xi;β)}

ρ̂(Ai | Xi)ρ(Ai | Xi)

]
{Y − µd(Xi;β)}

)

+
1

n

n∑
i=1

(
(2Ai − 1) {e(Xi)− ê(Xi)}

[
I {A = d(Xi;β)}

ρ̂(Ai | Xi)ρ(Ai | Xi)

]
{µd(Xi;β)− µ̂d(Xi;β)}

)
.

Since E [I {Ai = d(Xi;β)} {Y − µd(Xi;β)}] = 0 and Assumption 7, V̂n(β) = v̄n(β) + op(n
−1/2). Similarly, v̄n(β) =

Vn(β) + op(n
−1/2) and therefore V̂n(β) = Vn(β) + op(n

−1/2).

Then we prove ∥β̂ − β0∥ = Op(n
−1/3). First, by Argmax Theorem, we have β̂

p→ β. Next we apply Theorem 14.4 in
Kosorok [2008] to show the converge rate. Take the Taylor expansion of V (β) at β = β0,

V (β)− V (β0) =
1

2

∂2V (β)

∂β∂βT
|β=β0

∥β − β0∥2 + o(∥β − β0∥2).
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Since ∂2V (β)/∂β∂βT < 0, there exists c0 > 0 such that V (β)− V (β0) < −c0∥β − β0∥2. Condition (i) holds.

For a sufficient small R,

E

[
n1/2 sup

∥β−β0∥≤R

|V̂n(β)− V (β)− {V̂n(β0)− V (β0)}|

]

=E

[
n1/2 sup

∥β−β0∥≤R

|V̂n(β)− Vn(β) + Vn(β)− V (β)− {V̂n(β0)− Vn(β0) + Vn(β0)− V (β0)}|

]

≤E

[
n1/2 sup

∥β−β0∥≤R

|V̂n(β)− Vn(β)− {V̂n(β0)− Vn(β0)}|

]

+E

[
n1/2 sup

∥∥β−β0∥≤R

|Vn(β)− V (β)− {Vn(β0)− V (β0)}|

]
:γ1 + γ2.

Because V̂n(β) = Vn(β) + op(n
−1/2), γ1 = op(1). Further,

Vn(β)− Vn(β0)

=
1

n

n∑
i=1

[
I {Ai = d(Xi;β)}

ρ(Ai | Xi)
{Yi − µd(Xi;β)}+ µd(Xi;β)

− I {Ai = d(Xi;β0)}
ρ(Ai | Xi)

{Yi − µd(Xi;β0)} − µd(Xi;β0)

]

=
1

n

n∑
i=1

{
(2Ai − 1)Yi − µ1(Xi)Ai + µ0(Xi)(1−Ai)

ρ(Ai | Xi)
+ µ1(Xi)− µ0(Xi)

}
×
{
I(XT

i β > 0)− I(XT
i β0 > 0)

}
.

Denote GR(·) as the envelope of the class

Fβ(y, a, x) =

[{
(2a− 1)y − µ1(x)a+ µ0(x)(1− a)

ρ(a | x)
+ µ1(x)− µ0(x)

}

×
{
I(xTβ > 0)− I(xTβ0 > 0)

}
: ∥β − β0∥ < R

]
.

Define M as

M = sup | (2a− 1)y − µ1(x)a+ µ0(x)(1− a)

ρ(a | x)
+ µ1(x)− µ0(x)|.

By Assumptions 3, 4 and 5, M < ∞. Because X is bounded, there exists a constant 0 < k0 < ∞ s.t. |xTβ − xTβ0| < k0R
when ∥β − β0∥2 < R. For the indicator function I(−k0R ≤ xTβ0 ≤ k0R),

1. when −k0R ≤ xTβ0 ≤ k0R, I(−k0R ≤ xTβ0 ≤ k0R) = 1 ≥ |I(xTβ > 0)− I(xTβ0 > 0)|.
2. when xTβ0 > k0R, xTβ = xT(β − β0) + xTβ0 > −k0R + k0R = 0, I(−k0R ≤ xTβ0 ≤ k0R) = 0 = |I(xTβ >

0)− I(xTβ0 > 0)|.
3. when xTβ0 < −k0R, xTβ = xT(β − β0) + xTβ0 < k0R + (−k0R) = 0, I(−k0R ≤ xTβ0 ≤ k0R) = 0 =

|I(xTβ > 0)− I(xTβ0 > 0)|.

Hence, define GR(·) = MI(−k0R ≤ xTβ0 ≤ k0R). By Assumption 6, there exists a positive constant k1 such that
EG2

R = M2Pr(−k0R ≤ xTR ≤ k0R) ≤ M2(k12k0R) < ∞. Because Fβ is a class of indicate functions, Fβ is a VC
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class of functions and its entropy, denoted as J (F), is finite. Consider the empirical process

GnFβ = n−1/2
n∑

i=1

[Fβ(Yi, Ai, Xi)− E{Fβ(Yi, Ai, Xi)}]

= n1/2 [Vn(β)− Vn(β0)− {V (β)− V (β0)}]
= n1/2 [Vn(β)− V (β)− {Vn(β0)− V (β0)}] ,

we have

γ2 = E

[
n1/2 sup

∥∥β−β0∥≤R

|Vn(β)− V (β)− {Vn(β0)− V (β0)}|

]

= E

[
n1/2 sup

∥∥β−β0∥≤R

|GnFβ |

]
≤ c1J (F)

√
EG2

R = c1J (F)M
√
2k1k0R

1/2 ≤ C1R
1/2,

where c1 is a finite constant and C1 = c1J (F)M
√
2k1k0 < ∞. Therefore

E

[
n1/2 sup

∥β−β0∥≤R

|V̂n(β)− V (β)− {V̂n(β0)− V (β0)}|

]
≤ C1R

1/2.

Let ϕn(R) = R1/2 and α = 3/2 < 2. Then ϕn(R)/Rα = R−1 is decreasing and not depend on n. Condition (ii) holds.

Let rn = n1/3, then r2nϕn(r
−1
n ) = n2/3n−1/6 = n1/2. Condition (iii) holds. Because V̂n(β̂) ≥ supβ V̂n(β), we have

∥β̂ − β0∥ = Op(n
−1/3).

Finally, we derive the asymptotic distribution of V̂n(β̂).

√
n
{
V̂n(β̂)− V (β0)

}
=
√
n
{
V̂n(β̂)− V̂n(β0) + V̂n(β0)− V (β0)

}
.

We first consider
√
n
{
V̂n(β̂)− V̂n(β0)

}
, which can be decomposed as

√
n
{
V̂n(β̂)− V̂n(β0)

}
=

√
n
[
V̂n(β̂)− V̂n(β0)−

{
V (β̂)− V (β0)

} ]
+

√
n
{
V (β̂)− V (β0)

}
. Take the Taylor expan-

sion of V (β) at β = β0,

√
n
{
V (β̂)− V (β0)

}
=

√
n

{
1

2

∂2V (β)

∂β∂βT
|β=β0

∥β̂ − β0∥2 + o(∥β̂ − β0∥2)
}

= Op(n
−1/6) = op(1).

And
√
n
[
V̂n(β̂)− V̂n(β0)−

{
V (β̂)− V (β0)

} ]
≤ E

[
n1/2 sup

∥β−β0∥≤c2n−1/3

|V̂n(β)− V (β)− {V̂n(β0)− V (β0)}|

]
≤ C1

√
c2n−1/3 = op(1),

where c2 is a constant such that ∥β̂ − β0∥ = c2n
1/3. Therefore

√
n
{
V̂n(β̂)− V̂n(β0)

}
= op(1). Next we consider

√
n
{
V̂n(β0)− V (β0)

}
.

√
n
{
V̂n(β0)− V (β0)

}
=
√
n
{
V̂n(β0)− Vn(β0) + Vn(β0)− V (β0)

}
=op(1) +

√
n {Vn(β0)− V (β0)} .
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√
n {Vn(β0)− V (β0)} =

1√
n

n∑
i=1

[
I {Ai = d(Xi;β0)}

ρ(Ai | Xi)
{Yi − µd(Xi;β0)}+ µd(Xi;β0)− V (β0)

]

=
1√
n

n∑
i=1

εi
D→ N (0, σ2).

where εi =
I{Ai=d(Xi;β0)}

ρ(Ai|Xi)
{Yi − µd(Xi;β0)}+ µd(Xi;β0)− V (β0), and σ2 = E

(
ε2i
)
. Therefore,

√
n
{
V̂n(β̂)− V (β0)

}
=

√
n
{
V̂n(β̂)− V̂n(β0) + V̂n(β0)− Vn(β0) + Vn(β0)− V (β0)

}
= op(1) + op(1) +

√
n {Vn(β0)− V (β0)}

D→ N (0, σ2).

B PROOF OF THEOREM 2

To derive the asymptotic distribution of β̂, we adhere to the main theorem in Kim and Pollard [1990]. We begin to verify the
assumptions laid down in Kim and Pollard [1990] ’s main theorem. First define

g(·, β) = I {A = d(X;β)}
ρ(A | X)

{Y − µd(X;β)}+ µd(X;β)

− I {A = d(X;β0)}
ρ(A | X)

{Y − µd(X;β0)} − µd(X;β0)

ĝ(·, β) = I {A = d(X;β)}
ρ̂(A | X)

{Y − µ̂d(X;β)}+ µ̂d(X;β)

− I {A = d(X;β0)}
ρ̂(A | X)

{Y − µ̂d(X;β0)} − µ̂d(X;β0)

where g(·, β0) = ĝ(·, β0) = 0. Notice that Pnĝ(·, β) = V̂n(β) − V̂n(β0) and Pg(·, β) = V (β) − V (β0), therefore
β0 = argmaxβV(β) = argmaxβPg(·, β) and β̂ = argmaxβPnĝ(·, β).

Because

g(·, β) = I {A = d(X;β)}
ρ(A | X)

{Y − µd(X;β)}+ µd(X;β)

− I {A = d(X;β0)}
ρ(A | X)

{Y − µd(X;β0)} − µd(X;β0)

=

{
(2A− 1)Y − µ1(X)A+ µ0(X)(1−A)

ρ(A | X)
+ µ1(X)− µ0(X)

}
×
{
I(XTβ > 0)− I(XTβ0 > 0)

}
.

Then denote GR(·) as the envelope of class

Fβ(y, a, x) =

[{
(2a− 1)y − µ1(x)a+ µ0(x)(1− a)

ρ(a | x)
+ µ1(x)− µ0(x)

}

×
{
I(xTβ > 0)− I(xTβ0 > 0)

}
: ∥β − β0∥ < R

]
.

From Theorem 1, PG2
R = Op(R), condition (vi) holds. Similarly, condition (vii) in Kim and Pollard [1990] can be verified.

Given that Fβ(y, a, x) is a class of indicate functions, it follows that GR(·) complies with the uniform manageability
condition.

Next it is shown
sup
β

Png(·, β)− Png(·, β̂) ≤ op(n
−2/3).
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Similar to the proof of Lemma 2 in Wang et al. [2018], denote

g̃(·, β, σ, γ) =
[
(2A− 1)Y − {µ1(X) + γ}A+ {µ0(X) + γ}(1−A)

{e(X) + σ}A+ (1−A) {1− e(X)− σ}
+ µ1(X)− µ0(X)

]
×
{
I(XTβ > 0)− I(XTβ0 > 0)

}
And β0 = argmaxP g̃(·, β, 0, 0). Define

Wn(t, σ, γ) = n2/3(Pn − P )g̃(·, β0 + tn−1/3, σn−1/3, γn−1/3).

Given that supx∈X |ê(X)− e(X)| = op(n
−1/3) and supx∈X |µa(X)− µ̂a(X)| = op(n

−1/3) for a = 1, 0, it follows that

Wn

[
n1/3(β − β0), n

1/3{ê(X)− e(X)}, n1/3{µ̂A(X)− µA(X)}
]
−Wn

[
n1/3(β − β0), 0, 0

]
= op(1),

(Pn − P ) [g̃ {·, β, ê(X)− e(X), µ̂A(X)− µA(X)} − g̃(·, β, 0, 0)] = op(n
−2/3),

(Pn − P ){ĝ(·, β)− g(·, β)} = op(n
−2/3),

Pnĝ(·, β)− Png(·, β)− P ĝ(·, β) + Pg(·, β) = op(n
−2/3).

Take the Taylor expansion of g̃(·, β, σ, γ) and g̃(·, β, 0, 0) at (β0, 0, 0), it is found that Pg(·, β)−P ĝ(·, β) = P g̃(·, β, 0, 0)−
P g̃(·, β, ê(X)− e(X), µ̂A(X)− µA(X)) = op(n

−2/3). Therefore, for any β uniformly in a O(n−1/3) neighborhood of
β0, it holds that Pnĝ(·, β)− Png(·, β) = op(n

−2/3). Define β̃ = argmaxβPng(·, β), it follows that

Png(·, β̂) = Pnĝ(·, β̂)− op(n
−2/3) ≥ Pnĝ(·, β̃)− op(n

−2/3) = Png(·, β̃)− op(n
−2/3).

Condition (i) holds. Lastly, we verify conditions (iv) and (v). First we calculate

H = −∂2Pg(·, β)
∂β∂βT

|β=β0 .

Pg(β) = E

[
I {A = d(X;β)}

ρ(A | X)
{Y − µd(X;β)}+ µd(X;β)

− I {A = d(X;β0)}
ρ(A | X)

{Y − µd(X;β0)} − µd(X;β0)

]
= E [Y (1)d(X;β) + Y (0){1− d(X;β)}]− E [Y (1)d(X;β0) + Y (0){1− d(X;β0)}]
= E

[
{Y (1)− Y (0)}

{
I(XTβ > 0)− I(XTβ0 > 0)

}]
= E

({
I(XTβ > 0)− I(XTβ0 > 0)

}
E {Y (1)− Y (0) | X}

)
= E

[{
I(XTβ > 0)− I(XTβ0 > 0)

}
h(X)

]
,

where h(X) = E {Y (1)− Y (0) | X} . Then

∂Pg(β)

∂β
=

∂E
[{
I(XTβ > 0)− I(XTβ0 > 0)

}
h(X)

]
∂β

.

Similarly in Example 6.4 in Kim and Pollard [1990] and the proof of Theorem 1 in Wang et al. [2018], denote Tβ =
(I−∥β∥−2ββT)(I−β0β

T
0 )+∥β∥−1ββT

0 , where I is the identity matrix, maps A = {xTβ0 > 0} onto A(β) = {xTβ > 0},
taking ∂A onto ∂A(β). The surface measure σβ on ∂A(β) has the constant density pβ = βTβ0/∥β∥ with respect to the
image of the surface measure σ = σβ0 under Tβ . The outward pointing normal to A(β) is the standardized vector −β/∥β∥
and along ∂A the derivative (∂/∂β)Tβx reduces to −∥β∥−2

{
βxT + (βTx)I

}
.

Then

∂E
[{
I(XTβ > 0)− I(XTβ0 > 0)

}
h(X)

]
∂β

=∥β∥−2βTβ0(I + ∥β∥−2ββT)

∫
{xTβ0 = 0}f(Tβx)h(Tβx)xdσ.
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Given that Tβ0x = x along {xTβ0 = 0} and

∂E
[{
I(XTβ > 0)− I(XTβ0 > 0)

}
h(X)

]
∂β

|β=β0
= 0,

it is follows that
∫
{xTβ0 = 0}f(x)h(x)xdσ = 0. Using the fact ∥β0∥ = 1,

−H =
∂2Pg(·, β)
∂β∂βT

|β=β0 =
∂∥β∥−2βTβ0(I + ∥β∥−2ββT)

∂βT
|β=β0

∫
{xTβ0 = 0}f(x)h(x)xdσ

+ (I + ∥β0∥−2β0β
T
0 )

∂
∫
{xTβ0 = 0}f(Tβx)h(Tβx)xdσ

∂βT
|β=β0

= −(I + β0β
T
0 )

∫ {
xTβ0 = 0

}{
ḟ(x)h(x) + f(x)ḣ(x)

}T

β0xx
Tdσ

= −
∫ {

xTβ0 = 0
}{

ḟ(x)h(x) + f(x)ḣ(x)
}T

β0xx
Tdσ,

where ḟ(x) and ḣ(x) denote the first-gradient with respect to x.

Next, we derive the covariance kernel function C(s, t) = limα→∞ αEg(·, β0 + s/α)g(·, β0 + t/α). Because 2Eg(·, β0 +
s/α)g(·, β0 + t/α) = E|g(·, β0 + s/α)− g(·, β0)|2 +E|g(·, β0 + t/α)− g(·, β0)|2 −E|g(·, β0 + s/α)− g(·, β0 + t/α)|2,
it is necessary only to calculate E|g(·, β0 + s/α)− g(·, β0 + t/α)|2. It follows that

|g(·, β0 + s/α)− g(·, β0 + t/α)|2

=

{
(2A− 1)Y − µ1(X)A+ µ0(X)(1−A)

ρ(A | X)
+ µ1(X)− µ0(X)

}2

× |I(XT(β0 +
s

α
) > 0)− I(XT(β0 +

t

α
) > 0)|.

And

αE|g(·, β0 +
s

α
)− g(·, β0 +

t

α
)|2

=αE
{
|I(XT(β0 +

s

α
) > 0)− I(XT(β0 +

t

α
) > 0)| × SX

}
,

where

SX = E

[{
(2A− 1)Y − µ1(X)A+ µ0(X)(1−A)

ρ(A | X)
+ µ1(X)− µ0(X)

}2

| X

]
.

Similarly in Example 6.4 in Kim and Pollard [1990] and Wang et al. [2018], define β(τ) =
√
1− ∥τ∥2β0 + τ, where

τ is orthogonal to β0 and ranges over a neighborhood of the origin. Given the fact that the parameter space is on the
sphere (∥β∥ = 1, ∥β0∥ = 1), such a decomposition can be obtained by taking τ = τ(β) = T0β, where T0 = I − β0β

T
0 .

Then β = (βT
0 β)β0 + T0β such that βT

0 β =
√

1− ∥τ∥2 and βT
0 τ = βT

0 T0β = 0. Then we have τ(β0 + s/α) =
T0s/α, τ(β0 + t/α) = T0t/α. Similarly, we can decompose X as X = rβ0 + Z with a random variable r and a random
vector Z, where Z is orthogonal to β0. Denote s∗ = T0s and t∗ = T0t, then it follows

XT(β0 +
t

α
) = (rβ0 + Z)T(

√
1− ∥τ(β0 +

t

α
)∥2β0 + τ(β0 +

t

α
)

= (rβ0 + Z)T(

√
1− ∥t∗∥2

α2
β0 + T0

t

α
)

= r

√
1− ∥t∗∥2

α2
+ ZT t∗

α
.
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Table 4: Estimates for the linear regime (denoted as ”est”), the corresponding 95% confidence intervals (denoted as “CI”)
and the confidence interval lengths (denoted as “Length”) when ϵn = 0.7.

ϵn = 0.7 Int age BMI Temp Glucose
est 0.489 0.254 0.087 0.424 -0.382
CI (-0.235, 0.719) (-0.367, 0.452) (-0.403, 0.577) (-0.208, 0.613) (-0.495, 0.097)

Length 0.954 0.819 0.980 0.821 0.592
BUN creatinine WBC bilirubin BP

est -0.279 -0.162 0.486 0.133 0.072
CI (-0.689, 0.339) (-0.501, 0.428) (-0.278, 0.813) (-0.982, 0.991) (-0.352, 0.391)

Length 1.028 0.928 1.091 1.973 0.743

Define p(·, ·) as the joint probability distribution of (r, Z). With a change of variable w = αr, then SX = Srβ0+Z =
Swβ0/α+Z , we can rewrite αE|g(·, β0 + s/α)− g(·, β0 + t/α)|2 as

∫∫ − ZTs∗√
1− ∥s∗∥2

α2

> w ≥ − ZTt∗√
1− ∥t∗∥2

α2

Sw
α β0+Zp(

w

α
,Z)dwdZ

+

∫∫ − ZTt∗√
1− ∥t∗∥2

α2

> w ≥ − ZTs∗√
1− ∥s∗∥2

α2

Sw
α β0+Zp(

w

α
,Z)dwdZ.

Integrate over w and let α → ∞ to get

lim
α→∞

αE|g(·, β0 +
s

α
)− g(·, β0 +

t

α
)|2 =

∫
|ZTs∗ − ZTt∗|SZp(0, Z)dZ

=

∫
|ZTs− ZTt|SZp(0, Z)dZ

:= L(s− t),

with L(s) ̸= 0 for s ̸= 0. Therefore,

C(s, t) =
L(s) + L(t)− L(s− t)

2
.

.

C ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

Table 4 presents the confidence intervals for the estimated linear regimes in the eICU-CRD datasets when ϵn = 0.7. However,
at this ϵn value, the length of the confidence intervals is broad. As a result, these intervals don’t pinpoint any significant
covariates, leading to no findings.
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