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Abstract

Normalizing flow-based generative models have
been widely used in applications where the ex-
act density estimation is of major importance. Re-
cent research proposes numerous methods to im-
prove their expressivity. However, conditioning
on a context is largely overlooked area in the bi-
jective flow research. Conventional conditioning
with the vector concatenation is limited to only a
few flow types. More importantly, this approach
cannot support a practical setup where a set of
context-conditioned (specialist) models are trained
with the fixed pretrained general-knowledge (gen-
eralist) model. We propose ContextFlow++ ap-
proach to overcome these limitations using an addi-
tive conditioning with explicit generalist-specialist
knowledge decoupling. Furthermore, we support
discrete contexts by the proposed mixed-variable
architecture with context encoders. Particularly,
our context encoder for discrete variables is a sur-
jective flow from which the context-conditioned
continuous variables are sampled. Our experi-
ments on rotated MNIST-R, corrupted CIFAR-
10C, real-world ATM predictive maintenance and
SMAP unsupervised anomaly detection bench-
marks show that the proposed ContextFlow++ of-
fers faster stable training and achieves higher per-
formance metrics. Our code is publicly available
at github.com/gudovskiy/contextflow.

1 INTRODUCTION

Recently, probabilistic generative models [Kingma et al.,
2014] have gained attention as a solution for challenges in
many fields e.g., molecular discovery [Bilodeau et al., 2022]
and high-resolution image synthesis [Rombach et al., 2022].
An important class of such models are the bijective normaliz-

Figure 1: Normalizing flows implement a layered bijective
transformations fθl

between a target data p(v) distribution
and a base p(u) distribution using learned parameters θl.
A trained model fθ usually predicts an outcome pθ(y|v)
(right) or samples data using the learned pθ(v|u) (left).
When additional conditioning is needed to model p(v, c),
the conventional approach with concatenated vectors [vl, c]
is limited in the type of supported bijections and lacks the
support of generalist-specialist training setup.

ing flows. Unlike variational autoencoders (VAEs) [Kingma
and Welling, 2013] and diffusion models [Sohl-Dickstein
et al., 2015], normalizing flows can estimate data likelihoods
exactly. Therefore, flows are widely-used in semi-supervised
prediction [Izmailov et al., 2020], time series forecasting
[Rasul et al., 2021], unsupervised anomaly detection in
computer vision [Gudovskiy et al., 2022], molecular graph
generation [Kuznetsov and Polykovskiy, 2021] etc.

Current research on normalizing flows mostly aims to im-
prove their likelihood estimation and sampling in various
data domains [Kobyzev et al., 2020]. However, the con-
ditioning in these models is a largely overlooked area. In
particular, the conditioning is typically limited to concate-
nation of input data and context vectors [Lu and Huang,
2020]. At the same time, recent works on diffusion mod-
els show benefits of a more sophisticated ControlNet-
style context-conditioning [Zhang et al., 2023] with the
generalist-specialist setup.
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Table 1: Previous (top) and the proposed (bottom) conditional bijections. A conditioning network (CN) processes contexts c.
Previous methods either concatenate CN outputs with the internal RealNVP vectors for neural network (NN) processing or
use only CN outputs in bijections. ContextFlow decouples CN and NN outputs using the additive operation while preserving
bijection property. Symbols indicate: ⊙ for element-wise multiplication and ⊘ for the division, ✓ for "yes" and ✗ for "no".

Conditional
Transformation

Inverse
f−1 : v, c → u

Forward
f : u, c → v Bijective Generalist

-specialist

RealNVP coupling
[Winkler et al., 2019],

[Ardizzone et al., 2019]

[va,vb] = SPLIT(v)

[s, t] = NN([vb, CN(c)])

u = [s⊙ va + t,vb]

[ua,ub] = SPLIT(u)

[s, t] = NN([ub, CN(c)])

v = [(ua − t)⊘ s,ub]

✓ ✗

Actnorm
[Lu and Huang, 2020]

[s, t] = SPLIT(CN(c))

∀i, j : ui,j = s⊙ vi,j + t

[s, t] = SPLIT(CN(c))

∀i, j : vi,j = (ui,j − t)⊘ s
✓ ✗

Conv−1
1×1

[Lu and Huang, 2020]
Wc = CN(c)

∀i, j : ui,j = Wcvi,j

Wc = CN(c)

∀i, j : vi,j = W−1
c ui,j

✓ ✗

RealNVP coupling
(ours)

[va,vb] = SPLIT(v)

[s, t] = NN(vb) + CN(c)

u = [s⊙ va + t,vb]

[ua,ub] = SPLIT(u)

[s, t] = NN(ub) + CN(c)

v = [(ua − t)⊘ s,ub]

✓ ✓

Actnorm
(ours)

[s, t] = SPLIT([s, t]v + CN(c))

∀i, j : ui,j = s⊙ vi,j + t

[s, t] = SPLIT([s, t]v + CN(c))

∀i, j : vi,j = (ui,j − t)⊘ s
✓ ✓

Conv−1
1×1

(ours)
Wg,c = Wg +WCN(c)

∀i, j : ui,j = Wg,cvi,j

Wg,c = Wg +WCN(c)

∀i, j : vi,j = W−1
g,c ui,j

✓ ✓

Let’s consider a practical setup in Figure 1 where a general-
ist model fθ is trained on large-scale data v that incorporates
general knowledge about the data distribution p(v). Assume
a task to implement a probabilistic classifier pθ(y|v, c) or
a conditional sampling task pθ(v|u, c), where there is a
context c that incorporates an additional context-specific
knowledge. Then, a set of specialists can be learned using
small-scale data from empirical distribution p(v, c).

Conventional approach [Winkler et al., 2019] concatenates
intermediate representations and the context c inside the Re-
alNVP coupling blocks [Dinh et al., 2017]. This preserves
RealNVP invertability, but limits the type of supported bi-
jections. In addition, this method cannot fully support a
generalist-specialist setup where the context vector c is
missing at the generalist learning phase and it is introduced
only later for domain-specific specialist training. Hence,
it is unable to explicitly decouple the general and domain
knowledge that is desired for complexity optimizations [Hu
et al., 2022] and practical applications [Zhang et al., 2023].

To address the above limitations, we approach the tasks
in Figure 1 setup as follows. First, a generalist model is
trained with large-scale dataset to approximate p(v) without
a-priori assumptions on the conditioning context. Second,
a set of specialist models with the defined context repre-
sentations are learned with the fixed generalist parameters
using small-scale training sets for each specialist. Hence,

we explicitly decouple the generalist knowledge and a set of
context-specific specialists in the proposed ContextFlow++
model. Practical contexts c are usually represented by dis-
crete or mixed-precision variables that poses a difficulty
because conventional flow framework supports only contin-
uous variables. To overcome this difficulty, we use either
embedding-based or variational dequantization methods im-
plemented as sampling from an introduced encoding flow
model. In summary, our contributions are as follows:

• We propose general approach to support additive
context-conditioning for the generalist-specialist setup
in bijective normalizing flow transformations.

• We address mixed-variable input data and contexts
that are common in practical applications using the
proposed ContextFlow++ architecture.

• Experiments show advantages of our ContextFlow++
approach in image classification, time series predictive
maintenance and unsupervised anomaly detection.

2 RELATED WORK

Normalizing flow architectures. Normalizing flows
[Kobyzev et al., 2020, Papamakarios et al., 2021] largely
develop in a direction of increasing their expressivity and,
hence, improving density estimation or sampling. For exam-
ple, recent works propose continuous flows with the map-
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pings obtained by solving neural ordinary differential equa-
tion (ODE) [Chen et al., 2018, Grathwohl et al., 2019] or pro-
cess data with the manifold assumptions [Postels et al., 2022,
Cunningham et al., 2022] or both [Chen and Lipman, 2024].
Our work is complementary to these more advanced models
since we only consider a problem of context-conditioning.

The Flow++ architecture [Ho et al., 2019] proposes bijective
transformation that models cumulative distribution function
of a mixture with the fixed number of components. Each
component is a distribution parameterized by neural net-
work outputs. Such approach is partially related to ours
because it implicitly models a mixture of densities at each
bijection. Another related work proposes semi-supervised
learning setup using a latent Gaussian mixture (FlowGMM)
[Izmailov et al., 2020]. We employ FlowGMM-type method
to predict an outcome p(y|v, c) for a discrete class y that is
independent of our context modeling goal.

Context-conditioned flows. In practice, the conditioning
is very important feature in normalizing flow models, but
research has been scarce in that area. The seminal works
[Winkler et al., 2019, Ardizzone et al., 2019] propose to con-
catenate internal representations for a specific type of flow
bijections i.e. the RealNVP couplings [Dinh et al., 2017]
with the invertible conditioning. Lu and Huang [2020] ex-
tends conditioning to Glow bijections [Kingma and Dhari-
wal, 2018] i.e. the conditional actnorm and Conv−1

1×1 layers,
where conditioning is performed by a separate discrimina-
tive neural network applied to context vector.

The above approaches have been widely adopted in many
popular applications. For example, super-resolution images
with rescaling can be generated using hierarchical condi-
tional flow model [Liang et al., 2021] with feature-extracted
context vectors. Unsupervised anomaly detection with seg-
mentation can be improved by conditioning using positional
encoding vectors [Gudovskiy et al., 2022]. Time series fore-
casting is performed by conditioning flow model on the
outputs of a recurrent network [Rasul et al., 2021] or by
multi-scale transformer-based attention with positional en-
coding [Feng et al., 2023]. Because the conventional condi-
tioning methods cannot support generalist-specialist setup,
we aim to introduce a generic and principled alternative to
the effective yet limited concatenation-style conditioning.

Discrete distribution modeling. In Figure 1 we can have
two distinct cases: the context vector c is represented by con-
tinuous variables or discrete variables. The former can be
directly supported by the ContextFlow conditioning. How-
ever, the latter is more common in practice and requires ad-
ditional (ContextFlow++) processing. Discrete densities can
be converted to continuous ones by adding noise [Uria et al.,
2013, Theis et al., 2016] or by using variational dequanti-
zation [Ho et al., 2019]. The argmax variational method
[Hoogeboom et al., 2021] additionally compresses discrete
variables. Recent Voronoi dequantization [Chen et al., 2022]

learns quantization boundaries with an exact likelihood.

Another line of research processes discrete-only variables
[Tran et al., 2019] and models continuous to discrete map-
pings [Sidheekh et al., 2022]. In this paper, we support
mixed-variable contexts by the conventional flow frame-
work, where categorical variables are mapped to continuous
ones and added to the overall context. More complex con-
texts such as relational graphs with linked discrete variables
[Fey et al., 2023] can be an avenue for future research.

Discrete representations in other models. In contrast to
the specific task of discrete distribution modeling by normal-
izing flows in this paper, a general topic of using discrete
representations has been pioneered by Bengio et al. [2013].
It introduces the straight-through gradient estimator to learn
discrete (quantized) representations in discriminative mod-
els. Then, the vector-quantized VAE (VQ-VAE) [van den
Oord et al., 2017] with discretized encoder’s latent space
employs such estimator to avoid posterior collapse in the
generative VAE model. Later, this approach has been widely
applied to other generative models such as generative ad-
versarial networks [Esser et al., 2021] and diffusion models
[Hoogeboom et al., 2021]. Recent methods [Bond-Taylor
et al., 2022, Chang et al., 2022] rely on the transformer
architecture to learn a codebook that is indexed by discrete
indices, where it implements controllable data (e.g., image)
synthesis and manipulations. Though recent continuous nor-
malizing flows [Lipman et al., 2023] can compete with the
diffusion models in synthesis, we, for simplicity, consider a
task of mixed-variable density estimation using finite nor-
malizing flow architectures in this paper. In that task, VAEs
and diffusion models are unable to estimate exact data like-
lihoods even for continuous data variables.

3 PRELIMINARIES

3.1 NORMALIZING FLOW FRAMEWORK

Normalizing flows [Rezende and Mohamed, 2015] can trans-
form a target density pV of data vectors v ∈ V = RD to
a base density pU with vectors u ∈ U = RD using the
change-of-variable formula by bijective and differentiable
transformation f : U → V at any point as

pV (v) = pU (u)
∣∣det ∂u/∂vT

∣∣ , and u = f−1
θ (v), (1)

where a base random variable u can be from a standard
Gaussian or a parameterized distribution. The normalizing
flow model fθ with θ parameters is typically implemented
as a sequence of tractable transformations.

The closed-form expression in (1) allows to learn exact den-
sity functions. However, this conventional flow framework
is restricted to only continuous pV (v) densities.
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3.2 DEQUANTIZATION METHODS

To learn densities P (x) of discrete variables, it is com-
mon to apply a surjective [Nielsen et al., 2020] transfor-
mation g : X → V that is deterministic in one direction
(x = g−1

λ (v)) and stochastic in the other (v ∼ qλ(v|x))
using a dequantization distribution qλ(v|x) with parameters
λ i.e. the dequantization model. Then, the discrete density
can be written using Dirac δ-function as

P (x) =

∫
P (x|v)p(v)dv, P (x|v) = δ(x = g−1

λ (v)).

(2)

A surjective encoder gλ(x) in (2) estimates the evidence
lower bound (ELBO) of qλ(v|x) as

logPλ(x) ≥ Ev∼qλ(v|x) [log p(v)− log qλ(v|x)] , (3)

where the ELBO holds for the support S = {v ∈ RD : x =
g−1
λ (v)} such that P (x|v) = 1 in that support region.

Typical surjection choice is the rounding operation ⌊v⌋ [Uria
et al., 2013, Theis et al., 2016, Ho et al., 2019], argmax(v)
operation [Hoogeboom et al., 2021] or a set identification
function RD → {1, . . . ,K} [Chen et al., 2022].

Then, discrete variables can be processed using the (2,3)
generic framework by choosing the appropriate gλ with
a corresponding dequantization model qλ(v|x) at the ex-
pense of the ELBO estimate rather than the exact likelihood.
Dequantization model can simply add noise from uniform
distribution [Uria et al., 2013, Theis et al., 2016], or samples
from a flow model that implements variational distribution
qλ(v|x) [Ho et al., 2019, Hoogeboom et al., 2021]. Unlike
the variational approaches with the ELBO estimate of dis-
crete density, the use of disjoint subsets provides an exact
likelihood [Chen et al., 2022].

3.3 CONVENTIONAL CONDITIONAL FLOWS

In the conditional setting, there is an additional context
vector c ∈ C with the pC density. Often, the context is given
by discrete variables which can be addressed by Section 3.2
methods and the proposed in Section 4 framework.

Then, assuming continuous data and context vectors, we can
rewrite (1) for the joint log-likelihood as

log pθ(v, c) = log pγ(u) +
∑L

l=1
log |detJl| , (4)

where u = f−1
θ (v; c), the Jacobian matrices Jl are se-

quentially calculated for the lth transformation f−1
θl

, and γ
represents parameters of the base distribution.

Next, we formally summarize previously proposed condi-
tional bijections for (4) in Table 1 (top). Currently, they are
limited to RealNVP coupling bijections, Glow’s activation

normalization and Conv−1
1×1 layers. A conditional neural

network (CN) with the context input estimates bijection
parameters. These parameters are either directly used (Act-
norm and Conv−1

1×1) or concatenated with the intermediate
vectors (RealNVP) to calculate bijection’s output.

Conventional methods are viable when assumptions about c
are known and there is access to p(v, c) data. However, of-
ten practitioners employ context information after learning
on p(v) data. For example, a pretraining step with large-
scale data can be performed to extract general knowledge
followed by context-conditional specialist training with
fixed generalist parameters. Moreover, in some situations we
cannot anticipate what type of context information can be
useful for a task or metric. Hence, we propose a framework
where data and context modeling is explicitly decoupled.

4 PROPOSED METHOD

4.1 ADDITIVE CONTEXT FOR SPECIALISTS

Let’s consider a modified setup for the (4) task, where the
generalist model f−1

θg
is pretrained using the conventional

objective (1) to estimate log pθg (v). We are interested in im-
proving the generalist likelihood estimates for each specific
context without modifying its θg parameters.

With the exception of masked autoregressive flows [Papa-
makarios et al., 2017], it is common to model elements vi
of an input data vector v = [v1, . . . vD] as independent vari-
ables in a single bijection layer [Papamakarios et al., 2021].
Then, it is presumed that a sufficient number of bijection lay-
ers with vi permutations lead to an accurate joint likelihood
estimate for v. Similarly, we can assume that the context
vector c is independent of data vector v within a bijection
and can rewrite joint log-likelihood (4) as a sum

log pθg,c(v, c) = log pθg (v) + log pθc(c), (5)

where the generalist parameters θg are fixed after the pre-
training and only the specialist parameters θc are learned.

With the (5) assumption for (4), we propose a density trans-
formation approach with additive log-likelihood contribu-
tions. In particular, consider a generalized bijection

u = M (Wg +Wc)v, v = (M (Wg +Wc))
−1

u, (6)

where matrices Wg,c are parameters for any flow type
[Kobyzev et al., 2020] e.g., element-wise or linear. RealNVP
and autoregressive couplings with appropriate binary mask
M can be implemented with Wg = NN(v) and Wc =
CN(c). Since (6) implements a linear combination, its Jaco-
bian terms are additive ∂u/∂vT = MWg +MWc with
decoupled likelihood contributions |detJg| and |detJc|.

We apply our additive context approach to several common
bijections using (6). Table 1 (bottom) contains examples
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Figure 2: Our high-level scheme. Mixed-variable inputs and
contexts are represented by vectors xR,Z

g,c . First, the data en-
coder gλg

and decoder f−1
θg

are learned during large-scale
generalist pretraining step. Next, the specialist context en-
coder gλc

and the extended decoder parameters f−1
θc

are
learned with small-scale data. Generative encoders convert
discrete variables into continuous data v and context v vec-
tors. A distributional model h(γg,c) also supports such two-
step training and outputs likelihood p(y|x) estimates.

for Glow-type finite flows. The main difference between
previous and our transformations is the explicit separation
of generalist and specialist processing.

4.2 ENCODING MIXED-VARIABLE DATA

As discussed in Section3.2 input data can be heteroge-
neous i.e. represented by continuous (xR ∈ R) or discrete
(xZ ∈ Z) variables. This is especially relevant to the con-
text vectors which often contain information represented
by integers such as user preferences, sensor configurations,
product’s geographical location etc. Therefore, we propose
to extend conventional normalizing flow architecture (bijec-
tive decoder) by an additional encoding step as shown in
Figure 2 scheme. The encoding step for continuous inputs is
optional and can contain data preprocessing e.g., normaliza-
tion. However, it is essential for discrete inputs to use either
embedding-based [Gorishniy et al., 2022] mappings or one
of the dequantization methods from Section 3.2.

In this paper, we also investigate trade-offs of various meth-
ods for mapping discrete variables to continuous ones when
applied to probabilistic flow framework. First, a common
practical solution is to use a differentiable embedding to
look up a learnable continuous-space vector by a discrete
index. There are many variants of this approach as described
in [Gorishniy et al., 2022]. This simple deterministic lookup
method can be extended to a stochastic sampling from a
learnable distribution qλ(v|x). The latter can be seen as a
special case of dequantization.

Second, low-complexity uniform [Uria et al., 2013, Theis
et al., 2016] dequantization is a popular choice for images
and audio sequences. It typically works well for discrete data

with relatively high cardinality (e.g., 8-bit variables have
cardinality of 256). Thus, we adopt uniform dequantization
in our experiments for input data to avoid high complexity.

Variational dequantization methods with rounding [Ho
et al., 2019] and argmax operations [Hoogeboom et al.,
2021] offer more accurate parametric mappings for low-
cardinality categorical data. Let the ith variable xZ

i ∈ Zi =
{1, 2, . . . ,Ki}D represent a discrete vector with Ki cate-
gories. If drop the index i for convenience, x is the input to
gλ parametric encoder. The encoder implements a surjective
mapping g : Z → R between discrete x and continuous v.
Then, our encoder outputs v ∈ RD for variational dequanti-
zation and v ∈ RD×K for the argmax method.

Furthermore, we experiment with the variational method
with rounding that maps x to one-hot binary representa-
tion v ∈ RD×K [Gorishniy et al., 2022]. Additionally, a
naïve implementation of the argmax approach has signif-
icant complexity due to large v ∈ RD×K vectors for each
xD. To reduce complexity, we apply Cartesian product com-
pression as in [Hoogeboom et al., 2021]. Then, the number
of dimensions to encode each discrete variable is the low-
est for log2 (binary) representation. This approach encodes
categorical discrete variables to v ∈ RD×log2 K outputs.

To summarize, we propose a mixed-variable probabilistic
architecture to support various kinds of input and context
data with details shown in Figure 3. Our encoding step for
discrete variables can be implemented with different types
of vector mappings followed by several dequantization and
embedding-based methods as described above. Effectively,
we generalize the encoder as a surjective normalizing flow
model using stochastic right inverse gλ. Therefore, the en-
coder implements variational methods by sampling from
the parameterized distribution qλ(v|x) and, additionally,
can contain flow’s transformations to be more expressive
when generating continuous variables. At the same time, our
ContextFlow++ decoder extends the conventional bijective
flow model that performs deterministic inverse f−1

θ .

4.3 OVERALL ARCHITECTURE

Section 4.2 gives details about mapping and qλ(v|x) sam-
pling variants in our context encoder presented in Figure 3.
In addition, our context encoder as well as the decoder con-
tains B bijective blocks. Each block consists of a squeeze
layer, a sequence of L sub-blocks and an optional split prior
layer [Nielsen et al., 2020]. The squeeze layer reduces each
spatial or temporal dimension by a factor of 2 and, corre-
spondingly, increases data dimensions. The split prior layer
reduces data dimensions by a factor of two and applies a
distributional model for a half of them, which is applied
only to CIFAR-10C and ATM datasets in Section 5.

Each of L sub-blocks contains our modified Glow-type
transformations from Table 1. To be precise, sub-blocks
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Figure 3: Our detailed ContextFlow++ architecture with mixed-variable data and context encoders gλg,c
that are implemented

as a sampling from the surjective flow model with various discrete-variable mapping and distribution options. The bijective
flow decoder performs likelihood estimation using the encoder’s v input during generalist training step with θg parameters.
Then, it is followed by context-specific specialist training with θc parameters using sampled contexts c. A distributional
model h(γg,c) implements task’s probabilistic classifier and outputs p(y|x) likelihood estimates.

function as the conventional transformations at generalist
training step. Then, the context-specific processing is added
during specialist learning step, while the generalist param-
eters are fixed. Our neural networks in the coupling layers
have an option to be convolutional or, optionally, have the
ViT transformer [Dosovitskiy et al., 2021]. We also permute
data and temporal axes for the time series ATM dataset in
Section 5 experiments using the permute axes layer.

Our distributional model h(γg,c) with diagonal Gaussian
base distribution implements the FlowGMM-style proba-
bilistic classifier [Izmailov et al., 2020, Gudovskiy et al.,
2023] with 8 mixture components and M classes for each
outcome y = m (m = 1 . . .M) and a corresponding set
of learnable parameters: means, variances and weights. It
also supports separate modeling of generalist and context-
specific distributions using two sets of the above parame-
ters. The distributional model outputs p(x, c|y) likelihood
estimates that are used in the loss function. To support semi-
supervised setting, we use the loss that consists of super-
vised cross-entropy and unsupervised terms expresses by

L = − 1

|N|
∑

i∈N
[log softmax log p(xi, ci|yi = m)

+ α log
∑

m
p(xi, ci|yi = m)],

(7)

where N is the training set, softmax computes classifier’s
predictions p(yi|xi, ci) and the hyperparameter α =1e-3.
The first term in (7) is omitted in the unsupervised experi-
ments (M = 1) and only the last term with α =1 is retained.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Benchmarks. Though recent continuous flows [Lipman
et al., 2023] can compete with the diffusion models in

p(x|u) sampling or can be a latent-space component in the
sampling pipeline [Davtyan et al., 2023], we are mostly
interested in modeling p(y|x, c) predictions using well-
established finite flow architectures [Kingma and Dhariwal,
2018] from Table 1. Particularly, we experiment with the
discrete contexts and the generalist-specialist setup.

Hence, we select four benchmarks. First, we modify small-
scale MNIST classification with M = 10 classes by apply-
ing c ∼ U{0, 63} random image rotations with 360◦/64 dis-
crete steps to all data splits. Such rotated MNIST-R defines
a simple yet challenging task for conventional architectures
without inherent rotational invariance property.

Second larger-scale image classification benchmark is the
widely-used CIFAR-10C [Hendrycks and Dietterich, 2019]
with synthetic corruptions. We define 2-dimensional con-
text vector in CIFAR-10C as c ∼ [U{1, 15},U{1, 5}] that
models discretely sampled image corruption type (15) and
its severity level (5), respectively. When applied to image
classification, CIFAR-10C corruptions usually cause a sig-
nificant drop in the prediction accuracy.

Lastly, we employ two real-world time series benchmarks:
supervised ATM machine failure prediction [Vargas et al.,
2023] and SMAP unsupervised anomaly detection Hund-
man et al. [2018]. ATM dataset contains 29,386 sequences
collected from 68 deployed ATM machines, where each
144-length sequence has 38 data dimensions. The task is
to predict an ATM failure in one-week time frame using
binary labels (M = 2). Then, we use ATM machine ID as
a discrete context. Second, the soil moisture active passive
satellite (SMAP) dataset contains soil samples and telemetry
information from the Mars rover with 135,183 and 427,617
data points in the training (without anomalies M = 1) and
test sets, respectively. SMAP data has 25 data dimensions
collected from 55 entities. We use the entity ID as a discrete
context for our ContextFlow++. We follow Su et al. [2019]
and transform the regression task into a classification task
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Table 2: Small-scale image classification benchmark using MNIST-R with 64 rotations. Each rotation represents a condition-
ing context. The best and the second best top-1 accuracy (µ±σ , %) results are highlighted. The generalist model experiences
2.8 p.p. accuracy drop when adding image rotations. The prior context-conditioned model [Lu and Huang, 2020] trained
from scratch and our ContextFlow++ trained with the fixed generalist parameters show similar accuracy gains.

Context Encoder →
Model ↓

Fixed
Generalist

Integer One-hot binary Learned embedding
uniform argmax uniform variational deterministic stochastic

Generalistwith rot. w/o → with rotations: 98.9±0.1 → 96.1±0.2 (2.8 p.p. drop)
Lu and Huang [2020] ✗ 97.6±0.1 97.7±0.1 97.4±0.1 97.8±0.1 97.7±0.1 97.8±0.1

ContextFlow++ (ours) ✓ 97.7±0.1 97.8±0.1 97.6±0.1 97.9±0.1 97.9±0.1 97.8±0.1

Table 3: Larger-scale image classification benchmark using CIFAR-10C with corruptions. Corruption type and its severity
define 2-dimensional conditioning context. The best and the second best top-1 accuracy (µ±σ, %) results are highlighted.
The generalist model experiences 6.6 p.p. accuracy drop when adding image corruptions. The prior method [Lu and
Huang, 2020] cannot surpass even the generalist results. Our ContextFlow++ with the fixed general knowledge show higher
classification accuracy, in particular, with more advanced context encoders i.e. variational and embedding-based.

Context Encoder →
Model ↓

Fixed
Generalist

Integer One-hot binary Learned embedding
uniform argmax uniform variational deterministic stochastic

Generalist w/o → with corruptions: 61.7±1.3 → 55.1±0.3 (6.6 p.p. drop)
Lu and Huang [2020] ✗ 49.0±0.9 51.2±0.4 48.3±2.6 50.8±0.5 52.5±0.4 50.8±0.7

ContextFlow++ ✓ 56.5±0.3 57.1±0.4 57.3±0.4 57.7±0.5 57.4±0.3 56.8±0.3

using sliding windows (window size = 8) and replication
padding Tuli et al. [2022]. Both datasets are imbalanced
with ≈ 10% of positive (failure or anomaly) labels.

Flow models. We experiment with the Glow-type models
from Table 1 with the following dequantization. First, we
always apply low-complexity uniform dequantization to the
x inputs. Second, we employ Section 4.2 surjective con-
text encoders for conditioning. Particularly, we experiment
with the following context encoders: with uniform [Theis
et al., 2016] and variational dequantization methods [Ho
et al., 2019, Hoogeboom et al., 2021] as well as trainable
embedding-based deterministic and stochastic encoders us-
ing the library from Gorishniy et al. [2022]. Also, we apply
dequantization methods both to the original integer contexts
and to their one-hot binary representations. Context repre-
sentation is important due to computational complexity and
dequantization considerations. For example, the argmax
method is only applicable to integer contexts, while varia-
tional [Ho et al., 2019] approach is well-suited for binary
one-hot representation. We apply the same flow architecture
in all benchmarks with variable number of blocks and sub-
blocks as presented in Section 4.3. We select (number of
blocks B, and sub-blocks L) as (2,2) for MNIST-R, (3,4)
for CIFAR-10C and ATM, (2,4) for SMAP, respectively. We
apply convolutional couplings in MNIST-/CIFAR-10C im-
age classification datasets and transformer-based couplings
in ATM/SMAP time series datasets.

Training hyperparameters. We train the generalist and the
conventional specialist models [Lu and Huang, 2020] from
the scratch for each benchmark. Then, we train our Con-

textFlow++ model with the pretrained generalist parameters.
Since ContextFlow++ explicitly decouples the general and
context-specific knowledge, there are two sets of parameters:
one fixed set inherited from the generalist and a learnable
set for additive conditioning in the context encoder.

Each model is optimized with the following hyperparam-
eters: AdamW optimizer with 256-size batches and initial
1e-3 learning rate, which is reduced by a factor of 10 every
12 epochs with 48 epochs in total. A warm-up phase with
the learning rate gradually increasing from 1e-4 to 1e-3 is
applied during first 4 epochs.

Evaluation. We use top-1 accuracy metric for MNIST-R
and CIFAR-10C classification tasks. In addition, the stan-
dardized metrics from Vargas et al. [2023] are used for ATM
failure prediction: balanced and unbalanced top-1 accura-
cies, area under the receiver operating characteristic curve
(AuROC), average precision (AP), F1-score [Lipton et al.,
2014] and minimum sensitivity (MS). We also rely on F1-
score to compute a binary prediction threshold in ATM. We
follow Su et al. [2019] and report precision (P), recall (R),
AuROC and F1 score for the SMAP dataset.

We run each experiment four (MNIST-R, CIFAR-10C,
SMAP) or five (ATM) times and report the metric’s mean
(µ) and, if shown, standard deviation (±σ) on the test split.
Unlike other datasets with the fixed training/test splits, we
perform 5-fold cross-validation splits with a single seed
(2) for ATM. Note that unlike [Vargas et al., 2023], we
do not perform context-stratified splits to have overlapping
contexts in training/test splits. The latter choice increases
performance metrics that have been reported in their paper.
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Table 4: Real-world ATM machine failure prediction with time series sensory data [Vargas et al., 2023]. Machine IDs define
the conditioning context. The reference flow-based generalist model outperforms other baseline models. Our ContextFlow++
further improves performance metrics. The variational and deterministic embedding-based context encoders achieve the
highest metrics. The best and the second best metric’s (µ±σ , %) results are highlighted.

Model
Metric ↓

random
forests HYDRA XGBoost Embed. determ.

Lu and Huang [2020]
ContextFlows →
Generalist Flow ↓

Integer
argmax

One-hot
variational

Embed.
determ.

Accuracy 94.39±0.6 81.3±0.5 96.7±0.2 96.7±0.3 97.2±0.5 98.1±0.3 98.3±0.2 98.5±0.1

Bal. Acc. 73.71±3.0 74.1±0.4 85.3±1.2 91.9±1.6 91.5±1.6 95.1±1.1 95.0±0.6 95.9±0.2

AuROC 73.71±3.0 74.1±0.4 85.3±1.2 99.0±0.2 98.7±0.2 99.4±0.2 99.4±0.2 99.6±0.1

AP 51.73±5.5 23.8±0.5 71.0±1.9 93.2±1.4 92.7±1.5 96.0±0.8 97.0±0.3 97.1±0.5

F1 63.68±5.3 42.0±0.7 81.5±1.5 84.3±1.6 86.3±2.7 90.9±1.4 91.9±0.8 92.6±0.6

MS 47.59±6.1 65.0±0.7 70.9±2.4 85.9±3.4 84.4±3.0 91.2±2.3 90.9±1.4 92.6±0.4

Table 5: Subsampled ATM machine failure prediction benchmark with the increased to 100× positive/negative data
imbalance. As a result, the performance gaps between ContextFlow++ specialists and other models are also increased.
Unlike the previous setup, the variational context encoder outperforms the deterministic embedding-based encoder, which
highlights advantages of a more robust fully-probabilistic approach in real-world applications.

Model
Metric ↓

random
forests HYDRA XGBoost Embed. determ.

Lu and Huang [2020]
ContextFlows →
Generalist Flow ↓

Integer
argmax

One-hot
variational

Embed.
determ.

Accuracy 91.56±0.4 78.5±1.6 93.0±0.2 90.9±1.1 90.9±0.9 91.9±0.7 92.3±0.9 92.9±0.5

Bal. Acc. 59.66±1.7 66.2±1.1 66.9±0.9 73.3±1.7 73.6±2.1 75.3±1.8 77.7±1.1 76.1±3.1

AuROC 59.66±1.7 66.2±1.1 66.9±0.9 83.8±1.2 84.0±1.6 84.6±0.7 86.2±1.1 85.2±0.9

AP 27.50±3.0 17.6±0.9 40.1±1.6 56.0±4.1 57.1±4.5 61.4±2.5 64.8±3.8 64.9±3.4

F1 32.23±4.7 33.0±1.6 50.3±2.1 54.0±2.6 54.3±4.1 58.3±2.7 61.8±2.8 61.4±4.0

MS 19.36±3.4 50.6±2.2 33.8±1.9 51.1±4.3 51.9±3.8 54.4±4.0 59.1±2.0 54.9±6.6

5.2 QUANTITATIVE RESULTS

MNIST-R classification. We report classification results
using selected baselines and our ContextFlow++ variants in
Table 2. As expected the generalist model with image rota-
tions in the data splits has 2.8 percentage points (p.p.) lower
accuracy results because the same-size model without rota-
tional invariance cannot be as successful in approximating
larger data distribution. With the proposed ContextFlow++,
we lower that accuracy gap to 1.0 p.p. The deterministic
embedding-based method and variational dequantization
variants have the highest performance metrics.

When compared to the conventional baseline [Lu and Huang,
2020] results, our context-conditioned variants improve clas-
sification accuracy by only 0.1-0.2 p.p. which signals about
lack of useful general knowledge in MNIST-R. Another in-
terpretation can be a relatively simple MNIST classification
task with saturated accuracy metrics.

CIFAR-10C classification. Table 3 presents the same base-
lines but with very different outcome. First, overall accu-
racy is significantly lower (61.7%) and image corruptions
increase accuracy gap between the models trained and evalu-
ated on the undistorted CIFAR-10 and the corrupted CIFAR-
10C to 6.6 p.p. (61.7% vs. 55.1%).

Second, the conventional conditioning approach is unable to

surpass even the generalist model results. At the same time,
the proposed ContextFlow++ converges well because the
general knowledge is preserved in the fixed generalist pa-
rameters, where it leads to 2.6 p.p. (57.7% vs. 55.1%) higher
accuracy. The best results are, again, achieved with deter-
ministic embedding-based encoder and variational dequan-
tization variants with one-hot binary context representation
and argmax method with log2 context compression.

ATM failure prediction. We reproduce Vargas et al. [2023]
baselines in Table 4 using their public code but with
the modified data splits. Particularly, we evaluate classic
non-temporal machine learning methods: random forests
[Breiman, 2001] and XGBoost [Chen and Guestrin, 2016].
The HYDRA model [Dempster et al., 2023] is a hybrid
method with convolutional neural network (CNN) for fea-
ture extraction with temporal processing followed by the
ridge classifier [Pedregosa et al., 2011].

We report flow-based generalist model and the best Con-
textFlow++ variants in Table 4. It is clear that even the gener-
alist model significantly outperforms all baselines from Var-
gas et al. [2023] and our ContextFlow++ further improves
failure prediction metrics. For example, ContextFlow++
with more advanced context encoders achieve the highest
results and provides up to 6.3 p.p. additional F1 score gain
when compared to the generalist model.
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Table 6: Unsupervised anomaly detection on real-world
SMAP dataset with time series sensory data [Hundman
et al., 2018]. Entity IDs (55) define the conditioning context.
Unlike ContextFlow++ with a single model (# = 1), con-
ventional baselines train and evaluate on a separate model
for each entity (# = 55). Our ContextFlow++ significantly
improves anomaly detection precision (P) and, hence, the
F1 score, while recall (R) and AuROC scores are saturated
as in other baselines. The best and the second best metric’s
results, if metric is not saturated, are highlighted, %.

Model # P R AuROC F1

OmniAnom. 55 81.30 94.19 98.89 87.28
MTAD-GAT 55 79.91 99.91 98.44 88.80

CAE-M 55 81.93 95.67 99.01 88.27
GDN 55 74.80 98.91 98.64 85.18

TranAD 55 80.43 99.99 99.21 89.15

Generalist 1 87.40 84.93 91.55 86.05
ContextFlow++ 1 88.64 99.19 98.66 93.62

To highlight the robustness of our probabilistic models, we
conduct additional experiments where we subsample num-
ber of positive (failure) data points. Table 5 shows results
where imbalance between positive and negative examples
is increased from 10× to 100× by training set subsam-
pling. With the subsampled ATM, we have two important
observations. First, the gaps in metrics between the best
ContextFlow++ models and other baselines increase by 1-2
p.p. Second, deterministic embedding-based approach does
not perform as good as with MNIST-R, CIFAR-10C and
the original ATM data. At the same time, the variational
dequantization has the highest overall scores. Then, a fully-
probabilistic model (including the context encoder) can be
more robust when applied to real-world application settings.

SMAP unsupervised anomaly detection. We compare
our models to popular baselines: OmniAnomaly [Su et al.,
2019], MTAD-GAT [Zhao et al., 2020], CAE-M [Zhang
et al., 2021], GDN [Deng and Hooi, 2021] and TranAD [Tuli
et al., 2022]. It is common in these baselines to train and
evaluate a separate model for each SMAP entity (# = 55). In
contrast, our generalist model uses a single model for all en-
tities, which leads to lower performance metrics in Table 6.
Then, we finetune our variational ContextFlow++ variant
with the context defined as a discrete entity ID. This allows
to significantly improve generalist’s metrics (7.6 p.p. gain
in F1 score w.r.t. the generalist result) and outperform the
selected baselines. Our approach leads to a major drop in
complexity since we train and keep all additive contexts in
a single checkpoint and, additionally, our model learns the
decoupled common generalist knowledge.

Figure 4: Top-1 accuracy of CIFAR-10C on test split vs.
training epochs. Generalist model experiences significant
accuracy drop when compared to the same model trained
on the undistorted CIFAR-10. Our ContextFlow++ with
argmax-based context encoder explicitly decouples gen-
eral and context-specific knowledge. In comparison with
conventional conditioning method, ours converges faster
and results in higher accuracy metric on CIFAR-10C.

5.3 QUALITATIVE EXPERIMENTS

Figure 4 visually compares top-1 test-set accuracy for a sub-
set of Table 3 models vs. training epochs. We plot accuracy
of the generalist model trained and evaluated on the undis-
torted CIFAR-10 as well as corrupted CIFAR-10C. Also,
we show our ContextFlow++ and conventional condition-
ing method [Lu and Huang, 2020] with exactly the same
architectures and variational argmax context encoders.

Our ContextFlow++ approach has two main advantages as
shown in Figure 4. First, it starts with the generalist knowl-
edge encoded in its parameters which significantly increases
convergence stability and speed. Second, the added context
encoder allows to employ domain-specific knowledge and
increase final performance metric. In practice, it can be use-
ful when thousands and millions of contexts are encoded in
multidimensional mixed-variable vectors.

5.4 COMPLEXITY ANALYSIS

Table 7 shows complexity estimates for the flow models
from Table 3 that are applied to CIFAR-10C dataset. We
report parameter count and latency on P100 GPU with mini-
batch size of 256 during the training and evaluation phases.

The low-complexity context encoders with uniform dequan-
tization and deterministic embeddings have comparable to
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Table 7: Parameter count and P100 GPU latencies (batch
size = 256) on CIFAR-10C. Results, reported as [Lu and
Huang, 2020]→ContextFlow++, show that out method has
lower parameter count and similar to the prior method la-
tency. Ours argmax variant with log2 context compression
is preferable in terms of parameters-performance trade-off.

Metrics →
Method ↓

Parameters,
millions

Latency, ms
Train Eval

Generalist 2.2 84 42

Integer uniform 3.5→ 2.9 138→141 55→71
Integer argmax 4.1→ 4.0 402→403 194→185
One-hot uniform 4.0→ 3.3 155→152 74→ 81

One-hot variational 5.1→ 5.0 383→398 185→205
Embed. determinist. 6.2→ 5.6 140→145 55→ 69
Embed. stochastic 27.7→27.6 384→380 184→198

generalist model latencies (140 vs. 84 ms for training and
70 vs. 42 ms at evaluation), but can be very different in pa-
rameter count (2.9, 3.3 and 5.6 for ContextFlow++ variants
vs. 2.2 millions for the generalist) depending on the context
processing. At the same time, probabilistic context encoders
with generative flow architecture have higher latency (400
vs. 84 ms for training and 200 vs. 42 ms at evaluation) and
also variable parameter counts (4.0, 5.0 and 27.6 millions).

The parameter count for ContextFlow++ is lower than the
conventional baseline [Lu and Huang, 2020] due to lack of
concatenation that increases the dimensionality of internal
vectors. At the same time, the latencies for both methods are
very similar due to the nature of Table 1 operations. To con-
clude, the argmax variant with the embedded log2 context
compression can be a preferred method with further encoder
architecture optimizations as a trade-off between complexity
and promising performance gains in our experiments.

6 CONCLUSIONS

In this paper, we addressed the limitation of previous con-
ditional normalizing flow models. Our additive contexts
increased applicability of flow models to setups where flex-
ible and accurate context-specific knowledge modeling is
crucial. Then, we explored the related topic of enabling
discrete variables in the conventional flow framework and
proposed the mixed-variable ContextFlow++ architecture
with additional generative flow-based context encoders.

Our experiments with supervised image classification, pre-
dictive maintenance and unsupervised anomaly detection
showed advantages of our flow-based architecture with sam-
pling from surjective context encoders followed by likeli-
hood estimation using modified ContextFlow++ bijective
decoder. We believe that this approach can be extended to
recent ODE-type continuous flow architectures and other
types of contextual information e.g., relational graphs.
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