
Calibrated and Conformal Propensity Scores for Causal Effect Estimation

Shachi Deshpande1 Volodymyr Kuleshov1

1Dept of Computer Science, Cornell University and Cornell Tech, New York, NY, USA

Abstract

Propensity scores are commonly used to estimate
treatment effects from observational data. We
argue that the probabilistic output of a learned
propensity score model should be calibrated—i.e.,
a predictive treatment probability of 90% should
correspond to 90% individuals being assigned
the treatment group—and we propose simple
recalibration techniques to ensure this property.
We prove that calibration is a necessary condition
for unbiased treatment effect estimation when
using popular inverse propensity weighted and
doubly robust estimators. We derive error bounds
on causal effect estimates that directly relate
to the quality of uncertainties provided by the
probabilistic propensity score model and show
that calibration strictly improves this error bound
while also avoiding extreme propensity weights.
We demonstrate improved causal effect estimation
with calibrated propensity scores in several
tasks including high-dimensional image covariates
and genome-wide association studies (GWASs).
Calibrated propensity scores improve the speed of
GWAS analysis by more than two-fold by enabling
the use of simpler models that are faster to train.

1 INTRODUCTION

This paper studies the problem of inferring the causal
effect of an intervention from observational data. For
example, consider the problem of estimating the effect
of a treatment on a medical outcome or the effect of a
genetic mutation on a phenotype. A key challenge in this
setting is confounding—e.g., if a treatment is only given to
sick patients, it may paradoxically appear to trigger worse
outcomes [Greenland et al., 1999, VanderWeele, 2006].

Propensity score methods are a popular tool for correcting

for confounding in observational data [Rosenbaum and
Rubin, 1983, D’Agostino, 1998, Imbens, 2000, Lanza et al.,
2013]. However, propensity score methods can become
unreliable when their predictive model outputs incorrect
treatment assignment probabilities [Kang and Schafer, 2007,
A. Smith and E. Todd, 2005, Lenis et al., 2018]. For example,
when the propensity score model is overconfident (a known
problem with neural network estimators Guo et al. [2017]),
predicted assignment probabilities can be too small [Tan,
2017], which yields a blow-up in the estimated causal effects.
More generally, propensity score weighting stands to benefit
from accurate uncertainty estimation Kallus [2020].

This work argues that propensity score methods can be
improved by leveraging calibrated uncertainty estimation in
treatment assignment models. Intuitively, when a calibrated
model outputs a treatment probability of 90%, then 90% of
individuals with that prediction should be assigned to the
treatment group [Platt, 1999, Kuleshov et al., 2018]. We
argue that calibration is a necessary condition for propensity
score models and it also addresses the aforementioned
problems of model overconfidence.

Off-the-shelf propensity score models are typically
uncalibrated Kallus [2020]; our work introduces algorithms
that provably enforce uncertainty calibration in these models.
Post-processing of propensity weights is often done via
trimming [Crump et al., 2009, Fan Li and Zaslavsky, 2018],
but this can introduce bias by eliminating information
from propensity weights below a pre-selected trimming
threshold [Li et al., 2018]. Propensity score calibration
reduces variance from extreme propensity weights without
introducing bias from trimming thresholds. Approaches that
balance covariates during optimization to obtain propensity
weights have demonstrated theoretical and empirical
advantages in causal effect estimation [Hainmueller,
2012, Chan et al., 2016, Zhao, 2017, Zubizarreta, 2015,
Ning et al., 2018], but choosing appropriate covariate
balancing conditions requires substantial knowledge of the
observational study [Ben-Michael et al., 2021]. Uncertainty
calibration is simpler to implement and can be combined
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with any base propensity model and methods like trimming
or covariate balancing without changing the model
optimization procedure.

In summary, this paper makes the following contributions:
(1) we provide formal arguments that establish calibration
as a necessary condition for unbiased treatment effect
estimation, prove the reduction of variance by avoiding
extreme propensity weights and show improved error
bounds on the causal effect estimates by enforcing
calibration; (2) we propose simple algorithms that enforce
calibration; (3) we provide theoretical guarantees on
the calibration and regret of these algorithms; (4) we
demonstrate the effectiveness of calibrated propensities
in several tasks and show improvement in the speed
of high-dimensional genome-wide association studies
(GWASs) by more than two-fold.

2 BACKGROUND

Notation Formally, we are given an observational dataset
D = {(x(i), y(i), t(i))}ni=1 consisting of n units, each
characterized by features x(i) ∈ X ⊆ Rd, a binary treatment
t(i) ∈ {0, 1}, and a scalar outcome y(i) ∈ Y ⊆ R. We
assume D consists of i.i.d. realizations of random variables
X,Y, T ∼ P from a data distribution P . Although we
assume binary treatments and scalar outcomes, our approach
naturally extends beyond this setting. The feature space X
can be any continuous or discrete set.

2.1 CAUSAL EFFECT ESTIMATION USING
PROPENSITY SCORING

We seek to estimate the true effect of T = t in terms of its
average treatment effect (ATE).

Y [x, t] = E[Y |X = x, do(T = t)] (1)
ATE = E[Y [x, 1]− Y [x, 0]], (2)

where do(·) denotes an intervention [Pearl et al., 2000].
We assume strong ignorability, i.e., (Y (0), Y (1)) ⊥ T |X
and 0 < P (T |X) < 1, for all X ∈ X , T ∈ {0, 1},
where Y (0) and Y (1) denote potential outcomes. We also
make the stable unit treatment value assumption (SUTVA),
which states that there is a unique value of outcome
Yi(t) corresponding to unit i with input xi and treatment
t [Rosenbaum and Rubin, 1983]. Under these assumptions,
the propensity score defined as e(X) = P (T = 1|X)
satisfies the conditional independence (Y (0), Y (1)) ⊥
T |e(X) [Rosenbaum and Rubin, 1983]. Propensity score
also acts as a balancing score, i.e. X ⊥ T |e(X). Thus,

ATE can be expressed as τ = E
(

TY
e(X) −

(1−T )Y
1−e(X)

)
. The

Inverse Propensity of Treatment Weight (IPTW) estimator
uses an approximate model Q(T = 1|X) of P (T = 1|X)

to produce an estimate τ̂ of the ATE, which is computed as

τ̂1 =
1

n

n∑
i=1

(
t(i)y(i)

Q(T = 1|x(i))
− (1− t(i))y(i)

1−Q(T = 1|x(i))

)
.

The Augmented Inverse Propensity Score Weight (AIPW)
estimator uses an outcome model f(X,T ) to approximate
the potential outcome Y [X,T ], thus computing ATE as
τ̂2 = τ̂1 + 1

n

∑n
i=1

[
f(xi, T = 1)

(
1 − ti

Q(T=1|x(i))

)
−

f(xi, T = 0)
(
1 − (1−ti)

1−Q(T=1|x(i))

)]
. This doubly robust

estimator can produce accurate ATE estimates when either
the propensity model or the outcome model is correctly
specified [Robins et al., 1994].

2.2 CALIBRATED AND CONFORMAL
PREDICTION

This paper seeks to evaluate and improve the uncertainty of
propensity scores. A standard tool for evaluating predictive
uncertainties is a proper loss (or proper scoring rule) L :
∆Y ×Y → R, defined over the set of distributions ∆Y over
Y and a realized outcome y ∈ Y . Examples of proper losses
include the L2 or the log-loss. It can be shown that a proper
score is a sum of the following terms [Gneiting et al., 2007]:
proper loss = calibration− sharpness + irreducible term.

Calibration. Intuitively, calibration means that a 90%
confidence interval contains the outcome about 90% of the
time. Sharpness means that confidence intervals should be
tight. Maximally tight and calibrated confidence intervals
are Bayes optimal. In the context of propensity scoring
methods for binary treatments, we say that a propensity
score model Q is calibrated if the true probability of T = 1
conditioned on predicting a probability p matches the
predicted probability:

P (T = 1 | Q(T = 1|X) = p) = p ∀p ∈ [0, 1] (3)

Calibrated and Conformal Prediction. Out of the box,
most models Q are not calibrated. Calibrated and conformal
prediction yield calibrated forecasts by comparing observed
and predicted frequencies on a hold-out dataset [Shafer and
Vovk, 2007, Kuleshov et al., 2018, Angelopoulos and Bates,
2021, Vovk et al., 2005].

3 CALIBRATED PROPENSITY SCORES

We start with the observation that a good propensity
scoring model Q(T |X) must not only correctly output
the treatment assignment, but also accurately estimate
predictive uncertainty. Specifically, the probability of the
treatment assignment must be correct, not just the class
assignment. While a Bayes optimal Q will perfectly
estimate uncertainty, suboptimal models will need to
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balance various aspects of predictive uncertainty, such as
calibration and sharpness. This raises the question: what
predictive uncertainty estimates work best for causal effect
estimation using propensity scoring?

3.1 CALIBRATION: A NECESSARY CONDITION
FOR PROPENSITY SCORING MODEL

This paper argues that calibration improves
propensity-scoring methods. Intuitively, if the model
Q(T = 1|X) predicts a treatment assignment probability
of 80%, then 80% of these predictions should receive
the treatment. If the prediction is larger or smaller,
the downstream IPTW estimator will overcorrect or
undercorrect for the biased treatment allocation; see below
for a simple example.

In other words, calibration is a necessary condition for
a correct propensity scoring model. We formalize this
intuition below, and we provide examples in Appendix H.2
where an IPTW estimator fails when it is not calibrated.

Theorem 3.1. When Q(T |X) is not calibrated, there exists
an outcome function such that an IPTW estimator based
on Q yields an incorrect estimate of the true causal effect
almost surely.

Example. Consider X = T = Y = {0, 1}. Let P (T =
1|X = 0) = p0, P (T = 1|X = 1) = p1 and P (X =
1) = 0.5. Let us assume that Q(T = 1|X = 0) = q0 and
Q(T = 1|X = 1) = q1. When Q(T |X) is uncalibrated,
∃i ∈ {0, 1}, pi ̸= qi.

If p1 ̸= q1, we set Y = X ⊕ T (⊕ is logical ‘AND’), and
the IPTW estimator based on Q obtains τ ′ = 0.5.p1

q1
. Here,

true ATE τ = 0.5.

If p0 ̸= q0, we set Y = X̄ ⊕ T̄ (V̄ denotes logical negation
of binary variable V ), and the IPTW estimator based on Q

obtains τ ′ = −0.5(1−p0)
1−q0

. Here true ATE τ = −0.5.

Please note that we require the model Q to be uncalibrated
and not necessarily inconsistent.

Please refer to Appendix H.2 for a full proof. Appendix H.4
also proves the following theorem for the AIPW estimator.

Theorem 3.2. When propensity model Q(T |X) is not
calibrated and the outcome model f(X, T) is inaccurate
for X ∈ {X : Q(T = 1|X) = q} ⊆ X such that
P (T = 1|Q(T = 1|X ′) = q) ̸= q, then there exists a
true outcome function such that the doubly robust AIPW
estimator based on Q and f yields an incorrect estimate of
true causal effects almost surely.

Thus, for the AIPW estimator, calibration is a necessary
condition when the outcome model is inaccurate.

3.2 CALIBRATED UNCERTAINTIES IMPROVE
PROPENSITY SCORING MODELS

In addition to being a necessary condition, we also identify
settings in which calibration is either sufficient or prevents
common failure modes of IPTW estimators. Specifically,
we identify and study two such regimes: (1) accurate
but over-confident propensity scoring models (e.g., neural
networks [Guo et al., 2017]); (2) high-variance IPTW
estimators that take as input numerically small propensity
scores.

3.2.1 Error Bound on Causal Effect Estimates

Our first step for studying the role of calibration is to
relate the error of an IPTW estimator to the difference
between a model Q(T |X) and the true P (T |X). We define
πt,y(Q) =

∑
x P (y|x, t)P (t|x)

Q(t|x)P (x) to be the estimated
probability of y given t with a propensity score model Q.
It is not hard to show that the true Y [t] := EXY [X, t] =
EXE[Y |X = x,do(T = t)] can be written as

∑
y yπy,t(P )

(see Appendix H.3). Similarly, the estimate of an IPTW
estimator with propensity model Q in the limit of infinite
data tends to ŶQ[1]− ŶQ[0], where ŶQ[t] :=

∑
y yπy,t(Q).

We may bound the expected L1 ATE error |Y [1]− Y [0]−
(ŶQ[1] − ŶQ[0])| by

∑
t |Y [t] − ŶQ[t]| ≤

∑
t

∑
y |y| ·

|πy,t(P )− πy,t(Q)|.

Our first lemma bounds the error |πy,t(P ) − πy,t(Q)| as
a function of the difference between Q(T |X) and the true
P (T |X). A bound on the ATE error follows as a simple
corollary.

Lemma 3.3. The expected error |πy,t(P ) − πy,t(Q)|
induced by an IPTW estimator with propensity score model
Q is bounded as

|πy,t(P )− πy,t(Q)| ≤ EX∼Ry,t [ℓχ(Pt, Qt)
1
2 ], (4)

where Ry,t ∝ P (Y = y|X,T = t)P (X) is a data

distribution and ℓχ(Pt, Qt) =
(
1− P (T=t|X)

Q(T=t|X)

)2

is the
chi-squared loss between the true propensity score and
the model Q.

Proof (Sketch). Note that |πy,t(P ) − πy,t(Q)| ≤
EX∼Ry,t

∣∣∣1− P (T=t|X)
Q(T=t|X)

∣∣∣ ≤ ERy,t
ℓχ(Pt, Qt)

1
2

See Appendix H.3.1 for the full proof.

Corollary 3.4. Let |y| ≤ K for all y ∈ Y . The error of an
IPTW estimator with propensity score model Q is bounded
by 2|Y|Kmaxy,t ERy,t

ℓχ(Pt, Qt)
1
2 .

Note that ℓχ is obtained from a proper scoring rule: it is
small only if Q correctly captures the probabilities in P .
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A model that accurately outputs treatment assignment, but
that does not output correct probability will have a large
ℓχ; conversely, when Q = P , the bound equals to zero and
the IPTW estimator is perfectly accurate. To the best of our
knowledge, this is the first bound that relates the accuracy of
an IPTW estimator directly to the quality of uncertainties of
the probabilistic model Q. Corollary H.5 in Appendix H.4
obtains a similar upper bound on error of the doubly robust
AIPW estimator that is proportional to the chi-squared loss
lX .

3.2.2 Calibration Reduces Variance of Estimators

A common failure mode of IPTW estimators arises when
the probabilities from a propensity scoring model Q(T |X)
are small or even equal to zero—division by Q(T |X)
then causes the IPTW estimator to take on very large
values or be undefined. Furthermore, when Q(T |X) is
small, small changes in its value cause large changes in
the IPTW estimator, which induces problematically high
variance. This failure mode also affects the doubly robust
AIPW estimator, although it is more stable than the IPTW
estimator.

Here, we show that calibration can help mitigate this failure
mode. If Q is calibrated, then it cannot take on abnormally
small values relative to P . Specifically, if P (T = t|X)
is larger than some δ > 0 such that δ < 1/2, then any
prediction from a calibrated estimate Q of P has to be
larger than δ > 0 as well. In other words, division by small
numbers cannot be a greater problem than in the true model.

Theorem 3.5. Let P be the data distribution, and suppose
that 1 − δ > P (T |X) > δ for all T,X and let Q be a
calibrated model relative to P . Then 1− δ > Q(T |X) > δ
for all T,X as well.

Proof (Sketch). The proof is by contradiction. Suppose
Q(T = 1|x) = q for some x and q < δ. Then because
Q is calibrated, of the times when we predict q, we have
P (T = 1|Q(T = 1|X) = q) = q < δ, which is impossible
since P (T = 1|x) > δ for every x.

See Appendix H.3.2 for the full proof.

3.2.3 Calibration Improves Error Bounds

We show that calibration strictly improves our ℓχ bound on
the IPTW error.

Theorem 3.6. Let ℓ1 be the expected bound on the error of
an uncalibrated IPTW estimator Q1 in Corollary 3.4, and
let ℓ2 be the bound for Q2, the recalibrated version of Q1

with ℓ
1/2
χ as the choice of loss L to train the recalibrator.

Then as the size of the calibration set n → ∞ we have
ℓ2 ≤ ℓ1 with equality iff Q1 = Q2.

Algorithm 1 Calibrated Propensity Scoring
1. Split D into training set D′ and calibration set C
2. Train a propensity score model Q(T |X) on D′

3. Train recalibrator R over output of Q on C
4. Apply IPW with R ◦Q as prop. score model

Proof (Sketch). The part of ℓ1, ℓ2 that depends on Q ∈
{Q1, Q2} is L(Q,T ) = EXET |Xℓχ(Q(T = 1|X), T )1/2.
In Section 4, we show that when we perform recalibration, it
follows that L(Q2, T ) = L(R ◦Q1, T ) ≤ L(Q1, T )+ o(n)
for a recalibrator R. As n → ∞, R → B, where B is a
Bayes optimal recalibrator. If Q1 ̸= Q2, then L(Q2, T ) ̸=
L(Q1, T ) because L is strictly proper. Conversely, when
Q1 = Q2 clearly ℓ1 = ℓ2. Hence, the claim follows.

Please refer to Appendix H.3.3 for a complete proof.
Theorem H.6 in Appendix H.4 proves a similar result for
the AIPW estimator when the outcome model is inaccurate.

3.2.4 Calibration and Accurate Causal Effect
Estimation

If the model Q is accurate enough to discriminate between
different treatments (as might be the case with a powerful
neural network), then calibration can ensure accurate IPTW
estimates. This is a strong condition in practice. Please refer
to Appendix H.3.4 for a detailed theoretical analysis.

Below, we also show that a post-hoc recalibrated model Q′

has vanishing regret ℓ(Q′, Q) with respect to a base model
Q and a proper loss ℓ (including ℓχ used in our calibration
bound).

4 ALGORITHMS FOR CALIBRATED
PROPENSITY SCORING

4.1 A FRAMEWORK FOR CALIBRATED
PROPENSITY SCORING

Next, we propose algorithms that produce calibrated
propensity scoring models. Our approach is outlined in
Algorithm 1; it differs from standard propensity scoring
methods by the addition of a post-hoc recalibration step
(step #3) after training the model Q.

The recalibration step in Algorithm 1 implements a post-hoc
recalibration procedure [Platt, 1999, Kuleshov et al., 2018]
and is outlined in Algorithm 2. The key idea is to learn
an auxiliary model R : [0, 1] → [0, 1] such that the joint
model R ◦ Q is calibrated. Below, we argue that if R can
approximate the density P (T = 1|Q(T |X) = p), R ◦ Q
will be calibrated Kuleshov et al. [2018], Kuleshov and
Deshpande [2022].
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Algorithm 2 Recalibration Step
Input: Pre-trained model Q : X → [0, 1], recalibrator R :
[0, 1]→ [0, 1], calibration set C
Output: Recalibrated model R ◦Q : X → [0, 1].

1. Create a recalibrator training set:
S = {(Q(x), y) | x, y ∈ C}

2. Fit the recalibration model R on S:
minR

∑
(p,y)∈S L (R(p), y)

Learning R that approximates P (T = 1|Q(T |X) = p)
requires specifying (1) a model class for R and (2) a
learning objective ℓ. One possible model class for R
are non-parametric kernel density estimators over [0, 1];
their main advantage is that they can provably learn the
one-dimensional conditional density P (T = 1|Q(T |X) =
p). Examples of such algorithms are RBF kernel density
estimation or isotonic regression. Alternatively, one may use
a family of parametric models for R: e.g., logistic regression,
neural networks. Such parametric recalibrators can be
implemented easily within deep learning frameworks and
work well in practice, as we later demonstrate empirically.

Our learning objective for R can be any proper scoring rule
such as the L2 loss, the log-loss, or the Chi-squared loss.
Optimizing it is a standard supervised learning problem.

4.2 ENSURING CALIBRATION IN PROPENSITY
SCORING MODELS

Next, we seek to show that Algorithms 1 and 2 provably
yield a calibrated model R◦Q. This shows that the desirable
property of calibration can be maintained in practice.

Notation We have a calibration dataset C of size m
sampled from P and we train a recalibrator R : [0, 1] →
[0, 1] over the outputs of a base model Q to minimize a
proper loss L. We denote the Bayes-optimal recalibrator
by B := P (T = 1 | Q(X)); the probability of T = 1
conditioned on the forecast (R ◦Q)(X) is S := P (T = 1 |
(R ◦Q)(X)). To simplify notation, we omit the variable X ,
when taking expectations over X,T , e.g. E[L(R ◦Q,T )] =
E[L(R(Q(X)), T )].

Our first claim is that if we can perform density estimation,
then we can ensure calibration. We first formally define the
task of density estimation.

Task 4.1 (Density Estimation). The model R approximates
the density B := P (T = t | Q(X)). The expected proper
loss of R tends to that of B as m→∞ such that w.h.p.:

E[L(B ◦Q,T )] ≤ E[L(R ◦Q,T )] < E[L(B ◦Q,T )] + δ

where δ > 0, δ = o(m−k), k > 0 is a bound that decreases
with m.

Note that non-parametric kernel density estimation is
formally guaranteed to solve one-dimensional density
estimation given enough data.

Fact 4.2 (Wasserman [2004]). When R implements kernel
density estimation and L is the log-loss, Task 4.1 is solved
with δ = o(1/m2/3).

We now show that when we can solve Task 4.1, our approach
yields models that are asymptotically calibrated in the sense
that their calibration error tends to zero as m→∞.

Theorem 4.3. The model R◦Q is asymptotically calibrated
and the calibration error E[Lc(R ◦ Q,S)] < δ for δ =
o(m−k), k > 0 w.h.p.

See Appendix H.5.1 for the full proof.

4.3 NO-REGRET CALIBRATION

Next, we show that Algorithms 1 and 2 produce a model
R ◦Q that is asymptotically just as good as the original Q
as measured by the proper loss L.

Theorem 4.4. The recalibrated model has asymptotically
vanishing regret relative to the base model: E[L(R ◦
Q,T )] ≤ E[L(Q,T )] + δ, where δ > 0, δ = o(m).

Proof (Sketch). Solving Task 4.1 implies E[L(R◦Q,T )] ≤
E[L(B◦Q,T )]+δ ≤ E[L(Q,T )]+δ; the second inequality
holds because a Bayes-optimal B has lower loss than an
identity mapping.

See Appendix H.5.2 for the full proof. Thus, given enough
data, we are guaranteed to produce calibrated forecasts
and preserve base model performance as measured by L
(including Lχ used in our calibration bound).

5 EMPIRICAL EVALUATION

We perform experiments on several observational studies
to evaluate calibrated propensity score models. We cover
different types of treatment assignment mechanisms, base
propensity score models, and varying dimensionality of
observed covariates.

Setup. We use the Inverse-Propensity Treatment Weight
(IPTW) and Augmented Inverse Propensity Weight (AIPW)
estimators in our experiments. We compare the estimates
obtained through calibrated propensities with several
baselines including estimators based on uncalibrated
propensity scores. We use sigmoid or isotonic regression
as the recalibrator and utilize cross-validation splits to
generate the calibration dataset (Appendix C). We measure
the performance in terms of the absolute error in estimating
ATE as ϵATE = |τ̂ − τ |, where τ is the true treatment effect
and τ̂ is our estimated treatment effect.
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Figure 1: Recalibrating Propensity Score Model Reduces
the Bias in Estimating Treatment Effect from Observational
Data.

Analysis of Calibration. We evaluate the
calibration of the propensity score model using
expected calibration error (ECE), defined as
Ep∼Q(T=1|X)[|P (T = 1|Q(T = 1|X) = p)− p|], where
Q(T = 1|X) models the treatment assignment mechanism
P (T = 1|X). To compute ECE, we divide the probabilistic
output range [0, 1] into equal-sized intervals {I0, I1, .., IM}
such that we can generate buckets {Bi}Mi=1, where
Bi = {(X,T, Y )|Q(T = 1|X) ∈ Ii}. The estimated ECE
is then computed as

ECE =

M∑
i=1

|Bi|
|
⋃M

j=1 Bj |
|avgi(Bi)− predi(Bi)|,

where avgi(Bi) =
∑|Bi|

j=1 Tj/|Bi| and

predi(Bi) =
∑|Bi|

j=1 Q(T = 1|Xj)/|Bi|.

5.1 DRUG EFFECTIVENESS STUDY

We simulate an observational study of recovery time from
disease in response to the administration of a drug [Wilhelm,
2017]. The decision to treat an individual with the drug
is dependent on the covariates specified as age, gender,
and severity of disease. We use logistic regression as the
propensity score model. In Figure 1, we see that weighing
using recalibrated propensities allows us to approximate
the distribution of individual treatment effect estimates
better than uncalibrated propensities. Here, treatment effect
estimates τ are computed as ratio E[Y [x, 1]]/E[Y [x, 0]].
The true average causal effect is 0.368. Please refer to
Appendix D for details on the simulation, models used,
and calibration plots.

In Table 1, we employ different treatment assignment
mechanisms in each simulated observational study, allowing
us to compare mechanisms that may or may not be
well-specified by a linear model, e.g., Simulation C uses
the logical AND condition while Simulation D uses the
logical XOR condition to assign treatment. (Appendix D).
We see that calibrated propensities produce lower absolute

error in estimating average treatment effect (ϵATE)
under varying mechanisms. Here, the naive estimation
computes the outcomes without weighing the samples with
propensities. Uncertainty-calibrated propensities reduce bias
more consistently as compared to weighing with plain
propensity scores, propensity trimming [Lee et al., 2011],
stabilized weights [Xu et al., 2010] and regularized covariate
balancing optimization of propensity weights [Tan, 2019].
Since the optimal level of trimming is difficult to determine,
it can sometimes increase bias, as seen in Simulation A.
Similarly, the design of balancing equations impacts bias
reduction in the covariate balancing approach [Ben-Michael
et al., 2021] to calibration. We use the RCAL package [Tan
and Sun, 2020] to implement the covariate balancing
baseline. Table 6 in Appendix G reports the PEHE (Precision
in Estimation of Heterogenous Effect) metric for all the
experimental settings in Table 1 and demonstrates similar
improvement with calibrated propensities. Table 7 in
Appendix G demonstrates the effectiveness of calibration
over six different base propensity models (including logistic
regression) that approximate a fixed treatment assignment
function.

In summary, calibrated propensities approximate the true
distribution of individual treatment effects better and reduce
the occurrence of numerically low scores. They reduce
the error in ATE estimation across different propensity
score models and treatment assignment mechanisms. In
real-world observational studies, where we don’t know the
true treatment assignment mechanism, calibration can be
useful to improve the treatment effect estimates from a
potentially misspecified model.

5.2 UNSTRUCTURED IMAGE COVARIATES

We simulate a simple observational study following Louizos
et al. [2017] and Deshpande et al. [2022] such that
variables X,T, Y ∼ P are binary and the true ATE
is zero. Appendix E contains a detailed description of
this simulation. We also introduce an unstructured image
covariate X that represents X as a randomly chosen MNIST
image of a zero or one, depending on whether X = 0 or
X = 1. Specifically, P(X|X = 1) is uniform over MNIST
images of ‘1’ and P(X|X = 0) is uniform over MNIST
images of ‘0’.

We use a multi-layer perceptron as the propensity score
model and recalibrate its output. In Table 2, we compare
the IPTW estimates for ATE using binary X and image X
covariates (with 28 × 28 = 784 dimensions). The ECE is
higher for the plain propensity score model trained on image
covariates, indicating higher miscalibration with increasing
covariate dimensions. We see that recalibration improves
ATE estimates on high-dimensional image covariates.
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Table 1: Recalibrating the Output of Propensity Score Model Results in Lower Error in Estimating Causal Effects. Reduction
in ECE (∆(ECE)) implies that the calibration of the model improves with our technique. Results consisting of εATE are
averaged over 10 experimental repetitions and braces contain the standard error.

Setting Sim A Sim B Sim C Sim D

Naive 0.498 (0.003) 0.223 (0.003) 0.279 (0.004) 0.280 (0.006)

Plain propensities 0.348 (0.035) 0.211 (0.002) 0.164 (0.002) 0.075 (0.004)
Trimmed [Lee et al., 2011] 0.481 (0.004) 0.210 (0.002) 0.153 (0.002) 0.074 (0.004)
Stablized Wt [Xu et al., 2010] 0.422 (0.016) 0.210 (0.002) 0.158 (0.003) 0.078 (0.005)

Covariate Balancing [Tan, 2019] 0.509 (0.003) 0.190 (0.002) 0.169 (0.007) 0.092 (0.013)

Calibrated (Ours) 0.107 (0.029) 0.195 (0.002) 0.148 (0.001) 0.048 (0.010)
Calibrated + Trimmed 0.115 (0.028) 0.193 (0.002) 0.148 (0.001) 0.048 (0.010)
Calibrated + Stablized Wt 0.057 (0.026) 0.194 (0.002) 0.148 (0.001) 0.045 (0.009)

∆(ECE) 0.010 (0.001) 0.014 (0.001) 0.025 (0.002) 0.019 (0.001)

Table 2: Reduction in ATE Estimation Error εATE with Structured and Unstructured Covariates.

Setting Naive Est. Plain Propensities Uncertainty Recalibration ∆(ECE)

Image Covariate 0.187 (0.010) 0.107 (0.029) 0.095 (0.005) 0.137 (0.046)
Binary Covariate 0.176 (0.019) 0.091 (0.011) 0.085 (0.008) 0.112 (0.029)

5.3 GENOME-WIDE ASSOCIATION STUDIES

Genome-Wide Association Studies (GWASs) attempt to
estimate the treatment effect of genetic mutations (called
SNPs) on individual traits (called phenotypes) from
observational datasets. Each SNP acts as a treatment.
Confounding occurs because of hidden ancestry: individuals
with shared ancestry have correlated genes and phenotypes.

The key takeaways can be summarized as follows.
First, recalibration enables off-the-shelf IPTW and AIPW
estimators to match or outperform a state-of-the-art GWAS
analysis system (LMM/LIMIX; see Tables 3 and 4). Second,
our method enables the use of propensity score models that
would otherwise be unusable due to the poor quality of their
uncertainty estimates (e.g., Naive Bayes; see Table 5). Third,
leveraging new types of propensity score models that are
fast to train (such as Naive Bayes), improves the speed of
GWAS analysis by more than two-fold (see Table 5).

Setup We simulate the genotypes and phenotypes of
individuals following a range of standard models as
described in Appendix F. The outcome is simulated as
Y = βTG + αTZ + ϵ, where G is the vector of SNPs,
Z contains the hidden confounding variables, ϵ is noise
distributed as Gaussian, β is the vector of treatment effects
corresponding to each SNP and α holds coefficients for the
hidden confounding variables. We assume that the aspect of
hidden population structure in Z that needs to be controlled
for is fully contained in the observed genetic data to ensure
ignorability [Lin and Zeng, 2011]. To estimate the average
marginal treatment effect corresponding to each SNP, we

iterate successively over the vector of SNPs such that the
selected SNP is treatment T and all the remaining SNPs
are covariates X for predicting the phenotypic outcome Y .
The outcome is a vector of estimated treatment effects β̂
corresponding to the vector of SNPs. We measure εATE as
the l2 norm of the difference between true and estimated
marginal treatment effect vectors.

We use calibrated propensity scores with the IPTW
and AIPW estimators to compute these treatment
effects. We compare the performance of these estimators
with standard methods to perform GWAS, including
Principal Components Analysis (PCA) [Price et al., 2006,
2010], Factor Analysis (FA), and Linear Mixed Models
(LMMs) [Yu et al., 2006, Lippert et al., 2011], implemented
in the popular LIMIX library [Lippert et al., 2014]. Unless
mentioned otherwise, 1% of total SNPs are causal and we
have 4000 individuals in the dataset.

In Table 3, we demonstrate the effectiveness of estimators
using calibrated propensities on five different GWAS
datasets (Appendix F). Here, we have a total of 100 SNPs.
In Table 4, we increase the proportion of causal SNPs
for the Spatial simulation and continue to see improved
performance under calibration. In Table 9 (Appendix F),
we compare five different base models to learn propensity
scores over six standard GWAS simulations and show that
calibration improves the performance in each case. The
performance of plain Naive Bayes as the base propensity
score model is very poor owing to the simplistic conditional
independence assumptions, but calibration improves its
performance significantly. In Table 5, we compare the
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Table 3: GWAS with Calibrated Propensities. We compare IPTW and AIPW estimates using calibrated propensity scores
against standard baselines and a specialized GWAS analysis system (LMM/LIMIX).

Dataset Spatial Spatial Spatial HGDP TGP
(α=0.1) (α=0.3) (α=0.5)

Naive 16.23 (0.91) 11.76 (0.84) 9.81 (0.69) 11.82 (0.11) 12.24 (0.71)
PCA 9.60 (0.37) 9.54 (0.41) 9.38 (0.38) 11.69 (0.20) 10.73 (0.38)
FA 9.55 (0.34) 9.53 (0.44) 9.23 (0.30) 11.65 (0.16) 10.59 (0.32)
LMM 10.24 (0.41) 9.58 (0.45) 8.15 (0.40) 10.09 (0.35) 9.44 (0.57)

IPTW (Calib) 8.13 (0.35) 8.69 (0.56) 8.32 (0.34) 10.86 (0.13) 9.57 (0.58)
IPTW (Plain) 12.56 (1.25) 10.22 (0.81) 9.09 (0.48) 11.62 (0.12) 11.76 (0.86)
AIPW (Calib) 8.94 (0.29) 9.00 (0.58) 8.59 (0.39) 11.06 (0.12) 10.32 (0.43)
AIPW (Plain) 13.89 (0.76) 10.46 (0.72) 8.99 (0.51) 11.38 (0.11) 11.56 (0.65)
∆ECE 0.022 (0.001) 0.016 (0.007) 0.015 (0.001) 0.011 (0.001) 0.022 (0.001)

Table 4: Increasing Proportion of Causal SNPs. Calibrated propensities reduce the bias in treatment effect estimation across
all setups and compare favorably against standard GWAS methods.

Method 1% Causal SNPs 2% Causal SNPs 5% Causal SNPs 10% Causal SNPs

Naive 22.408 (5.752) 15.150 (2.213) 23.388 (5.021) 14.846 ( 2.272)
PCA 18.104 (5.378) 13.699 (2.413) 15.837 (3.331) 11.683 (0.983)
FA 18.532 (3.641) 14.166 (2.259) 16.855 (2.764) 11.963 (0.958)
LMM 17.575 (3.408) 13.896 (2.152) 14.681 (3.366) 10.108 (0.827)

IPTW (Calib) 17.237 (3.054) 13.113 (1.775) 14.587 (3.432) 8.625 (0.838)
IPTW (Plain) 19.297 (3.425) 14.372 (1.482) 18.290 (3.788) 11.859 (0.95240)
AIPW (Calib) 17.647 (3.208) 13.382 (1.676) 15.166 (3.597) 9.078 (0.928)
AIPW (Plain) 20.652 (3.286) 13.720 (1.798) 21.321 (4.750) 12.904 (1.990)

computational throughput of calibrated Naive Bayes as the
propensity score model with logistic regression. Here, we
have a total of 1000 SNPs. We see that using calibrated
Naive Bayes obtains performance competitive with logistic
regression at a significantly higher throughput. Please refer
to Appendix G for results on additional GWAS datasets.

Table 5: Calibrated Naive Bayes Yields Lower ϵATE (IPTW)
and Uses Lower Computational Resources As Compared to
Logistic Regression.

Method ϵATE Tput (SNPs/sec)

LMM 19.908 (3.592) -
Calibrated NB 18.210 (1.705) 47.6
Plain NB 1455.992 (185.084) 68.6
Calibrated LR 23.618 (3.832) 19.5
Plain LR 27.921 (4.713) 20.1

6 RELATED WORK

Isotonic regression [Niculescu-Mizil and Caruana, 2005]
and Platt scaling [Platt, 1999] are used to calibrate
uncertainties over discrete outputs. This concept has

been extended to regression calibration [Kuleshov et al.,
2018] and online calibration [Kuleshov and Ermon, 2017].
Calibrated uncertainties have been used to improve deep
reinforcement learning [Malik et al., 2019, Kuleshov and
Deshpande, 2022], Bayesian optimization [Deshpande and
Kuleshov, 2023], etc.

Lenis et al. [2018] and Kang and Schafer [2007]
demonstrate the degradation in treatment effect estimation
due to misspecified treatment and outcome models. Various
modifications of propensity scores weights and different
notions of calibration have been proposed to reduce the bias
in treatment effect estimation [Imai and Ratkovic, 2014,
Zhao, 2017, Ning et al., 2018, Van Der Laan et al., 2023,
Stürmer et al., 2007b, Crump et al., 2009, Fan Li and
Zaslavsky, 2018, Xu et al., 2010]. Appendix A compares
our work with these approaches in more details.

As compared to covariate balancing calibration [Imai and
Ratkovic, 2014] that modifies the underlying optimization
procedure for obtaining balancing weights, our notion
of calibration is simpler to implement and does not
modify the optimization of the propensity score model.
Unlike techniques like propensity weight trimming [Crump
et al., 2009], our method does not introduce bias from
throwing away weights beyond a pre-selected threshold.
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Van Der Laan et al. [2023] and Xu and Yadlowsky
[2022] apply the following notion of calibration for
hetereogenous treatment effect (HTE) estimation: The
average HTE of units with a given predicted HTE is
equal to the shared predicted value. The goal of causal
isotonic regression [Van Der Laan et al., 2023] is to ensure
more directly that the predicted HTE outcome is reliable
for different sub-groups of the population. Our work, on
the other hand, calibrates the uncertainty outcome of the
propensity score model that weighs the treated and control
outcomes to achieve covariate balance. Although both
calibration methods can be implemented using isotonic
regression, the calibration guarantees are different. Our
definition ensures that we avoid extreme propensity weights
while balancing covariates and improve the error bounds
on causal effect estimates. Our approach to calibration
is applicable to HTE estimation (Appendix G, Table 6)
and can be used with mis-specified propensity models that
produce extreme weights. Applying our method to calibrate
propensity scores in HTE estimation could be an interesting
way to reduce the issue with extreme propensity weights
while performing causal isotonic regression [Van Der Laan
et al., 2023].

Uncertainty calibration can be combined independently with
other methods like trimming [Crump et al., 2009, Fan Li
and Zaslavsky, 2018], stabilized weights [Xu et al., 2010],
covariate balancing techniques [Hainmueller, 2012, Chan
et al., 2016, Zhao, 2017, Zubizarreta, 2015, Ning et al.,
2018], etc. to improve the quality of ATE estimates.

7 DISCUSSION AND CONCLUSIONS

True treatment assignment mechanisms in observational
studies are rarely known. Mis-specified propensity score
models and outcome models may lead to biased treatment
effect estimation [Kang and Schafer, 2007, Lenis et al.,
2018]. We proposed a simple technique to perform post-hoc
calibration of the propensity score model. We show that
calibration is a necessary condition to obtain accurate
treatment effects and calibrated uncertainties improve
propensity scoring models. Empirically, we show that our
technique reduces bias in estimates across a range of
treatment assignment functions and base propensity score
models. Propensity score models over high-dimensional,
unstructured covariates like images, text, and genomic
sequences are harder to specify, and we show that we
can improve treatment effect estimates for such covariates
over a range of base models including the popular logistic
regression. We can calibrate simpler models like Naive
Bayes over high-dimensional covariates and obtain higher
computational throughput while maintaining competitive
performance as measured by the error in treatment effect
estimation.

Limitations of Calibrated Propensities. Calibration
can ensure accurate causal effect estimates when the
propensity score model Q can discriminate between
different treatments. For example, if the propensity model
outputs the marginal treatment distribution, i.e., Q(T |X) =
P (T ), then Q is perfectly calibrated but cannot estimate
accurate treatment effects. Ensuring that Q can discriminate
between different treatments is a strong condition and
we discuss this further in Appendix H.3.4. When we use
calibrated propensity scores for causal effect estimation, we
assume that the observed covariates contain information
on all the confounders. In the presence of unobserved
confounders that cannot be recovered, calibrating the
propensity scores will not be helpful.
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A COMPARING UNCERTAINTY CALIBRATION WITH OTHER NOTIONS OF
CALIBRATION FOR CAUSAL EFFECT ESTIMATION

Since true propensity model is often unknown in observational studies, the model we use to learn it is likely misspecified.
Different parametric and non-parametric models have been proposed to learn propensity scores [McCaffrey et al., 2004,
Hirano et al., 2003, Imbens, 2004, Lee et al., 2010]. Various strategies have been proposed to improve (and calibrate) the
propensity score weights.

Trimming and Overlapping Weights. When using inverse propensity score weights in causal effect estimators, small
deviations in propensity score values can cause large errors in treatment effect estimation. Hence, several strategies have
been proposed to trim the extreme propensity score weights [Crump et al., 2009, Li et al., 2018, Fan Li and Zaslavsky,
2018]. Trimming is known to introduce bias in causal effect estimates as we may lose the information on the magnitude of
propensity scores from units that correspond to differences in covariate distributions. It is hard to determine the optimal
trimming threshold upfront without sufficient knowledge of the observational study. This problem becomes more pronounced
as we increase the complexity of the problem (e.g., multiple treatments [Lopez and Gutman, 2017]). Calibration, on the other
hand, does not throw away the information contained within propensity scores weights below an arbitrarily chosen threshold.
At the same time, it ensures that we do not produce propensity scores lower than the true propensity score (Theorem 3.5).
Overlapping weights avoid extreme propensity weights by modifying the target population to include units that are more
likely to obtain either of the binary treatments[Fan Li and Zaslavsky, 2018], while uncertainty calibrated propensities do not
need to modify the target population.

High-dimensional Covariates. Propensity score models also become unstable and show high variance when covariates
are high-dimensional. When performing a direct adjustment of confounding without propensity scores, the estimation
problem becomes more complex as the number of covariates increases (e.g., insufficient number of units to estimate outcome
reliably for each combination of covariates). In our experiments with genome-wide association studies, we show that simple
propensity models can be used for causal effect estimation with high-dimensional covariates through uncertainty calibration.
Thus, calibrating propensities can allow us to estimate causal effects with simple (and potentially mis-specified) propensity
score models when applying g-computation is infeasible due to high dimensionality.

Covariate Balancing Calibration. Since the true propensity model is not known, researchers often modify and refit the
propensity score model until covariate balance is achieved. Several techniques have been proposed to avoid this cyclic
procedure and obtain covariate balance during optimization of the propensity weights [Hainmueller, 2012, Imai and
Ratkovic, 2014, Ning et al., 2018, Zhao, 2017, Zubizarreta, 2015, Chan et al., 2016]. Covariate balancing calibration is
based on this idea and it solves an optimization problem such that we find weights that balance any averaged function
of the covariates in treatment and control groups [Ben-Michael et al., 2021]. While these approaches show theoretical
and empirical success in improving causal effect estimation, choices such as setting the appropriate balance conditions
within the optimization problem require substantial knowledge of the observational study. Weights from the true propensity
score are a solution to these balancing conditions. However, designing appropriate covariate balancing conditions becomes
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harder as the dimensionality of the covariates increases. This is more challenging in the presence of covariate interactions
(e.g., certain combinations of covariates representing socio-economic variables make an individual more likely to take
up smoking as a treatment variable) and continuous covariates [Ben-Michael et al., 2021]. Uncertainty calibration of a
potentially misspecified propensity score model does not change the base model optimization procedure and is simpler to
implement on high-dimensional covariates. Thus, it can be more effective when we do not have enough information on the
observational study to calibrate (optimize) using appropriate covariate balancing conditions.

Causal Isotonic Calibration. Van Der Laan et al. [2023] propose causal isotonic calibration to improve the estimation of
heterogeneous treatment effects (HTEs). Their work enforces a different notion of calibration on the HTE prediction: The
average HTE of units with a given predicted HTE is equal to the shared predicted value. The goal of their work is to ensure
more directly that the predicted HTE outcome is reliable for different sub-groups of the population. Xu and Yadlowsky
[2022] propose a technique to compute the calibration error while estimating heterogeneous treatment effects (HTEs)
following this definition of calibration. Our work, on the other hand, calibrates the uncertainty outcome of the propensity
score model that weighs the treated and control outcomes to achieve covariate balance. Our definition of calibration ensures
that the number of units receiving treatment, given X % predicted probability of receiving treatment, is equal to X %.
Although both calibration methods can be implemented using isotonic regression (with/without cross-validation splits to
train the recalibrator), the calibration guarantees are different. Our definition ensures that we avoid extreme propensity
weights while balancing covariates and improve the error bounds on causal effect estimates. Applying our method to calibrate
propensity scores in HTE estimation could be an interesting way to reduce the issue with extreme propensity weights while
performing causal isotonic regression [Van Der Laan et al., 2023] (e.g., in the case of high-dimensional/complex covariates).
Although we only present results with the ATE metric in our main paper, our method can be applied to HTE estimation.
Table 6 in Appendix G demonstrates that propensity score calibration also improves HTE estimation consistently in the drug
effectiveness experiment from Table 1 in the main paper. It is also possible to apply our method independently to avoid
extreme propensity scores when estimating the calibration error as proposed by Xu and Yadlowsky [2022].

Other Ideas. Other notions of propensity score calibration have been discussed in literature spanning survey sampling,
missing data problems and causal inference [Lee and Valliant, 2009, Stürmer et al., 2007a]. However, these methods utilize
a different setup (for example, access to validation dataset with information on extra variables) to perform calibration.
Our method performs calibration under absence of hidden confounding and does not require accessing extra datasets (our
calibration dataset can be generated with cross-validation).

B ESTIMATORS FOR AVERAGE TREATMENT EFFECTS

We expressed ATE as τ = E
(

TY
e(X) −

(1−T )Y
1−e(X)

)
. Following Smith et al. [2020], we can simplify the following term

E
[
TY

e(X)

]
= E[E

(
TY

e(X)
|T,X

)
]

= E[
(
TE(Y |T,X)

e(X)

)
]

= E[
(
TE(Y |T = 1, X)

e(X)

)
]

= E[E
(
TE(Y |T = 1, X)

e(X)
|X

)
]

= E[
(
E(Y |T = 1, X)P (T = 1|X)

e(X)

)
]

= E[E(Y |T = 1, X)].

Similarly,

E
[
(1− T )Y

1− e(X)

]
= E[E(Y |T = 0, X)].

Thus, we can show that ATE is indeed equivalent to E
(

TY
e(X) −

(1−T )Y
1−e(X)

)
.
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Due to sensitivity of the IPTW estimator toward mis-specification of propensity score model, Robins et al. [1994] propose
doubly robust Augmented Inverse Propensity Weighted (AIPW) estimator for ATE. The AIPW estimate is asymptotically
unbiased when either the treatment assignment (propensity) model or the outcome model is well-specified.

We define the outcome model as f(X = x, T = t) to approximate the outcome Y [X = x, T = t] as defined in Section 2.

With this, we define the AIPW estimator as

τ̂ =
1

n

n∑
i=1

[
f(Xi, T = 1)− f(Xi, T = 0) +

Ti(Yi − f(Xi, T = 1))

e(Xi)
− (1− Ti)(Yi − f(Xi, T = 0))

1− e(Xi)

]

C ADDITIONAL DETAILS ON THE CALIBRATION ALGORITHM

Algorithm 1 depends linearly on the number of data-splits created (training set and calibration set) in addition to the
time-complexity of training the propensity model Q(T |X) and recalibrator (Algorithm 2). The time complexity will also
depend on an additive term corresponding to computing R ◦Q for all data-points in dataset D. Space complexity depends
linearly on the size of dataset D together with additive terms for model size of Q(T |X) and R.

Designing the Recalibration Method. When the treatments are binary, we can choose between isotonic regression and
logistic regression as the recalibrator. Since isotonic regression is prone to overfitting, we prefer to use logistic regression
when the calibration dataset size is small (e.g., <1000 data points). Leave-one-out cross-validation splits could be useful
to generate the calibration dataset when the dataset size is small. When moving to the multiple treatment/ continuous
treatment setup, designing the recalibrator may involve more choices (for example, we can have a simple neural network
as a recalibrator in the case of continuous treatments). Using a separate cross-validation dataset would help select these
hyperparameters.

Cross-validation Splits. The requirement to allocate a separate calibration dataset may reduce the size of dataset available
for training the propensity score model Q(T |X). Hence, we can use cross-validation splits in the dataset to calibrate a
propensity score model. To implement this approach, we divide our dataset D into k partitions S1, S2, .., Sk. For each dataset
split Sk, we train the propensity score model Qk(T |X) on Sk and and generate parts of recalibrator training dataset (as
defined in Algorithm 2) as Ck = {Qk(x), y|x, y ∈ D − Sk}. After this, we can take a union over all Ck to generate the
complete recalibrator training dataset. This allows us to use the entire available dataset for training the propensity score
model as well as the recalibrator. This can be useful especially when the available dataset size is small. In our experiments,
we have used leave-one-out cross-validation splits (thus, each partition Sk is of size n-1 where n is the size of dataset D).

D DRUG EFFECTIVENESS SIMULATIONS

The covariates contain gender (x1), age (x2) and disease severity (x3), while treatment (t) corresponds to administration of
drug. Outcome (y) is the time taken for recovery of patient.

We simulate the covariates as

x1 ∼ Bernoulli(0.5) x2 ∼ Gamma(α = 8, β = 4) x3 ∼ Beta(α = 3, β = 1.5).

The outcome is simulated as
y ∼ Poisson(2 + 0.5x1 + 0.03x2 + 2x3 − t).

The treatment t is assigned on the basis of the covariates age, gender and severity of disease defined above. The simulations
differ in their treatment assignment functions, which are described as follows

1. Simulation A: If (x1 = 1), set t = (x2 > 45) else set t = (x3 > 0.3).

2. Simulation B: If (x1 = 1), set t = (x3 > 0.3) else set t = (x2 > 40).

3. Simulation C: If x2 > 50 AND x3 > 0.7 then set t = 1 else t = 0.

4. Simulation D: If x2 > 50 XOR x3 > 0.7 then set t = 1 else t = 0.

For a linear model predicting treatment given covariates, Simulation C is easier to learn as compared to A, B and D.

Table 7 works with a slightly modified simulation D, where the treatment is set to 1 with probability of 0.99 when the XOR
condition is true (otherwise 0), while it is set to 0 with probability 0.99 when the condition is false.
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Experimental Setup. We model the outcome using random forests such that the covariates and treatment is taken as input.
Logistic regression is used as the propensity score model and the inverse propensity scores are used to weigh each sample
while training the outcome model. We use isotonic regression as the recalibrator. The treatment effect is expressed as the
ratio E(Y (1))/E(Y (0)), where Y (T ) is the potential outcome Y obtained by setting treatment to T . The outcome is time
taken by the patient to make full recovery from the disease. We use 10 cross-val splits to generate the recalibration dataset.

The trimming baseline clips propensity weights to threshold of 0.001. Thresholds of 0.001-0.01 are applied commonly when
using causal effect estimators based on inverse propensities.

The experiments were run on a laptop with 2.8GHz quad-core Intel i7 processor.

In Figure D, we see that the calibration curve of propensity score model gets closer to the diagonal after applying recalibration.

Figure 2: Calibration of propensity score model for Drug Effectiveness Study.
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E UNSTRUCTURED COVARIATES EXPERIMENT

Following Louizos et al. [2017], we generate a synthetic observational dataset consisting of binary variables X,T, Y ∼ P,
such that

P(Z = 1) = P(Z = 0) = 0.5 P(X = 1|Z = 1) = 0.3 P(X = 1|Z = 0) = 0.1

P(T = 1|Z = 1) = 0.4 P(T = 1|Z = 0) = 0.2 Y = T ⊕ Z.

Louizos et al. [2017] show that the true ATE under this simulation is zero. The presented results include propensity weight
trimming by threshold of 0.01.

The simulation generation as well as ATE estimation experiments were done on a laptop with 2.8GHz quad-core Intel i7
processor.

F SIMULATED GWAS DATASETS

We have N individuals and M number of total SNPs for each individual. Thus, we need to simulate a SNP matrix
G ∈ {0, 1}N×M and an outcome vector Y ∈ RN . We also have a matrix of confounding variables Z ∈ RN×D for these N
individuals. We do not observe the confounding variables. Following Wang and Blei [2019], we generate the following
genotype simulations.

To generate the SNP matrix, we generate an allele frequency matrix F ∈ RN×M such that F = SΓ⊤, where S ∈ RN×D

encodes genetic population structure and Γ ∈ RM×D maps how structure affects alleles.

Thus, gij ∼ Binomial(1, Fij).

The outcome is modeled as Y = βTG+ αTZ + ϵ, where β is the vector of treatment effects for each SNP, α is the vector
of coefficients corresponding to the hidden confounders in Z and ϵ is noise distributed independently as a Gaussian.

We simulate a high signal-to-noise ratio while simulating outcomes by replacing λi = (αTZ)i as

λi ←

[
s.d.{

∑m
j=1 βjgij}Ni=1√
νgene

][ √
νconf

s.d.{λi}Ni=1

]
λi

ϵi ←

[
s.d.{

∑m
j=1 βjgij}Ni=1√
νgene

][ √
νnoise

s.d.{ϵi}ni=1

]
ϵi,

where νgene = 0.4, νconf = 0.4, and νnoise = 0.2.

Below, we reproduce the simulation details as described by Wang and Blei [2019]. Γ and S are simulated in different ways
to generate the following datasets.

1. Spatial Dataset: The matrix Γ was generated by sampling γik ∼ 0.9 × Uniform(0, 0.5) , for k = 1, 2 and setting
γik = 0.05. The first two rows of S correspond to coordinates for each individual on the unit square and were set to be
independent and identically distributed samples from Beta(α, α), α = 0.1, 0.3, 0.5, while the third row of S was set to
be 1, i.e. an intercept. As α =⇒ 0, the individuals are placed closer to the corners of the unit square, while when
α = 1, the individuals are distributed uniformly.

2. Balding-Nichols Model (BN): Each row i of Γ has three independent and identically distributed draws taken from the
Balding- Nichols model: γik ∼ BN(pi, Fi), where k ∈ 1, 2, 3. The pairs (pi, Fi) are computed by randomly selecting
a SNP in the HapMap data set, calculating its observed allele frequency and estimating its FST value using the Weir
& Cockerham estimator [Weir and Cockerham, 1984]. The columns of S were Multinomial(60/210,60/210,90/210),
which reflect the subpopulation proportions in the HapMap dataset.

3. 1000 Genomes Project (TGP) [1000 Genomes Project Consortium et al., 2015]: The matrix Γ was generated by
sampling γik ∼ 0.9Uniform× (0, 0.5) , for k = 1, 2 and setting γik = 0.05. In order to generate S, we compute the
first two principal components of the TGP genotype matrix after mean centering each SNP. We then transformed each
principal com- ponent to be between (0,1) and set the first two rows of S to be the transformed principal components.
The third row of S was set to 1, i.e. an intercept.
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4. Human Genome Diversity Project (HGDP) [Fairley et al., 2019, Bergström et al., 2020]: Same as TGP but generating
S with the HGDP genotype matrix.

These simulations and the ATE estimation experiments were all done on a laptop with 2.8GHz quad-core Intel i7 processor.
The presented results include propensity weight trimming by threshold of 0.01 (after applying a possible calibration step).

G ADDITIONAL EXPERIMENTAL RESULTS

For the Drug Effectiveness simulations, Table 7, we compare a range of base propensity score models where the true
treatment assignment function is non-linear logical XOR (Appendix D). We see the benefits of calibration across varying
degrees of mis-specification in the base model. After calibration, non-linear MLP and SVM (RBF) show the best εATE ,
while mis-specified linear models like logistic regression also show consistent reduction in εATE . We observe a greater
reduction in bias (εATE) with lowering ECE.

Table 6 extends Table 1 with the PEHE metric on all the simulation settings.

For the GWAS experiments, we provide a complete table of dataset simulations and acomparison against different base
propensity models in Table 8 and Table 9 respectively.

Table 6: Recalibrating the Output of Propensity Score Model Results in Lower Error in Estimating Causal Effects. Reduction
in ECE (∆(ECE)) implies that the calibration of the model improves with our technique. Results consisting of PEHE are
averaged over 10 experimental repetitions and braces contain the standard error.

Setting Sim A Sim B Sim C Sim D

Naive 0.263 (0.002) 0.075 (0.002) 0.105 (0.002) 0.103 (0.003)

Plain propensities 0.149 (0.024) 0.068 (0.001) 0.052 (0.001) 0.031 (0.001)
Trimmed [Lee et al., 2011] 0.245 (0.004) 0.067 (0.001) 0.046 (0.001) 0.031 (0.001)
Stablized Wt [Xu et al., 2010] 0.195 (0.013) 0.076 (0.002) 0.114 (0.004) 0.112 (0.005)

Covariate Balancing [Tan, 2019] 0.280 (0.003) 0.056 (0.001) 0.050 (0.003) 0.107 (0.007)

Calibrated (Ours) 0.047 (0.010) 0.057 (0.001) 0.042 (0.001) 0.032 (0.001)
Calibrated + Trimmed 0.049 (0.010) 0.057 (0.001) 0.042 (0.001) 0.032 (0.001)
Calibrated + Stablized Wt 0.030 (0.007) 0.057 (0.001) 0.042 (0.001) 0.033 (0.001)

∆(ECE) 0.010 (0.001) 0.014 (0.001) 0.025 (0.002) 0.019 (0.001)

Table 7: Comparison of different base propensity score models. (Sim D)

Base model εATE(Plain) ECE (Plain) εATE (Calib) ECE (Calib)

Log. Reg. 0.031 (0.003) 0.124 (0.001) 0.016 (0.002) 0.018 (0.001)
MLP 0.014 (0.005) 0.075 (0.002) 0.008 (0.003) 0.012 (0.002)
SVM (Linear) 0.032 (0.005) 0.126 (0.001) 0.015 (0.003) 0.017 (0.001)
SVM (RBF) 0.012 (0.003) 0.020 (0.000) 0.009 (0.004) 0.011 (0.001)
Adaboost 0.039 (0.003) 0.296 (0.001) 0.022 (0.004) 0.037 (0.008)
Naive Bayes 0.022 (0.004) 0.146 (0.001) 0.017 (0.003) 0.016 (0.002)
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Table 8: GWAS with calibrated propensities. We compare IPTW and AIPW estimates using calibrated propensity scores
against several standard GWAS baselines. εATE is the l2 norm of difference between true and estimated marginal treatment
effect vector. Under all setups, calibrated propensities improve the treatment effect estimates.

Dataset Spatial Spatial Spatial Balding HGDP TGP
(α=0.1) (α=0.3) (α=0.5) Nichols

Naive 16.23 (0.91) 11.76 (0.84) 9.81 (0.69) 19.25 (1.17) 11.82 (0.11) 12.24 (0.71)
PCA 9.60 (0.37) 9.54 (0.41) 9.38 (0.38) 14.12 (1.28) 11.69 (0.20) 10.73 (0.38)
FA 9.55 (0.34) 9.53 (0.44) 9.23 (0.30) 12.59 (1.05) 11.65 (0.16) 10.59 (0.32)
LMM 10.24 (0.41) 9.58 (0.45) 8.15 (0.40) 13.13 (1.09) 10.09 (0.35) 9.44 (0.57)
IPTW (Calib) 8.13 (0.35) 8.69 (0.56) 8.32 (0.34) 13.62 (0.68) 10.86 (0.13) 9.57 (0.58)
IPTW (Plain) 12.56 (1.25) 10.22 (0.81) 9.09 (0.48) 14.36 (0.74) 11.62 (0.12) 11.76 (0.86)
AIPW (Calib) 8.94 (0.29) 9.00 (0.58) 8.59 (0.39) 16.81 (1.39) 11.06 (0.12) 10.32 (0.43)
AIPW (Plain) 13.89 (0.76) 10.46 (0.72) 8.99 (0.51) 17.66 (1.33) 11.38 (0.11) 11.56 (0.65)
∆ECE 0.022 (0.001) 0.016 (0.007) 0.015 (0.001) 0.013 (0.002) 0.011 (0.001) 0.022 (0.001)

Table 9: Comparing propensity score models. We compare the AIPW estimate using calibrated propensities and observe
reduction in error across a range of base propensity score models.

Dataset Metrics LR MLP Random Forest Adaboost NB

Spatial εATE (plain) 13.886 (0.755) 17.403 (1.070) 12.911 (0.612) 16.234 (0.916) 582.731 (64.514)
(α=0.1) εATE (calib) 8.942 (0.287) 14.661 (0.762) 8.706 (0.322) 8.524 (0.297) 8.526 (0.472)

∆ECE 0.022 (0.001) 0.072 (0.003) 0.060 (0.001) 0.252 (0.006) 0.281 (0.002)

Spatial εATE (plain) 10.460 (0.720) 12.636 (0.730) 10.578 (0.768) 11.764 (0.839) 400.643 (49.301)
(α=0.3) εATE (calib) 9.000 (0.58) 11.550 (0.747) 9.277 (0.532) 8.909 (0.549) 9.121 (0.535)

∆ECE 0.016 (0.007) 0.070 (0.003) 0.063 (0.001) 0.244 (0.006) 0.281 (0.002)

Spatial εATE (plain) 8.990 (0.510) 10.408 (0.694) 9.277 (0.518) 9.814 (0.691) 276.017 (24.183)
(α=0.5) εATE (calib) 8.590 (0.390) 9.728 (0.650) 8.687 (0.224) 8.520 (0.286) 8.592 (0.216)

∆ECE 0.015 (0.001) 0.070 (0.002) 0.065 (0.001) 0.239 (0.007) 0.269 (0.003)

Balding εATE (plain) 17.660 (1.330) 18.282 (1.267) 18.419 (1.210) 19.248 (1.169) 95.892 (6.350)
Nichols εATE (calib) 16.810 (1.390) 17.033 (1.391) 16.611 (1.385) 16.938 (1.367) 16.833 (1.392)

∆ECE 0.013 (0.002) 0.041 (0.002) 0.052 (0.002) 0.259 (0.010) 0.261 (0.009)

HGDP εATE (plain) 11.380 (0.110) 12.358 (0.197) 11.529 (0.107) 11.816 (0.108) 138.086 (5.086)
εATE (calib) 11.060 (0.120) 11.198 (0.106) 11.299 (0.143) 11.070 (0.123) 11.430 (0.133)

∆ECE 0.011 (0.001) 0.069 (0.002) 0.053 (0.001) 0.275 (0.006) 0.206 (0.003)

TGP εATE (plain) 11.560 (0.650) 11.965 (0.754) 11.677 (0.614) 12.246 (0.713) 87.329 (5.716)
εATE (calib) 10.320 (0.430) 11.530 (0.633) 10.519 (0.402) 10.244 (0.398) 9.070 (0.316)

∆ECE 0.022 (0.001) 0.061 (0.002) 0.070 (0.002) 0.204 (0.007) 0.267 (0.004)

H THEORETICAL ANALYSIS

H.1 NOTATION

As described in Section 2, we are given an observational dataset D = {(x(i), y(i), t(i))}ni=1 consisting of n units, each
characterized by features x(i) ∈ X ⊆ Rd, a binary treatment t(i) ∈ {0, 1}, and a scalar outcome y(i) ∈ Y ⊆ R. We
assume D consists of i.i.d. realizations of random variables X,Y, T ∼ P from a data distribution P . Although we assume
binary treatments and scalar outcomes, our approach naturally extends beyond this setting. The feature space X can be any
continuous or discrete set.
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H.2 CALIBRATION: A NECESSARY CONDITION FOR PROPENSITY SCORING MODELS

Theorem H.1. When Q(T |X) is not calibrated, there exists an outcome function such that an IPTW estimator based on Q
yields an incorrect estimate of the true causal effect almost surely.

Example. Consider a toy binary setting where X = T = {0, 1},Y = {0, 1}2.

We set Y = (X ⊕ T, X̄ ⊕ T̄ ), P (T = 1|X = 0) = p0, P (T = 1|X = 1) = p1 and P (X = 1) = 0.5 such that ⊕
is logical ‘AND’ and V̄ denotes logical negation of binary variable V . We see that true ATE is τ = (0.5,−0.5). Let us
assume that Q(T = 1|X = 0) = q0 and Q(T = 1|X = 1) = q1. Thus, with IPTW estimator based on Q, we estimate

τ ′ = E
(

TY
Q(T=1|X) −

(1−T )Y
1−Q(T=1|X)

)
= ( 0.5.p1

q1
,− 0.5(1−p0)

1−q0
). The treatment effect τ ′ = τ only when q0 = p0 and q1 = p1,

which is not true if Q is not calibrated. Although this example allows multidimensional outcomes, this shows that we can
pick an outcome function such that uncalibrated model Q produces inaccurate treatment effect estimates using the IPTW
estimator.

Proof. Let P be a space of valid probability distributions on Y . We would like to prove that ∃P ′(Y |X = x, T = t) ∈ P
such that

lim
n→∞

Probability(τ̂n = τ) = 0

where

• τ is the true ATE

• τ̂n is the ATE estimated using IPTW estimator such that we have n individuals and propensity score model is
Q(T = 1|X)

• The probability is taken over all propensity models Q(T = 1|X) such that ∃q ∈ [0, 1], P (T = 1|Q(T = 1|X) = q) ̸=
q, and all data-generating distributions P ′(Y, T,X) = P ′(Y |X,T ).P (T,X).

Let SQ = {q|∃X ∈ X , Q(T = 1|X) = q}. We partition X into buckets {Bq}q∈SQ
such that Bq = {X|Q(T = 1|X) = q}.

Let τ̂(Q) = limn→∞ τn. Thus, for discrete X , we could write

τ̂(Q) = EY∼P ′(.|T,X);T,X∼P

[(
TY

Q(T = 1|X)
− (1− T )Y

1−Q(T = 1|X)

)]
Computing expectation over X

=
∑
X∈X

EY∼P ′(.|T,X);T∼P (.|X)

[(
TY

Q(T = 1|X)
− (1− T )Y

1−Q(T = 1|X)

)
P (X)

]
Computing expectation over T

=
∑
X∈X

EY∼P ′(.|X,T=1)

[(
P (T = 1|X)Y

Q(T = 1|X)

)
P (X)

]
+

∑
X∈X

EY∼P ′(.|X,T=0)

[(
− (1− P (T = 1|X))Y

1−Q(T = 1|X)

)
P (X)

]
=

∑
X∈X

(
EY∼P ′(.|X,T=1)

[(
P (T = 1|X)Y

Q(T = 1|X)

)]
− EY∼P ′(.|X,T=0)

[(
(1− P (T = 1|X))Y

1−Q(T = 1|X)

)])
P (X)

Expressing the summation over X differently

=
∑
q∈SQ

∑
X∈Bq

(
EY∼P ′(.|X,T=1)

[(
P (T = 1|X)Y

Q(T = 1|X)

)]
− EY∼P ′(.|X,T=0)

[(
(1− P (T = 1|X))Y

1−Q(T = 1|X)

)])
P (X)

Since Q(T = 1|X) is not calibrated, we know that ∃q ∈ [0, 1], P (T = 1|Q(T = 1|X) = q) ̸= q. Let us pick q′ ∈ SQ such
that P (T = 1|Q(T = 1|X) = q′) ̸= q′.

We could design P ′(Y |X,T ) = I(Y = T.I(X ∈ Bq′))/P (X ∈ Bq′).

Now, we can write
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τ̂(Q) =
∑
q∈SQ

∑
X∈Bq

(
EY∼P ′(.|X,T=1)

[(
P (T = 1|X)Y

Q(T = 1|X)

)]
− EY∼P ′(.|X,T=0)

[(
(1− P (T = 1|X))Y

1−Q(T = 1|X)

)])
P (X)

(Since Y = 0 when T = 0 or X /∈ Bq′ )

=
∑

X∈Bq′

((
P (T = 1|X)P (X)

Q(T = 1|X)P (X ∈ Bq′)

))

=
∑

X∈Bq′

((
P (T = 1|X)P (X)

q′P (X ∈ Bq′)

))

=
P (T = 1|X ∈ Bq′))

q′

Also, for the above data-generation process,

τ = τ̂(P ) =
∑
X∈X

(EY∼P ′(Y |X,do(T=1))[Y ]− EY∼P ′(Y |X,do(T=0))[Y ]).P (X)

=
∑
q∈SQ

∑
X∈Bq

(EY∼P ′(Y |X,do(T=1))[Y ]− EY∼P ′(Y |X,do(T=0))[Y ]).P (X)

=
∑

X∈Bq′

P (X)/P (X ∈ Bq′)

= 1

Thus,

lim
n→∞

Probability(τn = τ) = P (τ̂(Q) = τ)

= Probability
(
P (T = 1|X ∈ Bq′)

q′
= 1

)
= Probability (P (T = 1|X ∈ Bq′) = q′)

= Probability (P (T = 1|Q(T = 1|X) = q′) = q′)

= 0,

since we began with the assumption that P (T = 1|Q(T = 1|X) = q′) ̸= q′.

Please note that we could have defined a set of outcome functions that produce Y = 0 for X ∈ Bq′ , thus, potentially letting
us compute unbiased treatment effects despite working with a miscalibrated model. However, we want our IPTW estimator
to provide unbiased ATE estimates over all possible outcome functions. Here, we can see that IPTW estimator for ATE
that uses a miscalibrated propensity score model cannot obtain unbiased treatment effect estimates on all possible outcome
functions.

H.3 CALIBRATED UNCERTAINTIES IMPROVE PROPENSITY SCORING MODELS

We define the true ATE as

τ = Ey∼P (Y=y|do(T=1))[y]− Ey∼P (Y=y|do(T=0))[y]

=
∑
y

y(
∑
X

P (Y = y|X, do(T = 1))P (X)−
∑
X

P (Y = y|X, do(T = 0))P (X))

=
∑
y

y(
∑
X

P (Y = y|X,T = 1)P (X)−
∑
X

P (Y = y|X,T = 0)P (X))
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Next, recall that the finite-sample Inverse Propensity of Treatment Weight (IPTW) estimator with a model Q(T = 1|X) of
P (T = 1|X) produces an estimate τ̂n(Q) of the ATE, which is computed as

τ̂n(Q) =
1

n

n∑
i=1

(
t(i)y(i)

Q(T = 1|x(i))
− (1− t(i))y(i)

1−Q(T = 1|x(i))

)
.

We define τ̂(Q) as the limit limn→∞τ̂n(Q) when the amount of data goes to infinity. Notice that we can write

lim
n→∞

(τ̂n(Q)) = τ̂(Q) =
∑
y

y[πy,1(Q)− πy,0(Q)]

where

πy,t(Q) = P (T = t)
∑
X

P (Y = y|X,T = t)
P (X|T = t)

Q(T = t|X)
=

∑
X

P (Y = y|X,T = t)
P (T = t|X)

Q(T = t|X)
P (X)

We have a multiplicative term P (T = t) in the above expression since we are dividing by n in the finite-sample formula as
opposed to nt (the number of samples with treatment t). In other words, in order for the finite-sample formula to be a valid
Monte Carlo estimator with samples coming from P (X|T = t), there needs to be an "effective adjustment factor" of nt/n
(such that (nt/n) · (1/nt) = (1/n)), and this term is P (T = t) in the limit of infinite data.

Clearly, if Q = P we have τ̂(Q) = τ̂(P ) = τ . If not, we can consider the error

E = |(τ̂(P )− τ̂(Q))|.

H.3.1 Bounding the Error of Causal Effect Estimation Using Proper Losses

We can form a bound on E as

E = |[τ̂(P )− τ̂(Q)]|

=

∣∣∣∣∣∑
y

y[(πy,1(P )− πy,0(P ))− (πy,1(Q)− πy,0(Q))]

∣∣∣∣∣
≤

∑
t

∣∣∣∣∣∑
y

y[(πy,t(P )− πy,t(Q)]

∣∣∣∣∣
≤

∑
t

∑
y

[|y||πy,t(P )− πy,t(Q)|]

=
∑
t

∑
y

|y|[

∣∣∣∣∣∑
X

P (Y = y|X,T = t)P (X)

(
1− P (T = t|X)

Q(T = t|X)

)∣∣∣∣∣]
≤

∑
t

∑
y

|y|[
∑
X

P (Y = y|X,T = t)P (X)

∣∣∣∣1− P (T = t|X)

Q(T = t|X)

∣∣∣∣]
=

∑
t

∑
y

|y|.[
∑
X

P (Y = y|X,T = t)P (X)ℓX(Pt, Qt)
1/2] where ℓX(Pt, Qt) =

(
1− P (T = t|X)

Q(T = t|X)

)2

=
∑
t

∑
y

|y|.EX∼Ry,t
[ℓX(Pt, Qt)

1/2]

where Rt,y ∝ P (Y = y|X,T = t)P (X) (i.e. Rt,y ∼ k.P (Y = y|X,T = t)P (X), k is constant) and ℓX(P,Q) is a type
of expected Chi-Squared divergence between P,Q. It is a type of proper score. Thus when P = Q, we get zero error, and
otherwise we get a bound.

In the above derivation, we see that the expected error |πy,t(P )− πy,t(Q)| induced by an IPTW estimator with propensity
score model Q is bounded as

|πy,t(P )− πy,t(Q)| ≤ EX∼Ry,t
[ℓχ(Pt, Qt)

1
2 ].
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H.3.2 Calibration Reduces Variance of Inverse Probability Estimators

Theorem H.2. Let P be the data distribution, and suppose that 1− δ > P (T |X) > δ for all T,X and let Q be a calibrated
model relative to P . Then 1− δ > Q(T |X) > δ for all T,X as well.

Proof. Suppose Q(T = 1|x) = q for some x and q < δ. Since Q is calibrated, we have P (T = 1|Q(T = 1|X) = q) =
q < δ.

However P (T = 1|x) > δ for every x. Hence, P (T = 1|X ∈ A) > δ, for all sets A ⊆ X . This implies that P (T =
1|Q(T = 1|X) = q) > δ for all q ∈ [0, 1].

Thus, we have a contradiction.

H.3.3 Calibration Improves Error Bounds on Causal Effect Estimate

We show that calibration strictly improves our ℓχ bound on the IPTW error.

Theorem H.3. Let ℓ1 be the expected bound on the error of an uncalibrated IPTW estimator Q1 in Corollary 3.4, and let ℓ2
be the bound for Q2, the recalibrated version of Q1 with ℓ

1/2
χ as the choice of loss L to train the recalibrator. Then as the

size of the calibration set n→∞ we have ℓ2 ≤ ℓ1 with equality iff Q1 = Q2.

Proof. Corollary 3.4 states that the error of an IPTW estimator with propensity score model Q is bounded by
2|Y|Kmaxy,t ERy,tℓχ(P,Q)

1
2 , where |y| ≤ K for all y ∈ Y , Ry,t ∝ P (Y = y|X,T = t)P (X) is a data distribution and

ℓχ(P,Q) =
(
1− P (T=t|X)

Q(T=t|X)

)2

is the chi-squared loss between the true propensity score and the model Q.

Thus, ℓ1 = 2|Y|Kmaxy,t ERy,t
ℓχ(P,Q1)

1
2 and ℓ2 = 2|Y|Kmaxy,t ERy,t

ℓχ(P,Q2)
1
2 . Clearly, the upper bound ℓi depends

on ℓχ(P,Qi) where i ∈ {1, 2}.

When we use Algorithm 2 to perform recalibration, we obtain Q2 = R◦Q1. Here, we can choose the loss function L(Q,T ) =
EXET |Xℓχ(Q(T = 1|X), T )1/2. From Theorem 4.4, it follows that L(Q2, T ) = L(R ◦Q1, T ) ≤ L(Q1, T ) + o(n) for a
recalibrator R.

As n→∞, R→ B (Bayes optimal recalibrator; see Task 4.1).

If Q1 ̸= Q2, then L(Q2, T ) ̸= L(Q1, T ) because L is strictly proper. Conversely, when Q1 = Q2 clearly ℓ1 = ℓ2. Hence,
the claim follows.

Theorem H.6 in Appendix H.4 proves a similar result for the AIPW estimator when the outcome model is inaccurate.

H.3.4 Calibration Improves the Accuracy of Causal Effect Estimation

Unfortunately, calibration by itself is not sufficient to correctly estimate treatment effects. For example, consider defining
Q(T |X) as the marginal P (T ): this Q is calibrated, but cannot accurately estimate treatment effects. However, if the model
Q is sufficiently accurate (as might be the case with a powerful neural network), calibration becomes the missing piece for
an accurate IPTW estimator.

Specifically, we define separability, a condition which states that when P (T |X1) ̸= P (T |X2) for X1, X2 ∈ X , then the
model Q satisfies Q(T |X1) ̸= Q(T |X2). Intuitively, the model Q is able to discriminate between various T—something
that might be achievable with an expressive neural Q that has high classification accuracy. We show that a model that is
separable and also calibrated achieves accurate causal effect estimation.

Theorem H.4. The error of an IPTW estimator with propensity model Q tends to zero as n→∞ if:

1. Separability holds, i.e., ∀X1, X2 ∈ X , P (T |X1) ̸= P (T |X2) =⇒ Q(T |X1) ̸= Q(T |X2)

2. The model Q is calibrated, i.e., ∀q ∈ (0, 1), P (T = 1|Q(T = 1|X) = q) = q
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Proof. We prove this for discrete inputs at first and then prove it for continuous inputs.

Discrete Input Space.

If our input space X is discrete, then the number of distinct values that Q(T = 1|X) can take is countable. Let us assume that
Q(T = 1|X) takes values {qi}Mi=1. Thus, we can partition X into buckets {Bi}Mi=1 such that Bi = {X|Q(T = 1|X) = qi}.
Due to separability, we have ∀X1, X2 ∈ X , Q(T |X1) = Q(T |X2) =⇒ P (T |X1) = P (T |X2). Thus, we have
∀i,∀X1, X2 ∈ Bi, Q(T = 1|X1) = Q(T = 1|X2), and P (T = 1|X1) = P (T = 1|X2).

Let us assume that for each bucket Bi, our true propensity P (T = 1|X) is pi, i.e, if X ∈ Bi then Q(T = 1|X) = qi and
P (T = 1|X) = pi.

Assuming positivity, 0 < pi < 1.

Now, for all i, we can write

P (T = 1|Q(T = 1|X) = qi) = P (T = 1|X ∈ Bi)

= pi.

If Q is calibrated, then by definition pi = qi.

Now, we can write the expression for ATE τ as

τ = τ̂(P ) = EY,T,X [
TY

P (T = 1|X)
− (1− T )Y

(1− P (T = 1|X))
]

=

N∑
i=1

P (X ∈ Bi)EY,T

(
TY

pi
− (1− T )Y

(1− pi)

)

Using our propensity score model Q(T = 1|X), we estimate τ̂ as

τ̂(Q) = EY,T,X [
TY

Q(T = 1|X)
− (1− T )Y

(1−Q(T = 1|X))
]

=

N∑
i=1

P (X ∈ Bi)EY,T

(
TY

qi
− (1− T )Y

(1− qi)

)

If our model Q is calibrated, then pi = qi. Hence, 0 < qi < 1 and τ̂ is well-defined. Also, τ = τ̂(P ) = τ̂(Q).

When our observational data contains n units, the IPTW estimator based on model Q(T = 1|X) is τ̂n =
1
n

∑n
i=0

(
T (i)Y (i)

Q(T=1|X(i))
− (1−T (i))Y (i)

1−Q(T=1|X(i))

)
.

Hence, limn→∞ τ̂n = τ̂(Q) = τ̂(P ) = τ.

Continuous Input Space.

When X is continuous, the number of buckets can be uncountable. The buckets can now be formed as Bq = {X|Q(T =
1|X) = q},∀q ∈ [0, 1]. It is easy to see that {Bq}q∈[0,1] partitions X . Note that Bq can be empty if there exists no X such
that Q(T = 1|X) = q.

Due to separability, ∀X1, X2 ∈ X , Q(T |X1) = Q(T |X2) =⇒ P (T |X1) = P (T |X2). Thus, for all q, P (T = 1|X) takes
on a unique value for all X ∈ Bq , i.e., ∀q ∈ [0, 1], P (T = 1|X ∈ Bq) = f(q), where function f : [0, 1]→ [0, 1].

Hence, we can write

∀q ∈ [0, 1], P (T = 1|Q(T = 1|X) = q) = P (T = 1|X ∈ Bq)

= f(q).

When model Q(T = 1|X) is calibrated by our definition, then ∀q ∈ [0, 1], q = f(q).
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Therefore, ∀q ∈ [0, 1], Q(T = 1|X ∈ Bq) = q = f(q) = P (T = 1|X ∈ Bq).

Since {Bq}q∈[0,1] partitions X , we have ∀X ∈ X , P (T = 1|X) = Q(T = 1|X). Thus, τ̂(P ) = τ̂(Q).

H.4 DOUBLY ROBUST ESTIMATORS AND ERROR BOUNDS ON CAUSAL EFFECT ESTIMATION

Given a dataset {xi, ti, yi}ni=1, the doubly robust AIPW (Augmented Inverse Propensity Weight) estimator can be used to
compute ATE estimate as

τ̂ ′n(Q, f) =
1

n

n∑
i=1

(
f(xi, 1)− f(xi, 0) +

t(i)(y(i) − f(xi, 1))

Q(T = 1|x(i))
− (1− t(i))(y(i) − f(x, 0))

1−Q(T = 1|x(i))

)
.

The outcome model f(X = x, T = t) can be learned from available data to predict potential outcome Y [X = x, do(T = t)],
where the input covariates are set to x and the applied intervention is T = t. Let us assume that f(X = x, T = t) produces
an error of ϵ(X = x, T = t), i.e. f(X,T ) = Y [X, do(T )] + ϵ(X,T ).

Thus, we can rewrite the causal effect estimate τ̂ ′n(Q, ϵ) as

τ̂ ′n(Q, ϵ) =
1

n

n∑
i=1

(
Y [xi, do(t = 1)]− Y [xi, do(t = 0)] + ϵ(xi, 1)− ϵ(xi, 0)−

t(i)(ϵ(xi, 1))

Q(T = 1|x(i))
+

(1− t(i))(ϵ(x, 0))

1−Q(T = 1|x(i))

)
.

When n→∞, we have

lim
n→∞

τ̂ ′n(Q, ϵ) = τ̂ ′(Q, ϵ) = τ̂ ′(Q, 0) + EX,T [ϵ(X, 1)(1− T

Q(T = 1|X)
− ϵ(X, 0)(1− 1− T

1−Q(T = 1|X)
))],

where second equality is true due to doubly robust property. We state the following error bound for the AIPW estimator:

Corollary H.5. Let |ϵ(X,T )| ≤ ϵmax for all X ∈ X , T ∈ {0, 1}. The error of an AIPW estimator with propensity score
model Q and error in outcome model ϵ is bounded by ϵmax

∑
t EX [lX(Pt, Qt)

1/2] where Pt = P (T = t|X), Qt = Q(T =
t|X).

Due to the doubly robust property, we know that the true ATE estimate τ = τ̂ ′(Q, 0) = τ̂ ′(P, ϵ) for any propensity model
Q(T = 1|X) and error function ϵ(X,T ).

The L1 error in our ATE estimate τ̂ ′n(Q, ϵ) (after seeing infinite samples) can be expressed as

E = |τ̂ ′(Q, ϵ)− τ | = |τ̂ ′(Q, ϵ)− τ̂ ′(Q, 0)|

Thus,

E =

∣∣∣∣EX,T [ϵ(X, 1)(1− T

Q(T = 1|X)
− ϵ(X, 0)(1− 1− T

1−Q(T = 1|X)
))]

∣∣∣∣
=

∣∣∣∣EXET |X [ϵ(X, 1)(1− T

Q(T = 1|X)
− ϵ(X, 0)(1− 1− T

1−Q(T = 1|X)
))]

∣∣∣∣
=

∣∣∣∣EX [ϵ(X, 1)(1− P (T = 1|X)

Q(T = 1|X)
− ϵ(X, 0)(1− 1− P (T = 1|X)

1−Q(T = 1|X)
))]

∣∣∣∣
≤ EX [

∣∣∣∣ϵ(X, 1)(1− P (T = 1|X)

Q(T = 1|X)

∣∣∣∣+ ∣∣∣∣ϵ(X, 0)(1− P (T = 0|X)

Q(T = 0|X)
))

∣∣∣∣]
≤ ϵmaxEX [

∣∣∣∣(1− P (T = 1|X)

Q(T = 1|X)

∣∣∣∣+ ∣∣∣∣(1− P (T = 0|X)

Q(T = 0|X)
))

∣∣∣∣] where ϵmax = max
X,T
|ϵ(X,T )|

≤ ϵmax

∑
t

EX [lX(Pt, Qt)
1/2] where Pt = P (T = t|X), Qt = Q(T = t|X)
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Thus, we have an error bound on the asymptotic ATE estimate that relates with the chi-squared divergence. Thus, given that
the learned outcome model is inaccurate (due to possible mis-specification), training a recalibrator for the propensity score
model with lX as loss function reduces the chi-squared divergence and improves the error bound.

Theorem H.6. Let ℓ be the expected bound on the error of an uncalibrated AIPW estimator Q in Corollary H.5, and let ℓ′

be the bound for Q′, the recalibrated version of Q obtained using Algorithm 2 with ℓ
1/2
χ as the choice of loss L. Then as the

size of the calibration set n→∞ we have ℓ′ ≤ ℓ with equality iff Q = Q′.

Proof. Corollary H.5 states that the error of an AIPW estimator with propensity score model Q and error in outcome model ϵ
is bounded by ϵmax

∑
t EX [lX(Pt, Qt)

1/2] where |ϵ(X,T )| ≤ ϵmax for all X ∈ X , T ∈ {0, 1}, Pt = P (T = t|X), Qt =

Q(T = t|X) and ℓχ(Pt, Qt) =
(
1− P (T=t|X)

Q(T=t|X)

)2

is the chi-squared loss between the true propensity score and the model
Q.

Thus, ℓ = ϵmax

∑
t EX [lX(Pt, Qt)

1/2] and ℓ′ = ϵmax

∑
t EX [lX(Pt, Q

′
t)

1/2]. Clearly, the upper bound on ℓ and ℓ′ depends
on ℓχ(P,Q) and ℓχ(P,Q

′) respectively.

When we use Algorithm 2 to perform recalibration, we obtain Q′ = R ◦ Q. Here, we can choose the loss function
L(Q,T ) = EXET |Xℓχ(Q(T = 1|X), T )1/2. From Theorem 4.4, it follows that L(Q′, T ) = L(R◦Q,T ) ≤ L(Q,T )+o(n)
for a recalibrator R.

As n→∞, R→ B (Bayes optimal recalibrator; see Task 4.1).

If Q ̸= Q′, then L(Q′, T ) ̸= L(Q,T ) because L is strictly proper. Conversely, when Q = Q′ clearly ℓ = ℓ′. Hence, the
claim follows.

Now, we prove that calibration is a necessary condition for accurate causal effect estimation when the outcome model in
AIPW estimator is inaccurate.

Theorem H.7. When propensity model Q(T |X) is not calibrated and the outcome model f(X, T) is inaccurate for
X ∈ {X : Q(T = 1|X) = q} ⊆ X such that q ∈ (0, 1), P (T = 1|Q(T = 1|X ′) = q) ̸= q, then there exists true outcome
function such that the doubly robust AIPW estimator based on Q and f yields an incorrect estimate of true causal effects
almost surely.

Proof. Following the setup in H.2, we let SQ = {q|∃X ∈ X , Q(T = 1|X) = q}. We partition X into buckets {Bq}q∈Sq

such that Bq = {X|Q(T = 1|X) = q}. When Q(T = 1|X) is not calibrated, we know that ∃q ∈ [0, 1], P (T = 1|Q(T =
1|X) = q) ̸= q.

We design the true outcome function Y [X, do(T = t)] such that Y [X, do(T = 0)] = 0. Since the learned outcome model
f(X,T ) = Y [X, do(T = t)] + ϵ(X,T ) is inaccurate (possibly from learning a mis-specified model), let us define Xϵ ⊆ X
such that ∀X ∈ Xϵ, ϵ(X,T ) ̸= 0 and ∀X ∈ X/Xϵ, ϵ(X,T ) = 0. For the sake of simplicity, we assume that the outcome
model f(x, t) can learn the true outcome function whenever T = 0, since the true outcome is 0 whenever T = 0, Thus,
∀X ∈ X , ϵ(X,T = 0) = 0.

Now, let us pick q′ ∈ SQ such that P (T = 1|Q(T = 1|X) = q′) ̸= q′ and Bq′ ∩ Xϵ ̸= ϕ. We can always pick such a q′ as
long as Q is uncalibrated and ∃X ∈ Bq′ such that , ϵ(X,T = 1) ̸= 0 (i.e. the learned outcome model f(X,T ) is inaccurate
where the learned propensity model produces inaccurate uncertainties).

With this, we can write the expression for PEHE (Precision in Estimation of Heterogenous Treatment Effect) estimate with
n samples Fn(Q, ϵ) as

Fn(Q, ϵ) = 1
n

∑n
i=1

(
Y [xi, do(t = 1)] − Y [xi, do(t = 0)] + ϵ(xi, 1) − ϵ(xi, 0) − t(i)(ϵ(xi,1))

Q(T=1|x(i))
+ (1−t(i))(ϵ(x,0))

1−Q(T=1|x(i))
−

(Y [xi, do(t = 1)]− Y [xi, do(t = 0)])

)2

= 1
n

∑n
i=1

(
ϵ(xi, 1)− ϵ(xi, 0)− t(i)(ϵ(xi,1))

Q(T=1|x(i))
+ (1−t(i))(ϵ(x,0))

1−Q(T=1|x(i)))

)2

.
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Now, we will try to establish a lower bound on the error Fn(Q, ϵ) when n→∞.

F = lim
n→∞

Fn(Q, ϵ)

= EX,T [(ϵ(X, 1)(1− T

Q(T = 1|X)
− ϵ(X, 0)(1− 1− T

1−Q(T = 1|X)
)))2]

= EXET |X [(ϵ(X, 1)(1− T

Q(T = 1|X)
− ϵ(X, 0)(1− 1− T

1−Q(T = 1|X)
)))2]

Following the setup in H.2, we expand the expectation over X

(similar expression can be written with
∫
X

if X is continuous)

=
∑
q∈SQ

∑
X∈Bq

(ϵ(X, 1)(1− P (T = 1|X)

Q(T = 1|X)
− ϵ(X, 0)(1− 1− P (T = 1|X)

1−Q(T = 1|X)
)))2P (X)

=
∑
q∈SQ

∑
X∈Bq∩Xϵ

(ϵ(X, 1)(1− P (T = 1|X)

Q(T = 1|X)
− ϵ(X, 0)(1− 1− P (T = 1|X)

1−Q(T = 1|X)
)))2P (X) ∀X ∈ X/Xϵ, ϵ(X,T ) = 0

Since we assume that ∀x ∈ X , ϵ(x, 0) = 0,

=
∑
q∈SQ

∑
X∈Bq∩Xϵ

(ϵ(X, 1)(1− P (T = 1|X)

q
)2P (X)

≥
∑

X∈Bq′∩Xϵ

(ϵ(X, 1)(1− P (T = 1|X)

q′
)2P (X) P (T = 1|Q(T = 1|X) = q′) ̸= q′

≥ ϵmin

∑
X∈Bq′∩Xϵ

((1− P (T = 1|X)

q′
)2P (X) ϵmin = min

X∈Bq∩Xϵ

ϵ(X, 1)

The above expression is non-zero since P (T = 1|Q(T = 1|X) = q′) ̸= q′ and ϵmin ̸= 0 by design. Thus, when Q(T |X) is
not calibrated and the learned outcome model f(X, T) is inaccurate over the regions where P (T = 1|Q(T = 1|X) = q) ̸= q,
then there exists true outcome function such that the AIPW estimator based on Q and f yields an incorrect estimate of true
causal effects almost surely.

H.5 ALGORITHMS FOR CALIBRATED PROPENSITY SCORING

H.5.1 Asymptotic Calibration Guarantee

Theorem H.8. The model R ◦ Q is asymptotically calibrated and the calibration error E[Lc(R ◦ Q,S)] < δ(m) for
δ(m) = o(m−k), k > 0 w.h.p.

Proof. Any proper loss can be decomposed as: proper loss = calibration - sharpness + irreducible term [Guo et al., 2017].
The calibration term consists of the error E[Lc(R ◦Q,S)]. The sharpness and irreducible term can be represented as the
refinement term E(Lr(S)). Table 10 provides examples of some proper loss functions and the respective decompositions.
The rest of our proof uses the techniques of Kuleshov and Deshpande [2022] in the context of propensity scores.

Kull and Flach [2015] show that the refinement term can be further divided as E(Lr(S)) = E(Lg(S,B ◦Q)) + E(L(B ◦
Q,T )). Here, B is the Bayes optimal recalibrator P (T = 1|Q(T = 1|X)) and S is P (T = 1|R ◦Q).
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Proper Score Loss Calibration Refinement
L(F,G) Lc(F, S) Lr(S)

Logarithmic Ey∼G log f(y) KL(s||f) H(s)
CRPS Ey∼G (F (y)−G(y))2

∫∞
−∞(F (y)− S(y))2dy

∫∞
−∞ S(y)(1− S(y))dy

Quantile Eτ∈U [0,1]
y∼G ρτ (y − F−1(τ))

∫ 1

0

∫ F−1(τ)

S−1(τ)
(S(y)− τ)dydτ Eτ∈U [0,1]

y∼S ρτ (y − S−1(τ))

Table 10: Proper loss functions. A proper loss is a function L(F,G) over a forecast F targeting a variable y ∈ Y
whose true distribution is G and for which S(F,G) ≥ S(G,G) for all F . Each L(F,G) decomposes into the sum of a
calibration loss term Lc(F, S) (also known as reliability) and a refinement loss term Lr(S) (which itself decomposes into
sharpness and an uncertainty term). Here, S(y) denotes the cumulative distribution function of the conditional distribution
P(Y = y | FX = F ) of Y given a forecast F , and s(y), f(y) are the probability density functions of S and F , respectively.
We give three examples of proper losses: the log-loss, the continuous ranked probability score (CRPS), and the quantile loss.

Recall that if we solve the Task 4.1, we have for δ(m) = o(1)

E(L(B ◦Q,T )) ≤ E(L(R ◦Q,T )) ≤ E(L(B ◦Q,T )) + δ(m)

Using Gneiting et al. [2007], Kull and Flach [2015] we decompose E(L(R ◦Q,T ))

=⇒ E(L(B ◦Q,T )) ≤ E(Lc(R ◦Q,S)) + E(Lg(S,B ◦Q)) + E(L(B ◦Q,T )) ≤ E(L(B ◦Q,T )) + δ(m)

=⇒ E(Lc(R ◦Q,S)) + E(Lg(S,B ◦Q)) ≤ δ(m)

=⇒ E(Lc(R ◦Q,S)) ≤ δ(m)

Thus, solving Task 4.1 allows us to obtain asymptotically calibrated R ◦Q such that the calibration error is bounded as
E[Lc(R ◦Q,S)] < δ(m).

H.5.2 No-Regret Calibration

Theorem H.9. The recalibrated model has asymptotically vanishing regret relative to the base model: E[L(R ◦Q,T )] ≤
E[L(Q,T )] + δ, where δ > 0, δ = o(m−k), k > 0.

Proof. Solving Task 4.1 implies E[L(R ◦ Q,T )] ≤ E[L(B ◦ Q,T )] + δ ≤ E[L(Q,T )] + δ. The first inequality comes
from definition of Task 4.1 and the second inequality holds because a Bayes-optimal B has lower loss than an identity
mapping [Kuleshov and Deshpande, 2022].
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