
Faster Perfect Sampling of Bayesian Network Structures

Juha Harviainen1 Mikko Koivisto1

1Department of Computer Science, University of Helsinki, Helsinki, Finland

Abstract

Bayesian inference of a Bayesian network struc-
ture amounts to averaging over directed acyclic
graphs (DAGs) on a given set of n variables, each
DAG weighted by its posterior probability. In prac-
tice, save some special inference tasks, one aver-
ages over a sample of DAGs generated perfectly
or approximately from the posterior. For the hard
problem of perfect sampling, we give an algorithm
that runs in O(2.829n) expected time, getting be-
low O(3n) for the first time. Our algorithm reduces
the problem into two smaller sampling problems
whose outputs are combined; followed by a simple
rejection step, perfect samples are obtained. Subse-
quent samples can be generated considerably faster.
Empirically, we observe speedups of several orders
of magnitude over the state of the art.

1 INTRODUCTION

Bayesian networks are probabilistic graphical models whose
structure, a directed acyclic graph (DAG), encodes condi-
tional independences among the modelled variables. To
learn the structure, the score-based approach assigns a score
to each possible DAG, roughly quantifying how well it fits
the data and background knowledge. Commonly used mod-
ular scoring functions factorize into a product of node-wise
local scores, each of which only depends on the node and its
parents. This structural property enables finding a globally
optimal DAG significantly faster than by exhaustive search,
e.g., by dynamic programming [Ott et al., 2004, Singh and
Moore, 2005, Silander and Myllymäki, 2006], by related
A* search [Yuan et al., 2011], or by linear programming
[Bartlett and Cussens, 2017]. The optimization problem be-
ing NP-hard [Chickering, 1995], various methods have been
proposed for finding local optima, including many recent
ones based on continuous optimization [Zheng et al., 2018].

However, outputting a single DAG can be problematic, par-
ticularly if there are little data, as numerous DAGs may
have almost equally high scores. The Bayesian approach
to learning Bayesian networks [Madigan and York, 1995,
Heckerman et al., 1995] takes this into account by averag-
ing over multiple models. Computationally, the approach
presents a major challenge and has led to the development
of Markov chain Monte Carlo methods [Madigan and York,
1995, Grzegorczyk and Husmeier, 2008, Kuipers and Moffa,
2017], which generate a sample of DAGs approximately
from the posterior distribution. While these methods often
appear to perform well empirically, they lack good, provable
accuracy guarantees.

Several results are known for model averaging with accu-
racy guarantees. By dynamic programming, one can com-
pute the exact marginal posterior probabilities of edges and
related features in time O(2nn2), where n is the number of
nodes [Koivisto and Sood, 2004, Koivisto, 2006]. More-
over, one can sample DAGs exactly from the posterior,
hereafter referred to as perfect sampling, with negligible
overhead [He et al., 2016]. Unfortunately, these methods
rely on a specially structured score, which is nonuniform
over Markov equivalent DAGs and often considered un-
desirable. For the more desirable, modular scores, exact
computation of marginals [Tian and He, 2009] and perfect
sampling [Talvitie et al., 2019] scale as 3nnO(1). The former
problem is #P-hard, i.e., at least as hard as counting the
satisfying assignments of a given boolean formula [Harvi-
ainen and Koivisto, 2023]. Further, the bound O(3n) has
only been beaten using impractical “fast matrix multiplica-
tion” [Koivisto and Röyskö, 2020] that has large constant
factors in its time complexity. This raises the following ques-
tion: Can we obtain a faster, practical algorithm for perfect
sampling by avoiding the computation of exact marginals?

We answer this question in the affirmative. Our approach em-
ploys rejection sampling for a union of sets of DAGs, where
each set is associated with a partition of the node set into
two halves. First, we precompute the total score of DAGs
in each of the sets in time O

(
23n/2n

)
= O(2.829n) by

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:1558–1568.

mailto:<juha.harviainen@helsinki.fi>?Subject=Your UAI 2024 paper

utilizing an inclusion–exclusion recurrence of Tian and He
[2009] and dynamic programming over partitions of subsets
of nodes called root-layerings [Kuipers and Moffa, 2015,
2017, Talvitie et al., 2019] and sink-layerings [Harviainen
and Koivisto, 2023]. In the sampling step, we choose one
partition of the nodes, and then sample a DAG according
to that partition in time O(2n/2n) = O(1.415n). Multiple
partitions may allow sampling the same DAG, so we occa-
sionally need to reject the sample and restart the sampling
step to ensure that the accepted samples come from the
posterior distribution. Consequently, the running time of the
algorithm is a random variable.

What can we then say about the time complexity? There are
DAGs where the probability of accepting is roughly 2−n,
and so the sampling step needs to be restarted roughly 2n

times on average if all probability mass is on such graphs.
This results in the worst-case expected time O(2.829n) for
getting an accepted sample, matching the preprocessing
time. Fortunately, the worst case seems to not occur in
practice, of which we give both analytical and empirical
evidence: We prove that only a constant number of samples
are needed until getting an accepted sample on average over
all DAGs on n nodes. Empirically, we observe that our algo-
rithm draws samples several orders of magnitude faster than
the previous state of the art, with the speedup depending on
the sparsity of sampled DAGs.

As an additional contribution, we remark an application of
the present work in sampling DAGs under ancestral con-
straints. The requirement that a given node must be an an-
cestor of another node is related to causality, and the com-
putation of the normalizing constant of the scores of such
DAGs has been studied before [Chen et al., 2015, Pensar
et al., 2020]. On the other hand, the existence of a path
is a non-modular feature, so mere manipulation of local
scores is insufficient for enabling sampling. By applying
our optimized version of the sink-layering algorithm of
Harviainen and Koivisto [2023] on the forward–backward
decompositions of Pensar et al. [2020], we give the first
perfect sampling algorithm for the problem, and achieve
preprocessing time O(3nn) and sampling time O(2nn).

One drawback of our rejection sampling method is the use
of subtraction, which may lead to loss of accuracy in the
computations. For this reason, the implementations used in
the experiments assume that the local scores are integers.
Talvitie et al. [2019] discussed the issue of numerical sta-
bility and also gave two algorithms for perfect sampling
of DAGs that rely only on monotone operations—addition
and multiplication. Problematically, the preprocessing step
of these monotone algorithms uses roughly 4n operations
and requires storing at least 3n numbers to the memory.
Thus, we argue that non-monotonicity is likely required to
achieve reasonable sampling time and memory usage. The
time and space complexities of the different algorithms are
summarized in Table 1.

2 PRELIMINARIES

We start by recalling the basics of Bayesian networks. Then,
we will discuss previous work on weighted counting and
sampling of DAGs, which our work utilizes.

2.1 BAYESIAN NETWORKS

The structure of a Bayesian network is a directed acyclic
graph D = (N,A) with a node set N and a set of directed
edges A with n := |N |. The nodes correspond to the vari-
ables of the model whereas the edge structure encodes their
conditional independencies—see, for example, the textbook
of Koller and Friedman [2009] for a detailed overview of
Bayesian networks. We denote the score of D by w(D).
Commonly used score functions are modular, meaning that
they decompose into a node-wise product of local scores

w(D) =
∏
i∈N

wi(Di) ,

where Di is the set of parents of the node i. The score com-
prises any modular prior distribution of the DAGs, such as
the uniform prior or the fair prior [Friedman and Koller,
2003, Eggeling et al., 2019], and possibly the likelihood
function, depending on the application. For example, the
Bayesian network structure learning problem looks for a
DAG D with the maximum score, or equivalently, the maxi-
mum posterior probability.

Using just a single model may lead to poor inference results
if there is uncertainty about the correct model. The Bayesian
approach to structure learning [Madigan and York, 1995,
Heckerman et al., 1995] overcomes this by taking the aver-
age over multiple structures: For an event of interest Q, we
have

Pr(Q) =
∑
D

w(D) Pr(Q | D)
/∑

D

w(D)

with summation over all DAGs. This can be approximated
as

1

K

K∑
k=1

Pr
(
Q | Dk

)
for DAGs D1, D2, . . . , DK sampled with the probability
of Dk = D being proportional to w(D). Thus, we seek to
solve the following problem:

DAG SAMPLING
Input: A set of nodes N and a modular function w.
Output: Sample a DAG D such that Pr(D) ∝ w(D).

2.2 ZETA TRANSFORM

In this paper, we often utilize transforms of functions over
subset lattices. Let f be a function whose inputs are subsets

1559

Table 1: Summary of the complexities and the properties of the algorithms. Time and space complexities are asymptotic up
to polynomial factors in n. For our algorithm, we have rounded up the bases of the exponents for easier comparison.

Reference Preprocessing Sampling (best) Sampling (worst) Space Monotone

Talvitie et al. [2019] 3n 2n 2n 2n no
Talvitie et al. [2019] 4n 2n 2n 3n yes
Talvitie et al. [2019] 4n poly(n) poly(n) 4n yes

this paper 2.829n 1.415n 2.829n 2n no

of some ground set. Then, its zeta transform f̂ is defined by

f̂(S) :=
∑
T⊆S

f(T) ,

and its inverse is given by the Möbius inversion formula

f(S) =
∑
T⊆S

(−1)|S\T |f̂(T) .

For example, ŵi(S) is the sum of local scores of the node i
over all subsets of S.

Given f(S) for all subsets S of a set of n elements, the
values of f̂ are computable with O(2nn) additions and mul-
tiplications, and vice versa [Yates, 1937, Kennes and Smets,
1990].

2.3 COUNTING

We start reviewing previous work by discussing the compu-
tation of normalizing constants of subsets of DAGs. They
serve as a building block for the sampling algorithms.

Let h(U) with U ⊆ N be the total score of all DAGs
on nodes U . Tian and He [2009] discovered an inclusion–
exclusion formula for computing the values of h(U): As
every DAG has at least one sink node, the set of DAGs on U
can be seen as an union over sets of DAGs for which s ∈ U
is a sink. This yields the recurrence

h(U) =
∑

∅̸=S⊆U

(−1)|S|+1h(U \ S)
∏
i∈S

ŵi(U \ S), (1)

which allows computing all values of h in time O(3nn).
Koivisto and Röyskö [2020] have given an asymptotically
slightly faster algorithm of time complexity O(2.985n) that
relies on fast matrix multiplication.

2.4 SAMPLING

We next recall the details of the sampling algorithm of Talvi-
tie et al. [2019] for weighted DAGs. Their algorithm of
solves the DAG SAMPLING problem with preprocessing
time O(3nn) and sampling time O(2nn).

The algorithm employs root-layerings that are partitions
of the node set. The root-layering (R1, R2, . . . , Rℓ) of a

DAG D is obtained by letting the first layer R1 contain the
source nodes of D, the second the sources of the subgraph
D[N \R1] induced by N \R1, and so forth. In general, layer
Rk contains nodes i for which the longest path from a node
in R1 to i is of length k − 1. For notational convenience,
let R0 = ∅ unless otherwise specified. Root-layerings are
illustrated in Figure 1a.

By definition, a node i ∈ Rk+1 must have at least one parent
in Rk, and its other parents are a subset of

R1:k :=

k⋃
i=1

Ri .

Denote the total score of this collection of potential parent
sets by ŵi(Rk, R1:k). Their values can be efficiently queried
by using the identity

ŵi(R,S) = ŵi(S)− ŵi(S \R)

after precomputing the zeta transforms of the local scores in
time O(2nn2). For convenience, we let ŵi(∅, ∅) = wi(∅).

Now, the total score of all DAGs with a fixed root-layering
(R1, R2, . . . , Rℓ) can be written as

ℓ∏
k=1

∏
i∈Rk

ŵi

(
Rk−1, R1:(k−1)

)
. (2)

The sampling algorithm starts by drawing a root-layering
with a probability proportional to the total score of DAGs on
them. Then, the parents of the nodes are sampled condition-
ally to the given the root-layering. The latter step is straight-
forward in their algorithm, since the parent set choices are
independent of each other given the root-layering [Kuipers
and Moffa, 2015, 2017].

The more involved part is sampling the root-layering. Sup-
pose that we know the first k layers of the root-layering.
Then, the probability of next layer being Rk+1 is propor-
tional to

f(Rk+1, N \R1:k)
∏

i∈Rk+1

ŵi(Rk, R1:k), (3)

where

f(Rk+1, U) :=
∑

Rk+2,...,Rℓ

Rk+1:ℓ=U
Rj are disjoint

ℓ∏
j=k+2

∏
i∈Rj

ŵi(Rj−1, N\Rj:ℓ) .

1560

1

2

3

4 5

6

7

8 9

R1 R2 R3 R4

(a) A root-layering.

1

2

3

4

5

6

7

8 9

L4 L3 L2 L1

(b) A sink-layering.

Figure 1: The root-layering and the sink-layering of the same DAG.

The value of f equals the total score of parent set choices
for the remaining nodes U \ Rk+1 if Rk+1 is chosen to
be the (k + 1)th layer. In other words, the formula con-
siders all possible extensions for the partial root-layering
(R1, R2, . . . , Rk+1) and sums up their scores.

By an inclusion–exclusion argument, Talvitie et al. [2019]
observe that f(R,U) equals

∑
S⊆(U\R)

(−1)|(U\R)\S|

 ∏
i∈(U\R)\S

ŵi(N \ U)

 g(S) ,

where g is defined recursively by

g(U) =
∑

∅̸=R⊆U

(−1)|R|+1g(U \R)
∏
i∈R

ŵi(N \ U)

and g(∅) = 1, inspired by Equation (1).

After precomputing the values of g in time O(3nn), we
can obtain all values of f(R,U) for a fixed U in time
O
(
2|U ||U |2

)
by using fast subset convolution [Björklund

et al., 2007]. Faster O
(
2|U ||U |

)
-time computation [Yates,

1937, Kennes and Smets, 1990] is achieved by observing
that f can be written as a product of the vector [g(S)]S⊆U

and a Kronecker product of |U | matrices of size 2 × 2, as
noted by Talvitie et al. [2019].

Algorithm 1 describes the sampling procedure. Until every
node belongs to some layer, a new layer Rk+1 is sampled
with probabilities proportional to the weights described by
Equation (3). Then, we sample the parents of the nodes in
Rk+1 such that they belong to the set R1:k with at least one
parent coming from the previous layer Rk. This results in a
running time O(2nn) per sample.

It is possible to precompute all 3n values of f in time
O(3nn), but this would lead to a poor space complexity:
for n = 20, we would need to store at least 3 billion values
to the memory. Thus, we argue that it is better to compute
the values on the fly when they are needed, as this does not
worsen the asymptotical time complexity.

Algorithm 1: Perfect sampling with root-layerings

U ← N, k ← 0, R0 ← ∅;
while U ̸= ∅ do

Compute f(R,U) for all R ⊆ U ;
weight(R)← f(R,U) for all R ⊆ U ;
weight(∅)← 0;
for ∅ ≠ R ⊆ U do

for i ∈ R do
weight(R)← weight(R) · ŵi(Rk, R1:k);

Draw Rk+1 proportionally to weight(Rk+1);
for i ∈ Rk+1 do

Draw Di ⊆ R1:k with Di ∩Rk ̸= ∅
proportionally to wi(Di);

U ← U \Rk+1;
k ← k + 1;

return the DAG D;

3 FASTER SAMPLING

Splitting a set of objects—like nodes or edges—in two
halves and then performing computations over these smaller
sets is a common algorithm design paradigm. Inspired by
this, we seek to speed up sampling by partitioning the node
set into two smaller sampling problems. For one of these
problems, we will use Algorithm 1 of Talvitie et al. [2019],
but for the other one we need a new algorithm that samples
layers of sinks instead of source nodes. Roughly speaking,
the reason for this is that one of the halves is not allowed to
have parents from the other half, but the values of f(R,U)
are impacted by all nodes of the graph. We start the section
by developing the sink-based algorithm, and then combine
the two algorithms into an asymptotically faster one.

3.1 SAMPLING SINKS

Instead of dealing with root-layerings, we utilize sink-
layerings proposed by Harviainen and Koivisto [2023] for a
parameterized version of the problem. However, applying

1561

their algorithm directly would require O
(
4n poly(n)

)
time

and space, so we need to optimize their method.

In a sink-layering L1, L2, . . . , Lℓ of a DAG D, the first layer
L1 contains the sinks of D, L2 the sinks of D[N \ L1], and
so forth. Thus, the layers are characterized by the length
of the longest path to a node in L1. This is illustrated in
Figure 1b.

Similarly to root-layerings, our goal is to construct the sam-
ple by first drawing the layer L1, then L2, and so on. For
sampling the layers, we need to know the total score of
DAGs on V ⊆ N whose set of sinks is L, denoted by
r(L, V). This quantity is hard to compute directly, so we in-
stead compute its relaxed version ř(L, V) where we require
L to be only a subset of the sinks, obtained as

ř(L, V) = h(V \ L)
∏
i∈L

ŵi(V \ L) .

Then, we find r(L, V) by applying the Möbius inversion
formula over supersets of L in time O(2|V ||V |).

The layer L1 can be sampled by just using the values
r(L, V), but sampling consequent layers is more compli-
cated. In addition to requiring Lk+1 to be the set of sinks
of D[Lk+1:ℓ], every node in Lk+1 must have a child in Lk,
since otherwise it would be a sink of D[Lk:ℓ]. Therefore, the
parent sets of the nodes in Lk must cover the nodes Lk+1.

When sampling Lk+1, we thus need to multiply r(Lk+1, V)
by the total score of parent set choices for the nodes in Lk

that cover Lk+1. We denote this quantity by c(Lk+1, Lk, V),
and it equals

∑
(Di⊆V)i∈Lk

t ⋃
i∈Lk

Di ⊇ Lk+1

| ∏
i∈Lk

wi(Di),

where JXK evaluates to 1 if and only if X is true. This can
be rewritten as∑

S⊇Lk+1

∑
(Di⊆V)i∈Lk

t ⋃
i∈Lk

Di = S

| ∏
i∈Lk

wi(Di).

Now, the inner sum is a covering product over |Lk| func-
tions and can be computed for all S ⊆ V with O(2|V ||V |)
operations [Björklund et al., 2007]. The outer sum is a zeta
transform over these values. Hence, we can sample Lk+1

with probabilities proportional to

r(Lk+1, V) · c(Lk+1, Lk, V)

in time O(2|V ||V |).

Sampling the parents for the nodes in Lk is made harder by
that the parent sets must cover the nodes of Lk+1. We solve
this by observing that the probability that the parent set of
i ∈ Lk is Di ⊆ V is proportional to

wi(Di) · c(Lk+1 \Di, Lk \ {i}, V) ,

after which the problem reduces to sampling the parents of
Lk \ {i} that cover Lk+1 \Di. Thus, sampling the parents
of all nodes in Lk requires computing the values of c with
|Lk+1| different arguments.

Algorithm 2 gives a high-level description of the implemen-
tation. By observing that

L1:1 ⊊ L1:2 ⊊ · · · ⊊ L1:ℓ ,

we obtain a time complexity O(2nn) per sample if the nor-
malizing constants h(U) have been precomputed. By com-
bining Algorithm 2 with fast computation of the values of
h, we get the following corollary:

Corollary 1. Suppose there is an algorithm that computes
all values of h(U) in time O(t(n)). Then, DAG SAMPLING
can be solved in preprocessing time O(t(n)) and sampling
time O(2nn).

This is the first time that the above speedup has been noted
to our knowledge, since algorithms from previous work
have been unable to utilize the precomputed normalizing
constants.

Algorithm 2: Perfect sampling with sink-layerings

V ← N, k ← 0, L0 ← ∅;
while V ̸= ∅ do

Compute r(L, V) for all L ⊆ V ;
weight(L)← r(L, V) for all L ⊆ V ;
weight(∅)← 0;
if k > 0 then

Compute c(L,Lk, V) for all L ⊆ V ;
for L ⊆ V do

weight(L)← weight(L) · c(L,Lk, V);
Draw Lk+1 proportionally to weight(L);
L′
k ← Lk, L

′
k+1 ← Lk+1;

for i ∈ Lk do
L′
k ← L′

k \ {i};
Compute c(L′

k+1 \Di, L
′
k, V) for all Di ⊆ V ;

Draw Di proportionally to
wi(Di) · c(L′

k+1 \Di, L
′
k, V);

L′
k+1 ← L′

k+1 \Di;
V ← V \ Lk+1;
k ← k + 1;

return the DAG D;

3.1.1 Application to Ancestral Constraints

Perhaps surprisingly, Algorithm 2 enables perfect sampling
of DAGs with a directed path from a given node i to a given
node j, which is not a modular feature. Such a constraint
modelling (in)direct causation can, for example, be provided
by an expert to allow ignoring network structures that are

1562

clearly incorrect. Chen et al. [2015] and later Pensar et al.
[2020] have given algorithms for computing the total score
of DAGs where a path exists between the given nodes. How-
ever, a sampling algorithm for such DAGs has not been
suggested before, possibly because of the lack of earlier
sink-based sampling algorithms. We refer to this sampling
problem as DAG SAMPLING WITH PATH.

Pensar et al. [2020] observe that partitioning the nodes into
descendants and non-descendants of i provides a method
for computing the normalizing constant. Denote the set of
descendants of i by U with j ∈ U . Then, the total score of
DAGs with that descendant set of i is

h
(
N \ (U ∪ {i})

)
· ŵi

(
N \ (U ∪ {i})

)
· f

(
{i}, U ∪ {i}

)
,

because both N \
(
U ∪{i}

)
and U ∪{i}must induce a DAG

such that i is the only source node of the latter. Additionally,
the nodes in U ∪ {i} can have parents from N \

(
U ∪ {i}

)
.

Thus, we can sample a DAG with a path from i to j by
first sampling U proportionally to the above formula, and
then sample DAGs from N \

(
U ∪ {i}

)
and U ∪ {i}. More

precisely, we call Algorithm 2 on N \
(
U ∪ {i}

)
, and Al-

gorithm 1 on U after initializing R0 = N \
(
U ∪ {i}

)
and

R1 = {i}. Consequently, we get the following result:

Theorem 2. DAG SAMPLING WITH PATH can be solved
in preprocessing time O(3nn) and sampling time O(2nn).

3.2 SPLIT IN TWO HALVES

We are now ready to combine algorithms 1 and 2 into a
single algorithm. Our approach is based on the simple ob-
servation that for every DAG D, there is at least one subset
U ⊆ N of size n/2 that matches the n/2 last nodes in some
topological order of D. We assume n to be even for nota-
tional convenience, but the results extend straightforwardly
for odd n. For a set U , denote the set of all DAGs with
such a topological order by D(U), and observe that the total
score of all DAGs in D(U) can be written as

q(U) := h(N \ U)
∑

∅̸=R1⊆U

f(R1, U)
∏
i∈R1

ŵi(N \ U) :

for any DAG inD(U), the value h(N \U) includes the local
scores of the nodes N \ U as a term, f(R1, U) the local
scores of U \R1, and

∏
i∈R1

ŵi(N \U) the local scores of
R1.

Suppose we have computed the total score of all DAGs in
D(U) for each U . We then sample a DAG by first picking
the set U proportionally to those scores, and afterwards
draw a DAG D from D(U) proportionally to w(D). When
sampling D from D(U), it suffices to sample a DAG on the
n/2 nodes N \ U as well as a DAG on the n/2 nodes U
with the addition that the nodes in U may have parents from
N \ U . For the nodes in U , we run Algorithm 1, but give

U as an argument and initialize R0 to N \ U . Similarly, we
sample a DAG on N \ U by utilizing Algorithm 2.

Unfortunately, the above method does not yet sample DAGs
proportionally to w(D), since there can be multiple sets
U for which D ∈ D(U), making sampling such DAGs
more likely. We solve this issue with rejection sampling by
developing an algorithm that associates D with exactly one
set U for which D ∈ D(U). After sampling the set U and
the DAG D, we accept D if U is the subset of nodes of size
n/2 associated with D, and otherwise we reject the sample.
Then, the distribution of accepted DAGs D is proportional
to w(D) as desired. One possible test for accepting the DAG
is described in Algorithm 3, but any deterministic mapping
suffices.

Algorithm 3: Acceptance test

children(i)← {j : i ∈ Dj} for all i ∈ N ;
stack← [];
for i ∈ N do

if children(i) = ∅ then
stack.push(i);

for |U | times do
i← stack.pop();
if i ̸∈ U then

return reject;
for j ∈ Di do

children(j)← children(j) \ {i};
if children(j) = ∅ then

stack.push(j);
return accept;

The three presented algorithms are combined into a single
sampler in Algorithm 4. Because we need to brute-force
the values of h(U) and g(U) only for sets U of at most n/2
nodes, we get that the time complexity of precomputation is∑

U⊆N
|U |≤n/2

O
(
2|U ||U |

)
= O

(
23n/2 ·

√
n
)
.

Since both algorithms 1 and 2 are called on n/2 nodes, the
running time of one call of the algorithm after the precom-
putation is seemingly O(2n/2n). However, we still need to
optimize the sampling of the parent sets in Algorithm 1 to
achieve that complexity, since otherwise it may take time
O(2nn) at worst. In other words, we need to draw each
parent set in time O(2n/2n) out of O(2n) possibilities. We
achieve this with the inclusion–exclusion principle.

First, order the nodes in Rk arbitrarily and partition the
family of potential parent sets Di based on the smallest node
from Rk included in Di. After picking the set of potential
parent sets whose smallest node from Rk is j, it remains to
draw the rest of Di from

R∗ := R0:k−1 ∪ {v ∈ Rk : v > j} .

1563

Suppose we have decided that the nodes A ⊆ R∗∪{j} with
j ∈ A should be included in Di and that B ⊆ R∗ should
not be. Then, the total score of the parent sets that include
some node v ∈ R∗ \ (A ∪B) is∑

S⊆A∪{v}

(−1)|S| · ŵi

(
(R∗ ∪ {v}) \ (B ∪ S)

)
and the total score of those not including v is∑

S⊆A

(−1)|S| · ŵi

(
R∗ \ (B ∪ S)

)
.

These give the unnormalized probability masses for choos-
ing whether to include v into A or B. After R∗ \ (A ∪ B)
is of size at most |R∗|/2, we can iterate over all potential
parent sets Di ⊆ R∗∪{j} with A ⊆ Di and Di∩B = ∅ in
O(2n/2n) time. Similarly, the inclusion–exclusion formulas
take O(2n/2) time to evaluate as long as |A| ≤ n/2, which
clearly holds.

Algorithm 4: Fast Sampling

if the algorithm is called for the first time then
Compute ŵi(U) for all U ⊆ N and i ∈ N ;
Compute h(U) for all U ⊆ N with |U | ≤ n/2;
Compute g(U) for all U ⊆ N with |U | ≤ n/2;
Compute q(U) for all U ⊆ N with |U | = n/2;

Draw U proportionally to q(U);
Call Algorithm 1 with R0 = N \ U ;
Call Algorithm 2 with V = N \ U ;
Call Algorithm 3 on the sampled DAG D and U ;
if D is rejected then

Restart the algorithm;
return D;

Finally, we need to consider the impact of having to restart
the algorithm because of some DAGs appearing in multiple
sets D(U). At worst, a DAG can be in the set D(U) for
each U , which happens with an empty graph. Consequently,
the worst-case expected time requirement for sampling is
O(23n/2n) = O(2.829n), which occurs if the only positive
local scores are for empty parent sets. More formally,

Theorem 3. DAG SAMPLING can be solved in expected
running time O(2.829n).

Fortunately, the number of duplicates is much smaller on
average over all DAGs, which we will prove next. After that,
we give empirical evidence that similar holds even when the
parent sets are more constrained. Recall that D encodes a
partial order P . Let ij ∈ P if there is a directed path from
i to j in D. This relation is reflexive, antisymmetric, and
transitive. An ideal I ⊆ N of a DAG is a subset of nodes
such that if j ∈ I and ij ∈ P , then i ∈ I . In other words,
the ancestors of a node in the ideal must also be in the ideal.
If D ∈ D(U), then N \ U is an ideal of D.

Lemma 4. As n tends to infinity, the DAGs of n nodes have
fewer than 1.742 ideals of size n/2 on average.

Proof. Let G(n) be the number of DAGs of n nodes. These
values obey an asymptotical formula

G(n) ∼ C2(
n
2)n!(−α)−n

with α ≈ −1.488 and C ≈ 1.741 given by Stanley [1973].

Observe that there are 2n
2/4 possible subsets of edges from

N \ U to U . Thus, the average number of ideals is

G(|N |)−1
∑
U⊆N

|U |=n/2

2n
2/4 ·G(|U |) ·G(|N \ U |).

As n increases, G(n)−1G(n/2)2 approaches

C ·
(

n

n/2

)−1

2−n2/4 ,

and so the average tends to C < 1.742.

Insisting that every node in U has a parent slightly reduces
the number of restarts. DAGs with fewer than n/2 nodes
with parents are handled as a special case: if U is the set of
nodes with parents, then the total score of such DAGs is ∏

i∈N\U

wi(∅)

 ∑
∅̸=R1⊆U

f(R1, U)
∏
i∈R1

ŵi(N \ U) .

It should be noted that most DAGs are dense, so they will
dominate the sum in computing the average over all DAGs.
On the other hand, most score functions penalize large par-
ent sets. Still, the average-case analysis gives us hope that
the worst-case complexity might not be what occurs in prac-
tice. We proceed to verify this empirically.

4 EMPIRICAL RESULTS

We start by discussing implementation details. Then, we
report the results from our experiments.

4.1 NUMERICAL STABILITY

Efficient implementation of the presented algorithms re-
quires the use of subtraction, which may lead to issues with
numerical stability like catastrophic cancellation. The po-
tential issue with stability was observed by Talvitie et al.
[2019], and although they were able to make the computa-
tion monotone, the preprocessing time and the space com-
plexity increased significantly as a consequence.

On the other hand, if the numerical operations are per-
formed over integers of sufficiently many bits, we can avoid

1564

Table 2: Preprocessing times of the algorithms and the average times for sampling one network structure, reported in seconds.

(a) Uniform sampling with randomized potential parent sets.

Talvitie et al. [2019] this paper
n Preprocessing Sampling Preprocessing Sampling

15 1 · 100 1 · 10−2 5 · 10−1 3 · 10−4

16 4 · 100 2 · 10−2 2 · 100 4 · 10−4

17 1 · 101 5 · 10−2 4 · 100 8 · 10−4

18 3 · 101 1 · 10−1 1 · 101 1 · 10−3

19 1 · 102 3 · 10−1 3 · 101 2 · 10−3

20 3 · 102 6 · 10−1 1 · 102 2 · 10−3

21 1 · 103 1 · 100 3 · 102 5 · 10−3

(b) Weighted sampling with parent sets of size at most 2.

Talvitie et al. [2019] this paper
n Preprocessing Sampling Preprocessing Sampling

15 1 · 100 1 · 10−2 6 · 10−1 1 · 10−3

16 4 · 100 3 · 10−2 2 · 100 2 · 10−3

17 1 · 101 6 · 10−2 5 · 100 4 · 10−3

18 4 · 101 1 · 10−1 2 · 101 5 · 10−3

19 1 · 102 3 · 10−1 4 · 101 1 · 10−2

20 3 · 102 6 · 10−1 1 · 102 2 · 10−2

21 1 · 103 1 · 100 4 · 102 4 · 10−2

stability issues. Notice that each D(U) is of size at most(
(n/2)!

)2
2n(n−1)/2 and there are roughly 2n sets U . Let-

ting M = maxi maxDi wi(Di) be the largest local score,
we get that we need at most

log2

((
(n/2)!

)2
2n(n+1)/2 ·Mn

)
= O(n2 + n logM)

bits for representing any of the numbers.

If floating point numbers are preferred, there are several
potential ways of mitigating stability issues, with the most
obvious one being the use of numbers with more bits. Alter-
natively, one may look into rounding the local scores into
integers to then perform the rest of the computations exactly.
The best method likely varies depending on the use case and
the local scores of the instance. However, a more detailed
analysis of numerical stability and rounding techniques are
out of the scope of the present work, as implementing them
is an engineering task of its own.

4.2 IMPLEMENTATIONS

We compare our Algorithm 4 against the Algorithm 1 of
Talvitie et al. [2019]. Since no publicly available imple-
mentation of the latter exists, we have implemented both
algorithms in C++. Although the algorithms seem numeri-
cally stable when implemented with floating point numbers
based on a small-scale experiment (Appendix A), we instead
use 512-bit integers in the following experiments to ensure
that both of them sample from the same posterior distribu-
tion. Because we restrict ourselves to integer-valued local
scores for a fair comparison of the algorithms, we cannot
evaluate them on the common benchmark instances.

The implementations used up to 10 GB of memory out of
the available 16 GB. See supplementary materials for source
codes and instructions on compiling the programs.

4.3 RESULTS

We next present the results of our experiments. In the first
one, we consider sampling DAGs from a uniform distri-

bution with a randomized family of potential parent sets.
More precisely, each local score is assigned either 0 or 1
uniformly at random. For each n = 15, 16, . . . , 21, Table 2
reports the preprocessing time and the time for drawing one
(accepted) sample as an average time over hundred samples.
We see that our method draws samples up to two orders of
magnitude faster than the algorithm of Talvitie et al. [2019]
and achieves lower preprocessing time.

The average number of ideals of size n/2 increases as the
maximum allowed number of parents of the nodes is de-
creased. In our second experiment, we bound the parent set
size to 2, and pick random 8-bit scores for the parent sets.
Like expected, sampling becomes slower for our algorithm
as seen in Table 2b, but the rejection sampling method is
still 10–30 times faster with the ratio increasing in n.

5 CONCLUDING REMARKS

We presented the first algorithm for sampling DAGs with
the base of the exponent less than 3 in its time complexity.
The result was achieved by considering a family of subsets
of DAGs obtained by partitioning the set of nodes into two
halves. The attentive reader may wonder if this is optimal:
could a better complexity be achieved by partitioning the
nodes unevenly or into more sets? Unfortunately, the an-
swer seems to be negative. For partitions of varying size, the
precomputation cost of either the values of h or g increases,
leading to a worse complexity. On the other hand, partition-
ing the nodes into more than two sets often increases the
amount of duplicate counting.

One potential method for improving the running time would
be to discover a combinatorial upper bound for the total
score of DAGs and then apply rejection sampling in a
self-reducible manner—an approach that has worked in
perfect sampling of weighted permutations [Huber, 2006].
Other open questions relate to mitigating the impact of non-
monotone computation to numerical stability: does a mono-
tone algorithm of similar complexity exist, or could for
example rounding techniques be utilized without impacting
the distribution of DAGs too much?

1565

Acknowledgements

Research partially supported by Research Council of Fin-
land, Grant 351156.

References

Mark Bartlett and James Cussens. Integer linear program-
ming for the bayesian network structure learning problem.
Artif. Intell., 244:258–271, 2017.

Andreas Björklund, Thore Husfeldt, Petteri Kaski, and
Mikko Koivisto. Fourier meets Möbius: Fast subset con-
volution. In Proceedings of the Thirty-Ninth Annual ACM
Symposium on Theory of Computing, STOC 2007, pages
67–74. ACM, 2007.

Yetian Chen, Lingjian Meng, and Jin Tian. Exact Bayesian
learning of ancestor relations in Bayesian networks. In
Proceedings of the Eighteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2015,
volume 38 of Proceedings of Machine Learning Research,
pages 174–182. JMLR.org, 2015.

David Maxwell Chickering. Learning Bayesian networks is
NP-complete. In Learning from Data: Artificial Intelli-
gence and Statistics V, pages 121–130. Springer, 1995.

Ralf Eggeling, Jussi Viinikka, Aleksis Vuoksenmaa, and
Mikko Koivisto. On structure priors for learning Bayesian
networks. In Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statistics,
AISTATS 2019, volume 89 of Proceedings of Machine
Learning Research, pages 1687–1695. PMLR, 2019.

Nir Friedman and Daphne Koller. Being Bayesian about
network structure. A Bayesian approach to structure dis-
covery in Bayesian networks. Mach. Learn., 50(1-2):
95–125, 2003.

Marco Grzegorczyk and Dirk Husmeier. Improving the
structure MCMC sampler for Bayesian networks by in-
troducing a new edge reversal move. Mach. Learn., 71
(2-3):265–305, 2008.

Juha Harviainen and Mikko Koivisto. Revisiting Bayesian
network learning with small vertex cover. In Proceed-
ings of the Thirty-Ninth Conference on Uncertainty in
Artificial Intelligence, UAI 2023. PMLR, 2023.

Ru He, Jin Tian, and Huaiqing Wu. Structure learning in
Bayesian networks of a moderate size by efficient sam-
pling. J. Mach. Learn. Res., 17:1–54, 2016.

David Heckerman, Dan Geiger, and David Maxwell Chick-
ering. Learning Bayesian networks: The combination
of knowledge and statistical data. Mach. Learn., 20(3):
197–243, 1995.

Mark Huber. Exact sampling from perfect matchings of
dense regular bipartite graphs. Algorithmica, 44(3):183–
193, 2006.

Robert Kennes and Philippe Smets. Computational aspects
of the mobius transformation. In Proceedings of the Sixth
Annual Conference on Uncertainty in Artificial Intelli-
gence, pages 401–416, 1990.

Mikko Koivisto. Advances in exact Bayesian structure
discovery in Bayesian networks. In Proceedings of the
Twenty-Second Conference in Uncertainty in Artificial In-
telligence, UAI 2006, pages 241–248. AUAI Press, 2006.

Mikko Koivisto and Antti Röyskö. Fast multi-subset trans-
form and weighted sums over acyclic digraphs. In Pro-
ceedings of the Seventeenth Scandinavian Symposium
and Workshops on Algorithm Theory, SWAT 2020, vol-
ume 162 of LIPIcs, pages 29:1–29:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

Mikko Koivisto and Kismat Sood. Exact Bayesian structure
discovery in Bayesian networks. J. Mach. Learn. Res., 5:
549–573, 2004.

Daphne Koller and Nir Friedman. Probabilistic Graphical
Models - Principles and Techniques. MIT Press, 2009.
ISBN 978-0-262-01319-2.

Jack Kuipers and Giusi Moffa. Uniform random generation
of large acyclic digraphs. Stat. Comput., 25(2):227–242,
2015.

Jack Kuipers and Giusi Moffa. Partition MCMC for infer-
ence on acyclic digraphs. J. Am. Stat. Assoc., 112(517):
282–299, 2017.

David Madigan and Jeremy York. Bayesian graphical mod-
els for discrete data. Int. Stat. Rev., 65:215–232, 1995.

Sascha Ott, Seiya Imoto, and Satoru Miyano. Finding opti-
mal models for small gene networks. In Proceedings of
the Pacific Symposium on Biocomputing, pages 557–567,
2004.

Johan Pensar, Topi Talvitie, Antti Hyttinen, and Mikko
Koivisto. A Bayesian approach for estimating causal
effects from observational data. In Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, pages 5395–5402. AAAI Press, 2020.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauf-
fenburger, and Garry P. Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data.
Science, 308(5721):523–529, 2005.

Tomi Silander and Petri Myllymäki. A simple approach for
finding the globally optimal Bayesian network structure.
In Proceedings of the Twenty-Second Conference in Un-
certainty in Artificial Intelligence, UAI 2006. AUAI Press,
2006.

1566

Ajit Singh and Andrew Moore. Finding optimal Bayesian
networks by dynamic programming. Technical report,
Carnegie Mellon University, School of Computer Science,
2005.

Richard P. Stanley. Acyclic orientations of graphs. Discret.
Math., 5(2):171–178, 1973.

Topi Talvitie, Aleksis Vuoksenmaa, and Mikko Koivisto.
Exact sampling of directed acyclic graphs from modular
distributions. In Proceedings of the Thirty-Fifth Confer-
ence on Uncertainty in Artificial Intelligence, UAI 2019,
volume 115 of Proceedings of Machine Learning Re-
search, pages 965–974. AUAI Press, 2019.

Jin Tian and Ru He. Computing posterior probabilities of
structural features in Bayesian networks. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artifi-
cial Intelligence, UAI 2009, pages 538–547. AUAI Press,
2009.

Frank Yates. The design and analysis of factorial experi-
ments. In Technical Communication 35. Commonwealth
Bureau of Soil Science, 1937.

Changhe Yuan, Brandon M. Malone, and XiaoJian Wu.
Learning optimal Bayesian networks using A* search.
In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, IJCAI 2011, pages
2186–2191. AAAI Press, 2011.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P.
Xing. DAGs with NO TEARS: Continuous optimization
for structure learning. In Advances in Neural Information
Processing Systems 31, NeurIPS 2018, pages 9492–9503,
2018.

1567

Faster Perfect Sampling of Bayesian Network Structures
(Supplementary Material)

Juha Harviainen1 Mikko Koivisto1

1Department of Computer Science, University of Helsinki, Helsinki, Finland

A EXPERIMENT ON STABILITY

To get an intuition of the numerical stability, we ran a small experiment with a commonly used benchmark network of 11
nodes of Sachs et al. [2005]. The (non-pruned) BDeu local scores are computed from 1000 data points generated from the
ground truth. We compare the posterior distributions of three instantiations of different algorithms: the implementation by
Talvitie et al. [2019] of their monotone algorithm with sampling time O(2nn), our implementation of the non-monotone
Algorithm 1 of Talvitie et al. [2019], and our Algorithm 4 based on rejection sampling.

Each instantiation was used to draw 10000 DAGs from the posterior distribution, whose scores were then plotted as a
histogram in Figure 2. To check the consistency of the results, we repeated the experiment three times, illustrated by the
shaded bars in the plot. The distributions obtained by both non-monotone instantiations are close to the monotone one,
which suggests numerical stability with at least this benchmark instance. The stability on larger networks remains uncertain,
since running the monotone algorithm quickly becomes infeasible as the number of nodes increases.

Figure 2: The distribution of the scores of DAGs sampled from the posterior distribution.

1568

mailto:<juha.harviainen@helsinki.fi>?Subject=Your UAI 2024 paper

	Introduction
	Preliminaries
	Bayesian Networks
	Zeta Transform
	Counting
	Sampling

	Faster Sampling
	Sampling Sinks
	Application to Ancestral Constraints

	Split in Two Halves

	Empirical Results
	Numerical Stability
	Implementations
	Results

	Concluding Remarks
	Experiment on Stability

