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Abstract

Conformal Prediction (CP) algorithms estimate the
uncertainty of a prediction model by calibrating
its outputs on labeled data. The same calibration
scheme usually applies to any model and data with-
out modifications. The obtained prediction inter-
vals are valid by construction but could be ineffi-
cient, i.e. unnecessarily big, if the prediction errors
are not uniformly distributed over the input space.
We present a general scheme to localize the in-
tervals by training the calibration process. The
standard prediction error is replaced by an opti-
mized distance metric that depends explicitly on
the object attributes. Learning the optimal metric is
equivalent to training a Normalizing Flow that acts
on the joint distribution of the errors and the inputs.
Unlike the Error Reweighting CP algorithm of Pa-
padopoulos et al. [2008], the framework allows
estimating the gap between nominal and empirical
conditional validity. The approach is compatible
with existing locally-adaptive CP strategies based
on reweighting the calibration samples and applies
to any point-prediction model without retraining.

1 INTRODUCTION

In natural sciences, calibration often refers to comparing
measurements of the same quantity made by a new device
and a reference instrument.1 In data science, calibrating

1The International Bureau of Weights and Measurements de-
fines calibration as the "operation that, under specified conditions,
in a first step, establishes a relation between the quantity values
with measurement uncertainties provided by measurement stan-
dards and corresponding indications with associated measurement
uncertainties (of the calibrated instrument or secondary standard)
and, in a second step, uses this information to establish a relation
for obtaining a measurement result from an indication."

a model means quantifying the uncertainty of its predic-
tions. Parametric and non-parametric methods for model
calibration have been proposed in the past. Examples of
trainable post hoc approaches are Platt scaling [Platt et al.,
1999], Isotonic regression [Zadrozny and Elkan, 2002], and
Bayesian Binning [Naeini et al., 2015]. Here we focus on
regression problems, where data objects have an attribute,
X ∈ X , and a real-valued label, Y ∈ R. The model is
a point-like predictor of the most likely label given its at-
tribute, i.e. f(X) ≈ E(Y |X). Calibrating f would promote
f(X) to a Prediction Interval (PI), i.e. a subset of the label
space, C ⊆ R, that contains the unknown label, Y , with
lower-bounded probability. Given a target confidence level,
1− α ∈ (0, 1), C is valid if it contains the unknown label
with probability at least 1−α, i.e. if Prob(Y ∈ C) ≥ 1−α.

Conformal Prediction (CP) is a frequentist approach for
producing valid PIs without making assumptions on the
data-generating distribution, PXY , or the prediction model,
f [Vovk et al., 2005, Shafer and Vovk, 2008]. PIs are ob-
tained by evaluating the conformity between the predic-
tions and the labels of a calibration set. The evaluation is
based on a conformity function, e.g. the absolute residual,
a(Y, f(X)) = |Y − f(X)|. Validity is guaranteed automat-
ically by the properties of finite-sample empirical distribu-
tions. Different conformity functions, however, may produce
non-equivalent PIs. Several criteria have been proposed to
assess their efficiency [Vovk et al., 2016]. For real-valued
labels, a straightforward criterion is the average size, E(|C|).
If the model performs uniformly over the support of PXY ,
the PIs obtained using a = |Y − f(X)| have minimal av-
erage size. If the data are heteroscedastic, input-adaptive
techniques may increase the PI efficiency because their size
changes according to the performance of f , e.g. the predic-
tion band shrinks where |Y − f(X)| is small and grows
where |Y − f(X)| is large.
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1.1 OUTLINE

We obtain input-adaptive PIs by learning calibra-
tion functions that depend on the object attributes
explicitly. For simplicity, we assume the calibration
samples, (X1, Y1), . . . , (XN , YN ), and the test object,
(XN+1, YN+1), are independently drawn from the same
joint distribution, i.e. (Xn, Yn) ∼ PXY . The method ap-
plies with minor changes if the samples are only exchange-
able [Vovk et al., 2005]. Given a conformity function,
a : R2 → R, and a confidence level, 1 − α ∈ (0, 1), CP
consists of two main steps,

1. computing the (1 − α)-th sample quantile, QA, of
the calibration scores, An = a(Yn, f(Xn)), n =
1, . . . , N , and

2. accept all possible test labels, y ∈ R, for which
a(y, f(XN+1)) is smaller than QA.

IfAn = |Yn−f(Xn)|, the PI atXN+1 is the interval CA =
[f(XN+1) − QA, f(XN+1) + QA] ⊆ R. Since QA is the
(1− α)-th sample quantile of {An}Nn=1 and calibration and
test samples are i.i.d., CA = {y ∈ R, a(y, f(XN+1)) ≤
QA} guarantees Prob(YN+1 ∈ CA) ≥ 1 − α. We say
that CA is marginally valid because QA approximates the
quantile of the marginal distribution PA =

∑
XY PAXY

2.
In particular, there is no conditioning on the test input,
XN+1 [Vovk, 2012]. PIs with input-conditional coverage,
Prob(YN+1 ∈ CA|XN+1) cannot be obtained with fi-
nite data and without certain regularity assumptions on the
data distribution [Lei and Wasserman, 2012, Vovk, 2012,
Foygel Barber et al., 2021]. Approximating distribution-
free conditionally-valid PIs is the goal of an active re-
search stream (see Section 4). Existing methods are mostly
based on importance-sampling techniques that temporar-
ily break the data exchangeability [Lin et al., 2021, Tib-
shirani et al., 2019, Guan, 2023]3. Our strategy is to pre-
serve exchangeability at all times but change the defini-
tion of the conformity function, i.e. to replace a with
b = b(a(Y, f(X)), X) ∈ B and apply b unconditionally to
the calibration and test samples. Data exchangeability holds
automatically provided b is trained on a separate set. As in
standard CP, we use the transformed calibration samples,
Bn = b(a(Yn, f(Xn)), Xn), n = 1, . . . N , to compute aB-
space threshold,QB , and build PIs that are marginally valid,
i.e. of constant size, over B. Local adaptability arises when

2Technically, marginal validity depends on the joint distribu-
tion of the calibration and test samples, i.e. Prob(YN+1 ∈ CA) =
PXN+1YN+1X1Y1...XNYN (YN+1 ∈ CA).

3In Lin et al. [2021], Tibshirani et al. [2019], Guan [2023],
the sample quantile of {An}Nn=1 is replaced by the quantile
of an importance-sampling estimate of the empirical input-
conditional distribution, PA|X ≈

∑N
n=1 wn(X)1(A = An),

where
∑N

n=1 wn(X) = 1 and wn(X) depends on X through
a predefined function.

the PIs, CB = {y ∈ R, b(a(y, f(XN+1)), XN+1) ≤ QB},
are mapped back to the label space (by inverting b).

This work addresses the following problem,

What transformations of the conformity function improve
CP adaptivity? How can we optimize a transformation

using a separate training set (from the same task)?

We start by interpreting b as a Normalizing Flow (NF), i.e.
a coordinate transformation that maps a source distribu-
tion, P , into a target distribution, P ′ [Papamakarios et al.,
2021]. In our case, the source distribution is the joint dis-
tribution of the conformity scores and the object attributes,
PAX . The target is a factorized distribution, PBX = UBPX ,
where UB is an arbitrary univariate distribution. In the B-
space, the PIs are marginally valid and have constant size
by construction. Maximal efficiency is guaranteed because
the joint distribution factorizes, which implies PB|X = UB
for all X and the equivalence between marginally and con-
ditionally valid PIs. The practical problem is to enforce
the factorization given the available data. The idea is to
train b by maximizing the likelihood of the transformed
samples under UB . When b is invertible (in its first ar-
gument and for any XN+1), the PIs are CB = {y ∈
R, a(y, f(XN+1)) ≤ ξX}, ξX = b−1(QB , XN+1), with
b−1 defined by b−1(b(A,X), X) = A. Intuitively, this pro-
duces locally adaptive PIs because ξX approximates the un-
available conditional quantile QA|X . The approximation er-
ror depends on the distribution distance between the source
and the target distributions, Pb(A,X),X and UBPX .

1.2 AN EXAMPLE

Let PX = Uniform(X ) be the uniform distribution over
X = [0, 1] and (X1, Y1), . . . , (XN , YN ), (XN+1, YN+1) ∈
X × R a collection of i.i.d. random variables from

PXY = PY |XPX , (1)
PY |X ∼ (1<0.5 + ξ 1>0.5)N (0, 1)

where 1< 1
2
= 1(X < 0.5), 1>0.5 = 1(X > 0.5), and ξ =

5. Assume we have the best-possible prediction model, i.e.
f(X) = E(Y |X) = 0, for any X ∈ X . Let a(Y, f(X)) =
|Y − f(X)| = |Y | be the conformity measure and An =
|Yn| the corresponding conformity scores, n = 1, . . . N +1.
Choose a target confidence level, 1 − α ∈ (0, 1), and let
QA be the (1 − α)-th sample quantile of {An}Nn=1, i.e.
its m∗-th smallest element, m∗ = ⌈(1 − α)(N + 1)⌉. If
N = 100 and α = 0.05, we have m∗ = 96. The conformity
scores, A1, . . . , AN+1, are i.i.d. random variables because
(Xn, Yn) are i.i.d. For any XN+1, the marginal PI is CA =
[f(XN+1)−QA, f(XN+1) +QA] = [−QA, QA], i.e. CA
has the same width over the entire input space X = [0, 1].

Constant uncertainty does not correspond to the true
model’s prediction error (see Figure 1). The data are het-
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eroscedastic because PY |X in (1) depends on X explic-
itly. As the calibration samples and (XN+1, YN+1) are all
drawn from PXY = PY |XUniform([0, 1]), the test score,
a(YN+1, f(XN+1)), is smaller than Am∗ with probability
m∗
N+1 , i.e. Prob(YN+1 ∈ CA) =

m∗
N+1 . Figure 1 shows that

constant-size marginal PIs are valid but inefficient. In partic-
ular, CA is too large when XN+1 < 0.5 and too small when
XN+1 > 0.5. An adaptive CP algorithm should output PIs
that are smaller or larger than CA when XN+1 < 0.5 or
XN+1 > 0.5.

We aim to learn a locally adaptive conformity functions,
b = b(A,X), that produces these adaptive PIs automati-
cally, i.e. without partitioning the input space and using
the standard CP procedure described in Section 1.1. Let
Bn = b(An, Xn) ∈ B and QB be the sample quantile
of {Bn}Nn=1. In B, PIs are defined as in Section 1.1, i.e.
CB = {y ∈ R, b(|y|, XN+1) ≤ QB} and have con-
stant size (see Figure 2). Assuming b is monotonic in An,
there exist b−1 such that b−1(b(A,X), X) = A. The in-
verse transformation, b−1, can be used to map CB back
to the label space, i.e. to rewrite the PIs as {y ∈ R, |y| ≤
b−1(QB , XN+1)}. For improving PI efficiency, we need
a b such that b−1(QB , XN+1) is smaller than QA for
XN+1 < 0.5 and larger than QA for XN+1 > 0.5.

Similar to the Mondrian CP algorithm [Vovk et al., 2005],
we split {(An, Xn)}Nn=1 into D<0.5 = {(An, Xn), Xn <
0.5}Nn=1 and D>0.5 = {(An, Xn), Xn > 0.5}Nn=1. Since
Yn|Xn ∼ N (0, 1) for all (Yn, Xn) ∈ D<0.5 and Yn|Xn ∼
N (0, 5) for all Xn ∈ D>0.5, the quantile of PA|X can
be written as QA|X = 1<0.5QA|X<0.5 + 1>0.5QA|X>0.5,
where QA|X<0.5 is the m∗-th smallest elements of D<0.5,
m∗ = ⌈(1 − α)(|D>0.5| + 1)⌉ (idem for X < 0.5). As
expected, the conditional quantile depends on X through
1<0.5 = 1(X < 0.5) and 1>0.5 = 1(X > 0.5). This im-
plies the conditionally-valid PIs, CA|X = [−QA|X , QA|X ],
will depend on the location of the test object XN+1, i.e. on
whether XN+1 < 0.5 or X < 0.5. In this special case, the
conditionally valid PIs for X < 0.5 and X > 0.5 are equiv-
alent to the marginal PIs of the regions [0, 0.5] and [0.5, 1].
Partitioning the calibration data is optimal if i) the sample
size is large enough and ii) we know the data generating
distribution. Otherwise, we need a more general approach.

Let

bflow = log

(
A

γ + |g(X)|2

)
, (2)

g(X) = θ1X + θ2X
2 + θ3X

3

where θ = (θ1, θ2, θ3) ∈ R3 is a free parameter and
γ = 0.01. For any X and θ, bflow(A,X) is a mono-
tonic (and hence invertible) function of A = |Y |. Anal-
ogously, let bER = A

γ+|g(X)|2 as in the Error Reweighted
(ER) CP algorithm of Papadopoulos et al. [2008]. bER is
also a monotonic and invertible function of A = |Y |. Let
{bflow(An, Xn)}Nn=1 and {bER(An, Xn)}Nn=1 be the trans-

formed calibration sets obtained using bflow and bER. To
compare our strategy and the ER algorithm, we look at
the efficiency of bflow and bER when θflow and θER are
trained through the proposed NF scheme or the error-fitting
heuristic of Papadopoulos et al. [2008]. Figure 2 shows a
sample of the original calibration scores {An}Nn=1 and the
transformed scores obtained through bflow and bER when
θflow ̸= θER are optimized following the corresponding
strategies on a separate training data set. 4

Let QB be the (1 − α)-th (marginal) sample quantile
of {Bn = bflow(An, Xn)}Nn=1. By definition, QB =
log

(
An∗(γ + |g(Xn∗)|2)−1

)
, for some n∗ such that ⌈(1−

α)(N +1)⌉ elements of {Bn}Nn=1 are smaller than or equal
to QB . In general, since bflow depends on X explicitly, this
does not imply there are ⌈(1 − α)(N + 1)⌉ elements of
{An}Nn=1 smaller than or equal to An∗ . The exchangeabil-
ity of Bn and BN+1 = bflow(|YN+1|, XN+1) guarantees
the validity of the B-space PIs, i.e. Prob(BN+1 ≤ QB) =
n∗
N+1 . The validity of the corresponding label-space PIs,

Prob
(
|YN+1| ≤ eQB(γ + |g(XN+1)|2)

)
= n∗

N+1 , follows

from the monotonicity of bflow. 5. Similar arguments apply
to bER.

The above holds for any XN+1 and any θ. We aim to
choose a θ that improves the efficiency of CB , e.g. re-
duces its average size. In Papadopoulos et al. [2008], θ
would be tuned to make g(X) a model of the conditional
residuals, i.e. θER = argminθ

∑N
n′=1 |Y 2

n − |g(Xn)|2|2,
where {(An′ , Xn′)}Nn′=1 is a separate calibration-training
set of labeled samples. In this work, we interpret (A,X) →
(bflow(A,X), X) as an NF acting on the joint distribution
of the conformity scores and the inputs, (A,X) ∼ PAX .
bflow is then trained by maximizing the likelihood of (B,X)
under a target factorized distribution, PBX = UBPX . If
the NF transforms (A,X) into (B,X) ∼ PBX exactly,
the obtained marginally-valid B-space PIs have maximal
efficiency because PB|X = UB =

∑
X PBX for all X .

The choice of UB is arbitrary, provided its support is
compatible with the transformation class, e.g. choosing
UB = Uniform([0, 1]) would not be ideal in this case be-
cause bflow ∈ R. We choose UB = N (0, 1) instead and
let

θflow = argmin
θ

N∑
n′=1

|bflow(An′ , Xn′)|2 (3)

where we use uB ∝ exp−
B2

2 and can drop the transforma-
tion Jacobian, ∂Abflow = 1

A , because it does not depend

4As log(t) is a monotonic and input-independent transfor-
mation, the PIs obtained from bER and bflow = log ◦bER are
equivalent if we use the same localization function, e.g. if we set
θ = θflow = θER.

5We use Prob(BN+1 ≤ QB) = Prob(AN+1 ≤
b−1
flow(QB , XN+1)) = Prob(|YN+1| ≤ eQB(γ +

|g(XN+1)|2)) = Prob(YN+1 ∈ CB).
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CA: cover=0.92, size=0.486
CER: cover=0.88, size=0.341
Cflow: cover=0.92, size=0.362
test errors

Figure 1: A test sample of conformity scores (black dia-
monds) and the upper bound of the marginal PIs (black
dots) and the adaptive PIs obtained through the ER CP al-
gorithm of Papadopoulos et al. [2008] (blue dots) and the
NF approach (red dots). The nominal confidence level is
1− α = 0.9 for all algorithms.

on θ. As for bER, {(An′ , Xn′)}Nn′=1 is a separate training
set, which we will not use to calibrate or test the trained CP
algorithms. Figure 1 shows the label-space PIs obtained by
setting θ = θflow in bflow (Cflow, in red) and θ = θER in
bER (CER, in blue).

2 THEORY

In this section, X is an arbitrary attribute space and
{(Xn, Yn) ∈ X × R}N+1

n=1 a collection of i.i.d. random
variables from an unknown joint distribution, PXY =
PY |XPX . The regression model, f(Xn) ≈ E(Yn|Xn),
n = 1, . . . , N + 1, is assumed to be pre-trained on sep-
arate data.

2.1 QUANTILES

Given a random variable, Z ∈ Z and its distribution, PZ ,
let FZ(z) = PZ(Z ≤ z) be the Cumulative Distribution
Function of PZ . The (1− α)-th quantile of Z ∼ PZ is

Q̄Z = inf
q
{q ∈ Z : FZ(q) ≥ (1− α)} (4)

When Z is continuous, FZ is strictly increasing and Q̄Z =
F−1
Z (1 − α). The (1 − α)-th sample quantile of a collec-

tion of i.i.d. random variables, {Zn ∼ PZ}Nn=1, is the
(1 − α)-th quantile of their empirical distribution PZ ≈

X

sc
or

e

A=[ 0.0 0.0 0.0 ], cover=0.92
ER=[ 0.784 0.653 -0.971 ], cover=0.88
flow=[ -0.714 3.62 -2.63 ], cover=0.92

Figure 2: A calibration sample of the original conformity
scores (black diamonds) and the scores obtained by trans-
forming them with bER (blue stars) and bflow (red dots).
The solid and dashed lines represent the corresponding
(1− α)-th sample quantiles, 1− α = 0.9.

N−1
∑N
n=1 1(Z = Zn), i.e.

QZ = inf
q
{q ∈ Z,

N∑
n=1

1(Zn ≤ q) ≥ n∗} (5)

n∗ = ⌈(N + 1)(1− α)⌉

where ⌈s⌉ the smallest integer greater than or equal to s ∈ R.
Assuming ties occur with probability 0, i.e. Prob(Zn =
Zn′) = 0 for any n ̸= n′, QZ is the n∗-th smallest element
of {Zn ∼ PZ}Nn=1. CP validity is a direct consequence of

Lemma 2.1 (Quantile Lemma Tibshirani et al. [2019])
Let Z1, . . . , ZN , ZN+1 ∈ R be a collection of i.i.d. random
variables and QZ be the (1 − α)-th sample quantile of
{Zn}Nn=1 defined in (5). If ties occur with probability 0,

Prob (ZN+1 ≤ QZ) =
⌈(1− α)(N + 1)⌉

N + 1
(6)

The lemma first appeared in Papadopoulos et al. [2002].
Slightly different proofs can be found in Lei and Wasserman
[2014], Tibshirani et al. [2019], Angelopoulos and Bates
[2021]. The standard CP bounds, 1− α ≤ Prob(ZN+1 ≤
QZ) ≤ 1 − α + 1

N+1 , follows from ⌈s⌉ − s ≥ 0 and
(1−α)(N+1) ≤ ⌈(1−α)(N+1)⌉ ≤ (1−α)(N+1)+1.
Asymptotically, QZ is normally distributed around Q̄Z with
variance σ2 = (1−α)α

NpZ(Q̄Z)
, where pZ(Q̄Z) is the density of

PZ evaluated at Z = Q̄Z , with Q̄Z defined in (4).

2.2 CONFORMITY SCORES

A conformity score is a random variable, A = a(f(X), Y ),
that describes the conformity between a prediction, f(X),
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and the corresponding label, Y . A standard choice is a =
|Y −f(X)|. Let PAX be the distribution of the i.i.d. random
variables {(An = |Yn − f(Xn)|, Xn)}N+1

n=1 =. Lemma 2.1
guarantees the validity of the symmetric PI,

CA = [f(XN+1)−QA, f(XN+1) +QA] (7)

when QA is the (1 − α)-th sample quantile of {An}Nn=1.
We may also let the conformity scores be B = b(A),
where b is a global monotonic function of its argument,
e.g. b(A) = −A−1 or b(A) = logA. In that case, we ob-
tain the PIs by inverting b and letting CB = [f(XN+1) −
b−1(QB), f(XN+1)+ b

−1(QB)], where QB is the (1−α)-
th sample quantile of {Bn = b(An)}Nn=1 and b−1 is defined
by b−1 ◦ b(A) = A. For example, b−1(QB) = − 1

QB
if

B = − 1
A and b−1(QB) = exp(QB) if B = logA. Assum-

ing ties occur with probability 0, QA is the n∗-th smallest
element of {An}Nn=1, with n∗ = ⌈(1 − α)(N + 1)⌉. Let
A∗ be that element. The (1 − α)-th sample quantile of
the transformed scores, QB , is the ⌈(1 − α)(N + 1)⌉-th
smallest element of {b(An)}Nn=1. If b is monotonic and ap-
plies globally to all samples, b(An) < b(An′) if and only
if An < An′ , for any n ̸= n′. Then QB = b(A∗) and
b−1(QB) = QA, i.e. the size of the PIs does not depend on
b. If b depends on the input, b(An, Xn) < b(An′ , Xn′) does
not imply An < An′ , for any n ̸= n′, i.e. the PIs depends
on b.

2.3 NORMALIZING FLOWS

This work is about finding an input-dependent transforma-
tion b = b(A,X) that changes the PIs to make them locally
adaptive and more efficient automatically, i.e. without split-
ting the calibration data set and applying any existing CP
algorithm. In what follows, we assume b always satisfies

Assumption 2.2 For A,B ⊂ R, b : A×X → B

1. is strictly increasing on its first argument, i.e.
Jb(A,X) = ∂

∂Ab(A,X) > 0 for all (A,X) and

2. its domain and co-domain are the same for all X ∈ X .

Let b−1(B,X) be defined by b−1(b(A,X), X) = A. The
assumption on the domain and co-domain of b guarantees
b−1(b(A,X ′), X) is well defined for any X ̸= X ′. We
avoid over-fitting by letting b be smooth in X and A. Since
b acts on random variables and obeys Assumption 2.2, we
can interpret it as (part of) an NF. Let PZ and UZ be two dis-
tributions with the same support, Z . An NF is an invertible
coordinate transformation from Z to Z such that

Z ′ = ϕb(Z) ∼ UZ′ , Z = ϕ−1
b (Z ′) ∼ PZ (8)

In our case, Z = (A,X), Z ′ = (B,X), and ϕb(A,X) =
(b(A,X), X). The Jacobian of ϕb is a (|X |+1)-dimensional

squared matrix, Jϕb
, such that Jϕbij = 0 for all i, j > 1 and

i ̸= j, Jϕbii = 1 for all i > 1, Jϕb1i =
∂
∂Xi

b(A,X) for
all i > 1, and Jϕb11 = ∂

∂Ab(A,X). We often use Jb(A,X)
instead of Jϕb11. Assumption 2.2 implies Jϕb11 > 0 and
guarantees the invertibility of ϕb because, for any (A,X),
det(Jϕb

(A,X)) =
∏|X |+1
i=1 Jϕb ii(A,X) = Jϕb 11(A,X)

is strictly positive. When not explicitly required, we drop
the trivial part of ϕb and use b fo ϕb and ϕb1 depending on
the context. See Papamakarios et al. [2021] for a review of
using NFs in inference tasks.

2.4 VALIDITY

Given an NF, b, we let the associated marginal PI at XN+1

be

CB = [f(XN+1)− δ, f(XN+1) + δ] (9)

δ = b−1(QB , XN+1)

where QB is the (1 − α)-th sample quantile of {Bn =
b(An, Xn)}Nn=1. If ties occur with probability 0, the validity
of CB defined in (9) is guaranteed by

Lemma 2.3 Let b satisfy Assumption 2.2 and CB be the PI
defined in (9). Then

Prob(YN+1 ∈ CB) =
⌈(1− α)(N + 1)⌉

N + 1
(10)

The transformation is globally defined but acts differently on
the samples, e.g. we may have b(A,Xn) ̸= b(A,Xn′) for
someA ∈ A and n ̸= n′. The ranking of the original scores,
{An}Nn=1, may differ from the ranking of the transformed
scores, {Bn}Nn=1, i.e. A1 < A2 < · · · < AN may not
imply B1 < B2 < · · · < BN . This happens if An < An′

and b(An, Xn) > b(An′ , Xn′) for some n ̸= n′. While
validity is automatically guaranteed because calibration and
test samples remain exchangeable, we may have CA ̸= CB ,
e.g. when b changes the ranking of the calibration samples.
Under further mild assumptions on b, Lemma 2.4 shows that
we can find a test object for which the PIs obtained with b
and a have difference sizes, i.e. |CB | ≠ |CA|.

Lemma 2.4 Let {An}N+1
n=1 be a collection of i.i.d. continu-

ous random variables. Assume b satisfies Assumption 2.2.
Then, if b(An, XN+1) ̸= b(An, Xn) for any n = 1, . . . , N ,

|CB | ≠ |CA| (11)

with CB and CA defined in (9) and (7).

2.5 EXACT NORMALIZING FLOWS

In some cases, marginally valid PIs are also conditionally
valid for any XN+1 ∈ X , i.e. CA defined in (7) obeys

Prob(YN+1 ∈ CA|XN+1) ≥ 1− α (12)
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This may occur when PAX has a specific form. When
the data are not heteroscedastic, i.e. PAX = PA|XPX =
PAPX , the equivalence of marginal and conditional PIs is
guaranteed by

Theorem 2.5 Let PAX = PAPX for any X ∈ X . For any
XN+1 ∈ X , CA defined in (7), obeys

Prob(YN+1 ≤ CA|XN+1) =
⌈(N + 1)(1− α)⌉

N + 1
(13)

Theorem 2.5 is a straightforward consequence of the
Bayesian theorem and Lemma 2.1. We include it here be-
cause it suggests we can find an NF that localizes the PIs.
The idea is to train b to make CB = Cb(A) condition-
ally valid through Theorem 2.5, i.e. to make b such that
(b(An, Xn), Xn) = (Bn, Xn) ∼ PBX = PBPX . Inter-
preting b as an NF, we can find a near-optimal b through
standard NF-training techniques, e.g. by maximizing the
likelihood of the transformed scores under an arbitrary
target distribution, UB , that does not depend on the in-
put. Given samples from A, we need the composition be-
tween the target distribution and the score transformation,
b. In particular,

∫ x′

x
dxp(f(x)) =

∫ f(x′)

f(x)
dy

f ′(f−1(y))p(y)

implies the density of the composition is p(B,X) =
u(b(A,X))Jb(A,X))p(X). The objective function is

ℓ(b) = E (log u(B)p(X)) (14)
= E(log (u(b(A,X)) |Jb(A,X)|)) + ℓ0

where u is the density of the (arbitrary) target distribution,
UB , and ℓ0 = E(log p(X)) does not depend on b. Fix a
given target distribution, UB , e.g. let UB be the univariate
Gauss distribution or UB ∼ Uniform([0, 1]). Assume there
exists an NF, b, that satisfies Assumption 2.2 and is such that
PBX = UBPX for any (A,X) when B = b(A,X). Then,
CB defined in (9) is conditionally valid at XN+1. The claim
is supported by

Corollary 2.6 Let UB be an arbitrary univariate distribu-
tion and b an NF satisfying Assumption 2.2. If (B,X) =
(b(A,X), X) ∼ PBX = UBPX for any (A,X), CB de-
fined in (9) obeys

Prob(YN+1 ∈ CB |XN+1) =
⌈(1− α)(N + 1)⌉

N + 1
(15)

Corollary 2.6 follows from Lemma 2.3 and the monotonicity
of b. There is no contradiction with the negative results
of Lei and Wasserman [2012], Vovk [2012] because exact
factorization can not be achieved with finite data.

2.6 NON-EXACT NORMALIZING FLOWS

Let b̂ be an NF trained by maximizing a finite-sample em-
pirical estimation of the likelihood defined in (14). We do

not expect b̂ to factorize PBX exactly but assume it approxi-
mates the ideal optimal transformation, b, defined in Corol-
lary 2.6 in the Huber sense. More precisely, we let ϵ > 0
quantify the discrepancy between the two transformations
and

b̂ = (1− ϵ)b+ ϵδ, (16)

where δ = δ(A,X) is an unknown error term that depends
on (A,X). The assumption is technical and used to prove
the error bounds below. The density of the perturbed distri-
bution is p(B̂,X) = |Jb̂(A,X)|u(b̂(A,X)))p(X), which
may be expanded in ϵ under the assumption ϵ << 1. The-
orem 2.7 characterizes the validity of CB̂ , i.e. the PIs de-
fined in (9) with b replaced by b̂, up to o(ϵ2) errors. We
assume b and b̂ fulfill the requirements of Assumption 2.2,
b satisfies the assumption of Corollary 2.6, and b̂ is the
minimizer of (14) for a given target distribution UB . To sim-
plify the notation, we let B = bX(A) where bX = b(A,X)

(idem b−1
X , b̂X , and b̂−1

X ) and define B̃ = ψX(A), where
ψX = b−1

XN+1
◦ b̂XN+1

◦ b̂−1
X ◦ bX . We bound the validity

gap of CB̂ in terms of the variation distance between the
distributions of B and B̃, i.e.

dTV(PBX , PB̃X) = sup
(A,X)

∥p(B,X)− p(B̃,X)∥ (17)

where p(B,X) and p(B̃,X) are the densities of PBX =
UBPX and PB̃X and B and B̃ depend on (A,X) through b
and ψ. We use the Maximal Coupling Theorem to link the
CP validity bound in (2.3) and the total variation distance
above. See Lindvall [2002] or Ross and Peköz [2023] for an
overview of coupling methods. Up to o(ϵ2) corrections, an
explicit lower bound of the gap is given in

Theorem 2.7 Let b(A,X) and b̂(A,X) obey Assumption
2.2 and UB = Uniform([0, 1]). Assume b̂ obeys (16) for all
(A,X). Then,

Prob(BN+1 ≤ QB̂) (18)

≥ ⌈(N + 1)(1− α)⌉
N + 1

− 1

2
dTV(PB , PB̃) (19)

≥ ⌈(N + 1)(1− α)⌉
N + 1

− ϵ sup
x

∥pX(x)∥LδLb−1 + o(ϵ2)

where QB̂ is the sample quantile of {b̂(An, Xn)}Nn=1 de-
fined in (5) with b replaced by b̂, B̃ = ψX(B), ψX =

b−1
XN+1

◦ b̂XN+1
◦ b̂−1

X ◦ bX , bX(A) = b(A,X) (idem b−1
X ,

b̂X , and b̂−1
X ), Lδ and Lb−1 are the Lipschitz constants of

δ(B,X) and b−1, and p(X) is the marginal density of the
covariates.

Theorem 2.7 connects our work with the non-
exchangeability gaps obtained in Barber et al. [2022] in a
different framework.
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3 IMPLEMENTATION

We compare two models trained with the proposed scheme,
a standard CP algorithm, and the ER model of Papadopoulos
et al. [2008]. For simplicity, we focus on Split CP, where the
regressor, f , is pre-trained on separate data and kept fixed.

3.1 DATA

We generate 4 synthetic data sets by perturbing the output
of a polynomial regression model of order 2 with four types
of heteroscedastic noise. Each data sets consist of 1000
samples of a pair of random variables, (X,Y ), obeying

Y = XTw + ϵi, (20)

X = [1, X1, X
2
1 ], X1 ∼ Uniform([−1, 1]),

ϵi = 0.1 + σsynth−i(X)E, E ∼ N (0, 1)

where w ∈ R3 is a randomly generated fixed parameter,
i ∈ {cos, squared, inverse, linear}, and

σsynth−cos(X) = 2 cos
(π
2
X1

)
1(X1 < 0.5) (21)

σsynth−squared(X) = 2X2
11(X1 > 0.5) (22)

σsynth−inverse(X) = 2
1

0.1 + |X1|
1(X1 < 0.5) (23)

σsynth−linear(X) = 2|X1|1(X1 > 0.5) (24)

For the real-data experiments, we use the following 6 pub-
lic benchmark data sets from the UCI database: bike, the
Bike Sharing Data Set [Fanaee-T, 2013], CASP, the Physic-
ochemical Properties of Protein Tertiary Structure Data
Set [Rana, 2013], community, Community and Crime
Data Set[Redmond, 2009], concrete, the Concrete Com-
pressive Strength Data Set [Yeh, 2007], energy, the En-
ergy Efficiency Data Set [Tsanas and Xifara, 2012], and
facebook_1, the Facebook Comment Volume Data Set
Singh [2016].

All data sets are split into two subsets. We use the first
subset to train a Random Forest (RF) regressor and the
second subset to train and test the conformity functions. For
stability, we limit the attribute dimensions to 10 (with PCA)
and normalize the label before training the RF models. The
Mean Absolute Error of the RF regressor is reported in Table
1. To make the performance comparable across different data
sets, we reduce the size of the second subset to 1000 (except
for community, concrete, and energy that have size
997, 515, and 384), split it into two equal parts, and use the
first to train the conformity measures and the second for
calibrating and testing the optimized models.

data set MAE

synth-cos 0.051(0.033)
synth-inverse 0.056(0.007)
synth-linear 0.157(0.054)
synth-squared 0.125(0.038)
bike 0.028(0.001)
CASP 0.14(0.003)
community 0.007(0.001)
concrete 0.051(0.002)
energy 0.019(0.001)
facebook_1 0.003(0.0)

Table 1: Averages and standard deviation over 5 runs of the
MAE of the RF regression model on the synthetic and real
data sets.

3.2 MODELS

We let A = |Y − f(X)| and consider four model classes,

bbaseline = A (25)

bER =
A

γ + |g(X)|
(26)

bGauss = log

(
A

γ + |g(X)|

)
(27)

bUniform = σ

(
A

γ + |g(X)|

)
(28)

where γ = 0.001 and g is a fully connected ReLU neural
network with 5 layers of 100 hidden units per layer. The net-
work parameters of ER are trained as in Papadopoulos et al.
[2008] by minimizing ℓER = E(|g(X)| − |f(X) − Y |)2.
Gauss and Uniform are trained with the proposed ap-
proach by maximizing the log-likelihood in (14) where
UB = N (0, 1) for Gauss and UB = Uniform([0, 1])
for Uniform. The model functional form guarantees b be-
longs to the distribution support for any (A,X). We use the
ADAM gradient descent algorithm of Adam and Lorraine
[2019] to solve all optimization problems with standard pa-
rameters. The learning rate is 0.01 for ER, 10−4 for Gauss,
and 10−5 for Uniform.

3.3 RESULTS

To evaluate the PIs, we consider their empirical validity,
E(1(YN+1 ∈ CB)), average size, E(|CB |), and empirical
input-conditional coverage, which we approximate with the
Worse-Slab Coverage (WSC) algorithm of Cauchois et al.
[2020]. Table 2 summarizes our numerical results across
the 4 synthetic and 6 real data sets for three values of the
confidence level, 1−α ∈ {0.95, 0.90, 0.65}. Tables 3 and 4
show the model performances at α = 0.05 on each data set.
The figures are the averages and standard deviations over 5
random train-test splits.
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baseline is the best method for α = 0.35, on synthetic
and real data, but is generally outperformed by the trained
models at higher confidence levels. Gauss seems to out-
perform all other models on synthetic data. This may be
due to the Gaussianity of the noise in the generation of
the synthetic samples. On synthetic data, ER is the second
best model, probably because we generate the data using
Y ∼ f(X) + g(X)ϵ, ϵ ∼ N (0, 1), which implies the ER
assumptions are exact. Uniform is the best model on real
data. Interestingly, the model with the conditional coverage
closest to the nominal is not the same at all confidence levels.
Table 4 suggests that the optimized models are outperformed
by baseline when data are not heteroscedastic, i.e. when
baseline has good conditional coverage. This seems to
be a shared problem of reweighting methods, as already ob-
served in Romano et al. [2019]. The code for reproducing all
numerical simulations is available in this gitHub repository.

4 RELATED WORK

Calibration training In CP, learning a conformity func-
tion from data is fairly new. To the best of our knowl-
edge, the only example of a trained conformity function
is the ER algorithm of Papadopoulos et al. [2008, 2011],
Lei and Wasserman [2012], where localization is achieved
by reweighting |Y − f(X)| with a pre-trained model of
the conditional residual, |g(X)| ≈ E(|Y − f(X)| |X).
Outside CP, there are several examples of calibration op-
timization for data science applications [Platt et al., 1999,
Zadrozny and Elkan, 2002, Naeini et al., 2015]. See Guo
et al. [2017] for an introduction and empirical compari-
son of different calibration methods for neural networks.
Object-dependent conformity measures. Papadopoulos
et al. [2008, 2011], Lei and Wasserman [2012] use different
versions of reweighted conformity measures. The localiza-
tion function is either fixed, e.g. a KNN-based variance
estimator, or pre-trained using ad-hoc strategies. Section
5 of Romano et al. [2019] contains a detailed discussion
on the limitations of ER. Despite its intuitive and empir-
ical efficiency, ER has been poorly investigated or justi-
fied from a theoretical perspective. Our work provides a
conceptual framework to explain why it works well for
approximating conditional validity [Lei and Wasserman,
2012, Foygel Barber et al., 2021]. Recent work about ER
includes Vovk et al. [2020], which is a theoretical study
on the validity of oracle conformity measures, and Bellotti
[2021], where the conformity score is iteratively updated
to make the PI conditionally valid. Similar to Gibbs and
Candes [2021], coverage is corrected by minimizing an em-
pirical estimation of the validity gap. Besides Papadopoulos
et al. [2008], Bellotti [2020], conformity scores other than
A = |f(X) − Y | have been rarely used. In Romano et al.
[2019], the conformity function is redesigned to mimic the
pinball loss of quantile regression problems. In Colombo

synthetic data (all data sets)
coverage size WSC

α = 0.05
baseline 0.954(0.021) 0.783(0.086) 0.798(0.198)
ER 0.954(0.019) 0.57(0.122) 0.915(0.094)
Gauss 0.953(0.02) 0.506(0.048) 0.883(0.118)
Uniform 0.955(0.025) 0.624(0.077) 0.881(0.131)

α = 0.1
baseline 0.904(0.035) 0.546(0.063) 0.637(0.239)
ER 0.902(0.027) 0.429(0.067) 0.833(0.147)
Gauss 0.904(0.024) 0.382(0.035) 0.8(0.119)
Uniform 0.906(0.036) 0.451(0.041) 0.737(0.153)

α = 0.35
baseline 0.661(0.042) 0.183(0.018) 0.244(0.146)
ER 0.677(0.052) 0.209(0.029) 0.443(0.134)
Gauss 0.673(0.05) 0.2(0.022) 0.461(0.139)
Uniform 0.668(0.05) 0.22(0.029) 0.449(0.13)

real data (all data sets)
coverage size WSC

α = 0.05
baseline 0.955(0.016) 0.141(0.013) 0.929(0.066)
ER 0.955(0.02) 0.175(0.056) 0.94(0.079)
Gauss 0.957(0.013) 0.17(0.03) 0.913(0.078)
Uniform 0.952(0.017) 0.137(0.015) 0.944(0.076)

α = 0.1
baseline 0.901(0.029) 0.103(0.009) 0.853(0.134)
ER 0.9(0.032) 0.117(0.024) 0.832(0.114)
Gauss 0.911(0.025) 0.113(0.011) 0.889(0.093)
Uniform 0.901(0.028) 0.102(0.009) 0.869(0.11)

α = 0.35
baseline 0.681(0.044) 0.045(0.005) 0.512(0.157)
ER 0.659(0.039) 0.049(0.006) 0.645(0.143)
Gauss 0.658(0.041) 0.048(0.003) 0.574(0.144)
Uniform 0.672(0.054) 0.046(0.005) 0.643(0.122)

Table 2: Average efficiency of the model PIs (coverage, size,
and Worst Slab Coverage (WSC) estimate of the conditional
coverage [Cauchois et al., 2020]) over the data sets listed in
Table 1. The reported averages and standard deviation are
computed over 5 random training-test splits.
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synthetic data (α = 0.05)
coverage size WSC

synth-cos
baseline 0.944(0.029) 0.274(0.039) 0.749(0.293)
ER 0.945(0.022) 0.208(0.123) 0.926(0.062)
Gauss 0.945(0.024) 0.128(0.015) 0.833(0.136)
Uniform 0.945(0.035) 0.148(0.03) 0.828(0.188)

synth-inverse
baseline 0.953(0.02) 0.321(0.048) 0.758(0.231)
ER 0.96(0.017) 0.165(0.019) 0.942(0.064)
Gauss 0.944(0.024) 0.124(0.021) 0.787(0.225)
Uniform 0.951(0.021) 0.195(0.024) 0.814(0.233)

synth-linear
baseline 0.967(0.018) 1.923(0.157) 0.826(0.131)
ER 0.96(0.011) 1.54(0.309) 0.941(0.063)
Gauss 0.967(0.008) 1.402(0.109) 0.927(0.09)
Uniform 0.968(0.014) 1.795(0.201) 0.898(0.071)

synth-squared
baseline 0.953(0.016) 0.614(0.099) 0.858(0.137)
ER 0.949(0.026) 0.366(0.037) 0.849(0.185)
Gauss 0.956(0.024) 0.37(0.048) 0.987(0.018)
Uniform 0.956(0.029) 0.359(0.054) 0.983(0.03)

Table 3: Efficiency of the model PIs at α = 0.05 on the
synthetic data sets listed in Table 1. The reported averages
and standard deviation are computed over 5 random training-
test splits.

[2023], a series of trained conformity functions are tested
empirically. Compared to this work, the learning scheme
is not analyzed theoretically and uses a different learning
loss. We are unaware of other works where the conformity
measure is explicitly optimized. CP localization and con-
ditional validity. Except for Papadopoulos et al. [2008], the
scheme can be combined with other localization methods
because it applies to any base conformity score. Papadopou-
los et al. [2008] is an exception because the conformity
function is trained by minimizing EXY |A2 − g2(X)|2. In
Lei and Wasserman [2014], Vovk [2012], Lin et al. [2021],
Guan [2023], Deutschmann et al. [2023], locally adaptive
PI are constructed by reweighting the calibration samples
and temporarily breaking data exchangeability. The weights
transform the marginal distribution into an estimate of the
object-conditional distribution. Often, computing the local-
izing weights requires a density estimation step based on
one or more hyper-parameters [Lei and Wasserman, 2014,
Vovk, 2012, Guan, 2023, Deutschmann et al., 2023]. This
may cause technical issues and can be unreliable if data
is scarce. Our approach avoids an explicit estimation, be-
cause b is a globally defined functional, and does not require
splitting the calibration set. Conditional validity gaps can
be viewed as a non-exchangeability problem. Barber et al.
[2022] is a study of CP under general non-exchangeability
but does not make an explicit connection to local adaptiv-
ity. Xu and Xie [2023] exploits the bounds of Barber et al.

real data (α = 0.05)
coverage size WSC

bike
baseline 0.98(0.011) 0.112(0.011) 0.995(0.011)
ER 0.969(0.019) 0.181(0.095) 0.995(0.011)
Gauss 0.972(0.007) 0.127(0.026) 0.98(0.017)
Uniform 0.976(0.012) 0.119(0.021) 0.982(0.02)

CASP
baseline 0.944(0.021) 0.413(0.026) 0.969(0.041)
ER 0.959(0.011) 0.435(0.036) 0.883(0.192)
Gauss 0.973(0.009) 0.525(0.063) 0.959(0.045)
Uniform 0.955(0.011) 0.433(0.03) 0.89(0.196)

community
baseline 0.965(0.011) 0.059(0.018) 0.888(0.097)
ER 0.967(0.009) 0.035(0.016) 0.967(0.02)
Gauss 0.968(0.011) 0.071(0.028) 0.924(0.06)
Uniform 0.963(0.013) 0.03(0.007) 0.958(0.052)

concrete
baseline 0.96(0.023) 0.154(0.016) 0.938(0.064)
ER 0.947(0.031) 0.288(0.134) 0.948(0.078)
Gauss 0.95(0.016) 0.201(0.045) 0.954(0.043)
Uniform 0.958(0.021) 0.159(0.014) 0.972(0.039)

energy
baseline 0.942(0.016) 0.092(0.005) 0.965(0.046)
ER 0.944(0.041) 0.098(0.05) 0.897(0.131)
Gauss 0.944(0.017) 0.079(0.015) 0.793(0.18)
Uniform 0.933(0.028) 0.071(0.019) 0.975(0.033)

facebook_1
baseline 0.94(0.014) 0.014(0.003) 0.82(0.139)
ER 0.947(0.011) 0.016(0.005) 0.953(0.045)
Gauss 0.935(0.02) 0.015(0.004) 0.87(0.126)
Uniform 0.929(0.015) 0.01(0.002) 0.885(0.114)

Table 4: Efficiency of the model PIs at α = 0.05 on the
real data sets listed in Table 1. The reported averages and
standard deviation are computed over 5 random training-test
splits.
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[2022] for proving the asymptotic convergence of the esti-
mated PIs to the exact conditional PIs. Theorem 4 in Guan
[2023] guarantees exact conditional coverage for a sample
reweighting method, up to corrections on the estimated PI.
The NF setup allows more explicit bounds on the validity
of the algorithm outputs (Theorem 2.7 in Section 2). In Ein-
binder et al. [2022], a point-prediction model is trained to
guarantee PAX = UAPX , where UA = Uniform([0, 1]). It
is unclear whether tuning the point-prediction model or the
conformity function produces equivalent PIs. This work is
intuitively close to conformity-aware training, which aims to
optimize the output of a standard CP algorithm by tuning the
underlying model [Colombo and Vovk, 2020, Bellotti, 2020,
Stutz et al., 2021, Einbinder et al., 2022]. The two ideas are
compatible and could be implemented simultaneously. We
leave this for future work.

5 DISCUSSION AND LIMITATIONS

This is mainly a theoretical and methodological work. We
recognize our numerical simulations are limited, especially
regarding the model complexity. We also miss a full com-
parison with existing localization approaches. We focus on
conformity functions similar to ER to underline the effi-
ciency of the learning strategy, without bias coming from
the definition of more or less suitable model classes. Gen-
eralizing the approach to more complex NF is possible,
provided b(A,X) remains invertible, i.e. monotonic in A.
A comparison with other localization methods goes beyond
our scope because calibration training is orthogonal to many
existing strategies, e.g. algorithms based on reweighting the
calibration samples. The proposed scheme could be used on
top of them to provide theoretical guarantees. As mentioned
in Section 4, CP-aware retraining of the prediction model
could also be combined with calibration training.
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6 PROOFS

Proof of Lemma 2.1 . Assume ties occur with probability
0. According to (5), QZ is the n∗ = ⌈(1− α)(N + 1)⌉-th
smallest element of {Zn}Nn=1. Assume the calibration sam-
ples have been labeled so that Z1 < Z2 · · · < ZN−1 < ZN .
By assumption, Z1, . . . , Zn, and ZN+1 are exchangeable.
This implies ZN+1 falls with equal probability in any of the
N + 1 intervals

(−∞, Z1),[Z1, Z2) . . . , [Zn∗−1, QZ),

(QZ , Zn∗+1) . . . (ZN−1, ZN ), [ZN ,∞) (29)

i.e. Prob(ZN+1 ≤ QZ) =
n∗
N+1 = ⌈(1−α)(N+1)⌉

N+1 . □

Proof of Lemma 2.3 {Bn}Nn=1 are i.i.d. random variable
because b is deterministic and {An}Nn=1 are i.i.d. When
b satisfies Assumption 2.2, Prob(An = An′) = 0 for
any n ̸= n′ implies Prob(Bn = Bn′) = Prob(An =
b−1(b(An′ , Xn′), Xn) = 0 for any n ̸= n′, i.e. there
are no ties in {Bn}Nn=1. Let QB be the (1 − α)-th sam-
ple quantile {Bn}Nn=1 defined in (5). From Lemma 2.1,
Prob(BN+1 ≤ QB) =

n∗
N+1 , with n∗ = ⌈(1−α)(N+1)⌉.

Let bX(A) = b(A,X) and b−1
X (B) = b−1(B,X), with

b−1 defined by b(b−1(B,X), X) = bX ◦ b−1
X (B), and

∂AbX(A) = Jb 11(A,X) = ∂
∂Ab(A,X) = ∂

∂AbX(A). By
Assumption 2.2, ∂AbX > 0 for all X . Let d

dsh(s, g(s)) =
∂sh + ∂gh∂sg be the total derivative of h. From 1 =
d
dB bX ◦ b−1

X (B) = ∂AbX(b−1
X (B)) d

dB b
−1
X (B), we obtain

d
dB b

−1
X (B) =

(
∂AbX(b−1

X (B))
)−1

> 0, i.e. b−1
XN+1

(B) is a

monotonic function of B. Therefore,

Prob (BN+1 ≤ QB) (30)

= Prob
(
b−1
XN+1

(BN+1) ≤ b−1
XN+1

(QB)
)

(31)

= Prob
(
b−1
XN+1

◦ bXN+1
(AN+1) ≤ b−1

XN+1
(QB)

)
(32)

= Prob
(
AN+1 ≤ b−1

XN+1
(QB)

)
(33)

= Prob
(
|f(XN+1)− YN+1| ≤ b−1

XN+1
(QB)

)
(34)

= Prob (YN+1 ∈ CB) (35)

where CB is defined in (7). □

Proof of Lemma 2.4 Let {Bn = bXn
(An)}N+1

n=1 , where
bX(A) = b(A,X), andCA andCB be the PIs in (7) and (9).
From (5), there are m∗ and n∗ such that QA = Am∗ and
QB̂ = bXn∗

(An∗). Then, when bXN+1
(An) ̸= bXn

(An)
for any n, we have bXN+1

(An∗) ̸= bXn∗
(An∗) and

|CB | = b−1
XN+1

◦ bXm∗
(Am∗) ̸= An∗ = |CA| (36)

The claim holds because An∗ = b−1
XN+1

◦ bXm∗
(Am∗) oc-

curs with probability 0 if An are continuous. □

Proof of Theorem2.5 Let {An ∼ PA}Nn=1 {Ãn ∼
PA|XN+1

}Nn=1 be two collections of i.i.d random variables
distributed according to the marginal andXN+1-conditional
distributions. Let QA and QÃ be the sample quantiles of the
two collections defined in (5). Let CA be the PI defined in
(7) and CÃ be obtained analogously with QA replaced by
QÃ. Assume ties occur with probability 0. By the Bayesian
theorem, PAX = PAPX implies PA|X = PA =

∑
X PAX .

Then, for any XN+1, Ãn ∼ PA ∼ An and, from Lemma
2.1, Prob(ÃN+1 ≤ QÃ) = Prob(ÃN+1 ≤ QA) =
Prob(YN+1 ∈ CA). □

Proof of Corollary 2.6 Let QA|XN+1
and CA|XN+1

be
the conditional sample quantile of {Ãn ∼ PA|XN+1

}
and the corresponding PI defined as in (7) with QA re-
placed by QA|XN+1

. By construction, CA|XN+1
is con-

ditionally valid at XN+1, i.e. it obeys Prob(YN+1 ∈
CA|XN+1

|XN+1) = m∗
N+1 , m∗ = ⌈(1 − α)(N + 1)⌉. Let

(B,X) = (b(A,X), X) = (bX(A), X). Then, if b obeys
Assumption 2.2 and PBX = PB|XPX = UBPX ,

QA|XN+1
= Qb−1

XN+1
(B)|XN+1

(37)

= b−1
XN+1

(QB|XN+1
) = b−1

XN+1
(QB) (38)

because b−1
XN+1

is monotonic and we apply it globally to
all samples (second equality) and PBX = UBPX implies
QB|XN+1

= QB (last equality). The claim follows from
Lemma 2.1, bXN+1

(A) = b(A,XN+1), and the PI defini-
tion in (9). □
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Proof of Theorem 2.7. Let {An}N+1
n=1 be a collection of

i.i.d. conformity scores and {Bn = b(An, Xn)}N+1
n=1 and

{B̂n = b̂(An, Xn)}N+1
n=1 the conformity scores transformed

by b and b̂ = (1 − ϵ)b + ϵδ. Let CB be the PI defined in
(9) and CB̂ defined analogously by replacing b with b̂. Let
bX(B) = b(A,X) (idem b̂X , b−1

X , and b̂−1
X ). Assumption

2.2 and Corollary 2.6 imply

Prob(YN+1 ∈ CB̂ |XN+1) (39)

= Prob(AN+1 ≤ b̂−1
XN+1

(QB̂)|XN+1) (40)

= Prob(b−1
XN+1

(BN+1) ≤ b̂−1
XN+1

(QB̂)|XN+1) (41)

= Prob(BN+1 ≤ bXN+1
◦ b̂−1

XN+1
(QB̂)) (42)

where we drop the conditioning in the last line because,
by assumption, (Bn, Xn) ∼ UBPX for all Xn. The mono-
tonicity of bXN+1

◦ b̂−1
XN+1

(B) implies b̂−1
XN+1

(QB̂) = QB̃ ,
where QB̃ is the sample quantile of {B̃n}, B̃n = bXN+1

◦
b̂−1
XN+1

(B̂n). Test and calibration data are not exchangeable
because, BN+1 and B̃n, n = 1, . . . N , come from different
distributions. The coverage gap can be bounded in terms of
the total variation distance between their distributions, PB
and PB̃ , i.e. dTV(PB , PB̃) = supZ |PB(Z)− PB̃(Z)|. Let
(P̂, B̃, B′) define a maximal coupling between B̃1, . . . , B̃N
and BN+1 defined by Prob(B̃n) = P̂(B̃), n = 1, . . . , N ,
and Prob(BN+1) = P̂(B′). Then,

Prob(BN+1 ≤ QB̃) (43)

= P̂(B′ ≤ QB̃ , B
′ = B̃) + P̂(B′ ≤ QB̃ , B

′ ̸= B̃) (44)

≥ ⌈(N + 1)(1− α)⌉
N + 1

− P̂(B′ ̸= B̃)) (45)

where the Maximal Coupling Theorem implies (see Lindvall
[2002], Ross and Peköz [2023] for a proof)

P̂(B′ ̸= B̃) =
1

2
dTV(PBN+1

, PB̃n
) (46)

which, in this case, holds for any n ∈ {1, . . . , N} because
we assume the data objects are i.i.d.

Assume b̂ = (1− ϵ)b + ϵδ and b̂−1 = (1− ϵ)b−1 + ϵδ−1,
for all (A,X). The invertibility of b̂ implies Id = b̂ ◦ b̂−1 =
(1 − 2ϵ)Id + ϵ(b ◦ δ−1 + b−1 ◦ δ) + ϵ2(Id + δ ◦ δ−1),
where Id(B) = B. Neglecting second-order terms, we have
b ◦ δ−1 + δ ◦ b−1 = 2Id, i.e. δ−1 = 2b−1 − b−1 ◦ δ ◦ b−1

and b̂−1 = (1 − ϵ)b−1 + ϵ(2b−1 − b−1 ◦ δ ◦ b−1) = (1 +
ϵ)b−1 − b−1 ◦ δ ◦ b−1. Let bX(A) = b(A,X) (idem b−1,
b̂, b̂−1, and δ). Since ψX(B) = bXN+1

◦ b̂−1
XN+1

◦ b̂X ◦ b−1
X

is monotonic, we may interpret it as an NF. The density of
(B̃n, Xn) ∼ PB̃X is

p(ψX(B), X) =
p(B,X)

|detJψ(B,X)|
=

u(B)p(X)

|∂BψX(B)|
(47)

where |∂BψX(B)| = ∂BψX(B) because ψX is monotonic.
Then, up to o(ϵ2) errors,

dTV(PB , PB̃) (48)

= sup
(B,X)

∥∥∥∥u(B)p(B)

(
1− 1

∂BψX(B)

)∥∥∥∥ (49)

≤ ϵ sup
(B,X)

∥u(B)p(X)∥ sup
(B,X)

∥1− ∂Bψ
−1
X (B)∥ (50)

= ϵ sup
(B,X)

∥u(B)p(X)∥ (51)

× sup
(B,X)

∥∂AδX ◦ ∂Bb−1
X − ∂AδXN+1

◦ ∂Bb−1
XN+1

∥

≤ 2ϵ sup
(B,x)

∥u(B)p(X)∥LδLb−1 (52)

where Lδ and Lb−1 are the Lipshitz constants of δX and
b−1
X . If UB = Uniform([0, 1]), sup(B,X) ∥u(B)p(X)∥ =
supX ∥p(X)∥, which only depends on the marginal density
of the covariates over the attribute space. Hence,

Prob(BN+1 ≤ QB̂) (53)

≥ ⌈(N + 1)(1− α)⌉
N + 1

− ϵ sup
X

∥p(X)∥LδLb−1 (54)

□
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