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Abstract

Tractable probabilistic models (TPMs) have at-
tracted substantial research interest in recent years,
particularly because of their ability to answer vari-
ous reasoning queries in polynomial time. In this
study, we focus on the distributionally robust learn-
ing of continuous TPMs and address the chal-
lenge of distribution shift at test time by tack-
ling the adversarial risk minimization problem
within the framework of distributionally robust
learning. Specifically, we demonstrate that the ad-
versarial risk minimization problem can be effi-
ciently addressed when the model permits exact
log-likelihood evaluation and efficient learning on
weighted data. Our experimental results on sev-
eral real-world datasets show that our approach
achieves significantly higher log-likelihoods on ad-
versarial test sets. Remarkably, we note that the
model learned via distributionally robust learning
can achieve higher average log-likelihood on the
initial uncorrupted test set at times.

1 INTRODUCTION

Tractable Probabilistic Models (TPMs), including Proba-
bilistic Sentential Decision Diagrams (PSDDs) (Kisa et al.,
2014), Arithmetic Circuits (ACs) (Darwiche, 2003), Sum-
Product Networks (SPNs) (Poon and Domingos, 2011), and
Cutset Networks (CNs) (Rahman et al., 2014), have gained
significant attention and research interest in recent years.
These models fall under a unified framework known as prob-
abilistic circuits (Choi et al., 2020), and they offer promising
solutions for modelling the uncertainties. One of the key
features that makes these models particularly attractive is
their ability to perform certain inferences in polynomial time
such as exact likelihood calculations, or in some cases, find-
ing the most probable assignment for unobserved variables

given evidence (Rahman et al., 2019; Dong et al., 2023;
Molina et al., 2018).

The learning of TPMs mainly relies on the Maximum Like-
lihood Estimation (MLE) framework, which assumes the
training data is free of corruption and noise, while effectively
representing the underlying data distribution. However, this
assumption can fail in practice due to a wide range of factors
such as measurement errors, label noise and sample selec-
tion bias. Existing research on robust learning of TPMs has
mostly been limited to binary or discrete domains (Peddi
et al., 2022). In this work, we address the challenges of
learning robust TPMs in continuous domains.

The Robust MLE framework provides a foundation for ex-
ploring the robust learning of TPMs (Bertsimas and No-
hadani, 2019), which can be further divided into Adversar-
ial Robust MLE (ARM) and Distributionally Robust MLE
(DRM). ARM optimizes against the worst-case scenarios
among neighboring data observations within a certain dis-
tance, treating each neighboring point with equal impor-
tance, a practice that might not align with real-world scenar-
ios. On the other hand, DRM faces an inherent challenge
where the inner minimization problem is often intractable.
Importantly, this challenge extends to ARM when applied
to probabilistic models operating in continuous domains 1.
These limitations can have negative impacts on both the
effectiveness and efficiency of the robust MLE framework.

In this work, we leverage the Distributionally Robust Super-
vised Learning (DRSL) framework (Namkoong and Duchi,
2016; Hu et al., 2018) for learning robust TPMs in contin-
uous domains. Specifically, we first show that the DRSL
framework can be utilized to learn distributionally robust
probabilistic models by designing a special loss function
based on the negative log density of data points. We further
demonstrate the efficiency of our approach by showing that
the inner optimization problem can be solved exactly in

1Certain tractable models, with a static ordering of variables,
that operate in discrete domains such as arithmetic circuits, PSDDs,
etc. admit exact solutions in polynomial time (Peddi et al., 2022).
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linearithmic time, while the outer optimization problem is
equivalent to a standard MLE problem on weighted data. In
essence, our approach offers an efficient way to equip prob-
abilistic models with distributional robustness, while only
requiring that the underlying probabilistic models admit
tractable loglikelihood computation and efficient learning
on weighted data.

This paper makes the following contributions:

1. We introduce a novel application of the DRSL frame-
work for learning distributionally robust probabilistic
models. This presents an important alternative for the
development of robust probabilistic models.

2. We develop an efficient algorithm capable of finding
the exact solution to the inner optimization objective of
the adversarial minimization problem within the DRSL
framework, when the KL-divergence is employed as
the metric for measuring distributional distances. More-
over, we demonstrate that the outer optimization prob-
lem aligns with the standard MLE learning process on
weighted data.

3. We conduct empirical evaluations on the proposed al-
gorithm and methods by learning robust continuous
TPMs and evaluating the loglikelihoods on both initial
uncorrupted and adversarial test sets against their coun-
terparts learned through the standard MLE framework
across nine real-world datasets.

2 BACKGROUND

We use bold uppercase letters for a set of random variables,
e.g., X , while a single random variable is denoted using
normal uppercase letters, e.g., A. In addition, members of a
set of random variables will be indexed by subscripts, e.g.,
Xi denotes the ith random variable in set X . The size of
set of random variables X is denoted as |X|. The instanti-
ations (configurations) of random variables are denoted as
lowercase letters. For example, x is one possible configu-
ration for all variables in X and a is a possible value that
the random variable A can take. If Y is a subset of X , then
the projection of assignment x onto set Y is denoted as xY .
All random variables considered in this paper are assumed
to be real-valued unless otherwise noted.

2.1 DISTRIBUTIONALLY ROBUST SUPERVISED
LEARNING

In this section, we first introduce the Empirical Risk Mini-
mization (ERM) framework for supervised learning along
with its connection to Maximum Likelihood Estimation
(MLE). We then describe the Distributionally Robust Su-
pervised Learning (DRSL) framework, which incorporates
distributional robustness into the ERM framework and show

that the DRSL framework can be employed as a surrogate
for MLE to learn robust probabilistic models.

2.1.1 Empirical Risk Minimization (ERM)

In a typical supervised learning setting, the input training
data is assumed to be free of corruption and noise, and our
objective is to find the model parameters, θ, that minimize
the expected loss with respect to the unknown data distribu-
tion, i.e.,

argmin
θ

E(x,y)∼P (X,Y )[L(x, y, θ)].

Here, P (X, Y ) is the unknown data distribution over the in-
put feature variables X and label variable Y ; and L(x, y, θ)
is the loss function. Given a dataset D = {(xi, yi)|i =
1, ..., n} that is assumed to consist of i.i.d samples drawn
from the distribution P (X, Y ), the above expectation opti-
mization problem can be approximated as

θ∗ = argmin
θ

1

n

n∑
i=1

Li(θ),

where Li(θ) ≡ L(xi, yi, θ) is the loss respect to the ith

input data instance.

2.1.2 Maximum Likelihood Estimation (MLE) as
ERM

Given data observations D = {z1, ...,zn} that are drawn
independently from distribution Pθ(Z) with unknown pa-
rameter θ, the goal of MLE is to find the parameters that
maximize the log-likelihood, i.e.,

argmax
θ

logLθ(D) = argmax
θ

n∑
i=1

logPθ(zi).

This can be put into the ERM framework by setting the
loss function as the negative log-likelihood, Li(θ) =
− logPθ(zi), and observing that

θ∗ = argmax
θ

n∑
i=1

logPθ(zi) = argmin
θ

1

n

n∑
i=1

Li(θ),

which means we can use ERM framework to solve the MLE
task. Note that scaling the objective function by 1/n doesn’t
change the optimal parameters, θ∗.

2.1.3 DRSL formulation

Unlike ERM, DRSL (Bauso et al., 2017; Namkoong and
Duchi, 2016) is explicitly formulated for the cases where the
test distribution Q is shifted from the training distribution P .
Specifically, DRSL considers the test distribution Q from
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an uncertainty set UP,δ that contains all distributions within
a δ f-divergence from the distribution P , i.e.,

UP,δ = {Q|Df (Q,P ) ≤ δ},

where Df (Q,P ) = EP [f (Q/P)] is the f-divergence be-
tween distribution Q and P , with a convex function f(·)
that satisfies f(1) = 0 (P = Q implies zero distance).
Note that the support of distribution Q is assumed to be
a subset of the support of distribution P . In other words,
P (x) = 0 implies Q(x) = 0. When f(x) = x log x, the
f-divergence reduces to the well-known Kullback-Leibler
divergence (Kullback and Leibler, 1951). The δ in the above
equation is a hyper-parameter that controls the amount of
distributional shift. When δ = 0, DRSL reverts to standard
ERM learning.

The objective of DRSL is to find the best parameter θ that
minimizes the expected loss with respect to the worst test
distribution Q ∈ UP,δ, and it can be formulated as a mini-
max problem as follows.

argmin
θ

sup
Q∈UP,δ

E(x,y)∼Q(X,Y )[L(x, y, θ)]

Setting r(x, y) = Q(x,y)
P (x,y) , we can reformulate the objective

as

argmin
θ

sup
r∈UP,δ

E(x,y)∼P (X,Y )[r(x, y)L(x, y, θ)],

where

UP,δ = {r(x, y)|EP (X,Y )[f(r(x, y))] ≤ δ,

EP (X,Y )[r(x, y)] = 1,

r(x, y) ≥ 0}.

The first constraint in the set UP,δ guarantees that the f-
divergence between Q and P is less or equal to δ while the
second and third constraints guarantee Q is a valid distribu-
tion. Similar to the ERM case, the expectations in the above
formulation can be approximated using samples as

argmin
θ

sup
r∈Ûδ

1

n

n∑
i=1

ri · Li(θ), (1)

where

Ûδ =

{
r
∣∣ 1
n

∑
i

f(ri) ≤ δ,
1

n

∑
i

ri = 1, ri ≥ 0

}
,

ri = r(xi, yi), and r = (r1, r2, ..., rn) is the vector of den-
sity ratios. This problem can be treated as a minimax game
between an adversary and a learner in which the adversary
reweights the losses of all data instances using r, and the
learner then tries to minimize the weighted loss (Hu et al.,
2018; Bauso et al., 2017).

As discussed in Section 2.1.2, by choosing the loss function
as the negative log-likelihood, Li(θ) = − logPθ(zi), and

plugging it into (1), we can use the DRSL framework to
learn a robust probabilistic model Pθ(Z). In fact, as we
will shown later in Section 3, the inner maximization prob-
lem can be solved exactly in linearithmic time when KL-
divergence is employed – assuming that the loglikelihoods
logPθ(z) can be computed efficiently and the probabilistic
model admits efficient learning on weighted data.

3 METHODOLOGY

In this section, we present our approach to learn distribu-
tionally robust probabilistic models, leveraging the DRSL
framework with the KL-divergence as the distance metric
between distributions. Specifically, given a set of data obser-
vations D = {z1, ...,zn} that are sampled independently
from a distribution Pθ(Z) with unknown parameter θ, our
goal is to find the best parameters such that the adversar-
ial “risk” in (1) is minimized. Formally, the problem is
expressed as follows.

argmax
θ

inf
r

1

n

n∑
i=1

ri · logPθ(zi)

s.t.

1

n

n∑
i=1

ri log ri ≤ δ,
1

n

n∑
i=1

ri = 1, ri ≥ 0

(2)

The inner optimization problem (infr) corresponds to an
adversarial step where we find the worst weight r such that
the reweighted loglikelihood is minimized; while the outer
optimization problem (argmaxθ) corresponds to a learning
step where we find the best θ to maximize the weighted
loglikelihood. Taking the same approach as Generative Ad-
versarial Networks (GAN) (Goodfellow et al., 2020), we
tackle this optimization problem by alternating between the
learning and adversarial steps as follows.

1. Init: Initialize the parameters θ of model Pθ(Z).

2. Adversarial Step: Fix θ, update the weight vector r
by solving the inner minimization problem.

3. Learning Step: Fix r, update the parameter θ by solv-
ing the outer maximization problem.

4. Repeat: Repeat step 2-3 until a suitable stopping con-
dition is met, such as reaching a stationary point or
hitting the maximum number of iterations.

The following sections provide a detailed prescription for
solving the optimization problems in both the adversarial
and learning steps. Subsequently, we will demonstrate how
it can be employed to train robust probabilistic models.
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3.1 ADVERSARIAL STEP

The optimization problem we need to solve in the adversarial
step is

inf
r

n∑
i=1

ri · li

s.t.

1

n

n∑
i=1

ri log ri ≤ δ,
1

n

n∑
i=1

ri = 1, r ≥ 0,

(3)

where li ≡ logPθ(zi) can be treated as a constant because
the parameter θ is fixed. In addition, we also ignore the con-
stant 1/n in the objective function because it doesn’t change
the optimal weight values, r.

We employ the method of Lagrange multipliers and derive
the dual problem of the optimization problem in (3) as

sup
α≥0,β

−
∑
i

α · exp
(
−β − li

α
− 1

)
− αnδ − βn, (4)

where α, β are Lagrange multipliers (detailed derivation
is shown in Appendix Section A) and the value of primal
variable ri can be calculated as

ri = exp

(
−β − li

α
− 1

)
. (5)

Note that the primal problem satisfies the Slater’s condi-
tion (Slater, 2013), therefore ensuring strong duality.

We can attempt to solve (4) by taking the derivatives respec-
tive to α and β and setting them equal to zero (assuming
there is a non-negative solution for α). Denoting the objec-
tive in (4) as L′(α, β), we have

∂L′

∂α = −nδ +
∑

i exp
(

−β−li
α − 1

)(
−β−li

α − 1
)
= 0 (6)

and

∂L′

∂β
= −n+

∑
i

exp

(
−β − li

α
− 1

)
= 0. (7)

Because ri = exp
(

−β−li
α − 1

)
, we can see that (6) is

equivalent to
∑

i ri log ri = nδ; and (7) is equivalent to∑
i ri = n. These two equations correspond to our original

constraints, and no closed form solution for α and β is
available.

Nevertheless, we note that the dual problem involves only
two variables, α ≥ 0 and β, and the dual objective function
in (4) derived from the method of Lagrange multipliers is
always concave. We further prove that the dual objective
is twice differentiable and strictly concave unless all log-
likelihoods, li, are equal, which is unlikely given that li is
real-valued and there are usually many training instances

Algorithm 1: Efficient Linearithmic Search Algorithm
for the Adversarial Step
Input: (1) l = {l1, ..., ln}, the loglikelihoods with
respect to all training data points (under the current
model parameter θ); (2) U, upper searching bound of
the dual variable α; (3) δ, the hyper-parameter
controlling the amount of distribution shifts; and (4) ϵ,
the maximum allowed error for the variable α.

Output: the weight vector r that solves the
optimization problem (3).
αl ← 0 ;
αu ← U ;
while αu − αl ≥ ϵ do

α← (αl+αu)/2 ;

β ← −α log
(

n∑
i exp(

−li/α−1)

)
;

r ← exp
(

−β−l
α − 1

)
;

g ← −nδ +
∑

i log r
ri
i //numerical stability ;

if g ≤ 0 then
// negative gradient
αu ← α ;

else
αl ← α ;

end
end
Return the weight vector r ;

(see Appendix Section B for a detailed proof). This im-
plies that numerical optimization algorithms like gradient
ascent or coordinate ascent can be employed to arbitrarily
well approximate a globally optimal solution with enough
iterations (Tseng, 2001).

We propose an efficient search-based algorithm capable of
solving the problem and obtaining a solution that is arbitrar-
ily close to the exact answer. Our algorithm is essentially
a coordinate ascent algorithm with two key changes that
guarantee linearithmic time complexity.

1. When conducting coordinate ascent along the β direc-
tion (α is fixed), we can solve for β in closed form
using (7) as

β = −α log

(
n∑

i exp
(−li

α − 1
)) (8)

2. When optimizing along the α direction with β fixed,
we use binary search (highly efficient with guaranteed
logarithmic time complexity) instead of gradient as-
cent because it is a one-dimensional strictly concave
maximization problem.

With the above key observations, we can effectively binary
search for the optimal α using the method shown in Algo-
rithm 1. Specifically, we first fix the α as the middle point
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of the interval [αl, αu], then compute the corresponding β
using the equation (8), and use the derivative evaluated at
this point to constrain the location of the optimal α. Note
that the initial upper bound α = U must have a negative
derivative, i.e., (6), when evaluated at the corresponding
optimal β. One of the approaches to obtain such a upper
bound is to keep multiplying U by two until the gradient
becomes negative. In addition, we calculate log rrii as the
surrogate for ri log ri for numerical stability.

The time complexity for Algorithm 1 is O(n log(U/ϵ))
where n is the number of training instances, U is the search
upper bound and ϵ is the error tolerance. The algorithm is
very efficient even if U is very large and we have high accu-
racy requirement. For example, when U = 1020 (larger than
the biggest 64-bit integer) and ϵ = 10−5, log(U/ϵ) is less
than 84. In practice, because the absolute loglikelihoods |li|
are usually small, the value of U is small as well. Therefore,
log(U/ϵ) is typically less than 30.

3.2 LEARNING STEP

The optimization problem in the learning step is

argmax
θ

n∑
i=1

ri · logPθ(zi), (9)

where ri is a fixed constant weight. In fact, the above prob-
lem is equivalent to learning a model via standard MLE
in which each data instance zi is associated with a weight
ri (Legeleux et al., 2022). Here, the weight can be inter-
preted as “how many times we see the data instance” 2.
Therefore, given a data instance zi that is observed ri times,
the loglikelihood with respect to this instance can be formu-
lated as

logPθ(zi)
ri = ri logPθ(zi),

which corresponds to the weighted loglikelihood in (9).

In general, the weighted MLE problem can be solved using
the gradient ascent method 3 similar to the standard MLE
case. In addition, for certain probabilistic models such as
Multivariate Gaussians, this problem admits a closed form
solution.

3.3 PRACTICAL CONCERNS

The adversarial step is usually significantly faster (typically
around 1-5 seconds), compared to the learning step that
often takes minutes or even hours due to the iterative EM
or gradient optimization processes over neural networks.

2Float values are allowed here and it won’t break the evaluation
of joint likelihood.

3We limit our focus to model parameters during the learning
step, assuming the model’s structure is fixed (if the model involves
a structural learning component).

Table 1: Number of instances and features of nine datasets
(after preprocessing).

Name #instance #feature

airquality 9357 12
energy 19735 24

hepmass 150000 21
miniboone 36488 43
onlinenews 39644 32
parkinson 5875 15

sdd 58509 29
superconduct 21263 68
mnist (d20) 70000 20

Therefore, executing EM or NN gradient updates until con-
vergence in the learning step to achieve an accurate esti-
mation of equation (9) would be highly inefficient. It is
also essential to recognize that running EM to convergence
is likely unnecessary, given that, in early rounds, the cur-
rent weight vector r is sub-optimal and will be changed in
subsequent iterations.

Therefore, a practical strategy is to execute the learning
step for only a few iterations, aiming to identify a good or
moderate parameter configuration under the current weight
settings. After that, we promptly transition to the adversarial
step to update the weight vector. This approach enhances
the efficiency of the entire adversarial learning process and
enables multiple iterations between the adversarial and learn-
ing steps.

4 EXPERIMENTS

In this section, we present empirical evaluations of the pro-
posed method in Section 3 for learning distributionally ro-
bust probabilistic models in continuous domains.

4.1 EXPERIMENT SETUP

We consider nine real-world datasets in our experiments.
One of them is the MNIST image dataset (LeCun et al.,
1998), while the other eight datasets are selected from the
UCI machine learning repository (Dua and Graff, 2017). Fol-
lowing Uria et al. (2016), we preprocess all UCI datasets by
eliminating discrete valued features and one of the attributes
from every pair of attributes whose Pearson correlation coef-
ficient is greater than 0.98. For the MNIST dataset, we train
a variational auto encoder (Kingma and Welling, 2013) and
embed each input image as a 20 dimensional feature vector
in a structured hidden Gaussian space 4. All datasets were
normalized by subtracting the mean and then dividing by the

4The encoder and decoder architecture are based on convolu-
tional neural networks (CNNs).
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Table 2: Loglikelihood scores, average test LL scores and number of wins (ties are ignored) of robust and standard MixMG
models on various test sets and neighboring regions. The robust model learned through our algorithm achieved higher or
similar average LL scores on most of the adversarial cases.

Dataset Method Original Test Gaussian Test Jittter Test Worst NB Average NB

airquality DRSL 9.29 ± 4.6 -274.58 ± 201.1 -322.60 ± 1378.4 -290.95 ± 133.7 -104.09 ± 74.6
MLE 9.53 ± 6.3 -347.31 ± 205.3 -879.70 ± 4533.5 -380.05 ± 130.6 -137.12 ± 74.4

energy DRSL -7.55 ± 5.3 -32.03 ± 17.0 -63.25 ± 64.3 -50.29 ± 20.2 -21.92 ± 7.7
MLE -6.58 ± 6.6 -39.75 ± 25.6 -91.09 ± 98.3 -67.26 ± 29.7 -23.71 ± 9.4

hepmass DRSL -25.15 ± 4.9 -29.24 ± 3.9 -26.08 ± 4.6 -31.31 ± 2.9 -27.06 ± 4.1
MLE -24.36 ± 4.7 -28.52 ± 4.6 -25.46 ± 4.9 -30.89 ± 4.2 -26.31 ± 4.3

miniboone DRSL -24.28 ± 15.6 -43.80 ± 14.0 -53.85 ± 18.5 -51.96 ± 12.3 -32.67 ± 13.1
MLE -21.41 ± 14.8 -44.58 ± 13.9 -56.18 ± 20.9 -53.59 ± 11.6 -31.38 ± 12.8

mnist DRSL -3.57 ± 6.0 -6.01 ± 2.3 -6.56 ± 2.3 N/A N/A
MLE -0.59 ± 6.4 -4.41 ± 4.2 -5.87 ± 4.0 N/A N/A

onlinenews DRSL -1.61 ± 19.2 -240.22 ± 229.9 -1009.90 ± 1403.0 -627.79 ± 84.8 -115.92 ± 17.2
MLE -1.22 ± 27.5 -257.00 ± 237.3 -1013.92 ± 1404.9 -632.71 ± 99.9 -120.18 ± 53.1

parkinson DRSL -5.47 ± 7.1 -14.30 ± 5.9 -15.88 ± 10.8 -18.83 ± 4.7 -10.07 ± 5.1
MLE -3.81 ± 11.1 -16.13 ± 9.9 -20.47 ± 33.9 -21.20 ± 13.3 -10.57 ± 9.9

sdd DRSL 0.62 ± 42.7 -95.17 ± 39.1 -65.48 ± 37.9 -95.49 ± 39.4 -86.71 ± 39.5
MLE -3.83 ± 118.9 -55.58 ± 116.6 -50.20 ± 797.6 -57.80 ± 120.0 -53.03 ± 117.9

superconduct DRSL 59.43 ± 49.6 -235.21 ± 88.3 -880.96 ± 968.7 -249.90 ± 59.7 -101.63 ± 34.3
MLE 62.82 ± 52.2 -384.21 ± 140.7 -1480.38 ± 1632.5 -394.99 ± 94.1 -164.14 ± 54.3

Average DRSL 0.19 -107.84 -271.62 -177.06 -62.51
MLE 1.17 -130.83 -402.59 -204.81 -70.81

#Wins DRSL 1 6 6 5 4
MLE 8 3 3 1 2

standard deviation. The number of instances and features
for each dataset after preprocessing is shown in Table 1.
Note that for the eight UCI datasets, the train/test split is not
defined from the data source, and we randomly chose 85%
of the data instances for the training split and the remaining
were used to form the test split. We further set aside 20% of
the training instances for validation purposes.

We consider the following two types of probabilistic models
in our experiment.

1. Mixture of Multivariate Gaussian (MixMG), which
serves as a standard benchmark model. The number
of mixture components is treated as a hyper-parameter
and is automatically tuned from the range of three to
nine. Note that fitting a MixMG model on weighted
data can be conducted efficiently using the EM algo-
rithm where the solution for the E-step and M-step are
still in closed form (Legeleux et al., 2022).

2. NN-GBN model proposed by Dong et al. (2022) 5,
which models the full joint distribution as the product
of a local, complex distribution over a small subset
of variables and a fully tractable conditional distribu-
tion whose parameters are controlled using a neural

5The model introduced by the authors remains unnamed in
their publication, and for the purposes of this study, we will refer
to it as NN-GBN.

network. We choose this model for case study sim-
ply because (1) we are interested in continuous do-
mains; and (2) NN-GBN can be easily adapted for
parameter learning on weighted data by adding an ex-
tra weight term into the original loss function and re-
turn the weighted negative loglikelihood as the loss.
We tune the following two hyper-parameters for NN-
GBN: (1) the maximum learning rate from the set
{10−2, 3.3 × 10−3, 10−3}; and (2) the weight decay
from the set {10−3, 10−4}. Additionally, we employed
the OneCycleLR scheduler with cosine decay in Py-
Torch (Paszke et al., 2019) to manage the learning rate.
All other training configurations remain unchanged and
align with what used in the original code and paper.

For each type of the probabilistic model, we first learn a ro-
bust model through the algorithmic methodology described
in Section 3, and then compare its performance against the
standard model learned using the MLE framework. We con-
duct 150 iterations of learning and adversarial steps, and the
optimal hyperparameter is selected based on the model that
has highest log-likelihood achieved on the validation set. In
addition, following Hu et al. (2018), we set the maximum
amount of distribution shift δ = 0.5.

As discussed in Section 3.3, conducting the learning step
with full iterations is inefficient and unnecessary. Therefore,
we only perform one training epoch of the neural network
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(a) MixMG (b) NN-GBN

Figure 1: The average amount of loglikelihood improved through DRSL robust learning for both (a) MixMG and (b)
NN-GBN models in all five test scenarios.

per learning step for the NN-GBN model. To encourage
convergence, we initiate the neural network with 50 training
epochs on unweighted training data to prevent situations
in which inaccurately estimated log-likelihood negatively
affects the early adversarial iterations, potentially resulting
in poor weight assignments for our data. Such poor weights
could adversely impact the learning process and ultimately
lead to divergence.

All experiments were conducted on a workstation equipped
with a 16-core Intel Xeon Gold 6130 CPU and two Quadro
P5000 GPUs. The datasets and codes used in the experiment
are publicly available on Github 6.

4.2 ADVERSARIAL GENERATIVE
PERFORMANCE

We evaluated the generative performance of the robust
model against its standard counterparts for both MixMG
and NN-GBN models, by comparing their average loglikeli-
hood 7 achieved on the original uncorrupted test set as well
as two additional adversarial test sets for each dataset. To
be more specific, we create two types of adversarial test sets
for each dataset as follows.

1. Adding Gaussian noise to the original test set, the Gaus-
sian distribution used in our experiment is with zero
mean and standard deviation one. In addition, we clip
all the noise values to the interval [−0.2, 0.2] to simu-
late the scenario where we have minor or medium level
perturbation of the data.

2. Jitter the input by setting some entries to a random

6UAI2024-RobustLearning
7Generally speaking, loglikelihood is not a good metric for

evaluating a model’s generative performance in continuous do-
mains because it can be unbounded (Dong et al., 2022), unless the
models being compared are in the same parametric family (which
is the case for us).

number (Su et al., 2019). In our experiment, we ran-
domly pick 20% of the input entries and assign a value
uniformly sampled from the interval [−0.2, 0.2]. This
is considered to be a harder task because the amount of
value change can be far greater than the previous case.

We also investigated how the learned distribution behaves
around the test points: we first randomly sampled 500 in-
stances around each test point and assessed the loglikeli-
hoods of these neighboring data points. Subsequently, we
identified the instance with the lowest loglikelihood among
these neighbors (denoted as the ‘Worst NB’) and computed
the average loglikelihood for these 500 points (denoted as
‘Average NB’). These two resulting values constitute the
neighbor metrics for the test point. We repeated this process
and calculated the average of these two metrics over all test
points within each dataset. Note that for the MNIST dataset,
because the inputs are embedding vectors from the trained
variational autoencoder, the neighboring vectors may not
correspond to any real image inputs. For this reason, we
exclude the results of MNIST neighboring data from the
loglikelihood calculation and the summarization process.

We report the test set loglikelihoods and corresponding stan-
dard deviations achieved for MixMG and NN-GBN in Ta-
bles 2 and 3, respectively. Furthermore, we have summa-
rized the performance improvements regarding the average
loglikelihoods of the robust model compared to its standard
counterparts in Figure 1 for all five types of testing scenarios.
Note that for the NN-GBN model, both robust and standard
models achieved identical results for the miniboone dataset.
This consistency arises from our approach of continuously
monitoring the models’ performance on the validation set
at each iteration and retaining the model in its optimal state.
For the miniboone dataset, which is particularly susceptible
to overfitting, both training methods delivered their best
performance during the early pre-training iterations.

From these results, we have the following observations.
Firstly, the model trained with the DRSL framework consis-

1182

https://github.com/LeonDong1993/UAI2024-RobustLearning


Table 3: Loglikelihood scores, average test LL scores and number of wins (ties are ignored) of robust and standard NN-GBN
models on various test sets and neighboring regions. The robust model achieved higher average LL scores on all test cases
including the original uncorrupted test set.

Dataset Method Original Test Gaussian Test Jittter Test Worst NB Average NB

airquality DRSL -1.16 ± 9.3 -26.42 ± 68.9 -218.76 ± 3270.2 -14.17 ± 38.1 -3.75 ± 11.2
MLE -1.23 ± 8.3 -25.50 ± 64.1 -311.49 ± 5217.5 -13.42 ± 28.2 -3.65 ± 9.1

energy DRSL 0.99 ± 10.4 -66.97 ± 63.1 -142.42 ± 179.0 -41.02 ± 40.0 -5.94 ± 10.6
MLE 0.99 ± 10.8 -67.96 ± 63.7 -142.68 ± 175.2 -41.96 ± 41.7 -6.02 ± 10.9

hepmass DRSL -26.81 ± 5.4 -27.92 ± 6.3 -26.52 ± 4.6 -28.44 ± 6.2 -26.91 ± 5.4
MLE -26.81 ± 5.4 -27.92 ± 6.3 -26.50 ± 4.6 -28.44 ± 6.2 -26.91 ± 5.4

miniboone DRSL -26.30 ± 17.9 -48.40 ± 20.0 -78.54 ± 101.3 -38.91 ± 21.2 -28.43 ± 17.2
MLE -26.30 ± 17.9 -48.40 ± 20.0 -78.54 ± 101.3 -38.91 ± 21.2 -28.43 ± 17.2

mnist DRSL -10.33 ± 6.2 -13.22 ± 6.0 -13.01 ± 5.5 N/A N/A
MLE -10.31 ± 6.2 -13.20 ± 5.8 -13.02 ± 5.5 N/A N/A

onlinenews DRSL -19.43 ± 63.6 -44.63 ± 129.2 -39.19 ± 88.0 -35.45 ± 114.5 -23.11 ± 66.2
MLE -20.40 ± 107.3 -59.34 ± 338.5 -44.96 ± 161.9 -50.66 ± 283.8 -25.81 ± 115.1

parkinson DRSL -5.05 ± 6.9 -16.89 ± 9.7 -25.87 ± 50.2 -12.21 ± 8.3 -6.20 ± 6.7
MLE -5.07 ± 7.4 -17.69 ± 10.6 -28.35 ± 53.0 -13.02 ± 9.5 -6.32 ± 7.2

sdd DRSL -20.40 ± 490.1 -56.76 ± 491.1 -39.50 ± 514.8 -52.93 ± 493.2 -34.04 ± 489.9
MLE -36.21 ± 1922.4 -66.12 ± 1907.2 -46.96 ± 1381.2 -64.81 ± 1934.7 -48.56 ± 1921.7

superconduct DRSL 40.44 ± 45.4 -219.83 ± 105.0 -756.24 ± 702.0 -56.08 ± 59.6 7.11 ± 37.2
MLE 43.79 ± 45.6 -208.76 ± 102.9 -744.03 ± 702.2 -48.62 ± 62.2 16.01 ± 41.4

Average DRSL -7.56 -57.89 -148.90 -34.90 -15.16
MLE -9.06 -59.43 -159.61 -37.48 -16.21

#Wins DRSL 4 4 5 3 3
MLE 2 3 2 1 1

tently outperformed its counterpart in terms of the average
loglikelihood score for both adversarial test sets, as shown
in Figure 1. We noted a particularly intriguing result: mod-
els trained using the DRSL framework also achieved higher
or similar average loglikelihood scores on the original, un-
corrupted test set at times. Several factors may contribute
to this phenomenon: (1) the model learned through DRSL
framework shapes the distribution more effectively, rather
than spreading densities over neighbors, which tends to lead
to lower loglikelihood on the original test set in practice;
(2) the model tuning process prioritizes performance on
the original validation set, emphasizing the importance of
focusing on both adversarial examples and the original data.

Secondly, we observed that DRSL exhibited more substan-
tial improvements on the jittered adversarial data compared
to the Gaussian adversarial test set. This suggests that distri-
butionally robust learning offers higher tolerance for chal-
lenging corruptions such as measurement errors.

Lastly, from the results on the two neighboring metrics, it
becomes evident that the robust model excels in shaping
a distribution that exhibits a high degree of smoothness
around real data points. In practical terms, this suggests that
DRSL effectively captures the underlying data distribution,
ensuring that it doesn’t just account for isolated, exceptional
cases, but rather models the broader data context more com-
prehensively and robustly. This characteristic contributes to

its superior performance across the different testing scenar-
ios considered in our experiments. We additionally note that
our robust model has shown more significant improvements
on the worst neighbor metric compared to the average neigh-
bor metric. This observation closely aligns with our earlier
findings, where the performance enhancement in the jitter
test set is higher when compared to the Gaussian test set.

5 CONCLUSION

In this work, we presented a novel approach for learning dis-
tributionally robust tractable probabilistic models (TPMs)
through the DRSL framework. We proposed valuable in-
sights and efficient algorithms for addressing the adversarial
optimization problems within the DRSL framework. Our
empirical evaluations revealed an intriguing result: the mod-
els trained using the DRSL framework exhibited compara-
ble or even superior performance on both adversarial and
original uncorrupted test data.

We focused solely on parameter learning while assuming
the underlying model has no structural learning requirement
or the structure remains fixed during the robust learning
steps. In future research, we aim to develop efficient struc-
ture learning algorithms on weighted data and extend this
framework to other continuous TPMs such as Sum Product
Networks (SPNs).
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A DERIVATION OF LAGRANGE MULTIPLIER METHOD FOR ADVERSARIAL STEP

The problem we have in the adversarial step is

inf
r

n∑
i=1

ri · li

s.t.

1

n

n∑
i=1

ri log ri ≤ δ,
1

n

n∑
i=1

ri = 1, ri ≥ 0,

where li ≡ logPθ(zi) can be treated as a constant because the parameter θ is fixed. In addition, we also ignore the constant
1/n in the objective function because it doesn’t change the optimal weight values r.

We begin by constructing the Lagrangian,

L(r, α, β) =
∑
i

rili + α

(∑
i

ri log ri − nδ

)
+ β

(∑
i

ri − n

)
,

where α > 0 and β are Lagrange multipliers. Note that we omit the third constraint ri ≥ 0 in the above formulation because
ri log ri already implies the constraint, and we will also show it is safe to drop it in the later part of the derivation. Take the
derivative 1 of the Lagrange respect to ri and set the derivative to zero, we have

∂L

∂ri
= li + α(log ri + 1) + β = 0,

and this gives us

ri = exp

(
−β − li

α
− 1

)
,

which is always greater than 0 and this is also why we can safely drop the third constraint ri ≥ 0. Plugging the above
equation back into the Lagrangian, we get our dual objective function as

L′(α, β) = −
∑
i

α · exp
(
−β − li

α
− 1

)
− αnδ − βn.

1The log function is of base e, i.e., the nature log.
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Taking the derivative respect to α and β and setting them to zero, we have

∂L′

∂α
=− nδ −

∑
i

exp

(
−β − li

α
− 1

)
+ α exp

(
−β − li

α
− 1

)
β + li
α2

=− nδ −
∑
i

exp

(
−β − li

α
− 1

)(
β + li
α

+ 1

)
= 0

(10)

and
∂L′

∂β
=− n−

∑
i

α · exp
(
−β − li

α
− 1

)
· − 1

α

=− n+
∑
i

exp

(
−β − li

α
− 1

)
= 0.

(11)

For detailed analysis and efficient algorithm, please refer to section 3.1.

B PROOF OF STRICT CONCAVENESS

In order to prove the dual objective function L′ is strictly concave, we need to show that the Hessian matrix (a 2× 2 matrix
in our case) is always negative-definite. To begin with, we first compute the Hessian matrix as follows.

A =
∂2L′

∂2α
=
∑
i

exp

(
−β − li

α
− 1

)(
−β − li

α
− 1

)(
β + li
α2

)
+ exp

(
−β − li

α
− 1

)(
β + li
α2

)
=
∑
i

exp

(
−β − li

α
− 1

)(
β + li
α2

)
∗
(
−β − li

α
− 1 + 1

)
= −

∑
i

ri
(β + li)

2

α3

Here, we are using the fact that ri = exp
(

−β−li
α − 1

)
. The other two derivatives are shown as follows.

C =
∂2L′

∂2β
=
∑
i

exp

(
−β − li

α
− 1

)
∗ − 1

α

=− 1

α

∑
i

ri

and

B =
∂2L′

∂α∂β
=

∂2L′

∂β∂α
=
∑
i

exp

(
−β − li

α
− 1

)
∗
(
β + li
α2

)
=
∑
i

ri

(
β + li
α2

)
Therefore, the Hessian matrix is

M =

[
A B
B C

]
.

To prove the above matrix M is negative definite, we need to show the following two facts:

1. the trace trace(M) = λ1 + λ2 < 0, where λ1 and λ2 are the eigenvalues.
Proof: the trace of matrix M is

A+ C = −
∑
i

ri
(β + li)

2

α3
− 1

α

∑
i

ri.
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Because ri = exp
(

−β−li
α − 1

)
> 0 and α ≥ 0, the above formulate is always negative. Note that when α = 0, the

dual objective function is a constant and there is no need for optimization.

2. the determinant det(M) = λ1 · λ2 > 0.
Proof: the determinant of matrix M is

A · C −B ·B =

(∑
i

ri
(β + li)

2

α3

)(
1

α

∑
i

ri

)
−

(∑
i

ri

(
β + li
α2

))
·

(∑
i

ri

(
β + li
α2

))

=
1

α4

((∑
i

ri(β + li)
2

)
·

(∑
i

ri

)
−

(∑
i

ri (β + li)

)
·

(∑
i

ri (β + li)

))
.

Denote

X =

(∑
i

ri(β + li)
2

)
·

(∑
i

ri

)
and

Y =

(∑
i

ri (β + li)

)
·

(∑
i

ri (β + li)

)
,

to further simplify the above equation, let’s focus on the coefficients of item rirj ,∀i ≤ j from X and Y , respectively.
Specifically, we have the coefficient of rirj in X as

(β + li)
2 + (β + lj)

2,

and the coefficient of rirj in Y is
2 · (β + li) · (β + lj).

And we have the difference between them as

(β + li)
2 + (β + lj)

2 − 2 · (β + li) · (β + lj) = ((β + li)− (β + lj))
2 = (li − lj)

2.

Therefore, we can simplify the determinant as

A · C −B ·B =
∑
i

∑
j≥i

(li − lj)
2

α4
rirj ≥ 0.

It is easy to see that the determinant always greater than zero and is equal to zero only when the log-likelihoods of all
training instances are equal, which is unlikely given that li is real-valued and there are usually many training instances.

From above proof, we can conclude that, except the case that all log-likelihoods are equal (almost impossible in practice),
both of the eigenvalue λ1 and λ2 are strictly negative, which means the matrix M is negative definite and the objective
function is strictly concave.
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