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Abstract

Optimal transport (OT) offers a versatile frame-
work to compare complex data distributions in a
geometrically meaningful way. Traditional meth-
ods for computing the Wasserstein distance and
geodesic between probability measures require
mesh-specific domain discretization and suffer
from the curse-of-dimensionality. We present
GeONet, a mesh-invariant deep neural operator net-
work that learns the non-linear mapping from the
input pair of initial and terminal distributions to the
Wasserstein geodesic connecting the two endpoint
distributions. In the offline training stage, GeONet
learns the saddle point optimality conditions for
the dynamic formulation of the OT problem in
the primal and dual spaces that are characterized
by a coupled PDE system. The subsequent infer-
ence stage is instantaneous and can be deployed for
real-time predictions in the online learning setting.
We demonstrate that GeONet achieves compara-
ble testing accuracy to the standard OT solvers
on simulation examples and the MNIST dataset
with considerably reduced inference-stage compu-
tational cost by orders of magnitude.

1 INTRODUCTION

Recent years have seen tremendous progress in statistical
and computational optimal transport (OT) as a lens to ex-
plore machine learning problems. One prominent example
is to use the Wasserstein distance to compare data distribu-
tions in a geometrically meaningful way, which has found
various applications, such as in generative models [Arjovsky
et al., 2017], domain adaptation [Courty et al., 2017] and
computational geometry [Solomon et al., 2015]. Computing
the optimal transport map (if it exists) can be expressed
in a fluid dynamics formulation with the minimum kinetic

energy [Benamou and Brenier, 2000]. Such a dynamical
formulation defines geodesics in the Wasserstein space of
probability measures, thus providing richer information for
interpolating between data distributions that can be used to
design efficient sampling methods from high-dimensional
distributions [Finlay et al., 2020]. Moreover, learning the
continuous-time dynamical Wasserstein geodesic is a prac-
tically important task in many science and engineering do-
mains, including developmental trajectory reconstruction
in cell reprogramming [Schiebinger et al., 2019], 3D warp-
ing for shape analysis in computational geometry [Su et al.,
2015], optimal control such as swarm robotics and con-
trol systems [Chen et al., 2021, Krishnan and Martínez,
2018, Inoue et al., 2021], matching supply and demand net-
works [Lacombe et al., 2022], computer vision such as color
transfer [Bai et al., 2023], and language translation [Xu
et al., 2021].

Traditional methods for numerically computing the Wasser-
stein distance and geodesic require domain discretization
that is often mesh-dependent (i.e., on regular grids or tri-
angulated domains). Classical solvers such as Hungarian
method [Kuhn, 1955], the auction algorithm [Bertsekas and
Castanon, 1989], and transportation simplex [Luenberger
and Ye, 2015], suffer from the curse-of-dimensionality
and scale poorly for even moderately mesh-sized prob-
lems [Klatt et al., 2020, Genevay et al., 2016, Benamou
and Brenier, 2000]. Entropic regularized OT [Cuturi, 2013]
and the Sinkhorn algorithm [Sinkhorn, 1964] have been
shown to efficiently approximate the OT solutions at low
computational cost, handling high-dimensional distribu-
tions [Benamou et al., 2015]; however, high accuracy is
computationally obstructed with a small regularization pa-
rameter [Altschuler et al., 2017, Dvurechensky et al., 2018].
Recently, machine learning methods to compute the Wasser-
stein geodesic for a given input pair of probability measures
have been considered in [Liu et al., 2021, 2023, Pooladian
et al., 2023, Tong et al., 2023], as well as amortized meth-
ods Lacombe et al. [2023], Amos et al. [2023] for generating
static OT maps.
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Figure 1: A geodesic at different spatial resolutions. Low-resolution inputs can be adapted into high-resolution geodesics
(i.e., super-resolution) with our output mesh-invariant GeONet method.

A major challenge of using the OT-based techniques is
that one needs to recompute the Wasserstein distance and
geodesic for new input pair of probability measures. Thus,
issues of scalability on large-scale datasets and suitability in
the online learning setting are serious concerns for modern
machine learning, computer graphics, and natural language
processing tasks [Genevay et al., 2016, Solomon et al., 2015,
Kusner et al., 2015]. This motivates us to tackle the prob-
lem of learning the Wasserstein geodesic from an operator
learning perspective.

There is a recent line of work on learning neural operators
for solving general differential equations or discovering
equations from data, including DeepONet [Lu et al., 2021],
Fourier Neural Operators [Li et al., 2020b], and physics-
informed neural networks/operators (PINNs/PINOs) [Raissi
et al., 2019, Li et al., 2021]. Those methods are mesh-
independent, data-driven, and designed to accommodate
specific physical laws governed by certain partial differen-
tial equations (PDEs).

Our contributions. In this paper, we propose a deep neural
operator learning framework GeONet for the Wasserstein
geodesic. Our method is based on learning the optimality
conditions in the dynamic formulation of the OT problem,
which is characterized by a coupled PDE system in the
primal and dual spaces. Our main idea is to recast the learn-
ing problem of the Wasserstein geodesic from training data
into an operator learning problem for the solution of the
PDEs corresponding to the primal and dual OT dynamics.
Our method can learn the highly non-linear Wasserstein
geodesic operator from a wide collection of training distri-
butions. GeONet is mesh-invariant, thus it is also suitable for
zero-shot super-resolution applications on images, i.e., it is
trained on lower resolution and predicts at higher resolution
without seeing any higher resolution data [Shocher et al.,
2018]. See Figure 1 for an example of a higher-resolution
Wasserstein geodesic connecting two lower-resolution Gaus-
sian mixture distributions.

Surprisingly, the training of our GeONet does not require the
true geodesic data for connecting the two endpoint distribu-
tions. Instead, it only requires the training data as boundary
pairs of initial and terminal distributions. The reason that
GeONet needs much less input data is because its training

process is implicitly informed by the OT dynamics such that
the continuity equation in the primal space and Hamilton-
Jacobi equation in the dual space must be simultaneously
satisfied to ensure zero duality gap. Since the geodesic data
are typically difficult to obtain without resorting to some
traditional numerical solvers, the amortized inference nature
of GeONet, where inference on related training pairs can
be reused [Gershman and Goodman, 2014], has substan-
tial computational advantage over standard computational
OT methods and machine learning methods for comput-
ing the geodesic designed for single input pair of distribu-
tions [Peyré and Cuturi, 2019, Liu et al., 2021].

Once GeONet training is complete, the inference stage for
predicting the geodesic connecting new initial and terminal
data distributions requires only a forward pass of the net-
work, and thus it can be performed in real-time. In contrast,
standard OT methods re-compute the Wasserstein distance
and geodesic for each new input distribution pair. This is
an appealing feature of amortized inference to use a pre-
trained GeONet for fast geodesic computation or fine-tuning
on a large number of future data distributions. A detailed
comparison between our proposed method GeONet with
other existing neural operators and networks for learning
dynamics from data can be found in Table 1.

2 BACKGROUND

2.1 OPTIMAL TRANSPORT PROBLEM: STATIC
AND DYNAMIC FORMULATIONS

The optimal mass transportation problem, first considered
by the French engineer Gaspard Monge, is to find an optimal
map T ∗ for transporting a source distribution µ0 to a target
distribution µ1 that minimizes some cost function c : Rd ×
Rd → R:

min
T :Rd→Rd

{∫
Rd

c(x, T (x)) dµ0(x) : T♯µ0 = µ1

}
, (1)

where T♯µ denotes the pushforward measure defined by
(T♯µ)(B) = µ(T−1(B)) for measurable subset B ⊂ Rd. In
this paper, we focus on the quadratic cost c(x, y) = ∥x−y∥22.
The Monge problem (1) induces a metric, known as the
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Table 1: We compare our method GeONet with other methodologies, including traditional neural operators, physics-based
neural networks (PINNs) for learning dynamics, and traditional optimal transport solvers.

Method characteristic Neural operator w/o
physics-informed

learning

PINNs Traditional
OT solvers

GeONet
(Ours)

operator learning
satisfies the associated PDEs
does not require known geodesic data
output mesh independence

Wasserstein distance, on the space P2(Rd) of probability
measures on Rd with finite second moments. In particular,
the 2-Wasserstein distance can be expressed in the relaxed
Kantorovich form:

W 2
2 (µ0, µ1) := min

γ∈Γ(µ0,µ1)

{∫
Rd×Rd

∥x− y∥22 dγ(x, y)

}
,

(2)
where minimization over γ runs over all possible couplings
Γ(µ0, µ1) with marginal distributions µ0 and µ1. Prob-
lem (2) has the dual form (cf. Villani [2003]):

W 2
2 (µ0, µ1) = sup

φ∈L1(µ0), ψ∈L1(µ1)

{∫
Rd

φ dµ0

+

∫
Rd

ψ dµ1 : φ(x) + ψ(y) ⩽ ∥x− y∥22
}
.

(3)

Problems (1) and (2) are both referred to as the static OT
problems, which have a close connection to fluid dynam-
ics. Specifically, the Benamou-Brenier dynamic formula-
tion [Benamou and Brenier, 2000] expresses the Wasserstein
distance as a minimal kinetic energy flow problem:

1

2
W 2

2 (µ0, µ1) = min
(µ,v)

∫ 1

0

∫
Rd

1

2
||v(x, t)||22 µ(x, t) dx dt

subject to ∂tµ+ div(µv) = 0, µ(·, 0) = µ0, µ(·, 1) = µ1,

(4)

where µt := µ(·, t) is the probability density flow at
time t satisfying the continuity equation (CE) constraint
∂tµ + div(µv) = 0 that ensures the conservation of unit
mass along the flow {µt}t∈[0,1]. To solve (4), we apply the
Lagrange multiplier method to find the saddle point in the
primal and dual variables. In particular, for any flow µt start-
ing from µ0 and terminating at µ1, the Lagrangian function
for (4) can be written as

L(µ,v, u) =
∫ 1

0

∫
Rd

[
1

2
∥v∥22µ+ (∂tµ+ div(µv))u

]
dx dt,

(5)
where u := u(x, t) is the dual variable for CE. Using
integration-by-parts under suitable decay conditions for
∥x∥2 → ∞, we find that the optimal dual variable u∗ for
the dynamic OT problem satisfies the Hamilton-Jacobi (HJ)

equation

∂tu+
1

2
∥∇u∥22 = 0, (6)

and the optimal velocity vector field is given by
v∗(x, t) = ∇u∗(x, t). Hence, we obtained that the
Karush–Kuhn–Tucker (KKT) optimality conditions for (4)
are solution (µ∗, u∗) to the following system of PDEs:∂tµ+ div(µ∇u) = 0, ∂tu+

1

2
∥∇u∥22 = 0,

µ(·, 0) = µ0, µ(·, 1) = µ1.
(7)

In addition, if ψ∗ and φ∗ are the optimal Kantorovich poten-
tials for solving the static dual OT problem (3), then the solu-
tion to the HJ equation (6) can be viewed as an interpolation
u(x, t) of the Kantorovich potentials between the initial and
terminal distributions in the sense that u∗(x, 1) = ψ∗(x)
and u∗(x, 0) = −φ∗(x) (both up to some additive con-
stants). A detailed derivation of the primal-dual optimality
conditions for the dynamical OT formulation is provided in
Appendix B.

2.2 LEARNING NEURAL OPERATORS

Physics-informed neural networks (PINNs) [Raissi et al.,
2019] aim to learn the solution of a PDE from data for a
given input function a:

∂tu+Da[u] = 0 (8)

subject to some boundary data u0 and uT , where Da denotes
a differential operator in space that may depend on the input
function a ∈ A. Different from the classical neural network
learning paradigm that is purely data-driven, a PINN has less
input data (i.e., some randomly sampled data points from the
solution u and the boundary conditions) since the solution
operator Γ† : A → U is learned by obeying the induced
physical laws governed by (8), and not from observations.
Even though the PINN is mesh-independent, it only learns
the solution for a single instance of the input function a in
the PDE (8). In order to learn the behavior of the inverse
problem Γ† : A → U for an entire family of A, we consider
the operator learning perspective.
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A neural operator generalizes a neural network that learns
the mapping Γ† : A → U between infinite-dimensional
function spaces A and U [Kovachki et al., 2021, Li et al.,
2020a]. A notable example of operating learning is that A
and U contain functions defined over a space-time domain
Ω× [0, T ] with Ω ⊂ Rd, and the mapping of interest Γ† is
implicitly defined through a differential operator.

The idea of using neural networks to approximate any non-
linear continuous operator stems from the universal approx-
imation theorem for operators [Chen and Chen, 1995, Lu
et al., 2021]. In particular, we construct a parametric map
by a neural network Γθ := Γ(·; θ) : A → U for a finite-
dimensional parameter θ ∈ Θ to approximate the true so-
lution operator Γ†. In this paper, we adopt the DeepONet
architecture [Lu et al., 2021], which is suitable for their
ability to learn mappings from pairings of initial input data
to model Γ†. In the next subsection, we briefly discuss some
basics of DeepONet architecture for modeling Γ† and its en-
hanced version. Then, the neural operator learning problem
is to find an optimal θ∗ ∈ Θ as a minimizer of the classical
risk minimization problem

min
θ∈Θ

E(a,u0,uT )∼ν

[∥∥(∂t +D)Γθ(a)
∥∥2
L2(Ω×(0,T ))

+λ0
∥∥Γθ(a)(·, 0)− u0

∥∥2
L2(Ω)

+λT
∥∥Γθ(a)(·, T )− uT

∥∥2
L2(Ω)

]
,

(9)

where the input data (a, u0, uT ) are sampled from some
joint distribution ν. In (9), we minimize the PDE residual
loss corresponding to ∂tu+Da[u] = 0 while constraining
the network by imposing boundary conditions. The loss
function has weights λ0, λT > 0. Given a finite set of sam-
ples {(a(i), u(i)0 , u

(i)
T )}ni=1, and data points randomly sam-

pled in the space-time domain Ω×(0, T ), we may minimize
the empirical loss analog of (9) by replacing ∥ ·∥L2(Ω×(0,T ))

with the discrete L2 norm over domain Ω × (0, T ). Com-
putation of the exact differential operators ∂t and Da can
be conveniently exploited via automatic differentiation in
standard deep learning packages.

2.3 DEEP OPERATOR NETWORKS

The DeepONet architecture [Lu et al., 2021] is based on
the universal approximation theorem for operators [Chen
and Chen, 1995], which says a general nonlinear continuous
operator Γ† may be approximated as follows:

Γ†(u)(x, t) ≈
p∑
k=1

Bk
(
u(x1), . . . , u(xm); θ

)
· Tk(x, t; ξ),

(10)
where Bk, Tk are scalar elements of output of neural net-
works B, T , and p is the number of such elements. For
instance, we may take B and T as artificial neural networks
parameterized by θ, ξ respectively. Networks B, T are re-
ferred to as the branch and trunk networks, respectively.

The unstacked DeepONet in (10) is restricted to one input
function u. In our problem, since we have two initial and
terminal conditions, we consider an enhanced version of
DeepONet [Tan and Chen, 2022], where the operator Γ†

is approximated using two branch networks to encode for
input u0 and u1,

Γ†(u0, u1)(x, t) ≈
p∑
k=1

B0
k

(
u0(x1), . . . , u0(xm); θ0

)
×B1

k

(
u1(x1), . . . , u1(xm); θ1

)
× Tk(x, t; ξ).

(11)

In (11), the operator Γ† is applied at the functions u0 and
u1, and then evaluated at distinct locations x1, . . . , xm for
the branch input.

3 OUR METHOD

We present GeONet, a geodesic operator network for learn-
ing the 2-Wasserstein geodesic {µt}t∈[0,1] connecting µ0

to µ1. Let Ω ⊂ Rd be the spatial domain where the prob-
ability measures are supported. For absolutely continuous
probability measures µ0, µ1 ∈ P2(Ω), it is well-known that
the constant-speed geodesic {µt}t∈[0,1] between µ0 and
µ1 is an absolutely continuous curve in the metric space
(P2(Ω),W2), which we denote as AC(P2(Ω)). Moreover,
the geodesic µt solves the kinetic energy minimization prob-
lem in (4) [Santambrogio, 2015]. Some basic facts on the
metric geometry structure of the Wasserstein geodesic and
its relation to the fluid dynamic formulation are reviewed
and discussed in Appendix C. In this work, our goal is to
learn the non-linear operator

Γ† : P2(Ω)× P2(Ω) → AC(P2(Ω)), (12)
(µ0, µ1) 7→ {µt}t∈[0,1], (13)

based on a training dataset {(µ(1)
0 , µ

(1)
1 ), . . . , (µ

(n)
0 , µ

(n)
1 )}.

The core idea of GeONet is to learn the KKT optimality
condition (7) for the Benamou-Brenier problem. Since (7)
is derived to ensure the zero duality gap between the primal
and dual dynamic OT problems, solving the Wasserstein
geodesic requires us to introduce two sets of neural networks
that train the coupled PDEs simultaneously. Specifically, we
model the operator learning problem as an enhanced version
of the unstacked DeepONet architecture [Lu et al., 2021, Tan
and Chen, 2022] by jointly training three primal networks
in (14) and three dual networks in (15) as follows:

C(µ0, µ1)(x, t;ϕ) =

p∑
k=1

B0,cty
k (µ0; θ

0,cty)

×B1,cty
k (µ1; θ

1,cty)× T cty
k (x, t; ξcty)

(14)
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Collocation

Collocation

Branch 
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Uniform 
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Input GeONet output: Wasserstein geodesic Trunk
networks

Figure 2: Architecture of GeONet. The solution to CE yields the geodesic. GeONet branches and trunks output vectors of
dimension p, in which we perform multiplication among neural network elements to produce the solutions to CE and HJ.

and

H(µ0, µ1)(x, t;ψ) =

p∑
k=1

B0,HJ
k (µ0; θ

0,HJ)

×B1,HJ
k (µ1; θ

1,HJ)× T HJ
k (x, t; ξHJ),

(15)

where Bj,cty(µj(x1), . . . , µj(xm); θj,cty) : Rm → Rp
and Bj,HJ(µj(x1), . . . , µj(xm); θj,HJ) : Rm → Rp are
branch neural networks taking m-discretized input of ini-
tial and terminal density values at j = 0 and j = 1 re-
spectively, and T cty(x, t; ξcty) : Rd × [0, 1] → Rp and
T HJ(x, t; ξHJ) : Rd × [0, 1] → Rp are trunk neural net-
works taking spatial and temporal inputs. Here Θ and
Ξ are finite-dimensional parameter spaces, and p is the
output dimension of the branch and truck networks. De-
note parameter concatenations ϕ := (θ0,cty, θ1,cty, ξcty) and
ψ := (θ0,HJ, θ1,HJ, ξHJ). Then the primal operator network
Cϕ(x, t, µ0, µ1) := C(µ0, µ1)(x, t;ϕ) for ϕ ∈ Θ × Θ × Ξ
acts as an approximate solution to the CE, hence the true
geodesic µt(x) = Γ†(x, t, µ0(x), µ1(x)), while the dual
operator network Hψ(x, t, µ0, µ1) for ψ ∈ Θ×Θ× Ξ cor-
responds to that of the associated HJ equation. The overall
architecture of GeONet is shown in Figure 2.

In our GeONet implementation, we adopt a modified multi-
layer perceptron (MLP) architecture, which has been shown
to have great ability in improving performance for physics-
informed DeepONets [Wang et al., 2021b]. We shall elabo-
rate on this architecture in Appendix F.1 and describe our
empirical findings with this modified MLP for GeONet in
section 4.1.

To train the GeONet defined in (14) and (15), we minimize

the empirical loss function corresponding to the system of
primal-dual PDEs and boundary residuals in (7) over the
parameter space Θ×Θ× Ξ:

ϕ∗, ψ∗ = argminϕ,ψ∈Θ×Θ×Ξ Lcty+LHJ+LBC, (16)

where Lcty is the loss component in which the CE is sat-
isfied in (17) and LHJ is the HJ loss component in (18),

while boundary conditions are incorporated in the LBC term
in (19). Automatic differentiation of our GeONet involves
differentiating the coupled DeepONet architecture (cf. Fig-
ure 2) to compute the physics-informed loss terms.

Our loss function involves weight parameters α1, α2, β0, β1
to impose the physics-informed loss strength. Our coeffi-
cient tuning in the loss function is motivated and follows
the general strategy outlined in [Wang et al., 2021b], where
coefficients are tuned by examining errors and altered in an
iterative procedure in which error is minimized. Boundary
conditions are enforced to a greater extent, as precision with
these affects precision in the physics loss.

We now illustrate our training procedure. The physics
training is done via a collocation procedure, follow-
ing [Raissi et al., 2019]. We randomly sample N pairs
(x, t) uniformly within Ω × [0, 1], where the CE and
HJ expectation terms (17) and (18) in the loss function
are approximated via a discrete empirical average. For
the boundary terms (19), we evaluate x among fixed
locations with Ω, typically a hypercube mesh, since these
are where known boundary data is given, in which the
neural operator is subsequently formulated and evaluated.

Lcty = α1E(µ0,µ1)∼(P2(Ω),P2(Ω))

[
|| ∂
∂t

Cϕ(x, t) + div(Cϕ(x, t)∇Hψ(x, t))||2L2(Ω×(0,1))

]
, (17)

LHJ = α2E(µ0,µ1)∼(P2(Ω),P2(Ω))

[
|| ∂
∂t

Hψ(x, t) +
1

2
||∇Hψ(x, t)||22||2L2(Ω×(0,1))

]
, (18)

LBC = β0E(µ0)∼(P2(Ω))

[
||Cϕ(x, 0)− µ0||2L2(Ω)

]
+ β1E(µ1)∼(P2(Ω))

[
||Cϕ(x, 1)− µ1||2L2(Ω)

]
. (19)
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Algorithm 1 End-to-end training of GeONet

Input: data pairs (µ(1)
0 µ

(1)
1 ), . . . , (µ

(n)
0 , µ

(n)
1 ); batch sizeN ; initialization of the neural network parameters ϕ, ψ ∈ Θ×Θ×Ξ;

weight parameters α1, α2, β0, β1; domain Ω and branch domain (mesh) Ω̃.; denote i ∈ {1, . . . , N}.
1: while Ltotal has not converged do
2: Independently draw N sample points from (xiΩ, t

i) ∈ U(Ω)× U(0, 1), N points from xi
Ω̃
∈ U(Ω̃), and N density

pairs from {(µ(ℓ)
0 , µ

(ℓ)
1 )}nℓ=1, possibly repeating.

3: Compute Rcty,i = ∂tCϕ,i + div(Cϕ,i∇Hψ,i) at (xiΩ, t
i). ▷ continuity residual

4: Compute RHJ,i = ∂tHψ,i +
1
2∥∇Hψ,i∥22 at (xiΩ, t

i). ▷ HJ residual

5: Compute B0,i = Cϕ,0,i − µ
(i)
0 (xi

Ω̃
), B1,i = Cϕ,1,i − µ

(i)
1 (xi

Ω̃
). ▷ boundary residual

6: Compute

Lcty =
α1

N

N∑
i=1

R2
cty,i, LHJ =

α2

N

N∑
i=1

R2
HJ,i,

LBC =
1

N

N∑
i=1

(β0B
2
0,i + β1B

2
1,i),

7: Compute Ltotal(ϕ, ψ) = Lcty + LHJ + LBC.
8: Minimize Ltotal(ϕ, ψ) to update ϕ and ψ. ▷ minimize the loss function
9: end while

Entropic regularization. Our GeONet is compatible with
entropic regularization, which is related to the Schrödinger
bridge problem and stochastic control [Chen et al., 2016]. In
Appendix D, we propose the entropic-regularized GeONet
(ER-GeONet), which learns a similar system of KKT condi-
tions for the optimization as in (7). In the zero-noise limit
as the entropic regularization parameter ε ↓ 0, the solution
of the optimal entropic interpolating flow converges to solu-
tion of the Benamou-Brenier problem (4) in the sense of the
method of vanishing viscosity [Mikami, 2004, Evans, 2010].
On one hand, adding a small entropy term (Laplacian) en-
sures the unique viscosity solution for the regularized HJ
equation is smooth and benefits training. On the other hand,
similarly as in the static OT problem, adding Laplacian ap-
proximates the OT flow (i.e., the Wasserstein geodesic is
not solved exactly).

4 NUMERIC EXPERIMENTS

In this section, we perform simulation studies and a real-
data example to demonstrate GeONet. Our code is pub-
licly available at: https://github.com/agracyk2/
GeONet.

Error metric. We use the L1 error
∫
Ω
|C−µ|dx as our error

metric to assess the performance, where µ := µ(x, t) is a
reference geodesic as proxy of the true geodesic without
entropic regularization. The L1 error integral is estimated by
evaluating a discrete Riemann sum along a mesh and the ref-
erence is computed using the POT Python library [Solomon
et al., 2015, Flamary et al., 2021]. Since

∫
Ω
|µ|dx = 1 for

all time points, the L1 error is relative, thus a meaningful
metric essentially corresponding to the percentage error be-

tween the neural operator geodesic and the reference. We
also consider the L2 and Wasserstein error metric for pre-
dicted Wasserstein geodesics (see Appendix I).

4.1 INPUT AS CONTINUOUS DENSITY:
GAUSSIAN MIXTURE DISTRIBUTIONS

Since finite mixture distributions are powerful universal
approximators for continuous probability density func-
tions [Nguyen et al., 2020], we first deploy GeONet on Gaus-
sian mixture distributions over domains of varying dimen-
sions. We learn the Wasserstein geodesic mapping between
two distributions of the form µj(x) =

∑kj
i=1 πiN (x|ui,Σi)

subject to
∑kj
i=1 πi = 1, where j ∈ {0, 1} corresponds

to initial and terminal distributions µ0, µ1, and kj denotes
the number of components in the mixture. Here ui and Σi
are the mean vectors and covariance matrices of individual
Gaussian components respectively. Due to the space limit,
we defer simulation setups, model training details, and error
metrics to Appendices G, H and I, respectively.

We examine errors in regard to an identity geodesic (i.e.,
µ0 = µ1), a random test pairing, and an out-of-distribution
(OOD) pairing. The mesh-invariant nature of the output
of GeONet allows zero-shot super-resolution for adapting
low-resolution data into high-resolution geodesics, which
includes initial data at t = 0, 1. Traditional OT solvers and
non-operator learning based methods have no ability to do
this, as they are confined to the original mesh. Thus, we
also include a random test pairing on higher resolution than
training data. The result is reported in Table 2.

Univariate Gaussians. We choose spatial domain x ∈
Ω = [0, 10] discretized into a 100-point mesh. We gen-
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Figure 3: Four geodesics predicted by GeONet with reference geodesics computed by POT on test univariate Gaussian
mixture distribution pairs with k0 = k1 = 6. The reference serves as a close approximation to the true geodesic. The vertical
axis is space and the horizontal axis is time.

Figure 4: Geodesics predicted by GeONet on bivariate Gaussians over a square domain. The top of each pair is the reference
solution computed by POT, and the bottom is GeONet.

erate 20, 000 training pairs (µ0, µ1) of Gaussians, taking
kj = 6 for the number of Gaussians in each mixture. We
take means µi ∈ [2, 8] and variances Σi ∈ [0.5, 0.6] uni-
formly. Empirically, we found a large batch size more suit-
able for training than a low one, so we take a batch size
of 2, 000, meaning these many uniform collocation points
are taken for both the PDE residuals and boundary points
for each training iteration. We choose physical loss coef-
ficient α1 = 0.5, α2 = 0.25, with boundary coefficients
β0 = β1 = 1. We found these coefficients a good bal-
ance to enforce the physical constraint without sacrificing
boundary restrictions after iterating these coefficients among
[0.05, 20] and examining the error. Additional training de-
tails are given in Appendix G.

Bivariate Gaussians. In our experiment, domain Ω =
[0, 5] × [0, 5] ⊆ R2 was chosen, which was discretized
into a 24× 24 grid for GeONet input, meaning the branch

networks took vector input of 576 in length for each in a
non-convolutional architecture, but a convolutional architec-
ture is also suitable in higher-dimensional cases as we see in
Figure 9. We generate 5, 000 training pairs (µ0, µ1). Recall
that GeONet is mesh-invariant, so the 24× 24 grids can be
adapted to any higher resolution, which is used in Figure 4.
We use a combination of low and high variance Gaussians
in the mixture, 6 of which had variance in [0.35, 0.4] and 6
in [0.75, 0.9], giving a total of 12 Gaussians in each mixture
in each pair. Covariances were in [−0.1, 0.1]. Additional
training details are given in Appendix G.

Training. To compute the DeepONet derivatives, we take
the inner product in the enhanced DeepOnet as in equa-
tions (14), (15), and subsequently use automatic differenti-
ation after the inner products are taken. Alternatively, we
experimented by computing a Hessian for the second-order
derivatives, but this is costly in terms of memory, meaning
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Figure 5: Beginning from the top left and going clockwise, we display the initial conditions in the encoded space, the
geodesics in the encoded space, and the decoded geodesics as 28× 28 images.

a large batch size cannot be used without a monumental
memory cost, and so this method of differentiation is not
viable.

We found that given sufficient data the GeONet with larger
output dimensions slightly outperforms it with lower dimen-
sions output. In the univariate Gaussian experiment, we take
p = 800, which outperformed p = 200 by reducing train-
ing loss from approximately 2.5× 10−4 to 1.5× 10−4 and
reducing test error by about 1%. In the bivariate experiment,
changing p = 400 to p = 800 reduced training loss from
approximately 2.1× 10−5 to 1.8× 10−5.

Architecture generally made some difference to training
loss, but not significant, making a width of around 100-200
suitable for branches and trunks. For example, increasing
branch width in the univariate experiment from 100 to 150
lowered training loss by approximately 4×10−5. Increasing
branch width to 200 and trunk width to 150 from 150 and
100 respectively had minimal effect, lowering training loss
by about 1×10−5. We found the modified MLP architecture
preferable, lowering final training loss from approximately
3×10−4 with standard architecture for univariate Gaussians.

4.2 INPUT AS POINT CLOUDS: GAUSSIAN
MIXTURE DISTRIBUTIONS

GeONet can be applied to continuous densities made dis-
crete. In scenarios with access to point clouds of data, we
may use GeONet with discrete data made into empirical
distributions. We test GeONet on an example of a Gaussian
setup. We fix an initial and terminal distribution and sam-
ple discrete particles in Ω ⊆ R2, as encompassed in [Liu
et al., 2023]. The sampled particles are represented by em-
pirical densities, in which we compare upon the transition
of densities in the non-particle setting using POT as a base-
line [Flamary et al., 2021]. The result is reported in Table 3
and an estimated geodesic example is shown in Figure 7.
We observe that conditional flow matching (CFM) [Tong
et al., 2023] and rectified flow (RF) [Liu et al., 2023] have
3-4 times comparably larger estimation errors than GeONet,
except for the initial time t = 0, because this initial data
is given and learned directly for RF and CFM. GeONet is
the only framework among the comparison which captures
the geodesic behavior to a considerable degree; however,
we remark GeONet tends to smooth, or regularize, the solu-
tions. Second, RF and CFM have the same fixed resolution
as the input probability distribution pairing, while GeONet
can estimate the density flows on higher resolution than the
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Table 2: L1 error of GeONet on 50 test data of univariate and bivariate Gaussian mixtures. We compute errors on cases
of the identity geodesic, a random pairing in which µ0 ̸= µ1, high-resolution random pairings refined to 200 and 75× 75
resolutions in the 1D and 2D cases respectively, and out-of-distribution examples. We report the means and standard
deviations as a percentage, making all values multiplied by 10−2 by those of the table.

GeONet L1 error for Gaussian mixtures

Experiment t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

1D identity 2.67± 0.750 2.85± 0.912 3.04± 1.02 2.86± 0.898 2.63± 0.696
1D random 4.92± 2.00 5.43± 3.02 5.76± 3.56 5.26± 3.25 4.65± 1.50
1D high-res. 4.76± 1.53 5.49± 3.00 6.01± 3.53 5.59± 2.99 4.77± 1.49
1D OOD 14.1± 4.34 18.8± 5.96 22.2± 7.32 19.2± 6.14 13.8± 4.68

2D identity 6.50± 1.15 7.68± 0.915 7.69± 0.924 7.70± 0.889 6.42± 1.11
2D random 6.59± 1.01 7.10± 0.869 7.13± 0.892 7.04± 0.780 6.33± 0.835
2D high-res. 6.66± 0.766 7.71± 1.26 7.88± 1.21 7.59± 0.979 6.29± 0.723
2D OOD 10.2± 1.18 9.82± 1.12 9.98± 1.23 9.67± 1.03 9.92± 0.944

Figure 6: We compare GeONet to the classical POT library on 1D and 2D Gaussians in terms of mean and standard
deviations of runtime on an unmodified scale as well as one that is log-log using discretization length in one dimension as
the x-axis, taken over 30 pairs. We use 20-time steps for 1D and 5 for 2D. Finer meshes are omitted for 2D for computational
reasonableness.

input pairing (cf. the third row in Figure 7).

4.3 A REAL DATA APPLICATION

Our next experiment was on the MNIST dataset of 28× 28
images of single-digit numbers. It is difficult for GeONet
to capture the geodesics between digits: MNIST resembles
jump-discontinuous data, and is relatively piecewise con-
stant otherwise, which is troublesome for physics-informed
learning. To remedy our problems with MNIST, we use a
pre-trained autoencoder to encode the MNIST digits into a
low-dimensional representation v ∈ R32 with an encoder Φ
and a decoder Φ−1 : v → R28 × R28 mapping the encoded
representation into newly-formed digits resembling that
which was fed into the encoder. The encoded data is made
nonnegative via shifting upwards by a constant (we choose
10), and normalized over the domain to satisfy the density
condition. This prepares the encoded data for GeONet in-
put. We employ GeONet upon the encoded representations,
learning the geodesic between highly irregular encoded data.
The data can be decoded by unnormalizing and shifting

downwards by the arbitrary constant. For normalization con-
stants at t ̸= 0, 1, we use interpolation between the constants
at t = 0, 1.

Table 6 reports the L1 errors for geodesic estimated in the
encoded space and recovered images in the ambient space.
As expected, the ambient-space error is much larger than
the encoded-space error, meaning that the geodesics in the
encoded space and ambient image space do not coincide.
Figure 5 shows the learned geodesics in the encoded space
and decoded images on the geodesics.

4.4 RUNTIME COMPARISON

Our method is highlighted by the fact that it is almost in-
stantaneous: it is highly suitable when many geodesics are
needed quickly, or over fine meshes. Traditional optimal
transport solvers are greatly encumbered when evaluated
over a fine grid, but the mesh-invariant output nature of
GeONet bypasses this. In Figure 6, we illustrate GeONet
versus POT, a traditional OT library. GeONet greatly out-
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Table 3: L1 error between GeONet, the conditional flow matching (CFM) library’s optimal transport solver Tong et al.
[2023], and rectified flow (RF) Liu et al. [2023], using POT again as a baseline for comparison. All values are multiplied by
10−2 to those of the table.

L1 comparison error on 2D Gaussian mixture point clouds

Experiment t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

GeONet 22.9± 1.08 28.8± 1.01 30.0± 1.10 29.6± 0.877 22.6± 1.02
CFM 0.0± 0.0 94.1± 3.68 98.9± 2.41 91.8± 4.15 75.9± 3.77
RF 0.0± 0.0 103± 2.48 112± 3.61 112± 5.03 91.3± 3.79

Figure 7: We compare to GeONet to the alternative method-
ology in a discrete setting, using POT as ground truth.
GeONet is the only method among the comparison which
captures the geodesic behavior among the translocation of
points.

performs POT for fine grids in terms of runtime, especially
if POT is used to compute an accurate solution. Even when
POT is used with equivalent accuracy, GeONet still outper-
forms, most illustrated in the log-log plot. The log-log plot
also demonstrates that our method speeds computation up
to orders of magnitude. We restrict the accuracy of POT by
employing a stopping threshold of 0.5 for 1D and 10.0 for
2D. We found these choices were comparable to GeONet,
remarking a threshold of 10.0 in the 2D case is sufficiently
large so that even larger thresholds have limited effect on
error.

4.5 OUT-OF-DISTRIBUTION GENERALIZATION

We discuss GeONet on out-of-distribution data in the test
setting upon Gaussian mixture data. Our error results are
provided in Table 2. For univariate Gaussians, we choose

means in [1, 9], which was expanded from the domain [2, 8]
in training. This increased relative error by about 10%. Vari-
ances were in [0.3, 0.4]. A 100-point mesh is used for evalu-
ations with POT regularization parameter ϵ = 6×10−4. For
2D Gaussians, we test on 16 mixture components (training
has 12). Means were in [0.6, 4.4] × [0.6, 4.4], which was
expanded from [0.8, 4.2]× [0.8, 4.2] in training. There were
8 components in the mixture with variance in [0.25, 0.3] and
the other 8 in [0.65, 0.8], which have lower variances than
those in training. Covariances are within [−0.15, 0.15] for
off-diagonal components in each covariance matrix. Evalu-
ations were over a 24× 24 mesh, the same used as neural
operator input.

4.6 LIMITATIONS

There are several limitations we would like to discuss. First,
GeONet’s branch network input exponentially increases in
spatial dimension, necessitating extensive input data even
in moderately high-dimensional scenarios. One strategy to
mitigate this is through leveraging low-dimensional data
representations as in the MNIST experiment. GeONet is
near instantaneous for any dimension, but its dimension-
based restrictions to perform are mostly hindered by the
ability to handle neural network input in the branches. Sec-
ond, GeONet mandates predetermined evaluation points for
branch input, a requisite grounded in the pairing of initial
conditions. It is of interest to extend GeONet to include train-
ing input data pairs on different resolutions. Third, given
the regularity of the OT problem [Hütter and Rigollet, 2021,
Caffarelli, 1996], developing a generalization error bound
for assessing the predictive risk of GeONet is an important
future work. Finally, the dynamical OT problem is closely
connected to the mean-field planning with an extra interac-
tion term [Fu et al., 2023]. Extending the current operator
learning perspective to such problems would be interesting.
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GeONet: a neural operator for learning the Wasserstein geodesic
(Supplementary Material)

Andrew Gracyk1 Xiaohui Chen2
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2Department of Mathematics, University of Southern California

A TRAINING ALGORITHM

B DERIVATION OF PRIMAL-DUAL OPTIMALITY CONDITIONS FOR DYNAMICAL OT
PROBLEM

The primal-dual analysis is a standard technique in the optimization literature such as in analyzing certain semidefinite
programs [Chen and Yang, 2021]. Recall the Benamou-Brenier fluid dynamics formulation of the static optimal transport
problem

min
(µ,v)

∫ 1

0

∫
Rd

1

2
||v(x, t)||22 µ(x, t) dx dt (20)

subject to ∂tµ+ div(µv) = 0, (21)
µ(·, 0) = µ0, µ(·, 1) = µ1. (22)

Here, equation (21) is referred to as the CE (CE), preserving the unit mass of the density flow µt = µ(·, t). We write the
Lagrangian function for any flow (µt)t∈[0,1] initializing from µ0 and terminating at µ1 as

L(µ,v, u) =

∫ 1

0

∫
Rd

[
1

2
∥v∥22µ+ (∂tµ+ div(µv))u

]
dx dt, (23)

where u := u(x, t) is the dual variable for (CE). To find the optimal solution µ∗ for the minimum kinetic energy (20), we
study the saddle point optimization problem

min
(µ,v)∈(CE)

max
u

L(µ,v, u), (24)

where the minimization over (µ,v) runs over all flows satisfying (CE) such that µ(·, 0) = µ0 and µ(·, 1) = µ1. Note that if
µ /∈ (CE), then by scaling with arbitrarily large constant, we see that

max
u

∫ 1

0

∫
Rd

(∂tµ+ div(µv))u dx dt = +∞. (25)

Thus,

min
(µ,v)∈(CE)

∫ 1

0

∫
Rd

1

2
||v||22µ dx dt = min

(µ,v)
max
u

L(µ,v, u) (26)

⩾max
u

min
(µ,v)

L(µ,v, u), (27)
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where the minimization over (µ,v) is unconstrained. Using integration-by-parts and suitable decay for vanishing boundary
as ∥x∥2 → ∞, we have

L(µ,v, u) =

∫ 1

0

∫
Rd

[
1

2
∥v∥22µ− µ∂tu− ⟨v,∇u⟩µ

]
dx dt

+

∫
Rd

[µ(·, 1)u(·, 1)− µ(·, 0)u(·, 0)] dx.

Now, we fix µ and u, and minimize L(µ,v, u) over v. The optimal velocity vector is v∗ = ∇u, and we have

max
u

min
µ
L(µ,v∗, u) =

∫ 1

0

∫
Rd

[
−
(
1

2
∥∇u∥22 + ∂tu

)
µ

]
dx dt+

∫
Rd

[u(·, 1)µ1 − u(·, 0)µ0] dx, (28)

for any flow µt satisfying the boundary conditions µ(·, 0) = µ0 and µ(·, 1) = µ1. If 1
2∥∇u∥

2
2 + ∂tu ̸= 0, then by the same

scaling argument above, we have

min
µ

∫ 1

0

∫
Rd

[
−
(
1

2
∥∇u∥22 + ∂tu

)
µ

]
dx dt = −∞ (29)

because µ is unconstrained (except for the boundary conditions). Then we deduce that

min
(µ,v)∈(CE)

∫ 1

0

∫
Rd

1

2
||v||22µ ⩾ max

u∈(HJ)

{∫
Rd

u(·, 1)µ1 −
∫
Rd

u(·, 0)µ0

}
, (30)

where u ∈ (HJ) means that u solves the HJ equation (HJ)

∂tu+
1

2
∥∇u∥22 = 0. (31)

From (30), we see that the duality gap is non-negative, and it is equal to zero if and only if (µ∗, u∗) solves the following
system of PDEs ∂tµ+ div(µ∇u) = 0, ∂tu+

1

2
∥∇u∥22 = 0,

µ(·, 0) = µ0, µ(·, 1) = µ1.
(32)

PDEs in (32) are referred to as the Karush–Kuhn–Tucker (KKT) conditions for the Wasserstein geodesic problem.

C METRIC GEOMETRY STRUCTURE OF THE WASSERSTEIN SPACE AND GEODESIC

In this section, we review some basic facts on the metric geometry properties of the Wasserstein space and geodesic. We
first discuss the general metric space (X, d), and then specialize to the Wasserstein (metric) space (Pp(Rd),Wp) for p ⩾ 1.
Furthermore, we connect to the fluid dynamic formulation of optimal transport. Most of the materials are based on the
reference books [Burage et al., 2001, Ambrosio et al., 2008, Santambrogio, 2015].

C.1 GENERAL METRIC SPACE

Definition C.1 (Absolutely continuous curve). Let (X, d) be a metric space. A curve ω : [0, 1] → X is absolutely continuous
if there is a function g ∈ L1([0, 1]) such that for all t0 < t1, we have

d(ω(t0), ω(t1)) ⩽
∫ t1

t0

g(τ) dτ. (33)

Such curves are denoted by AC(X).

Definition C.2 (Metric derivative). If ω : [0, 1] → X is a curve in a metric space (X, d), the metric derivative of ω at time t
is defined as

|ω′|(t) := lim
h→0

d(ω(t+ h), ω(t))

|h|
, (34)

if the limit exists.
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The following theorem generalizes the classical Rademacher theorem from a Euclidean space into any metric space in terms
of the metric derivative.
Theorem C.3 (Rademacher). If ω : [0, 1] → X is Lipschitz continuous, then the metric derivative |ω′|(t) exists for almost
every t ∈ [0, 1]. In addition, for any 0 ⩽ t < s ⩽ 1, we have

d(ω(t), ω(s)) ⩽
∫ s

t

|ω′|(τ) dτ. (35)

Theorem C.3 tells us that absolutely continuous curve ω has a metric derivative well-defined almost everywhere, and the
“length" of the curve ω is bounded by the integral of the metric derivative. Thus, a natural definition of the length of a curve
in a general metric space is to take the best approximation over all possible meshes.
Definition C.4 (Curve length). For a curve ω : [0, 1] → X , we define its length as

Length(ω) := sup

{
n−1∑
k=0

d(ω(tk), ω(tk+1)) : n ⩾ 1, 0 = t0 < t1 < . . . < tn = 1

}
. (36)

Note that if ω ∈ AC(X), then

d(ω(tk), ω(tk+1)) ⩽
∫ tk+1

tk

g(τ) dτ (37)

so that

Length(ω) ⩽
∫ 1

0

g(τ) dτ <∞, (38)

i.e., the curve ω is of bounded variation.
Lemma C.5. If ω ∈ AC(X), then

Length(ω) =
∫ 1

0

|ω′|(τ) dτ. (39)

Definition C.6 (Length space and geodesic space). Let ω : [0, 1] → X be a curve in (X, d).

1. The space (X, d) is a length space if

d(x, y) = inf {Length(ω) : ω(0) = x, ω(1) = y, ω ∈ AC(X)} . (40)

2. The space (X, d) is a geodesic space if

d(x, y) = min {Length(ω) : ω(0) = x, ω(1) = y, ω ∈ AC(X)} . (41)
Definition C.7 (Geodesic). Let (X, d) be a length space.

1. A curve ω : [0, 1] → X is said to be a constant-speed geodesic between ω(0) and ω(1) if

d(ω(t), ω(s)) = |t− s| · d(ω(0), ω(1)), (42)

for any t, s ∈ [0, 1].

2. If (X, d) is further a geodesic space, a curve ω : [0, 1] → X is said to be a geodesic between x0 ∈ X and x1 ∈ X if it
minimizes the length among all possible curves such that ω(0) = x0 and ω(1) = x1.

Note that in a geodesic space (X, d), a constant-speed geodesic is indeed a geodesic. In addition, we have the following
equivalent characterization of the geodesic in a geodesic space.
Lemma C.8. Let (X, d) be a geodesic space, p > 1, and ω : [0, 1] → X a curve connecting x0 and x1. Then the following
statements are equivalent.

1. ω is a constant-speed geodesic.

2. ω ∈ AC(X) such that for almost every t ∈ [0, 1], we have

|ω′|(t) = d(ω(0), ω(1)). (43)

3. ω solves

min

{∫ 1

0

|ω̃′|p dt : ω̃(0) = x0, ω̃(1) = x1

}
. (44)
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C.2 WASSERSTEIN SPACE

Since the Wasserstein space (Pp(Rd),Wp) for p ⩾ 1 is a metric space, the following definition specializes Definition C.2 to
the Wasserstein metric derivative.

Definition C.9 (Wasserstein metric derivative). Let {µt}t∈[0,1] be an absolutely continuous curve in the Wasserstein (metric)
space (Pp(Rd),Wp). Then the metric derivative at time t of the curve t 7→ µt with respect to Wp is defined as

|µ′|p(t) := lim
h→0

Wp(µt+h, µt)

|h|
. (45)

For p = 2, we write |µ′|(t) := |µ′|2(t).

In the rest of this section, we consider probability measures µt that are absolutely continuous with respect to the Lebesgue
measure on Rd and we use µt to denote the probability measure, as well as its density, when the context is clear.

Theorem C.10. Let p > 1 and assume Ω ∈ Rd is compact.

Part 1. If {µt}t∈[0,1] is an absolutely continuous curve in Wp(Ω), then for almost every t ∈ [0, 1], there is a velocity vector
field vt ∈ Lp(µt) such that

1. µt is a weak solution of the CE ∂tµt + div(µtvt) = 0 in the sense of distributions (cf. the definition in (51) below);

2. for almost every t ∈ [0, 1], we have
∥vt∥Lp(µt) ⩽ |µ′|p(t), (46)

where ∥vt∥pLp(µt)
=

∫
Ω
∥vt∥p2 dµt.

Part 2. Conversely, if {µt}t∈[0,1] are probability measures in Pp(Ω), and for each t ∈ [0, 1] we suppose vt ∈ Lp(µt) and∫ 1

0
∥vt∥Lp(µ) dt <∞ such that (µt,vt) solves the CE, then we have

1. {µt}t∈[0,1] is an absolutely continuous curve in (Pp(Rd),Wp);

2. for almost every t ∈ [0, 1],
|µ′|p(t) ⩽ ∥vt∥Lp(µt). (47)

As an immediate corollary, we have the following dynamical representation of the Wasserstein metric derivative.

Corollary C.11. If {µt}t∈[0,1] is an absolutely continuous curve in (Pp(Rd),Wp), then the velocity vector field vt given in
Part 1 of Theorem C.10 must satisfy

∥vt∥Lp(µt) = |µ′|p(t). (48)

Corollary C.11 suggests that vt can be viewed as the tangent vector field of the curve {µt}t∈[0,1] at time point t. Moreover,
Corollary C.11 suggests the following (Euclidean) gradient flow for tracking particles in Rd: let y(t) := yx(t) be the
trajectory starting from x ∈ Rd (i.e., y(0) = x) that evolves according the ordinary differential equation (ODE)

d

dt
y(t) = vt(y(t)). (49)

The dynamical system (49) defines a flow Yt : Ω → Ω of vector field vt on Ω via

Yt(x) = y(t). (50)

Then, it is straightforward to check that the pushforward measure flow µt := (Yt)♯µ0 and the chosen velocity vector field vt
in the ODE (49) is a weak solution of the CE ∂tµt + div(µtvt) = 0 in the sense that

d

dt

∫
Ω

ϕ dt =

∫
Ω

⟨∇ϕ,vt⟩dµt, (51)

for any C1 function ϕ : Ω → R with compact support.
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Theorem C.12 (Constant-speed Wasserstein geodesic). Let Ω ∈ Rd be a convex subset and µ, ν ∈ Pp(Ω) for some p > 1.
Let γ be an optimal transport plan under the cost function ∥x− y∥pp. Define

πt : Ω× Ω → Ω,

πt(x, y) = (1− t)x+ ty,

as the linear interpolation between x and y in Ω. Then, the curve µt = (πt)♯γ is a constant-speed geodesic in (Pp(Rd),Wp)
connecting µ0 = µ and µ1 = ν.

If µ has a density with respect to the Lebesgue measure on Rd, then there is an optimal transport map T from µ to ν [Brenier,
1991]. According to Theorem C.12, we obtain McCann’s interpolation [McCann, 1997] in the Wasserstein space as

µt = [(1− t)id + tT ]♯µ, (52)

which is a constant-speed geodesic in (Pp(Rd),Wp). id is the identity function in Rd.

To sum up, we collect the following facts about the geodesic structure and dynamical formulation of the OT problem. Let
p > 1, and Ω ⊂ Rd be a convex subset (either compact or have no mass escaping at infinity).

1. The metric space (Pp(Ω),Wp) is a geodesic space.

2. For µ, ν ∈ Pp(Ω), a constant-speed geodesic {µt}t∈[0,1] in (Pp(Ω),Wp) between µ and ν (i.e., µ0 = µ and µ1 = ν)
must satisfy µt ∈ AC(Pp(Ω)) and

|µ′|(t) =Wp(µ(0), µ(1)) =Wp(µ, ν) (53)

for almost every t ∈ [0, 1].

3. The above µt solves

min

{∫ 1

0

|µ̃′|p(t) dt : µ̃(0) = µ, µ̃(1) = ν, µ̃ ∈ AC(Pp(Ω))
}
. (54)

4. The above µt solves the Benamou-Brenier problem

W p
p (µ, ν) = min

{∫ 1

0

∥vt∥pLp(µ̃t)
dt : µ̃(0) = µ, µ̃(1) = ν, ∂tµ̃t + div(µ̃tvt) = 0

}
, (55)

and µt = µ(·, t) defines a constant-speed geodesic in (Pp(Ω),Wp).

D ENTROPIC REGULARIZATION

Our GeONet is compatible with entropic regularization, which is closely related to the Schrödinger bridge problem and
stochastic control [Chen et al., 2016]. Specifically, the entropic-regularized GeONet (ER-GeONet) solves the following fluid
dynamic problem:

min
(µ,v)

∫ 1

0

∫
Rd

1

2
||v(x, t)||22 µ(x, t) dx dt

subject to ∂tµ+ div(µv) + ε∆µ = 0, µ(·, 0) = µ0, µ(·, 1) = µ1.

(56)

Applying the same variational analysis as in the unregularized case ε = 0 (cf. Appendix B), we obtain the KKT conditions
for the optimization (56) as the solution to the following system of PDEs:

∂tµ+ div(µ∇u) =− ε∆µ, (57)

∂tu+
1

2
∥∇u∥22 = ε∆u, (58)

with the boundary conditions µ(·, 0) = µ0, µ(·, 1) = µ1 for ε > 0. Note that (58) is a parabolic PDE, which has a unique
smooth solution uε. The term ε∆u effectively regularizes the (dual) HJ equation in (7). In the zero-noise limit as ε ↓ 0, the
solution of the optimal entropic interpolating flow (56) converges to solution of the Benamou-Brenier problem (4) in the
sense of the method of vanishing viscosity [Mikami, 2004, Evans, 2010].
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E GRADIENT ENHANCEMENT

In practice, we may fortify the base method by adding extra residual terms of the differentiated PDEs to our loss function of
GeONet. Such gradient enhancement technique has been used to strengthen PINNs [Yu et al., 2022], which improves the
efficiency as fewer data points are needed to be sampled from U(Ω)× U(0, 1), and prediction accuracy as well.

The motivation behind gradient enhancement stems from minimizing the residual of a differentiated PDE. We turn our
attention to PDEs of the formF

(
x, t, ∂x1

u, . . . , ∂xd
u, ∂x1x1

u, . . . , ∂xdxd
u, . . . , ∂tu, λ

)
= 0 on Ω× [0, 1],

u(·, 0) = u0, u(·, 1) = u1 on Ω,
(59)

for domain Ω ⊆ Rd, parameter vector λ, and boundary conditions u0, u1. One may differentiate the PDE function F with
respect to any spatial component to achieve

∂

∂xℓ
F
(
x, t, ∂x1u, . . . , ∂xd

u, ∂x1x1u, . . . , ∂xdxd
u, . . . , ∂tu, λ

)
= 0. (60)

The differentiated PDE is additionally equal to 0, similar to what we see in a PINN setup. If we substitute a neural network
into the differentiated PDE of (60), what remains is a new residual, just as we saw with the neural network substituted into
the original PDE. Minimizing this new residual in the related loss function characterizes the gradient enhancement method.

We utilize the same loss function in (16), but we add the additional terms

LGE,cty =

d∑
ℓ=1

γℓE[||
∂

∂xℓ
(
∂

∂t
Cϕ + div(Cϕ∇Hψ)) ||2L2(Ω×(0,1))], (61)

LGE, HJ =

d∑
ℓ=1

ωℓE[||
∂

∂xℓ
(
∂

∂t
Hψ +

1

2
||∇Hψ||22) ||2L2(Ω×(0,1))], (62)

where the variables and neural networks that also appeared in (16) are the same. Here γℓ and ωℓ are positive weights. The
summation is taken in order to account for the gradient enhancement of each spatial component of x ∈ Ω.

F SPECIALIZED ARCHITECTURES

F.1 MODIFIED MULTI-LAYER PERCEPTRON

Here we outline the forward pass of the modified multi-layer perceptron used throughout the experiments as presented in
Wang et al. [2021b] Let σ denote an activation function (at least twice differentiable to allow automatic differentiation of the
networks to satisfy the PDEs), X as neural network design input, W i the weights of the neural network at index i, and bi the
bias at layer i. Here, X can refer to either branch or trunk inputs, as this architecture is used for both.

The forward pass is given by

U = σ(W 1X + b1), V = σ(W 2X + b2) (63)

H1 = σ(Wh,1X + bh,1) (64)

Zk = σ(W z,kHk + bz,k) (65)

Hk = (1− Zk−1)⊙ U + Zk−1 ⊙ U (66)

Nθ =W ℓHℓ + bℓ, (67)

where k ∈ {1, . . . , ℓ}, ⊙ is an element-wise product, and Nθ is the neural network final output, either a branch or a trunk.

F.2 FOURIER FEATURE ARCHITECTURE

We outline the Fourier feature architecture of Wang et al. [2021b]. We embed trunk input y = (x, t) in a higher-dimensional
space by taking transformations of the form

U = (cos(2πBxy), sin(2πBxy))
T (68)
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and passing them into trunk input. Alternatively, we consider the more elaborated architecture of Wang et al. [2021a],
which requires passing in x, t into distinct Fourier embeddings of the form of U , and using separate layers for each. An
element-wise product is taken before the last layer. We used this for our experiments of 4.2, but generally found the Fourier
feature architecture of passing in y = (x, t) to formulate U as effective as well.
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G HYPERPARAMETER SETTINGS AND TRAINING DETAILS

We discuss training characteristics of GeONet based on the primary experiments. An unmodified Adam optimizer was
chosen for all branch, trunk neural networks with a learning rate starting from 5e−4. All layers share the same width. We
use tanh activation for all neural networks. Coefficients α1, α2, β0, β1 were computed after examining errors. Coefficients
were selected in the range [0.05, 20]. Neural network depths refer to ℓ in each modified MLP. Training is done on a NVIDIA
T4 GPU.

Table 4: Architecture and training details in our Gaussian mixture experiments of Section 4 and Appendix H.

Hyperparameter 1D Gaussians 2D Gaussians

No. of initial conditions (µ0, µ1) 20,000 5,000
m (branch input dimension) 100 576
Branch width 150 200
Branch depth 7 7
Trunk width 100 150
Trunk depth 7 7
p (dimension of outputs) 800 800
Batch size 2,000 2,000
Final training time ∼ 2 hrs ∼ 2 hrs
Final training loss ∼ 1.5e−4 ∼ 1.8e−5
α1, α2, β0, β1 0.5, 0.25, 1, 1 0.5, 0.25, 1, 1

Table 5: Architecture and training details in our empirical Gaussians and encoded MNIST experiments of Section 4 and
Appendix H.

Hyperparameter Empirical Gaussians Encoded MNIST

No. of initial conditions (µ0, µ1) 1,000 30,000
m (branch input dimension) 625 32
Branch width 100 150
Branch depth 7 7
Trunk width 100 100
Trunk depth 5 7
p (dimension of outputs) 200 200
Batch size 1,000 1,000
Final training time ∼ 2 hrs ∼ 4 hrs
Final training loss ∼ 7.0e−4 ∼ 2.0e−2
α1, α2, β0, β1 0.5, 0.25, 1, 1 1, 1, 1, 1
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H TRAINING AND PERFORMANCE

H.1 UNIVARIATE AND BIVARIATE GAUSSIAN MIXTURE EXPERIMENTS

Performance. Our baseline results were collected by deploying GeONet on the identity geodesic in Table 2. The baseline
identity geodesic provides a benchmark for comparing and interpreting the errors across different setups. The univariate
cases were evaluated upon a 100 point mesh, and the bivariate upon a 40× 40 mesh, except in the zero-shot super-resolution
case, in which the grid is refined and previously specified. From Table 2, we can draw the following observations. The loss
boundary conditions (19) allow greater precision for t = 0, 1, which suggests that a lack of data-enforced conditions along
the inner region of the time continuum would cause greater error. Errors for predicting the univariate Gaussian trivial identity
geodesic in the intermediate t = 0.25, 0.5, 0.75 are uniformly smaller than other in-distribution setups since the former
is an easier task. In the bivariate experiment, we found that error quickly rises as variance decreases, which is equivalent
to a task of learning more complicated geodesics. We did not find lower variance drastically affects performance in the
univariate experiment, suggesting GeONet and potentially physics-informed DeepONets in general are less effective as the
dimension increases. We did not find the number of Gaussians in the mixtures drastically affected results, but naturally more
complicated geodesics induce greater error, which is to be expected. We found bivariate errors are similar to the random case
as in the identity case, suggesting there is some notion of base neural operator error, which may not exist with simpler data.

H.2 GAUSSIAN EMPIRICAL DENSITIES

Training. 3000 point cloud particles were sampled from mixtures composed of 3 Gaussians for source µ0 and target µ1.
2D histograms were constructed to turn particle data into empirical densities, with bins ranging from −7 to 7. Domain
Ω = [0, 5]× [0, 5] was discretized into a 25× 25 point domain and assigned for the histograms’ locations used as GeONet
spatial input. A batch size of 1,000 was chosen. We take p = 200, α1 = 0.5, α2 = 0.25, β0 = β1 = 1, which can be altered
to impose strength of the boundary and physics terms accordingly. We employ the Fourier feature network architecture
of Wang et al. [2021a] for trunk networks. We take matrix Bv with elements sampled in N (0, σ2

v), subsequently taking
(cos(2πBvv), sin(2πBvv))

T as input for a fully-connected network, where v is either space or time input. Our architecture
for this experiment is fully outlined in F.2. Empirically, we found low variance necessary, and we chose σ = 0.5 for both
v = x, t for both continuity and trunk branches.

Performance. In this experiment, GeONet correctly captures the translocation of mass and overall geodesic behavior. The
other methods are more suited for point clouds but yield high errors in learning the geodesic. GeONet tends to slightly
regularize the solution by smoothing them, in which GeONet has trouble learning precision that comes with particle samples.

H.3 MNIST EXPERIMENT

Training. As described in section 4, to learn the geodesic, we ensure all values within the encoded representation are
nonnegative, meaning we can shift all encoded representations by some arbitrary constant. We choose 10 for this. This
constant can be deducted in later stages to ensure the valid representation is met. We normalize the data so that the density
conditions are satisfied before GeONet input. A domain of [0, 5] was divided into an equispaced mesh of 32 points for the
encoded representation. This domain is rather arbitrary and is chosen simply for DeepONet input purposes, which can be
modified as seen fit. 30, 000 encoded pairs were chosen to train GeONet and the pre-trained autoencoder, the entirety of
MNIST. We used a batch size of 1, 000. Additional details are found in Appendix G.

Table 6: L1 error of GeONet on 50 test pairings of encoded MNIST. All values are multiplied by 10−2. Error was calculated
upon the geodesic in both the shifted and ambient/original space.

GeONet L1 error on encoded MNIST data

Test setting t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Encoded, identity 0.923± 0.213 0.830± 0.166 0.825± 0.165 0.834± 0.173 0.931± 0.215
Encoded, random 1.62± 0.333 2.14± 1.22 2.78± 1.62 2.11± 1.17 1.54± 0.282

Ambient, identity 26.7± 11.2 34.0± 6.88 35.3± 8.32 36.4± 9.77 34.0± 13.2
Ambient, random 32.1± 16.6 58.2± 15.0 68.1± 18.8 56.4± 14.3 24.7± 10.7
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Figure 8: We examine iterations of the Adam optimizer in the total and late training on a log scale. We examine late training
in order to observe oscillatory behavior between the continuity and HJ loss to see if they adversarially compete in late
training. We do not observe this pattern, and the continuity loss greatly surpasses the HJ loss in value. These graphs were
created using the encoded MNIST experiment.

Performance. GeONet performs well in this experiment. Scaling the physics-informed term by a constant of less than one
did not prove necessary in this experiment to ensure all loss terms are met to a sufficient degree. As before, boundary terms
are uniformly smaller, likely since these terms are known and included in the loss function to be minimized. The same
error metric is used as in the synthetic experiments but with normalization, making the L1 error relative. We remark OOD
generalization is omitted because the distribution of the encoded data is not known. We also remark the decoded images,
being the geodesic returned to its original state, do not directly translate to a geodesic performed upon an original pair of
images. NaN values are omitted in the error computations, which are possible in the POT solutions due to the irregularity of
the initial conditions.

Regularization. Classical geodesic algorithms require a small regularization parameter in order to be computed. This affects
the synthetic experiments trivially, but we found this regularization induces greater in the MNIST experiment. This is to
be considered when evaluating the errors, and true error is likely smaller between GeONet and the reference geodesics
computed with POT than what is displayed. This regularization acts as a form of "smoothing" of the solutions.

I GEONET ERROR FOR ADDITIONAL ERROR METRICS

Table 7: We list mean and standard deviations of error of GeONet on 50 random µ0 ̸= µ1 samples for alternative error
metrics, being L2 error and the Wasserstein-1 distance. We remark we use sliced Wasserstein distance for the 2D case, as
this metric is computationally feasible for higher dimensional cases. We perform this for random Gaussian mixture pairings.
All values are multiplied by 10−2 by those of the table.

GeONet alternative metric error for random Gaussian mixtures

Experiment t = 0 t = 0.25 t = 0.5

1D, L2 5.19± 1.74 6.91± 4.81 7.28± 5.39
1D, Wasserstein 0.352± 0.116 0.364± 0.178 0.403± 0.228

2D, L2 6.93± 0.883 7.72± 1.23 8.11± 1.30
2D, Wasserstein 0.245± 0.0329 0.264± 0.0316 0.275± 0.0447

Experiment t = 0.75 t = 1

1D, L2 6.49± 4.36 4.81± 1.58
1D, Wasserstein 0.386± 0.166 0.347± 0.101

2D, L2 7.79± 1.14 6.87± 1.05
2D, Wasserstein 0.267± 0.0338 0.246± 0.0356
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J 3D GAUSSIANS FIGURE

Figure 9: We illustrate GeONet on 3D Gaussians.
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K SAMPLE HJ GRAPHS

Figure 10: We present sample HJ equations for (a) three univariate Gaussian mixtures and (b) three bivariate Gaussian
mixtures from the primary experiments performed in Section 4. The univariate HJ samples at certain times are the vertical
cross-sections of the graphs, and the bivariate samples are given at certain times.

1478


	Introduction
	Background
	Optimal transport problem: static and dynamic formulations
	Learning neural operators
	Deep operator networks

	Our method
	Numeric experiments
	Input as continuous density: Gaussian mixture distributions
	Input as point clouds: Gaussian mixture distributions
	A real data application
	Runtime comparison
	Out-of-distribution generalization
	Limitations

	Training algorithm
	Derivation of primal-dual optimality conditions for dynamical OT problem
	Metric geometry structure of the Wasserstein space and geodesic
	General metric space
	Wasserstein space

	Entropic regularization
	Gradient enhancement
	Specialized architectures
	Modified multi-layer perceptron
	Fourier feature architecture

	Hyperparameter settings and training details
	Training and performance
	Univariate and bivariate Gaussian mixture experiments
	Gaussian empirical densities
	MNIST experiment

	GeONet error for additional error metrics
	3D Gaussians figure
	Sample HJ graphs

