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Abstract

Patient recruitment remains a key challenge in
contemporary clinical trials, often leading to trial
failures due to insufficient recruitment rates. To
address this issue, we introduce a novel adaptive
learning framework that integrates machine learn-
ing methods to facilitate evidence-informed recruit-
ment. Through dynamic testing, predictive learn-
ing, and adaptive pruning of recruitment plans, the
proposed framework ensures superiority over the
conventional random assignment approach. We dis-
cuss the practical considerations for implementing
this framework and conduct a simulation study to
assess the overall response rates and chances of
improvement. The findings suggest that the pro-
posed approach can substantially enhance patient
recruitment efficiency. By systematically optimiz-
ing recruitment plan allocation, this adaptive learn-
ing framework shows promise in addressing re-
cruitment challenges across broad clinical research
settings, potentially transforming how patient re-
cruitment is managed in clinical trials.

1 INTRODUCTION

Patient recruitment is a principal challenge in conducting
clinical trials [Friedman et al., 2015]. In a recent survey
[eClinicalHealth], 86% of clinical trials did not meet enrol-
ment timelines, and approximately one-third of phase III
trials, representing the most rigid clinical studies that often
take 5-15 years to implement and cost hundreds of millions
of dollars, failed owing to participant enrolment problems.
Our own experiences mirror these challenges, as seen in
the PCORI-funded WISE trial, where slower-than-expected
recruitment led to significant alterations [Sciamanna et al.,
2018], including the modification of the study’s primary
endpoint and a reduction of total sample size by half.

Efforts have been undertaken to enhance patient recruitment
in clinical trials. The recruitment guideline developed by the
GREET project (Guidance to Recruitment: Examining Expe-
riences at Clinical Trial Sites) [Zahren et al., 2021] identifies
the availability of adequate staff resources, appropriate bud-
get allocation, and proactive principal investigators as the
top three facilitators of successful recruitment endeavors.
However, it is essential to acknowledge that while these
solutions demonstrate efficacy within specific trial contexts,
their generalizability and efficiency are not guaranteed, sub-
ject to all kinds of predictable and completely unforeseen
problems [Friedman et al., 2015].

Particularly, a more strict requirement for patient recruit-
ment comes to pragmatic trials, such as studies to evalu-
ate participants in the "SilverSneaker" program [Rovniak].
Since pragmatic trials are designed to assess the efficacy
of interventions in real-world, routine practice conditions
[Patsopoulos, 2011] and seek maximal heterogeneity in
the clinical setting and patient characteristics, it requires a
large sample size to give the intervention the best chance to
demonstrate a beneficial effect [MOSIO]. Thus, with limited
resources, efficient patient recruitment is vital to enhance
generalizability for a wide range of participants.

Artificial Intelligence (AI) and Machine Learning (ML) have
great potential in trial participant identification and selec-
tion: by using automated natural language processing tools,
AI can effectively connect individuals to trials to increase
participant identification [Miller et al., 2023, Weissler et al.,
2021]; ML, particularly through neural network models,
can reduce sample heterogeneity by identifying patients of
specific characteristics with the prediction of benefit for
patient selection [Harrer et al., 2019, Widera et al., 2023].
Despite these advancements, significant challenges persist,
particularly in effectively encouraging participant responses
to recruitment efforts. Even in a pool of well-identified po-
tential participants, the recruitment response rate could be
intolerably low (e.g., 3.2% in the WISE trial [Sciamanna
et al., 2021], and 3% projected for Hispanic and Latino
groups in the TIME trial [Sciamanna]), posing significant
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Figure 1: Concept graph of learning strategy within each round of
recruitment.

difficulties in meeting enrollment targets and can jeopar-
dize the success of a trial. Addressing this issue calls for
the development and implementation of more effective and
customized recruitment plans. However, due to the lack of
specific data or evidence in individual trial contexts (e.g.,
various comparative interventions and targeted disease pop-
ulations), it is still challenging to accurately predict the
effectiveness of various recruitment plans, and estimate the
achievable recruitment response rates. The need for inno-
vative approaches that can navigate these complexities and
effectively increase recruitment response rates is evident,
making an important direction for further exploration and
advancement using ML.

This paper seeks to transform clinical trial recruitment
by harnessing ML to develop a cutting-edge, evidence-
informed framework of adaptive recruitment strategy.
Specifically, we will leverage predictive learning techniques
over multiple candidate recruitment plans in a sequential
recruitment setting. As shown in Figure 1, the process will
go through T rounds until the most effective recruitment
plans are identified. Each round will go through four steps:
data collection, quantitative modeling, recruitment plan allo-
cation prediction, and sample size determination. By adap-
tively refining the selection of effective recruitment plans,
we aim to achieve enhanced participant engagement by op-
timizing the recruitment plan allocation.

Related works: Sequential trial designs [Karrison et al.,
2003, Li et al., 1995] adaptively update the weights of
arm allocation to minimize the risk of inferior treatment
assignments [Hu and Rosenberger, 2006]. The proposed
recruitment strategy shares some similarities with sequen-
tial designs in adaptive learning, but they are distinct in the
following aspects:

• Study focus: Sequential adaptive designs have an “arm-
oriented” focus, aiming to identify the best treatment
(arm) among the tested treatments. In contrast, the
adaptive learning methods in our trial recruitment have
a “response-oriented” focus. It aims to improve the

overall recruitment response rate until little improve-
ment can be made, irrespective of which recruitment
plan (arm) achieves a good response.

• Scale of interventions: Traditional sequential adaptive
designs can only handle a few treatments (small K) us-
ing classical statistical methods, whereas our approach
is better suited for AI/ML techniques to systematically
search within a large space of recruitment plans (large
K).

• Stage in clinical trials: Sequential adaptive designs
are implemented to allocate treatments during the in-
tervention stage, while it is often costly and takes a
few years to run even with a limited sample size. In
contrast, the proposed adaptive learning framework tar-
gets the recruitment stage, which is fast-paced with a
huge sample space (e.g., 175,000 in the SilverSneakers
study).

Subsequently, the design methodologies required for these
two types of studies differ significantly. While statistical
approaches are often developed and applied for treatment
assignment, ML methods are naturally suited to optimize
efficiency in the recruitment setting. Our proposed approach
establishes an adaptive ML framework to enhance partici-
pant recruitment in clinical trials. To the best of our knowl-
edge, this innovative application of ML techniques to im-
prove recruitment efficiency represents a groundbreaking
development in the field.

2 AN ILLUSTRATIVE TRIAL EXAMPLE

A PCORI-funded clinical trial investigates the health and
social effect of proactively utilizing the “SilverSneakers”,
an insurance-covered exercise program, among seniors with
osteoarthritis [Rovniak]. Osteoarthritis is a common med-
ical condition associated with pain, deterioration, and an
increased risk of falls and fractures for the age group of
65 and over. In a pragmatic randomized parallel-group con-
trolled trial setting, the randomization unit is the individual
participant, who will be randomly assigned to one treatment
arm (utilizing proactive care condition that provides sup-
port to activate insurance-funded SilverSneakers benefits)
and one control arm (utilizing usual care condition that pro-
vided beneficiaries with their usual SilverSneakers benefits
information) with a 1:1 ratio.

Scheduled for 2024-2025, this trial is budgeted to send out
175,000 recruitment letters for an enrollment target of 1,454
U.S. Medicare Advantage members. Despite SilverSneak-
ers’ substantial potential benefits and a large number of
planned recruitment letters, the study still faces a significant
challenge: recruiting enough participants. This concern is
pivotal given the often lower recruitment response rates in
disadvantaged groups, which makes participant recruitment
a notably challenging task.
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To enhance the recruitment process, a practical approach
involves employing diverse recruitment modalities, such
as utilizing different designs and features in recruitment
letters to elicit higher response rates. These design features,
each presented as a categorical variable with two or more
levels, can be used individually or in combination, creating a
high-dimensional sample space of recruitment (letter) plans.

In this vast sample space, it is critical to predict the most
effective design features, or their combinations, to im-
prove trial recruitment responses. Yet, pre-trial knowledge
is scarce. Before the initiation of a trial, we have limited
understanding of how potential participants might react to
recruitment plans, due to the differences in proposed inter-
ventions, targeted study population, and specific trial con-
text. In behavior research, experts’ consensus may easily
and significantly deviate from or contradict actual outcomes
[Milkman et al., 2021]. This lack of foresight extends to
predicting the effectiveness or ranking of recruitment plans.

Therefore, it illustrates an urgent need for new method-
ologies to enhance recruitment efficiency using adaptive
strategies of learning and prediction. The integration of ML
in sequential participant recruitment fills a gap in the exist-
ing literature, underlining the transformative potential for
clinical trial breakthroughs in practice.

3 METHOD

The procedure of sequential participant recruitment aims to
enhance the overall response rate (ORR) by optimizing the
recruitment plan allocation. In this section, we first delineate
the notations pertinent to the proposed approach, then delve
into the modeling and design considerations essential for
the selection of recruitment plan(s).

3.1 NOTATIONS

Suppose we have K candidate recruitment plans to be dis-
tributed to N potential participants. We assume that each
participant can only receive one of the recruitment plans, at
a random round t ∈ T0 where T0 is the planned maximum
recruitment round, and the assignment is random following
an allocation probability w

(t)
k , k = 1, . . .K. Assume the

kth recruitment plan has a true response rate of pk, which is
fixed but unknown, and can only be estimated from current
trial data. We allow the adaptive recruitment process to stop
early, so the actual total recruitment round T ≤ T0.

In the context of SilverSneakers trial with 8 binary design
features, we specify K = 28 = 256 letter designs, T0 = 6
maximum rounds, and N = 175, 000 potential participants
(i.e., each individual receives only one recruitment letter).

In a sequential recruitment process (e.g., Figure 2), the N
potential participants are randomly partitioned into T se-
quential cohorts, and the individuals in the cohort t will only

Figure 2: Adaptive procedure for recruitment plan assignment.

be reached out by the clinical team at the round t of recruit-
ment. The maximum number of patients involved at a non-
terminal round (i.e., t < T ) is N/T0. The assignment prob-
ability w

(t)
k for the kth recruitment plan could vary by time

(the superscript in notation), possibly updated by the data
D(t−1) collected up to previous t− 1 rounds of recruitment.
If the adaptive learning approach is effective, we expect the
assignment probabilities w(t)

k for high-performing recruit-
ment plans (those with high response rates pk) to increase
over time. Conversely, the probabilities should decrease,
potentially reaching zero, for underperforming recruitment
plans with low response rates pk. Overall, the algorithm will
dynamically prioritize the more successful strategies while
phasing out ineffective ones. For consistent notation, we de-
note D(0) as the prior data before initiating the recruitment.
If there are no preliminary studies, D(0) = ∅.

3.2 SEQUENTIAL RECRUITMENT PROCEDURE
FOR ADAPTIVE LEARNING

Algorithm 1 presents the general recruitment strategy of
an adaptive learning framework (Figure 2), which aims to
allocate effective recruitment plans to improve the overall
recruitment response rate. In the initial round (t = 1), all
treatment plans are assigned equal probabilities w

(1)
k =

1/K, k = 1, · · · ,K, and participant responses are collected
as D(1). For subsequent rounds t > 1, we follow the steps
of Figure 1 to perform the adaptive allocation. Specifically,
at round t, we have response data D(t−1) from previous
rounds. An (ensemble) learning model is applied on D(t−1)

to predict the response of recruitment plans p̂(t−1). The al-
location rates W (t) are derived from the predicted response
rates p̂(t−1), and we randomly assign the recruitment plans
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to participants in cohort t based on the allocation rates W (t).
New data D(t)/D(t−1) are thus collected after potential par-
ticipants respond to the assigned plans. This iterative pro-
cess continues until the maximum number of rounds T is
reached or one of the early termination conditions 3(a)-(b)
in Algorithm 1 is met.

Mathematically, the key step (i.e., step 3 in Figure 1) in-
volves the determination of the cohort t-specific allocation
rates W (t) = (w

(t)
1 , w

(t)
2 , ..., w

(t)
K ), with

w
(t)
k ∝ fk(p̂

(t−1)
1 , ..., p̂

(t−1)
K ) · g(t)k (p̂

(t−1)
1 , ..., p̂

(t−1)
K ),

where fk is some pre-specified randomization rule, and g
(t)
k

is an adaptive pruning factor that can be used to downweight
recruitment plans that respond poorly, and

∑K
k=1 w

(t)
k = 1.

The learning performance may vary from the choices of
fk and g

(t)
k , and yield different power and false discovery

rate control. In the simulation study (Section 4), we test
the adaptive learning performance when using the simple
rule fk(p̂

(t−1)
1 , ..., p̂

(t−1)
K ) = p̂

(t−1)
k , proportional to the pre-

dicted response rate. Additionally, we assign the adaptive
pruning factor g

(t)
k at value 1 to a cluster of recruitment

plans with the highest predicted response rates in round
t, denoted by C(t). All the recruitment plan k /∈ C(t) are
pruned with g

(t)
k = 0. By applying the K-means method

[Lloyd, 1982, MacQueen, 1967], this selected recruitment
plan set C(t) is determined out of the previously selected
C(t−1) in round t − 1 to satisfy the monotonic condition.
The silhouette score [Rousseeuw, 1987] is used to select the
best number of clusters. If it demonstrates the effectiveness
of recruitment in this simple setting, we expect the adaptive
learning performance to be further enhanced with tailored
ML methods in real data applications.

We now discuss the theoretical properties in this setting.

Lemma 1. For any rule fk(p1, p2, · · · , pK) ∝ pk,∑
k

wkpk =
∑
k

fkpk/
∑
k

fk ≥
∑

pk/K.

The derivation of Lemma 1 employs the Cauchy–Schwarz
inequality for its proof (Supplementary Section A.1), and
the equality holds iff p1 = p2 = · · · = pK . Incorporating
the law of large numbers leads to the subsequent remark,
suggesting that it is always safe to apply a consistent learn-
ing strategy in recruitment:

Remark 1. (Non-inferiority) If a learning method yields
recruitment response estimators that converge consistently
(i.e., limn→∞ p̂k = pk, for k = 1, . . . ,K), then a recruit-
ment strategy based on fk(p̂1, p̂2, . . . , p̂K) ∝ p̂k will be
statistically non-inferior to the conventional strategy that as-
signs recruitment equally (i.e., fk(p̂1, p̂2, . . . , p̂K) = 1/K),
with probability 1.

Additionally, we have the following property of adaptive
recruitment plan selection, given a pruning factor g(t)k ∈
{0, 1} on t ∈ [1, T ], which satisfies the boundary constraints

g
(1)
k = 1, for k = 1, . . . ,K

K∑
k=1

g
(T )
k ≥ 1,

and, to consistently exclude the less effective recruitment
plans among the preceding round, imposing the monotonic
condition

g
(t)
k ≤ g

(t−1)
k ,

K∑
k=1

g
(t)
k <

K∑
k=1

g
(t−1)
k , for 2 ≤ t ≤ T :

Lemma 2. (Optimality) Without loss of generality, we
assume that the true recruitment response rate 1 ≥
p1 > p2 > · · · > pK ≥ 0. For any consistent rule
fk(p1, p2, · · · , pK) ∝ pk, if combined with a strict pruning
factor g(t)k (p1, p2, · · · , pK) satisfying

g
(T )
k (p1, p2, · · · , pK) =

{
1, k = argmaxkpk = 1

0, k ̸= 1
,

we have∑
k

w
(t)
k pk =

∑
k

fkg
(t)
k pk/

∑
k

fkg
(t)
k

≤
∑
k

fkg
(T )
k pk/

∑
k

fkg
(T )
k = p1.

The proof is included in Supplementary Section A.2. Lemma
2 suggests that, when the recruitment plans can be com-
pletely ranked in terms of the recruitment response rates,
the optimal response rate will be achieved, at least in the
last cohort, by adopting the strict pruning factor to select the
most effective recruitment plan. This interesting result can
also be easily generalized to any semi-strict pruning factor
g
(t)
k (p1, p2, · · · , pK) with

g
(T )
k (p1, p2, · · · , pK) =

{
1, k ∈ {1, . . . ,K0}
0, k ∈ {K0 + 1, . . . ,K}

,

for the best subset with K0 recruitment plans, to obtain∑
k

w
(t)
k pk ≥

∑
k

w
(t−1)
k pk, for 2 ≤ t ≤ T

and
∑
k

w
(T )
k pk ≥ pK0

.

This result is important because, in practice, we don’t expect
a large T for many rounds of learning to guarantee the iden-
tification of the most effective recruitment plan; nonetheless,
it is still promising to adopt an adaptive pruning process
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Algorithm 1: Procedure for Adaptive Learning Framework

Inputs: initial round t = 1, total round T = T0, sample size for round 1 n(1) = N/T0.
while t ≤ T do

if t = 1 then
Randomly assign all patients in cohort 1 according to w

(1)
k = 1/K, where k = 1, ...,K, and obtain data D(1);

else
1. Given the data D(t−1) collected up to round t− 1, we apply the ensemble model to predict the plan

response rates p̂(t−1) = (p̂
(t−1)
1 , p̂

(t−1)
2 , ..., p̂

(t−1)
K );

2. Calculate the allocation rates W (t) = (w
(t)
1 , w

(t)
2 , ..., w

(t)
K ) with

w
(t)
k ∝ fk(p̂

(t−1)
1 , p̂

(t−1)
2 , ..., p̂

(t−1)
K ) · g(t)k (p̂

(t−1)
1 , p̂

(t−1)
2 , ..., p̂

(t−1)
K )

based on pre-specified randomization rule fk, pruning factor g(t)k , and
∑K

k=1 w
(t)
k = 1;

3. if t < T then if
(a) n

(t)
min < 0 (the precision of the observed ORR has met the power requirement);

or
(b) ∃ k, w(t)

k = 1 (single recruitment plan selected for next cohort sampling);
or

(c) ÔRR
(t)

− ÔRR
(t−1)

< ϵ (limited improvement on predicted ORR);

then (Early stopping)

Terminate the adaptive learning with T = t by combining all the rest samples into a single
cohort with sample size n(t) = N −

∑t−1
s=1 n

(s);

else
Calculate cohort t sample size, n(t) (Section 3.3.2);

4. Randomly assign recruitment plans 1, ...,K to individuals in cohort t according to W (t) and collect
response data, which will be combined with data D(t−1) collected in previous rounds to generate the
updated data D(t);

5. t = t+ 1;
end

end
Result: Participants response data collected up to round T , D(T ), and overall response rate over N samples, ORR(T ).

to exclude some ineffective allocation plans and improve
the recruitment responses. The K-means derived g

(t)
k is a

typical example.

When the sample size is large enough to conduct consistent
response rate estimation, the subsequent proposition holds
following the Remark 1,

Proposition 1. (Superiority) Jointly with a pruning strat-
egy g

(t)
k (p̂1, p̂2, . . . , p̂K) in patient allocation, the adaptive

learning strategy w
(t)
k ∝ fk · g(t)k can consistently improve

recruitment efficiency over time, if some pk’s are not equal.

3.3 MODELING AND DESIGN CONSIDERATIONS
IN SELECTING THE RECRUITMENT PLAN(S)

Careful considerations should be taken in the above adap-
tive learning framework. Below we demonstrate a feasible

approach and its justifications, specifically regarding the
ensemble modeling, total round determination, early termi-
nation rules, and sample size calculation for each round.

3.3.1 Ensemble modeling for response rate prediction

We illustrate the response prediction model using ensem-
ble learning, which combines the predictions from multi-
ple ML algorithms (as base learners) to make robust pre-
dictions [Dietterich, 2000, Guzman et al., 2015, da Silva
et al., 2014]. The ensemble model can be fine-tuned using
the best-fitting parameters, which are identified through a
grid search method coupled with 10-fold cross-validation.
The 7 selected ML algorithms for simulation study are cat-
egorized into two groups: parametric models (including
logistic regression [Cox, 1958], lasso regression [Tibshi-
rani, 1996], ridge regression [Hoerl and Kennard, 2000],
and non-parametric models, such as gradient boosting ma-
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chine (GBM) [Friedman, 2001], random forest (RF) [Ho,
1995], Extreme Gradient Boosting (XGBoost) [Chen and
Guestrin, 2016], and artificial neural networks (NNs) [Gross-
berg, 1988]. In general, the selection of the base learners
can be customized, depending on the study objective, for
different datasets.

3.3.2 Sample size calculation

When the total sample size is limited, we can determine the
minimum sample size required for round t by considering
the observed response rate for round t−1, denoted as p̂(t−1),
and an arbitrary expected effect size improvement ∆. As-
suming a target power of 1−β(t), where β(t) represents the
Type II error rate at round t, we conduct hypothesis testing
with the following hypotheses:

H0 : p(t) − p(t−1) = 0

H1 : p(t) − p(t−1) > 0

The minimum sample size required to reject the null hypoth-
esis at round t, denoted as n(t)

min, is:

n
(t)
min =

p̂(t)(1− p̂(t))
∆2

(Z1−α+Z
1−β(t) )2

− p̂(t−1)(1−p̂(t−1))
n(t−1)

Here, n(t−1) represents the observed sample size for round
t− 1, and α denotes the Type I error rate. p̂(t) is calculated
as p̂(t) = p̂(t−1) +∆. Z1−α and Z1−β(t) are critical values
from the standard normal distribution. Additionally, the
minimum sample size is constrained by the total sample
size divided by the number of rounds, i.e., N/T . Hence,
the final minimum sample size is determined as n(t) =

min{n(t)
min, N/T}.

3.3.3 Early termination

The adaptive learning procedure may stop early under three
conditions that no significant improvement in recruitment
allocation can be further made through adaptive learning.
Firstly, if the precision of the observed ORR has met the
power requirement, indicated by n

(t)
min < 0. Secondly, if

only one recruitment plan remains in D(t−1). Thirdly, the
process halts early when the following condition is met:

ÔRR
(t)

− ÔRR
(t−1)

< ϵ

where ÔRR
(t)

represents the predicted ORR across all re-
cruitment plans using data D(t−1). According to the adap-
tive learning framework (Section 3.2), recruitment plans
with higher response rates are prioritized and assigned
greater weight for subsequent rounds of the trial. Based

on the definition of ÔRR
(t−1)

and ÔRR
(t)

, we can readily
establish the following proposition:

Proposition 2. ÔRR
(t)

− ÔRR
(t−1)

> 0

The third stopping criterion signifies that the updated recruit-
ment plans at round t yield only marginal enhancements to
the overall response rate. When any of the three conditions
is met, the adaptive learning terminates at T = t by consol-
idating all remaining samples into a single cohort with an
allocation probability of W (T ) = W (t).

3.3.4 Total round determination

For adaptive learning, it is also important to specify the total
round T , which could be pre-fixed or considered random.
From a cost-effective perspective, the total round T is con-
strained by the study recruitment duration (Tott) and total
cost (Totc). We denote C1 the fixed cost for each round
of recruitment, C2 the cost for each letter or sample size,
and Timer the projected duration for each round. With N
potential participants to be reached out in total T rounds, the
estimated total cost and time duration for the recruitment
will be:

Ĉost = T × C1 +N × C2

T̂ ime = T × Timer

Therefore, the total round T is determined by the two condi-
tions: Ĉost ≤ Totc and T̂ ime ≤ Tott. For feasibility, we
fixed the total round to be 6 in the simulation (Section 4).

In practice, researchers should begin with a conservative
estimate of the time frame required for each round of patient
recruitment and response collection, denoted as Timer (e.g.,
2 months). Given the total scheduled duration for the recruit-
ment phase, Tott (e.g., 1 year), the maximum number of
rounds Tmax can be determined as Tmax = Tott/T imer.
The total recruitment cost should then be evaluated for Tmax

rounds to ensure it meets the cost constraints. If the cost
exceeds the available resources, the number of rounds T can
be reduced below Tmax accordingly.

To assess the potential impact of varying T , simulation stud-
ies will be conducted as sensitivity analyses, examining the
effects of increasing or decreasing the number of rounds.
Generally, we recommend T = 4 to 8 rounds for effective
adaptive learning, as this range tends to strike a balance be-
tween computational efficiency and the ability to learn and
adapt over multiple iterations. However, the final selection
of T should be made jointly with the study’s principal inves-
tigator (PI), considering the overall recruitment strategy and
resource limitations.

3.3.5 Total recruitment plan determination

Assume that we have determined the total round T , an esti-
mated response rate (θ0), and an estimated minimum num-
ber of responders for each recruitment plan (S), this leads us
to the inequality that K ∗T ∗S < N ∗θ0, where K signifies
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the total number of recruitment plans and N represents the
total sample size. The inequality suggests that K is subject
to the constraint:

K <
N ∗ θ0
T ∗ S

This constraint ensures the adequacy of data for our machine
learning model to effectively discern the impact of differ-
ent recruitment plans. By adhering to this constraint, we
guarantee the availability of sufficient data points necessary
for accurate analysis and interpretation of the effects of the
recruitment strategies.

4 SIMULATION

We conduct simulation studies and design three scenarios
to examine the efficiency of adaptive ensemble learning for
participant recruitment in the context of the SilverSneakers
program (Section 2). Details on the simulation settings are
described in the Supplementary Section B.

The simulation results (Tables 1 and Tables 2 - 6 in the
Supplementary Material) highlight the progressive nature
of adaptive learning, wherein recruitment plans with supe-
rior response rates are increasingly favored over successive
rounds. The ORRs of the last round closely approximate the
highest true response rate (RR) and the ORR converges no-
tably to the highest true RR starting after round 2 (e.g., Table
1(A)). The number of remaining recruitment plans in the fi-
nal round is around 2 (e.g., Table 1(B)), which demonstrates
that the adaptive learning framework discards ineffective
recruitment plans with zero weight at the first two rounds.

Notably, the early stopping rate is high (e.g., Table 1(C)) and

mostly is due to the single recruitment plan selected for the
next cohort sampling (Algorithm 1). The sample size used
for the last round for Scenarios 1 and 2 is at least 110,000,
which is at least 62.8% of the total 175,000 sample size.
The adaptive learning approach achieves its objectives using
less than half of the available data, underscoring that the
approach is efficient in identifying and selecting the most
promising recruitment plan.

The true response rate assignment in Scenario 1 does not
favor any design features. As depicted in Tables 1(A) and
2(A)), while tree-based methods and the two ensemble learn-
ing approaches manage to attain the highest true response
rate (0.097, (0.003)), logistic ridge regression falls short
with an overall ORR of 0.080 (0.010) and adaptive learn-
ing ORR of 0.087 (0.012). Despite the inclusion of logistic
ridge regression within the ensemble learning methods, the
robustness inherent in ensemble learning enables them to
maintain performance levels on par with tree-based meth-
ods, random forest, and XGBoost. This signifies the efficacy
of ensemble learning in mitigating the risk associated with
selecting less effective machine learning methods.

Scenario 2(a) constructs an additive setting for design fea-
tures, which favors the logistic regression. Consequently, we
observe superior performance of logistic ridge regression
compared to random forest and XGBoost, as delineated in
Tables 3 and 4. Conversely, Scenario 2(b) adds an interac-
tion term for design features, facilitating tree-based methods
to outperform logistic ridge regression, as evident in Tables
5 and 6. Although these two settings are designed to favor
different base learners, the ensemble learning methods can
still take advantage of containing at least one of the favored

Table 1: Simulation results for Scenario 1 with 5 design features. Values for ORRs, plan numbers, expected rounds, and sample size for
last round are mean with standard deviation in the parenthesis.
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learners to perform comparably well. Moreover, comparing
ensemble methods with 3 base learners to 7 base learners re-
veals that incorporating more methods does not compromise
overall performance and can enhance it in certain instances.
For instance (Table 4(A)), the ensemble learning with 7
learners outperforms other methods, including the ensem-
ble learning with 3 learners from round 2, while the latter
catches up with the performance of the 7-learner ensemble
learning from round 3. This observation underscores the
robustness of ensemble learning across diverse conditions
and further highlights its adaptability and effectiveness in
various scenarios.

We also conducted a comparison between the proposed
adaptive learning framework and the benchmark in three
scenarios. Since there is no recruitment plan selection and
allocation prediction, the ORR of the benchmark is 0.055 all
the time. However, the examination of the results tables re-
veals that the overall ORRs of all candidate methods in Sce-
narios 1 and 2 closely approximate the highest true response
rates. Specifically, these rates are 0.097 and 0.1 for Scenario
1 with 5 and 8 design features, and 0.068 for Scenario 2.
The chances of better performance against the benchmark
in Table (C) of all results tables are almost 100% of the time
for the ensemble learning methods. In Scenario 3, due to the
absence of recruitment plan selection and plan allocation
rate predictions, both the benchmark and the adaptive learn-
ing approach maintain a steady ORR of 0.055 throughout
the entire process, indicating a non-inferior performance
of the adaptive learning approach. These findings indicate
that the adaptive learning framework exhibits performance
comparable to, or notably superior to, the random approach
(benchmark). This suggests the robustness and effectiveness
of the adaptive learning approach in optimizing recruitment
plans under various conditions, thus affirming its suitability
for practical implementation.

In summary, we designed three scenarios to demonstrate
the robustness of the adaptive learning framework with the
ensemble learning method. Compared with the random ap-
proach, the adaptive learning framework can effectively
select the most effective recruitment plan in a fast and effi-
cient manner. The incorporation of ensemble learning into
allocation prediction mitigates the risk of choosing unde-
sirable machine learning methods, ensuring consistent and
robust performance across diverse scenarios.

5 EXTENSIONS

Below we highlight some potential extensions of the illus-
trated method.

Refining pruning strategy: In pursuit of a more streamlined
and effective recruitment plan selection process, K-means
could be replaced with more effective approaches, such as
X-means [Pelleg and Moore, 2000]. This transition enables
dynamic selection in the optimal number of clusters, over-

coming the limitations associated with K-means. Addition-
ally, X-means enhances computational efficiency, making it
a more robust choice in applications.

Global optimization in response estimation: The proposed
approach focuses on maximizing predicted plan response
rates. Alternative methods, such as the multi-armed ban-
dit approach [Agrawal and Goyal, 2012, Oh and Iyengar,
2019], which simultaneously balances exploration with ex-
ploitation, may lead to a more efficient adaptive recruitment
strategy by globally maximizing the total predictive reward.

Enhancing recruitment for underrepresented patients: A
group-specific recruitment allocation plan can be imple-
mented to mitigate health disparities and enhance the re-
cruitment of underrepresented populations. This extension
involves clustering patients based on their demographic and
clinical characteristics and optimizing recruitment strategies
tailored to each group.

Incorporating external evidence: When relevant external
data or experts’ opinions are available, they can be converted
as the prior distributions and the allocation optimization
could also be conducted using the Bayes learning [Gelman
et al., 2013]. Furthermore, in clinically diverse settings with
multiple patient groups, it is compelling to employ learning
methods that can incorporate both plan features and patient
characteristics. Potentially, it will lead to better identification
of optimal recruitment plans for specific patient subgroups,
opening a door to diverse efficiency gains.

Sequantial assignment for non-responders: In the context
of rare diseases where the pool of eligible patients is lim-
ited, the proposed approach can be adapted to re-assign
non-responders to receive additional recruitment plans. This
extension tests ML-guided recruitment strategies in sequen-
tial order for patients who do not respond, maximizing the
chances of successful enrollment in the study.

6 CONCLUSION

Patient recruitment remains a critical challenge in large-
scale pragmatic clinical trials, necessitating extensive sam-
ple sizes and diverse patient populations. Traditional strate-
gies often struggle to meet demanding recruitment require-
ments across varied clinical settings. We proposed a novel
adaptive learning framework integrating ensemble learning
to iteratively optimize patient recruitment. Through sim-
ulations, we demonstrated the proposed framework could
efficiently identify and prioritize the most effective recruit-
ment plans while mitigating the risk of selecting subopti-
mal recruitment plans. This work establishes a foundation
for leveraging AI/ML to address longstanding recruitment
challenges, facilitating more efficient pragmatic trials by
substantially improving recruitment rates and accelerating
clinical research.
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A PROOFS

A.1 PROOF OF LEMMA 1

According to the Cauchy-Schwarz inequality, we can get
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∑
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A.2 PROOF OF LEMMA 2
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B SIMULATION SETTING

For an illustrative purpose, here we simplify the setting by disregarding participant-specific characteristics and test on 5 and
8 binary design features, each leading to 25 = 32 and 28 = 256 candidate recruitment plans, respectively. We consider five
methods for comparison, including logistic regression with l2 penalty, random forest, XGBoost, ensemble learning with
these three methods, and ensemble learning with the seven methods mentioned in Section 3.3.1.

The true underlying response rate pk of each recruitment plan is defined using the following three scenarios:

1. The true response rates for each recruitment plan are randomly assigned within [0.01, 0.1].

2. Logistic regression scenario:

(a) Assign fixed coefficients to recruitment plans. Let β1 for design feature 1 be 0.5, β2 for design feature 2 be -0.5,
and coefficients for all other designs be 0. Then, the response rates for each recruitment plan is inv.logit(β1x1 +
β2x2) ∗ 0.11, where x1 and x2 are binary indicators for design features 1 and 2. The multiplying factor 0.11 is
applied to maintain an expected overall recruitment response rate to be 0.055.

(b) Assign fixed coefficients along with an interaction. We assign β1 = −0.5 for design feature 1 and β12 = 1 for
the interaction between design features 1 and 2. The coefficients for all other designs are 0. Then, the response
rates for each recruitment plan is inv.logit(β1x1 + β12x1x2) ∗ 0.11. The multiplying factor 0.11 is applied to
maintain an expected overall recruitment response rate to be 0.055.

3. The true response rates for each recruitment plan are equal to 0.055.

While all scenarios have the same expected overall recruitment response rates of 0.055, Scenario 3 is the worst-case scenario
for learning when no improvement could be made. Nevertheless, we include it to examine the non-inferiority of the proposed
learning procedure.

We limit the total sample size (letters) to 175,000 and the total rounds of the experiment, T , are 5 and 6 for 5 and 8 design
features, respectively. Thus, approximately 175000/5 ≈ 35000 and 175000/6 ≈ 29167 participants will be reached out as
cohort 1 at round 1. The remaining samples will be allocated across subsequent rounds based on the sample size calculation
(Section 3.3.2) and the early termination rule (Section 3.3.3). We repeat the data-generating process 100 times, to calculate
the ORR within each cohort and over the whole sample. As a benchmark, we employ a random approach where recruitment
plans are randomly assigned to participants at each round. To evaluate the performance of the adaptive learning framework
against this benchmark, we conduct binomial hypothesis testing at each replication to determine the overall chances of better
performance against the benchmark by the adaptive learning approach. The adaptive learning procedure for the simulation
study are illustrated in Algorithm 2.
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Algorithm 2: Adaptive learning procedure for the simulation study

Inputs: initial round t = 1, total round T = T0, sample size for round 1 n(1) = N/T0.
while t ≤ T do

if t = 1 then
Randomly assign all patients in cohort 1 according to w

(1)
k = 1/K, where k = 1, ...,K, and obtain data D(1);

else
1. Given the data D(t−1) collected up to round t− 1,

(a) Apply a learning model (e.g., an ensemble model or a base learner) to predict the plan
response rates p̂(t−1)

k among the recruitment plans k ∈ C(t−1) (i.e., the set of recruitment
plans with the adaptive pruning factor g(t−1)

k = 1);

(b) Perform K-means clustering on the predicted plan response rates {p̂(t−1)
k }, k ∈ C(t−1);

(c) Assign (keep) g(t)k = 1 to the recruitment plans in the best-performed cluster, denoted by
C(t). All the other recruitment plans k /∈ C(t) are pruned with g

(t)
k = 0;

2. Calculate the allocation rates W (t) = (w
(t)
1 , w

(t)
2 , ..., w

(t)
K ) with

w
(t)
k =

p̂
(t−1)
k · g(t)k∑
k p̂

t−1
k · g(t)k

3. if t < T then if
(a) n

(t)
min < 0 (the precision of the observed ORR has met the power requirement);

or
(b) ∃ k, w(t)

k = 1 (single recruitment plan selected for next cohort sampling);
or

(c) ÔRR
(t)

− ÔRR
(t−1)

< ϵ (limited improvement on predicted ORR);

then (Early stopping)

Terminate the adaptive learning with T = t by combining all the rest samples into a single
cohort with sample size n(t) = N −

∑t−1
s=1 n

(s);

else
Calculate cohort t sample size, n(t) (Section 3.3.2);

4. Randomly assign recruitment plans 1, ...,K to individuals in cohort t according to W (t) and collect
response data, which will be combined with data D(t−1) collected in previous rounds to generate the
updated data D(t);

5. t = t+ 1;
end

end
Result: Participants response data collected up to round T , D(T ), and overall response rate over N samples, ORR(T ).
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C ADDITIONAL SIMULATION RESULTS

Table 2: Simulation results for Scenario 1 with 8 design features. Values for ORRs, plan numbers, expected rounds, and sample size for
last round are mean with standard deviation in the parenthesis.

Table 3: Simulation results for Scenario 2(a) with 5 design features.
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Table 4: Simulation results for Scenario 2(a) with 8 design features.

Table 5: Simulation results for Scenario 2(b) with 5 design features.
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Table 6: Simulation results for Scenario 2(b) with 8 design features.
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