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Abstract

Structural Causal Models (SCMs) are an important
tool in causal inference. They induce a graph and if
the graph is acyclic, a unique observational distri-
bution. A standard result states that in this acyclic
case, the induced observational distribution satis-
fies a d-separation global Markov property relative
to the induced graph. Time series can also be mod-
elled like SCMs: One just interprets the stochas-
tic difference equations that a time series solves
as structural equations. However, technical prob-
lems arise when time series "start" at minus infinity.
In particular, a d-separation global Markov prop-
erty for time series and the corresponding infinite
graphs, the so-called full time graphs, has thus far
only been shown for stable vector autoregressive
processes with independent finite-second-moment
noise. In this paper, we prove a much more general
version of this Markov property. We discuss our
assumptions and study violations of them. Doing
so hints at several pitfalls at the intersection of time
series analysis and causal inference. Moreover, we
introduce a new projection procedure for these infi-
nite graphs which might be of independent interest.

1 INTRODUCTION

Structural Causal Models (SCMs), also known as Structural
Equation Models (SEMs), are widely used in causal infer-
ence [Pearl, 2009, Peters et al., 2017, Bongers et al., 2021].
An SCM consists of finitely many exo- and endogeneous
random variables, a joint probability distribution over the ex-
ogeneous random variables, and assignment functions that
causally relate the random variables to each other. SCMs
induce a graph where each variable is represented by a node
and each direct causal relation by a directed edge. When
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the induced graph is acyclic, an SCM induces a unique ob-
servational distribution [Bongers et al., 2021, Proposition
3.4]. A standard result states that in this acyclic case, the
induced observational distribution satisfies a d-separation
global Markov property relative to the induced graph (The-
orem 1.4.1 in Pearl [2009] combined with Proposition 4
in Lauritzen et al. [1990]). This result, also known as the
causal Markov property, allows one to read off conditional
independencies from the induced graph and hence is highly
important for SCM-based causal reasoning.

SCMs frequently rely on independent and identically dis-
tributed (i.i.d.) observations. However, many real-world ob-
servations are not i.i.d. and instead come as time series. Nev-
ertheless, one can still model many time series like SCMs:
One just interprets the stochastic difference equations that
time series often solve as structural equations. This approach
runs under various names and assumptions: Structural vec-
tor autoregressive (SVAR) processes [Demiralp and Hoover,
2003, Hyvärinen et al., 2010, Moneta et al., 2011, Malinsky
and Spirtes, 2018, Pamfil et al., 2020], additive nonlinear
time series causal models [Chu et al., 2008], time series
models with independent noise [Peters et al., 2013, 2017],
vector autoregressive (VAR) processes [Dahlhaus and Eich-
ler, 2003, Eichler, 2010, Entner and Hoyer, 2010, Thams
et al., 2022], structural causal processes Runge [2020] or
just SCMs [Gerhardus and Runge, 2020].

When the time points t are in some finite index set I , no
new technical difficulties arise and one can directly translate
the stochastic difference equations into structural equations.
Similarly in the case t ∈ N≥0: Even though the stochastic
difference equations continue infinitely to the future, the
fact that one can push-forward a given distribution over the
noise variables still allows for a typical SCM-like interpreta-
tion. Technically more problematic is the case t ∈ Z: Here,
the stochastic process "starts" at −∞. Therefore, it is not
immediately clear what the induced distribution of a "time-
series SCM" is. In fact, the stochastic difference equations
might have no solution, one solution or several solutions.
Moreover, these solutions might behave quite differently
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and carry quite different causal interpretations: For example,
solutions might depend on future noise variables, which
does not fit well to the idea that causes precede their effect.

One might be tempted to just ignore the case t ∈ Z. How-
ever, several reasons speak against doing so (especially
when modelling equilibriums): First, thinking about stochas-
tic difference equations that continue infinitely to the past
is often more convenient than to additionally also think
about initial distributions. Second, the notion of stationarity,
on which most of the existing time series literature relies
[Fan and Yao, 2003, Lütkepohl, 2005, Brockwell and Davis,
2009, among others], fits much more naturally to t ∈ Z:
When time series do not "start" at −∞, then they usually
only converge to a stationary state instead of always being
in it (unless one particularly crafts initial distributions).

In this paper, we focus on one particular issue for t ∈ Z:
In spirit of Theorem 1.4.1 in Pearl [2009], we show that
certain solutions of stochastic difference equations satisfy
a d-separation global Markov property with respect to the
induced infinite graph when t ∈ Z. To the best of our knowl-
edge, such a result has so far only been shown for stable
vector autoregressive (VAR) processes with independent
finite-second-moment noise [Thams et al., 2022].1 We also
discuss the required assumptions and study violations of
them. Doing so hints at several pitfalls at the intersection
of time series analysis and causal inference. Moreover, we
thus also provide a better theoretical foundation for much
existing and future work.

We structure our paper as follows: In Section 2, we intro-
duce our notation and setup. Section 3 is about proving the
global Markov property. In Section 4, we show that our
result applies to stable VAR processes with independent
finite-second-moment noise that has a density with respect
to Lebesgue measure. In Section 5, we provide a conclu-
sion and an outlook. The Supplementary Material (SM)
contains several of our proofs and further lemmas.

We require that the reader is familiar with basic terminology
from causal inference. In particular, we use concepts such as
graphs, d- and m-separation, conditional independence and
SCMs. For a brief overview of graphs, d- and m-separation,
see Section A in the SM, and for further reference see Peters
et al. [2017], Pearl [2009] and Richardson [2003].

1Such a result also appears in Dahlhaus and Eichler [2003].
However, as also remarked by an anonymous reviewer, Dahlhaus
and Eichler [2003] apply a result for finite graphs, namely the
AMP Markov property from Andersson et al. [2001], to infinite
graphs without giving further justification on why this is possible.

Besides, there are also several Markov properties for finite graph-
ical representations of time series, see, e.g., Eichler [2012].

2 SETUP

In Section 2.1, we introduce notation that is relevant to the
main paper (Section B.1 in the SM contains further notation
that is just relevant to the SM). In Section 2.2, we connect
causality and stochastic difference equations and introduce
several concepts along the way. In that section, we also for-
mally state the d-separation global Markov property. Finally,
Section 2.3 focuses on further technical assumptions that
we need in order to prove the d-separation global Markov
property.

2.1 NOTATION

For two sets A and B, we write A × B to denote their
Cartesian product. We write Z to denote the integers. For
some d ∈ {0, 1, . . .}, we write N≥d to denote the set {d, d+
1, . . .}. For some k ∈ N≥1 and some set A, we write Ak to
denote the k-times Cartesian product A× . . .×A. For some
k ∈ N≥1, we write [k]1 to abbreviate the set {1, . . . , k}.
Similarly, for some k ∈ N≥0, we write [k]0 to abbreviate
the set {0, . . . , k}. For some k ∈ N≥1 and sets A1, . . . , Ak,
we write Πi∈[k]1Ai to denote the set A1×. . .×Ak, similarly
for some k ∈ N≥0. To denote a vector with potentially more
than one component (with respect to some base space), we
use bold font.

For random vectors X and Y that are defined on the same
underlying probability space (Ω,F , P ), we write PXY to
denote the joint distribution of X and Y . For the marginal
distributions of X and Y , we write PX and PY , respec-
tively. To denote unconditional independence between X
and Y , we write X ⊥⊥ Y . To denote conditional indepen-
dence between X and Y given some further random vector
Z, we write X ⊥⊥ Y | Z. In slight abuse of notation,
we consider a set A of random vectors as a random vector
whose components are the in some way ordered elements of
A. Correspondingly, we write these sets of random vectors
in bold font as well.

For the graphical part, we follow the convention that a vertex
v is never a parent or a child of itself (unless there is a self-
edge, which we do not consider in this paper). However, we
follow the convention that a vertex v is always an ancestor
or a descendant of itself. Moreover, for two vertices a and b,
we write a∗−∗b to represent a→ b, a← b and a↔ b all at
once. For more details and more precise explanations, see
Section A in the SM.

2.2 CAUSALITY AND STOCHASTIC
DIFFERENCE EQUATIONS

Let (Ω,F , P ) be a probability space and let d ∈ N≥1. For
all i ∈ [d], let (Xi,Σ

X
i ) and (Ei,Σϵ

i) be measurable spaces
such that all Xi and all Ei are either real finite-dimensional
vector spaces or finite discrete sets and such that ΣX

i and Σϵ
i
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are the corresponding Borel σ-algebras. We consider a given
exogeneous noise process {ϵt}t∈Z := {(ϵ1t , . . . , ϵdt )}t∈Z
and a given endogeneous process {Xt}t∈Z := {(X1

t , . . .
, Xd

t )}t∈Z. Here, each Xi
t and each ϵit is a random variable

defined on (Ω,F , P ) and taking values in (Xi,Σ
X
i ) respec-

tively (Ei,Σϵ
i). Similarly to existing work [Peters et al.,

2013, Thams et al., 2022], we assume that

• (A0): {ϵt}t∈Z is an i.i.d. process with independent
components, that is, the distribution of any finite subset
of {ϵit : i ∈ [d], t ∈ Z} factorizes into its individual
components and each ϵt has the same distribution.2

We further assume that {(Xt, ϵt)}t∈Z is a solution of
given stochastic difference equations: For each i ∈ [d]1,
let qi ∈ N≥0 be a fixed number (which is the order of
the stochastic difference equation for Xi

t ). Now, for each
i ∈ [d]1 and for each s ∈ [qi]0, let PAi

s denote a tuple of
fixed component time series, say the first and second compo-
nent time series, and let Xpais denote the corresponding prod-
uct space. Furthermore, write Xpai :=

∏
s∈[qi]0

Xpais and
let (PAi

s)t−s denote the respective component time series
evaluated at time point t− s. 3 Additionally, for all i ∈ [d]1,
let fi : Xpai × Ei → Xi be a measurable function. Now, for
all i ∈ [d] and t ∈ Z, we assume that {(Xt, ϵt)}t∈Z solves
P -almost surely the stochastic difference equation

Xi
t = fi

(
(PAi

qi)t−qi , . . . , (PAi
0)t, ϵ

i
t

)
. (1)

Remark 1. On the distribution level, a solution
{(Xt, ϵt)}t∈Z or for simplicity {Xt}t∈Z corresponds to
the collection of all joint and marginal distributions of the
respective random vectors.

A causal interpretation: So far, the stochastic difference
equation in (1) is just "algebraic". One can give (1) a causal
interpretation by saying that all non-superfluous variables on
the right hand-side of the equation cause the variable on the
left-hand side of the equation. In resemblance to SCMs, one
can emphasize this structural character of (1) by replacing
the "=" with a ":=". In the next definition, we formally
introduce the notion of non-superfluous random variables
which we from now on call causal parents [Bongers et al.,
2021, c.f. Definition 2.6].

Definition 1 (Causal parent). For i, j ∈ [d]1 and s, t ∈ Z,
we call Xj

s a (causal) parent of Xi
t if and only if there does

not exist a measurable function4 f̃i : Xpai\Xj
s
× Ei → Xi

2Note that the factorization assumption is equivalent to all
finite subsets of {ϵit : i ∈ [d], t ∈ Z} being mutually independent.
Also note that Assumption (A0) does not state that two different
components ϵit and ϵjt need to have the same distribution.

3This notation is partly from Peters et al. [2013] and Chapter
10 of Peters et al. [2017].

4The notation Xpai\Xj
s

means that the space corresponding to

such that for Pϵit
-almost every e ∈ Ei and for all x ∈ Xpai ,

Xi
t := fi

(
x, e

)
⇐⇒ Xi

t := f̃i
(
x\Xj

s
, e
)
.

We similarly define parentship of a noise variable ϵjt on Xi
t .

One can graphically represent (1) using the (augmented) full
time graph.

Definition 2 ((Augmented) full time graph). The full time
graph is an infinite graph with vertex set {Xi

t : t ∈ Z, i ∈
[d]1}.5 The full time graph only has directed edges: There is
a directed edge from Xj

s to Xi
t if and only if Xj

s is a causal
parent of Xi

t .

The augmented full time graph consists of further vertices
{ϵit : t ∈ Z, i ∈ [d]1} and a directed edge from ϵit to Xi

t if
the former is a causal parent of the latter.

Remark 2. In our setting, there never is a directed edge
from Xj

s to Xi
t when s > t. Moreover, there never is a

directed edge from ϵis to Xi
t when s ̸= t.

Remark 3. As long as Assumption (A1) below is satisfied,
we allow contemporaneous edges in the full time graph, that
is, edges between vertices at the same time point (the term
(PAi

0)t in Equation (1) hints at this option).

Example 1. Consider a stochastic process {ϵt}t∈Z =
{ϵ1t , ϵ2t}t∈Z satisfying (A0). In addition, consider a stochas-
tic process {Xt}t∈Z = {X1

t , X
2
t }t∈Z satisfying

X1
t := 0.4 ·X1

t−1 + 0.2 ·X2
t−2 + ϵ1t and

X2
t := 0.3 ·X2

t−1 + ϵ2t . (2)

Figure 1 shows the full time graph and the augmented full
time graph.

Acyclicity assumption: For the remainder of the paper, we
assume that

• (A1): the full time graph does not contain directed
cycles.

Note that directed cycles in the full time graph (and hence
in the augmented full time graph) never occur when there
are no contemporaneous edges.

A global Markov property: For SCMs whose induced
graph is a DAG (and who by definition have finitely many
variables), the induced observational distribution satisfies

Xj
s is removed from Xpai . Similarly, for x ∈ Xpai , writing x\Xj

s

means that the element corresponding to Xj
s is removed.

5For notational simplicity, we do not make a distinction be-
tween random variables and their representation by vertices in the
(augmented) full time graph. For us, variables = vertices.
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Figure 1: The full time graph (left) and the augmented full time graph (right) from Example 1. The ". . ." indicate that nodes
and edges repeat infinitely to the past and future. We used color for better clarity.

a d-separation global Markov property with respect to the
induced graph (Theorem 1.4.1 in Pearl [2009] combined
with Proposition 4 in Lauritzen et al. [1990]). In this paper,
we show that such a result also holds for the distributions of
{Xt}t∈Z respectively {(Xt, ϵt)}t∈Z and the corresponding
(augmented) full time graph. In the next theorem, we present
this result; we defer the remaining technical assumptions to
Section 2.3.

Theorem 1 (A global Markov property for solutions of
stochastic difference equations and the corresponding (aug-
mented) full time graphs). Every solution of the stochastic
difference equations in (1) that satisfies (A0)–(A4) is glob-
ally Markov in a d-separation sense with respect to the
full time graph. That is, for any finite disjoint index sets
J1, J2, J3 ⊆ [d]1 × Z such that S3 := {Xi

t : (i, t) ∈ J3}
d-separates S1 := {Xi

t : (i, t) ∈ J1} and S2 := {Xi
t :

(i, t) ∈ J2} in the full time graph, S1 ⊥⊥ S2 | S3.

An analogous result including noise variables {ϵit : t ∈
Z, i ∈ [d]1} holds for the augmented full time graph.

2.3 FURTHER TECHNICAL ASSUMPTIONS

Further technical assumptions: In this paper, we further
assume that

• (A2): {Xt}t∈Z is strictly stationary6, that is, all distri-
butions of finitely many vectors are time shift-invariant,

• (A3): {Xs}s≤t is independent of {ϵs}s>t for all t ∈ Z
(meaning that all finite subsets of these two sets are
independent), and

• (A4): {Xt}t∈Z is α-strongly mixing, that is,

α(m) := sup
A∈A0, B∈Am

|P (A ∩B)− P (A)P (B)|

m→∞
−→ 0

6The part of Assumption (A0) which states that each ϵt has
the same distribution ensures that Assumption (A2) can hold for
non-pathological cases. However, this part of (A0) is not required
for the proofs.

where A0 := σ(Xt : t ≤ 0) and Am := σ(Xt : t ≥
m).7

Discussion of the assumptions: We decided to make as-
sumptions that often appear in the time series (and causal in-
ference) literature and from thereon prove the global Markov
property.

Assumptions similar to (A2), so other forms of stationarity,
are common in the time series literature [Brockwell and
Davis, 2009, Fan and Yao, 2003, among others] and the
time series causal inference literature [Malinsky and Spirtes,
2018, Pamfil et al., 2020, among others]. Furthermore, ex-
isting Markov properties for time series also assume some
form of stationarity [Dahlhaus and Eichler, 2003, Eichler,
2012, Thams et al., 2022]. Strict stationarity in particular,
so Assumption (A2), is the most natural stationarity-notion
for the nonlinear setting as other weaker notions such as
covariance stationarity neglect higher moments [Fan and
Yao, 2003, Section 2.1.1]. The existing Markov property
closest to our work from Thams et al. [2022] implicitly also
assumes strict stationarity as we explain in Section 4.

Also note that nonstationarity is usually better modelled by
allowing the functions in equation (1) to be time-variant
instead of considering "artificial" nonstationary solutions to
time-invariant equations. So while stationarity (in whatever
form) is a strong assumption and many real-world time
series arguably violate it, stationarity within the realm of
our time-invariant difference equations looks rather natural.
The strong assumption rather is equation (1); we consider it
future work to generalize it.

Assumption (A3) is also common in the time series litera-
ture and as we argue in Section 4, implicitly made by Thams
et al. [2022]. Assumption (A3) states that noise variables
only influence present and future instances of {Xt}t∈Z.
Processes that do not satisfy assumption (A3) are known as
"non-causal" or "future-dependent" [Brockwell and Davis,
2009, Section 3.1]. Note that a violation of (A3) also imme-

7Due to Assumption (A2), namely strict stationarity, we could
take any other reference point than 0 (see, e.g., Bradley [2005] for
this statement and Lemma 5 in the SM for a formal proof).
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diately implies a violation of the global Markov property for
the augmented full time graph. Besides, Assumption (A3)
fits well to the existing causal inference literature: In SCMs,
noise variables also only influence endogeneous variables
further down the causal chain.

Lastly, Assumption (A4) is typical in the nonlinear time
series literature and used to prove several limit theorems
[Fan and Yao, 2003, Section 2.6]. Assumption (A4) states
that past and future instances of {Xt}t∈Z are asymptoti-
cally independent. In terms of the functions fi, the mix-
ing condition roughly states that the noise variables play a
non-negligible role. Assumption (A4) is thus similar to the
structural minimality assumption from the causal inference
literature [Bongers et al., 2021, Definition 2.10]. In compar-
ison to other mixing conditions, Assumption (A4) is rather
weak [Bradley, 2005]: Many other mixing conditions imply
α-strong mixing. Besides, as we will see in Section 4 and
further discuss in Remark 6, α-strong mixing is also implic-
itly assumed by Thams et al. [2022] if the noise variables
have a density with respect to Lebesgue measure.

Establishing mixing conditions is rather difficult. However,
there are several papers that prove mixing conditions for var-
ious processes [Ibragimov and Rozanov, 1978, Mokkadem,
1988, Chan and Tong, 1994, Xia and An, 1999, Cline and
Pu, 1999, Bradley, 2005, among others].

Assumption violations: We now illustrate that one gen-
erally requires assumptions similar to (A3) and (A4) to
ensure that a d-separation global Markov property holds:
We present counterexamples for which just one assumption
is violated while the other assumptions are satisfied. Do-
ing so shows that none of Assumptions (A0)–(A4) alone
suffices to establish a d-separation global Markov property.8

Violation of Assumption (A3):9 Let ϕ ∈ R with |ϕ| > 1.
Furthermore, let ϵt := {ϵ1t , ϵ2t}t∈Z be a stochastic process
satisfying (A0) and where each ϵt has the same bivariate
Gaussian distribution with mean zero and identity covari-
ance matrix. Define the stochastic process {Xt}t∈Z :=
{X1

t , X
2
t }t∈Z for each t ∈ Z by

X1
t = −

∞∑
i=1

ϕ−i(ϵ1t+i + ϵ2t+i−1) and

X2
t = ϵ2t . (3)

Note that {ϕ−i}i∈N≥1
is absolutely summable and hence

X1
t , interpreted as a limit in mean-square, exists and is

uniquely defined up to P -nullsets [Lütkepohl, 2005, Sec-
tion C.3]. Also note that Assumption (A3) is violated: For

8For (A2), we are not able to write down such a counterexam-
ple — for the examples we could think of at least one of the other
assumptions was also always violated (see Example 2 in the SM
for one such example).

9See Example 3 in the SM for a numerical illustration of this
assumption violation.

example, just consider the covariance between X1
t and ϵ2t+1

which equals −ϕ−2 to see that X1
t and ϵ2t+1 are dependent.

Some calculations (see Lemma 4 in the SM) show that
{Xt}t∈Z and {ϵt}t∈Z solve the stochastic difference equa-
tions

X1
t = ϕ ·X1

t−1 +X2
t−1 + ϵ1t and

X2
t = ϵ2t (4)

P -almost surely for all t ∈ Z. There are clearly no
contemporaneous edges in the induced full time graph,
so Assumption (A1) holds. To verify the other assump-
tions, we define time reversed processes {X̃t}t∈Z and
{ϵ̃t}t∈Z by (X̃1

t , X̃
2
t ) = (X1

−t,−X2
−t−1/ϕ) and (ϵ̃1t , ϵ̃

2
t ) =

(−ϵ1−t+1/ϕ,−ϵ2−t−1/ϕ). Again, some calculations (see
Lemma 4 in the SM) show that {X̃t}t∈Z and {ϵ̃t}t∈Z satisfy
the VAR stochastic difference equations

X̃1
t =

1

ϕ
X̃1

t−1 + X̃2
t−1 + ϵ̃1t and

X̃2
t = ϵ̃2t

P -almost surely for all t ∈ Z. Clearly, {ϵ̃t}t∈Z is bivari-
ate Gaussian with mean zero and diagonal covariance ma-
trix. Moreover, {X̃t}t∈Z is a stable VAR process with in-
dependent Gaussian noise which implies that {X̃t}t∈Z is
strictly stationary [Lütkepohl, 2005, p.16 and Proposition
2.1]. Therefore, {Xt}t∈Z is strictly stationary and so As-
sumption (A2) is satisfied.

Furthermore, Mokkadem [1988] shows that {X̃t}t∈Z is α-
strongly mixing, which, together with Assumption (A2),
implies that {Xt}t∈Z is α-strongly mixing, so Assumption
(A4) is satisfied (see Lemmas 6 and 7 in the SM for a formal
proof of this implication).

In the corresponding full time graph, X1
t and X2

t+1 are
d-separated by the empty set, however, X1

t depends on
X2

t+1 = ϵ2t+1. Thus, the d-separation global Markov prop-
erty for this solution of (4) and the full time graph does not
hold.

Violation of Assumption (A4):

Take any two random variables Z1 and Z2 that are dependent
and take any {ϵt}t∈Z that satisfies Assumption (A0) and
{ϵt}t∈Z ⊥⊥ (Z1, Z2). Define {Xt}t∈Z by

X1
t = Z1 and

X2
t = Z2.

One can see that {Xt}t∈Z and {ϵt}t∈Z satisfy the stochastic
difference equations

X1
t = X1

t−1 and

X2
t = X2

t−1. (5)

One can also see that Assumption (A1) holds because the in-
duced full time graph clearly contains no contemporaneous
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edges. Also, by construction, Assumptions (A2) and (A3)
hold. However, Assumption (A4) does not hold because
every α(m) is lower bounded by supA∈ΣX

1 ,B∈ΣX
2
|P (Z1 ∈

A, Z2 ∈ B) − P (Z1 ∈ A)P (Z2 ∈ B)| which is positive
because Z1 and Z2 are dependent.

In the corresponding full time graph, X1
t and X2

t are d-
separated by the empty set, however, by construction, they
are dependent. Thus, the d-separation global Markov prop-
erty for this solution of (5) and the full time graph does not
hold.

3 PROVING THE GLOBAL MARKOV
PROPERTY

In Section 3.1, we define finite graphs that represent the
stochastic processes {Xt}t∈Z and {(Xt, ϵt)}t∈Z in a given
finite-length time interval. In the same section, we then show
that the distribution of {Xt}t∈Z respectively {(Xt, ϵt)}t∈Z
in this finite-length time interval is globally Markov in an
m-separation sense with respect to the corresponding finite
graph. Finally, we show in Section 3.2 that d-separation in
the (augmented) full time graph implies m-separation in
these finite graphs.

Our proof thus works as follows: A d-separation statement
in the (augmented) full time graph implies an m-separation
statement in a certain finite graph (Lemma 3). Due to the
m-separation global Markov property (Lemma 2), the re-
spective conditional independence holds.

3.1 FINITE CUTOFF GRAPHS

We now define cutoff graphs and augmented cutoff graphs.

Definition 3 ((Augmented) (t0, n)-cutoff graph). Write
q := maxi∈[d]1 qi. For given t0 ∈ Z and n ∈ N≥0,
the (t0, n)-cutoff graph is a finite graph with vertex set
{Xi

t : t ∈ [t0 − n − q, t0] ∩ Z, i ∈ [d]1}. The (t0, n)-
cutoff graph has directed and bidirected edges: There is a
directed edge from Xj

s to Xi
t if and only if t ≥ t0 − n and

Xj
s is a causal parent of Xi

t . Moreover, there is a bidirected
edge between Xj

s and Xi
t if and only if s, t < t0 − n and

Xj
s and Xi

t have a common ancestor in the full time graph
(which might equal Xj

s or Xi
t ).

The augmented (t0, n)-cutoff graph consists of further ver-
tices {ϵit : t ∈ [t0 − n, t0] ∩ Z, i ∈ [d]1} and a directed
edge from ϵit to Xi

t if the former is a causal parent of the
latter.

Remark 4. These cutoff graphs very much look like a finite
version of the (augmented) full time graph: The directed
edges in the (augmented) (t0, n)-cutoff graph are exactly as
the directed edges in the (augmented) full time graph that
point to a vertex in [t0 − n, t0]. Only the edges with both
endpoints in the interval [t0 − n− q, t0 − n− 1] differ.

We now introduce some terminology that applies both to
{Xt}t∈Z and {ϵt}t∈Z: For given t0 ∈ Z and n ∈ N≥0,
we call the variables in the interval [t0 − n − q, t0 − n −
1] auxiliary variables. Also, we call the variables in the
interval [t0 − n, t0] proper variables. Furthermore, we call
the variables in the interval (−∞, t0 − n− q − 1] ancient
variables and in the interval [t0 + 1,∞) future variables.

Example 1. (continued) Let t0 ∈ Z and n = 2. The
auxiliary variables that are represented in the (augmented)
(t0, n)-cutoff graph are X1

t0−4, X1
t0−3, X2

t0−4 and X2
t0−3.

The proper variables that are represented in the (augmented)
(t0, n)-cutoff graph are X1

t0−2, X1
t0−1, X1

t0 , X2
t0−2, X1

t0−1,
X1

t0 (and ϵ1t0−2, ϵ1t0−1, ϵ1t0 , ϵ2t0−2, ϵ1t0−1, ϵ1t0). The (aug-
mented) (t0, 2)-cutoff graph is as in Figure 2.

Districts and dependence: One can write every proper
variable as a function of the auxiliary variables and noise
variables. Thus, to understand m-separation between proper
variables in a cutoff graph, it is crucial to understand m-
separation between the auxiliary variables. Similarly, to
understand the dependence structure between the proper
variables, it is crucial to understand the dependence structure
between the auxiliary variables.

To understand m-separation between the auxiliary variables,
the notion of districts is important [Richardson, 2003, Sec-
tion 3]. Districts are the connected components into which
one can partition the auxiliary variables of a cutoff graph:
Two auxiliary variables are in the same connected com-
ponent if and only if there is a path between them in the
respective cutoff graph just consisting of bidirected edges.

As an important sub-result, we first show that each district is
independent of the other districts. As we will see later, this
sub-result then enables us to prove a global m-separation
Markov property for the (augmented) (t0, n)-cutoff graph
and the corresponding distribution. The following lemma
leads us to this sub-result.

Lemma 1 (Extended Reichenbach’s common cause prin-
ciple for (augmented) full time graphs). Let Assumptions
(A0)–(A4) hold. Let J1, J2 ⊆ [d]1 × Z be finite disjoint
index sets and define S1 := {Xi

t : (i, t) ∈ J1} and
S2 := {Xi

t : (i, t) ∈ J2}. If S1 and S2 are dependent,
then S1 and S2 have a common ancestor in the full time
graph (which might be in either S1 or S2).

Proof. We here just provide a proof idea, for the details see
Section B.2 in the SM.

Notational remark: For ∆ ∈ N≥0, let S1,∆ and S2,∆ be
the sets of variables that are constructed by time-shifting
all elements of S1 respectively S2 by ∆ time steps to the
future.

Proof by contraposition: Suppose that S1 and S2 are depen-
dent but do not have a common ancestor in the full time
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Figure 2: (t0, 2)-cutoff graph (left) and augmented (t0, 2)-cutoff graph (right) from Example 1.

graph. Now because of the acyclicity assumption (A1), for
all ∆ ∈ N≥0, we can write S1,∆ and S2,∆ as functions
of the auxiliary and noise variables (with respect to some
t0 ∈ Z and n ∈ N≥0 such that all elements of S1,∆ and
S2,∆ are proper). Dependence between S1,∆ and S2,∆ can
just be due to dependence between the auxiliary variables,
because otherwise, either Assumption (A3) would be vio-
lated or S1,∆ and S2,∆, and hence, S1 and S2 would have a
common ancestor in the full time graph, contradiction. Thus,
schematically, the dependence between S1,∆ and S2,∆ is
the dependence between S1,∆ and the auxiliary variables
combined with the dependence between S2,∆ and the aux-
iliary variables. Now, α-strong mixing implies that the de-
pendence strength between S1,∆ respectively S2,∆ and the
auxiliary variables, and thus, the dependence strength be-
tween S1,∆ and S2,∆ eventually decreases for large enough
∆. That fact, however, is a contradiction, because by strict
stationarity the dependence strength between S1,∆ and S2,∆

is the same as that between S1 and S2 for all ∆ ∈ N≥0.

Lemma 1 immediately implies that each district is indepen-
dent of the other districts: If this fact had not been true, then
there would be a common ancestor between at least two
districts in the (augmented) full time graph and hence, a
bidirected edge between two districts in the (augmented)
(t0, n)-cutoff graph. This bidirected edge implies that these
two separate districts are in the same district, contradiction.

Equipped with this fact about districts, we now prove an
m-separation global Markov property for the (augmented)
(t0, n)-cutoff graph and the corresponding distribution.

Lemma 2 (Global m-separation Markov property for the
(augmented) (t0, n)-cutoff graphs and corresponding dis-
tributions). For all t0 ∈ Z and for all n ∈ N≥0, a global
m-separation Markov property holds for the (t0, n)-cutoff
graph and corresponding distribution of {Xt}t∈Z. That is,
for any finite disjoint index sets J1, J2, J3 ⊆ [d]1×([t0−n−
q, t0] ∩ Z) such that S3 := {Xi

t : (i, t) ∈ J3}m-separates
S1 := {Xi

t : (i, t) ∈ J1} and S2 := {Xi
t : (i, t) ∈ J2} in

the (t0, n)-cutoff graph, S1 ⊥⊥ S2 | S3.

An analogous result for the augmented (t0, n)-cutoff graph
and corresponding distribution of {(Xt, ϵt)}t∈Z .

Proof. We here again just provide a proof idea, for the de-
tails see Section B.3 in the SM.

The proof is similar to the proof for SCMs with mutually
independent exogeneous variables [Pearl, 2009, Janzing and
Schölkopf, 2010]: First, we prove an m-separation local
Markov property for the augmented (t0, n)-cutoff graph
[Richardson, 2003, Section 3]. This local Markov property
requires us to show that a proper vertex is independent of its
nondescendants without its parents given its parents. This
case works as in the original SCM-proof and is rather imme-
diate. Moreover, we need to show that an auxiliary vertex is
independent of its nondescedants given the other auxiliary
variables in its district (roughly speaking). As one can write
the nondescedants of that auxiliary vertex as a function of
the other auxiliary vertices, this independence question boils
down to whether separate districts are independent of each
other. Lemma 1 answers that question.

Now, this local Markov property implies an m-separation
global Markov property for the augmented graph and cor-
responding distribution [Richardson, 2003, Theorem 2]. Fi-
nally, because each noise variable is only adjacent to at most
one endogeneous variable, we conclude that m-separation
in the not-augmented graph implies m-separation in the
augmented graph. From this fact, the m-separation global
Markov property for the not-augmented graph follows.

3.2 d-SEPARATION IN THE FULL TIME GRAPH
IMPLIES m-SEPARATION IN THE FINITE
CUTOFF-GRAPHS

In the following lemma, we show that d-separation in the
(augmented) full time graph implies m-separation in all
sufficiently large (augmented) cutoff graphs.

Lemma 3. Let Assumptions (A0)–(A4) hold. For any finite
disjoint index sets J1, J2, J3 ⊆ [d]1 × Z such that S3 :=
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{Xi
t : (i, t) ∈ J3} d-separates S1 := {Xi

t : (i, t) ∈ J1}
and S2 := {Xi

t : (i, t) ∈ J2} in the full time graph, it holds
that S3 m-separates S1 and S2 in all (t0, n)-cutoff graphs
for which all occuring vertices are proper.

An analogous result including noise variables ϵit holds true
for the augmented full time graph and the augmented cutoff-
graphs.

Proof. The following proof both works for the non-
augmented and augmented case: Let t0 ∈ Z and n ∈ N≥0

be such that all elements of S1, S2 and S3 are proper.

Proof by contraposition: Assume that S1 and S2 are m-
connected given S3 in the (augmented) (t0, n)-cutoff graph.
Then, there exists an m-connecting path πt0,n between S1

and S2 given S3 in the (augmented) (t0, n)-cutoff graph.
We now construct a d-connecting path π between S1 and S2

given S3 in the (augmented) full time graph: All directed
edges and all vertices incident to these directed edges are
copied from πt0,n to π. All remaining auxiliary vertices
in πt0,n are also taken to π. The bidirected edges between
two auxiliary vertices in πt0,n are replaced by collider-free
subpaths which only consist of auxiliary and ancient vertices
(which is possible by construction of these bidirected edges);
it does not matter which particular subpaths one takes.

The proper vertices in π are distinct because the proper
vertices in πt0,n are distinct and because the collider-free
subpaths that replace the bidirected edges do not contain
proper vertices. However, the auxiliary and ancient vertices
in π are not necessarily distinct. To make π a path, we
repeatedly apply the following procedure until all vertices
in π are unique: Take some non-distinct auxiliary or ancient
vertex v in π (the order of the non-distinct vertices does not
matter). Delete all vertices and corresponding edges after
the first occurence of v in π until the last occurence of v in π.
Then, stitch together the two remaining parts of π. That is,
if u∗−∗v is the edge corresponding to the first occurence of
v and v∗−∗w is the edge corresponding to the last occurence
of v, then π will contain the triplet u∗−∗v∗−∗w with all
vertices and edges in between deleted.

If v is a collider in u∗−∗v∗−∗w, so u → v ← w, then v
is an ancestor of a vertex ṽ in the (augmented) full time
graph such that ṽ is a collider in πt0,n: The vertex v is
only non-unique in the initial (so before deletion) π if it
occurs on at least two of the collider-free common ancestor
subpaths. Consider the two collider-free common ancestor
subpaths corresponding to the first and last occurence of v in
the initial π, and consider the two corresponding bidirected
edges ũ1 ↔ ũ2 and w̃1 ↔ w̃2 (see Figure 3a for a schematic
illustration). Without loss of generality, assume that πt0,n

first visits ũ2, then ũ1, then w̃1 (which might equal ũ1) and
then w̃2. Suppose now that v is not an ancestor of ũ1 in
the (augmented) full time graph. Then, on the collider-free
subpath from ũ2 to ũ1, the initial π first comes to v and then

to u (Figure 3b), because otherwise, there would either not
be the edge u→ v or v would be an ancestor of ũ1 (note that
both v and u occur exactly once on the collider-free subpath
between ũ2 and ũ1 because that subpath is a path). Thus,
the last edge before the first occurence of v is not u → v
(in Figure 3b it is v → r ̸= u) and hence, after deletion, the
triplet u∗−∗v∗−∗w cannot occur in π, contradiction. Thus,
v is an ancestor of ũ1 (Figure 3c). In πt0,n, the vertex ũ1

is either incident to another bidirected edge (Figure 3d), in
which case it is a collider, or it is connected to w̃1 via a path
containing proper vertices and thus, at least one collider
(Figure 3e). In the first case, let ṽ := ũ1, in the second case,
let ṽ be the first collider on πt0,n occuring after ũ1.

We now show that no triplet a∗−∗b∗−∗c in π is d-blocked by
S3.
Case 1: b is a proper vertex: In this case, a and c are proper
or auxiliary vertices as there are no edges from ancient to
proper vertices. Thus, a, b and c exist in the (augmented)
(t0, n)-cutoff graph. The edges between a, b and c in the
(augmented) full time graph are exactly as the edges between
a, b and c in the (augmented) (t0, n)-cutoff graph because
edges incident to a proper vertex are always directed. Also,
a∗−∗b∗−∗c occurs in πt0,n by construction of π. Hence, b is
a collider in this triplet in π if and only if b is a collider in
this triplet in πt0,n.

If b is a collider in this triplet in πt0,n, then a descendant of
b in the (augmented) (t0, n)-cutoff graph is in S3. Hence, a
descendant of b in the (augmented) full time graph is in S3.
If b is a non-collider in this triplet in πt0,n, then b /∈ S3.

Case 2: b is an auxiliary or ancient vertex: Note that S3

only contains proper vertices, so b /∈ S3. Thus, if b is a non-
collider in a∗−∗b∗−∗c in π, then a∗−∗b∗−∗c is not d-blocked
by S3. If b is a collider in a∗−∗b∗−∗c in π, then a and c are
also auxiliary or ancient. Moreover, b is either at the end-
respectively startpoint of two collider-free common ancestor
subpaths, in which case b is incident to two bidirected edges
and hence a collider in πt0,n (see Figure 4a), or b has been
introduced when applying the above-mentioned procedure
for removing non-unique vertices (see Figure 4b). In the first
case, b has a descendant in S3 in the (augmented) (t0, n)-
cutoff graph and thus in the (augmented) full time graph.
In the latter case, as already illustrated in Figure 3 and the
corresponding paragraph, b is an ancestor of a vertex b̃ in
the (augmented) full time graph such that b̃ is a collider in
πt0,n. Because b̃ has a descendant in S3 in the (augmented)
(t0, n)-cutoff graph, b̃ and hence b has a descendant in S3

in the (augmented) full time graph.

4 APPLICATION TO VAR PROCESSES

In this section, we illustrate that (A0)–(A4) hold for stable
finite-order VAR processes with independent finite-second-
moment noise that has a density with respect to Lebesgue
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measure (in Remark 6 we compare these assumptions to
Thams et al. [2022]). For the basics on VAR processes, we
refer to Chapter 2 and Section C.3 of Lütkepohl [2005].

Let q ∈ N≥0 be the order of the VAR process. Let {ϵt}t∈Z
be a stochastic process satisfying (A0) and for which Pϵt

has mean zero, finite second moments, and is absolutely
continuous with respect to Lebesgue measure. Moreover,
consider Rd×d-matrices A(1), . . . ,A(q) which satisfy the
stability condition, that is, for which det(Id − A(1)λ −
A(2)λ2 − · · · − A(q)λp) = 0 implies |λ| > 1. Now, let
{Xt}t∈Z be a stochastic process such that

Xt = A(1)Xt−1 + . . .+A(q)Xt−q + ϵt (6)

P -almost surely for all t ∈ Z.

By definition, {Xt}t∈Z is a stable VAR process and thus has
a moving average (MA) representation which just depends
on past and present noise terms: That is, one can write
Xt =

∑∞
i=0 Φiϵt−i where each Φi ∈ Rd×d and such that

{(Φi)k,l}i∈N≥0
is absolutely summable for all k, l ∈ [d]1.

Here, the infinite sum is meant as a limit in mean-square
which is uniquely defined up to P -nullsets.

This MA representation allows us to verify Assumption
(A2): By Assumption (A0), for all finite index sets J ⊆ Z
and for all N ∈ N≥0, the joint distribution of {ϵt−i : t ∈
J, i ∈ [N ]0} is time-shift invariant. Therefore, for all finite
index sets J ⊆ Z and for all N ∈ N≥0, the distribution
of {

∑N
i=0 Φiϵt−i : t ∈ J} is also time-shift invariant.

Because these individual sums converge in mean-square,
{
∑N

i=0 Φiϵt−i : t ∈ J} also converges in mean square
and thus in distribution to {Xt : t ∈ J}. Therefore, the
distribution of {Xt : t ∈ J} is also time-shift invariant (see
Lemma 9 in the SM for a formal proof of this implication).

The MA representation also allows us to verify Assumption
(A3): By Assumption (A0), for all finite index sets J ⊆ Z
and for all N ∈ N≥0, the set {ϵt−i : t ∈ J, i ∈ [N ]0} is
independent of any set of ϵt-variables that lie strictly in its
future. Thus, also {

∑N
i=0 Φiϵt−i : t ∈ J} is independent

of any set of ϵt-variables that all lie strictly in its future. By
Lemma 8 in the SM, the same also holds for {Xt : t ∈ J}.

Assumptions (A1) and (A4) are more immediate: (A1) fol-
lows because the full time graph does not have contempora-
neous edges. (A4) follows from Mokkadem [1988].

Remark 5. There are stationary nonstable VAR processes
for which the global Markov property does not hold — just
recall our example for a violation of Assumption (A3) from
Section 2.3. To see that this 2-dimensional VAR(1) process
is not stable, note that

A(1) =

(
ϕ 1
0 0

)
and thus, det(Id −A(1)λ) = (1− λϕ). Because (1− λϕ)
has the root λ = 1/ϕ and because |ϕ| > 1 by assumption,
this VAR(1) process is not stable.

Remark 6. The global Markov property for VAR processes
from Thams et al. [2022] requires stability and finite second
moments and independence of the noise variables, as we do.
As explained in Section 4 above, these assumptions together
with equation (6) imply Assumptions (A0)–(A3).

However, Thams et al. [2022] do not require that Pϵt is
absolutely continuous with respect to Lebesgue measure,
which we do (but only for VAR processes and not for our
general result!). We only need absolute-continuity to es-
tablish α-strong mixing (note that there are stable VAR
processes for which this absolute-continuity assumption
does not hold and which are not strongly mixing [Doukhan,
1994, Section 2.3]). Thams et al. [2022] get around this
absolute-continuity assumption because they directly em-
ploy the moving average representation of VAR processes
in their proof. For nonlinear processes, such a moving aver-
age representation is typically not available, and a natural
generalization are mixing assumptions [Fan and Yao, 2003,
Section 2.6]. Our absolute-continuity assumption for VAR
processes thus seems to be inherent to the more general
nonlinear setting we consider.

5 CONCLUSION AND OUTLOOK

In this paper, we proved a d-separation global Markov prop-
erty for certain solutions of stochastic difference equations
and the corresponding (augmented) full time graphs when
t ∈ Z. To the best of our knowledge, we presented the most
general version of this result so far. The assumptions we
made are natural and typical in the causal inference and
time series literature. Furthermore, we illustrated why such
assumptions are needed by investigating assumption vio-
lations. Our work is thus relevant whenever one causally
models time series with t ∈ Z — a case that naturally arises
when modelling equilibriums, for example.

In the future, loosening the assumptions, especially strict
stationarity (A2), would be good. Here, we imagine that our
result for the stationary case helps in establishing results for
the nonstationary case as nonstationarity is often reduced to
the stationary case (e.g., by assuming piecewise stationar-
ity or by considering transformations of the nonstationary
time series). One could also study the notion of faithfulness
or even introduce the notion of time series SCMs and de-
fine what interventions and counterfactuals mean, similar in
spirit to Bongers et al. [2021].
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ũ1

ũ2

w̃2

w̃1?

?

(c)

v

u

w

ũ1 =: ṽ
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Figure 3: Schematic illustrations for the proof of Lemma 3: These schematic plots illustrate bidirected edges in the cutoff-
graph and the snippets in the full time graph that replace them. Here, red edges/paths just occur in the (augmented) full time
graph, blue edges/paths just in the (augmented) cutoff graph, and purple edges/paths appear in both. Also, stands for
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Figure 4: Schematic illustration for Case 2 in the proof of Lemma 3. The notation is as in Figure 3. Further explanations are
again given in the proof.

1707



References

Steen A. Andersson, David Madigan, and Michael D. Perl-
man. Alternative markov properties for chain graphs.
Scandinavian journal of statistics, 28(1):33–85, 2001.

Stephan Bongers, Patrick Forré, Jonas Peters, and Joris M
Mooij. Foundations of structural causal models with
cycles and latent variables. The Annals of Statistics, 49
(5):2885–2915, 2021.

Richard C. Bradley. Basic properties of strong mixing con-
ditions. a survey and some open questions. Probability
Surveys, 2:107–144, 2005.

Peter J. Brockwell and Richard A. Davis. Time Series:
Theory and Methods. Springer Science & Business Media,
New York, USA, 2009.

Kung-Sik Chan and Howell Tong. A note on noisy chaos.
Journal of the Royal Statistical Society: Series B (Method-
ological), 56(2):301–311, 1994.

Tianjiao Chu, Clark Glymour, and Greg Ridgeway. Search
for additive nonlinear time series causal models. Journal
of Machine Learning Research, 9(32):967–991, 2008.

Daren B. H. Cline and Huay-min H. Pu. Geometric ergod-
icity of nonlinear time series. Statistica Sinica, pages
1103–1118, 1999.

Rainer Dahlhaus and Michael Eichler. Causality and graph-
ical models in time series analysis. In Peter J. Green,
Nils Lid Hjort, and Sylvia Richardson, editors, Highly
Structured Stochastic Systems, pages 115–137. Oxford
University Press, 2003.

Selva Demiralp and Kevin D Hoover. Searching for the
causal structure of a vector autoregression. Oxford Bul-
letin of Economics and statistics, 65:745–767, 2003.

Paul Doukhan. Mixing: Properties and Examples. Springer,
New York, NY, 1994.

Rick Durrett. Probability: theory and examples, volume 49.
Cambridge university press, 2019.

Michael Eichler. Graphical gaussian modelling of multivari-
ate time series with latent variables. In Proceedings of the
Thirteenth International Conference on Artificial Intelli-
gence and Statistics, pages 193–200. JMLR Workshop
and Conference Proceedings, 2010.

Michael Eichler. Graphical modelling of multivariate time
series. Probability Theory and Related Fields, 153:233–
268, 2012.

Doris Entner and Patrik O. Hoyer. On causal discovery
from time series data using fci. Proceedings of the 5th
European Workshop on Probabilistic Graphical Models,
pages 121–128, 2010.

Jianqing Fan and Qiwei Yao. Nonlinear Time Series: Non-
parametric and Parametric methods, volume 20. Springer,
2003.

Rina Foygel, Jan Draisma, and Mathias Drton. Half-trek
criterion for generic identifiability of linear structural
equation models. The Annals of Statistics, pages 1682–
1713, 2012.

Andreas Gerhardus and Jakob Runge. High-recall causal
discovery for autocorrelated time series with latent con-
founders. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 12615–12625. Curran Associates,
Inc., 2020.

Paul R. Halmos. Measure Theory. Springer, New York,
Berlin, Heidelberg, 1974.

Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, and Patrik O
Hoyer. Estimation of a structural vector autoregression
model using non-gaussianity. Journal of Machine Learn-
ing Research, 11(5), 2010.

Ildar Abdulovich Ibragimov and Yurii Antolevich Rozanov.
Gaussian random processes. Springer Science & Busi-
ness Media, 1978.

Dominik Janzing and Bernhard Schölkopf. Causal inference
using the algorithmic markov condition. IEEE Transac-
tions on Information Theory, 56(10):5168–5194, 2010.

Steffen L. Lauritzen, Philip A. Dawid, B.N. Larsen, and
Hans-Georg Leimer. Independence properties of directed
markov fields. NETWORKS, 20:491–505, 1990.

Helmut Lütkepohl. New Introduction to Multiple Time Se-
ries Analysis. Springer Science & Business Media, Berlin,
Heidelberg, New York, 2005.

Daniel Malinsky and Peter Spirtes. Causal structure learning
from multivariate time series in settings with unmeasured
confounding. In Thuc Duy Le, Kun Zhang, Emre Kıcı-
man, Aapo Hyvärinen, and Lin Liu, editors, Proceedings
of 2018 ACM SIGKDD Workshop on Causal Discovery,
volume 92, pages 23–47. PMLR, 2018.

Abdelkader Mokkadem. Mixing properties of ARMA pro-
cesses. Stochastic Processes and their Applications, 29
(2):309–315, 1988.

Alessio Moneta, Nadine Chlaß, Doris Entner, and Patrik
Hoyer. Causal search in structural vector autoregressive
models. In Florin Popescu and Isabelle Guyon, editors,
Proceedings of the Neural Information Processing Sys-
tems Mini-Symposium on Causality in Time Series, vol-
ume 12, pages 95–114, Vancouver, Canada, 2011. PMLR.

1708



Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai,
Philip Pilgerstorfer, Konstantinos Georgatzis, Paul Beau-
mont, and Bryon Aragam. Dynotears: Structure learning
from time-series data. In Silvia Chiappa and Roberto Ca-
landra, editors, Proceedings of the Twenty Third Interna-
tional Conference on Artificial Intelligence and Statistics,
volume 108, pages 1595–1605. PMLR, 2020.

Judea Pearl. Causality. Cambridge University Press, Cam-
bridge, UK, 2nd edition, 2009.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.
Causal inference on time series using restricted structural
equation models. In Christopher J.C. Burges, Léon Bot-
tou, Max Welling, Zoubin Ghahramani, and Kilian Q.
Weinberger, editors, Advances in Neural Information Pro-
cessing Systems, volume 26, pages 154–162. Curran As-
sociates, Inc., 2013.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.
Elements of Causal Inference: Foundations and Learning
Algorithms. The MIT Press, Cambridge, MA, USA, 2017.

R Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Com-
puting, Vienna, Austria, 2020. URL https://www.
R-project.org/.

Thomas Richardson. Markov properties for acyclic directed
mixed graphs. Scandinavian Journal of Statistics, 30(1):
145–157, 2003.

Thomas Richardson and Peter Spirtes. Ancestral graph
markov models. The Annals of Statistics, 30(4):962–1030,
2002.

Jakob Runge. Discovering contemporaneous and lagged
causal relations in autocorrelated nonlinear time series
datasets. In Jonas Peters and David Sontag, editors, Pro-
ceedings of the 36th Conference on Uncertainty in Arti-
ficial Intelligence (UAI), volume 124 of Proceedings of
Machine Learning Research, pages 1388–1397. PMLR,
2020.
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A BASIC GRAPHICAL DEFINITIONS

In this section, we review some basic graphical notions that we use throughout paper. We mainly follow Richardson and
Spirtes [2002], Richardson [2003] and Foygel et al. [2012].

Mixed graphs: A mixed graph G is a tuple (V,D,B) where V is a set of countably many vertices and D,B ⊆ V × V are
the sets of directed and bidirected edges, respectively. For the set of directed edges D, we identify (v, w) ∈ D with v → w.
Note that (v, w) ∈ D does not necessarily imply (w, v) ∈ D. For the set of bidirected edges, (v, w) ∈ B if and only if
(w, v) ∈ B and we identify these two tuples with the bidirected edge v ↔ w. There are no self-loops in either the directed or
bidirected edge set, that is for all v ∈ V , it holds that (v, v) /∈ D ∪B. For an edge e = v → w or e = v ↔ w, we say that v
and w are incident to e and that e has endpoints v and w. If two vertices v and w are connected by a directed or bidirected
edge, then we say that v and w are adjacent. For a directed edge v → w, we also say that v points towards w. For a subset of
vertices A ⊆ V and a graph G, the induced subgraph GA has vertex set A and all edges from G with both endpoints in A.
If there is the edge v → w, then we call v a parent of w and w a child of v. For a vertex v, we abbreviate the set of all its
parents and all its childs by pa(v) and ch(v), respectively. For a set of vertices A ⊆ V , we define pa(A) :=

⋃
v∈A pa(v)

and ch(A) :=
⋃

v∈A ch(v).

Walks and paths: A walk π from a vertex v to another vertex w is a finite sequence of edges, that is, π = (e1, . . . , en)
for some n ∈ N≥0, such that there exists a sequence of (not necessarily distinct) vertices (v = v1, . . . , vn+1 = w) such
that the edge ei has endpoints vi and vi+1. If all vertices on π are distinct, then we call π a path. If n = 0, then we say
that π is trivial. A path π is called directed path if e1, . . . , en are directed and point from vi to vi+1. A path π is called a
directed cycle if π is a non-trivial directed path with v1 = vn+1. For two sets of vertices A,B ⊆ V , we say that there is a
path between them if there is a vertex v ∈ A and a vertex w ∈ B such that there is a path between v and w.

Ancestors and descendants: A vertex v is called an ancestor of another vertex w and w is called a descendant of v if v = w
or if there is a directed path from v to w. The set of all ancestors and descendants of a vertex v is denoted by an(v) and
dec(v), respectively. For a set of vertices A ⊆ V , we write an(A) :=

⋃
v∈A an(v) and dec(A) :=

⋃
v∈A dec(v). The set of

nondescendants nd(A) equals V \ dec(A). We say that two sets of vertices A and B have a common ancestor if there is a
vertex v that both has a descendant in A and a descendant in B.

Types of graphs: A mixed graph is called acyclic directed mixed graph (ADMG) if it does not contain directed cycles. If a
mixed graph does not contain bidirected edges, that is B = ∅, then in slight abuse of notation, we identify it with the tuple
(V,D) instead of (V,D, ∅) and call the graph a directed graph. If a directed graph does not contain directed cycles, then we
call it a directed acyclic graph (DAG).

Separation: Consider a given ADMG. A vertex v in a path π is a collider (in π) if it is not an endpoint of π and if the edges
in π to which v is incident to are either→ v ← or→ v ↔ or↔ v ← or↔ v ↔. We call v a non-collider in π if it is not an
endpoint of π and not a collider in π. We say that a path π between two vertices v and w is m-connecting given a third set of
vertices C for which v, w /∈ C if

• (Condition 1): every collider on π has a descendant in C and if
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• (Condition 2): every non-collider on π is not in C.

We say that a triplet u∗−∗v∗−∗w in π is m-connected given C if both (Condition 1) and (Condition 2) hold, otherwise,
we call that triplet m-blocked given C. We say that two sets of vertices A and B are m-connected given C if there is an
m-connecting path between them given C. If there is no m-connecting path π between A and B given C, then we say that
A and B are m-separated given C. If the ADMG is a DAG, then we call m-separation d-separation.

B PROOFS

B.1 FURTHER NOTATION

For a system of setsM, we write σ(M) for the generated σ-algebra ofM. For random vectors X1,X2, . . ., we write
σ(X1,X2, . . .) for the generated σ-algebra thereof. For two σ-algebras Σ1 and Σ2, we write Σ1 ⊗Σ2 to denote the product
σ-algebra of Σ1 and Σ2. For some fixed n ∈ N, we write Σ⊗n

1 to denote the n-times product σ-algebra Σ1 ⊗ . . . ⊗ Σ1.
For two probability spaces (Ω1,F1, P1) and (Ω2,F2, P2), we write P1 ⊗ P2 to denote the unique1 product measure on
(Ω1 × Ω2,F1 ⊗F2) that equals P1(E) · P2(F ) for all rectangular sets E × F where E ∈ Ω1 and F ∈ Ω2.

B.2 PROOF OF LEMMA 1

Proof. Notational remark: Let tmin(S1) and tmax(S1) be the minimal and maximal time indices of S1. Similarly, let tmin(S2)
and tmax(S2) be the respective indices for S2. Moreover, write (XS1

,ΣS1
) and (XS2

,ΣS2
) for the measurable spaces into

which S1 and S2 map, respectively. Also, write S1,∆ and S2,∆ for the time-shifted versions of S1 and S2, respectively: That
is, the sets S1,∆ and S2,∆ contain all variables from the original sets S1 and S2 time-shifted to the future by ∆ time steps.
Note that by construction and the fact that all time instances of a component time series map into the same measurable space,
(XS1,∆

,ΣS1,∆
) = (XS1

,ΣS1
) and (XS2,∆

,ΣS2,∆
) = (XS2

,ΣS2
), so we will always write (XS1

,ΣS1
) and (XS2

,ΣS2
).

Proof by contradiction: Assume that S1 and S2 are dependent but have no common ancestor in the full time graph. Let

ε := sup
A∈ΣS1

, B∈ΣS2

∣∣∣∣P(
S1 ∈ A, S2 ∈ B

)
− P

(
S1 ∈ A

)
P

(
S2 ∈ B

)∣∣∣∣.
By assumption, S1 and S2 are dependent, so ε > 0. Because {Xt}t∈Z is α-strongly mixing, α(m)→ 0 for m→∞. Thus,
there is an M ∈ N≥0 such that for all m ∈ N≥M it holds that α(m) < ε. Now, choose some ∆ ∈ N≥M . Furthermore,
choose n ∈ N≥0 and t0 ∈ Z such that tmin(S1) + ∆ = t0, such that min{tmin(S1), tmin(S2)} ≥ t0 − n, and such that
n ≥ ∆.

Because of the acyclicity assumption (A1), we can write S1,∆ and S2,∆ as functions of the auxiliary variables and noise
variables, that is

S1,∆ = g1(Xaux, ϵ1,→), and
S2,∆ = g2(Xaux, ϵ2,→).

Here, Xaux stands for the auxiliary variables (with respect to t0 and n) and ϵ1,→ and ϵ2,→ stand for all proper and future noise
variables that are ancestors of S1,∆ respectively S2,∆ in the full time graph. Moreover, let (Xaux,Σaux) and (E1,→,Σ1,→)
and (E2,→,Σ2,→) denote the corresponding measurable spaces. The functions g1 and g2 are measurable with respect to
(Xaux × E1,→,Σaux ⊗Σ1,→) and (Xaux × E2,→,Σaux ⊗Σ2,→), respectively, because g1 and g2 are each compositions of the
measurable functions fi.

Note that ϵ1,→ ⊥⊥ ϵ2,→ because otherwise by Assumption (A0), there needs to be a noise variable that is both in ϵ1,→ and
ϵ2,→, which would in turn imply that S1,∆ and S2,∆ have a common ancestor in the full time graph, which would imply
that S1 and S2 have a common ancestor in the full time graph, contradiction.

Moreover, by Assumption (A3) and because ϵ1,→ and ϵ2,→ only contain proper and future variables and hence occur strictly
after Xaux, it holds that (ϵ1,→, ϵ2,→) ⊥⊥Xaux. By the decomposition property of conditional independence2, it particularly
also holds that ϵ1,→ ⊥⊥Xaux.

1For uniqueness see Theorem B in §35 in Halmos [1974].
2See, e.g., Section 1.5 in Studenỳ [2018] for this and other properties of conditional independence.
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Therefore,

Pϵ2,→,ϵ1,→,Xaux = Pϵ2,→,ϵ1,→ ⊗ PXaux

= Pϵ2,→ ⊗ Pϵ1,→ ⊗ PXaux

= Pϵ2,→ ⊗ Pϵ1,→,Xaux ,

and thus, ϵ2,→ ⊥⊥ (ϵ1,→,Xaux) and hence, ϵ2,→ ⊥⊥ (S1,∆,Xaux).

Now, note that

sup
A∈ΣS1

, B∈ΣS2

∣∣∣∣P(
S1,∆ ∈ A,S2,∆ ∈ B

)
− P

(
S1,∆ ∈ A

)
P

(
S2,∆ ∈ B

)∣∣∣∣
= sup

A∈ΣS1
, B∈ΣS2

∣∣∣∣P(
S1,∆ ∈ A, g2(Xaux, ϵ2,→) ∈ B

)
− P

(
S1,∆ ∈ A

)
P

(
g2(Xaux, ϵ2,→) ∈ B

)∣∣∣∣
= sup

A∈ΣS1
, B∈ΣS2

∣∣∣∣P(
S1,∆ ∈ A, (Xaux, ϵ2,→) ∈ g−1

2 (B)

)
− P

(
S1,∆ ∈ A

)
P

(
(Xaux, ϵ2,→) ∈ g−1

2 (B)

)∣∣∣∣
= sup

A∈ΣS1
, B′∈Σaux⊗Σ2,→:

∃B∈ΣS2
: g−1

2 (B)=B′

∣∣∣∣P(
S1,∆ ∈ A, (Xaux, ϵ2,→) ∈ B′

)

− P

(
S1,∆ ∈ A

)
P

(
(Xaux, ϵ2,→) ∈ B′

)∣∣∣∣
≤ sup

A∈ΣS1
, B′∈Σaux⊗Σ2,→

∣∣∣∣P(
S1,∆ ∈ A, (Xaux, ϵ2,→) ∈ B′

)
− P

(
S1,∆ ∈ A

)
P

(
(Xaux, ϵ2,→) ∈ B′

)∣∣∣∣.

Here, the second last equality follows because g2 is measurable and thus {g−1
2 (B) : B ∈ ΣS2

} ⊆ Σaux ⊗ Σ2,→.

For an arbitrary y ∈ E2,→, define the y-section of B′ by B′
y := {x ∈ Xaux : (x, y) ∈ B′}. A standard result in measure

theory (see, e.g., Theorem A in §34 in Halmos [1974]) states that if B′ ∈ Σaux ⊗ Σ2,→, then B′
y ∈ Σaux for all y ∈ E2,→.

Now, because ϵ2,→ ⊥⊥ (S1,∆,Xaux), we have PS1,∆,Xaux,ϵ2,→ = PS1,∆,Xaux ⊗ Pϵ2,→ . Moreover, recall that probability
measures are σ-finite measures. Therefore, we can apply Theorem B in §35 in Halmos [1974] which yields

P

(
S1,∆ ∈ A, (Xaux, ϵ2,→) ∈ B′

)
− P

(
S1,∆ ∈ A

)
P

(
(Xaux, ϵ2,→) ∈ B′

)
=

∫
PS1,∆,Xaux(A×B′

y)dPϵ2,→(y)−
∫

PS1,∆
(A)PXaux(B

′
y)dPϵ2,→(y)

=

∫ (
PS1,∆,Xaux(A×B′

y)− PS1,∆
(A)PXaux(B

′
y)

)
dPϵ2,→(y).
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Therefore,

sup
A∈ΣS1

, B′∈Σaux⊗Σ2,→

∣∣∣∣P(
S1,∆ ∈ A, (Xaux, ϵ2,→) ∈ B′

)
− P

(
S1,∆ ∈ A

)
P

(
(Xaux, ϵ2,→) ∈ B′

)∣∣∣∣
= sup

A∈ΣS1
, B′∈Σaux⊗Σ2,→

∣∣∣∣ ∫ (
PS1,∆,Xaux(A×B′

y)

− PS1,∆
(A)PXaux(B

′
y)

)
dPϵ2,→(y)

∣∣∣∣
≤ sup

A∈ΣS1
, B′∈Σaux⊗Σ2,→

∫ ∣∣∣∣PS1,∆,Xaux(A×B′
y)

− PS1,∆
(A)PXaux(B

′
y)

∣∣∣∣dPϵ2,→(y)

≤ sup
A∈ΣS1

, B′∈Σaux⊗Σ2,→

∫
sup

A′∈ΣS1
, B′′∈Σaux

∣∣∣∣PS1,∆,Xaux(A
′ ×B′′)

− PS1,∆
(A′)PXaux(B

′′)

∣∣∣∣dPϵ2,→(y)

≤ sup
A∈ΣS1

, B′∈Σaux⊗Σ2,→

sup
A′∈ΣS1

, B′′∈Σaux

∣∣∣∣PS1,∆,Xaux(A
′ ×B′′)

− PS1,∆
(A′)PXaux(B

′′)

∣∣∣∣ · ∫ dPϵ2,→(y)

= sup
A′∈ΣS1

, B′′∈Σaux

∣∣∣∣PS1,∆,Xaux(A
′ ×B′′)− PS1,∆(A

′)PXaux(B
′′)

∣∣∣∣.
By construction, every variable in Xaux occurs before t0 − n and hence before t0 −∆. Also by construction, every variable
in S1,∆ occurs after tmin(S1) + ∆. Thus,

sup
A′∈ΣS1

, B′′∈Σaux

∣∣∣∣PS1,∆,Xaux(A
′ ×B′′)− PS1,∆(A

′)PXaux(B
′′)

∣∣∣∣.
≤ α(tmin(S1) + ∆− (t0 −∆))

= α(t0 − (t0 −∆))

= α(∆)

< ε.

This inequality is a contradiction, because by strict stationarity (Assumption (A2)), the distribution of (S1,S2) equals the
distribution of (S1,∆,S2,∆) and thus,

sup
A∈ΣS1

, B∈ΣS2

∣∣∣∣P(
S1,∆ ∈ A,S2,∆ ∈ B

)
− P

(
S1,∆ ∈ A

)
P

(
S2,∆ ∈ B

)∣∣∣∣
= ε.

B.3 PROOF OF LEMMA 2

Proof. Let t0 ∈ Z and n ∈ N≥0 be arbitrary but fixed.

Outline:

To prove Lemma 2, we follow a similar outline as the proof for SCMs with mutually independent exogeneous variables (see,
for example, Lemma 2 in Janzing and Schölkopf [2010] and Theorem 1.4.1 in Pearl [2009]):
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• First, we prove the ordered local m-separation Markov property [Richardson, 2003, Section 3] for the augmented
(t0, n)-cutoff graph and the corresponding distribution of {(Xt, ϵt)}t∈Z .

• Using Theorem 2 in Richardson [2003], we then obtain the global m-separation Markov property for the augmented
(t0, n)-cutoff graph and the corresponding distribution of {(Xt, ϵt)}t∈Z.

• From the global m-separation Markov property for the augmented case, we then deduct the global m-separation
Markov property for the not-augmented (t0, n)-cutoff graph and the corresponding distribution of {Xt}t∈Z.

Notation and terminology:

The notation and terminology in this proof largely follows Section 3 Richardson [2003]: Abbreviate the augmented (t0, n)-
cutoff graph byMa and the not-augmented (t0, n)-cutoff graph byM. Write ≺ to denote a total ordering of the variables
inMa such that x ≺ y implies that y /∈ an(x) (we call such an ordering consistent with respect toMa). Let

preMa,≺(x) := {v | v ≺ x or v = x}

and let the district of x be

disMa(x) := {v | v ↔ · · · ↔ x inMa or v = x}.

Note that decMa(x) ∩ preMa,≺(x) = {x}.

Let A be an ancestral set of vertices, that is, anMa(A) = A. Let x be a vertex in A such that no children of x inMa are in
A. Now, letMa

A denote the induced subgraph on A. The Markov blanket of a vertex x with respect to A, is defined as

mbMa(x,A) := paMa
A
(disMa

A
(x)) ∪ (disMa

A
(x) \ {x}).

The notation for the not-augmented graphM is analogous.

Goal:

We need to show that for all vertices x inMa and for any ancestral set A ⊆ preMa,≺(x) (which implies ch(A) ∩A = ∅)
with x ∈ A,

x ⊥⊥ A \ (mbMa(x,A) ∪ {x}) | mbMa(x,A).

Main proof:

Take any consistent ordering ≺ with respect toMa. Furthermore, take any ancestral set A such that A ⊆ preMa,≺(x) with
x ∈ A.

We now make the following case distinction.

Case 1: x is a proper non-noise vertex

Because x is a non-auxiliary vertex, we have disMa(x) = {x}. Thus, disMa
A
(x) ⊆ {x}. Because x ∈ A, the vertex x

occurs in the subgraphMa
A and thus, disMa

A
(x) = {x}.

Moreover, paMa
A
(x) ⊆ paMa(x). Because A is ancestral and x ∈ A, we have that paMa(x) ⊆ A, and hence all parents

of x occur as vertices inMa
A. Therefore, paMa

A
(x) = paMa(x). Hence, mbMa(x,A) = paMa(x).

Furthermore,

A \ paMa(x) ⊆ preMa,≺(x) \ paMa(x) ⊆ (ndMa(x) ∪ {x}) \ paMa(x). (7)

We can write x as a function of its parents (including the respective noise term). That is, for some measurable deterministic
function g, we can write

x = g
(
paMa(x)

)
.

Here, measurability follows because g equals one of the measurable fi’s. Now, using a standard fact about conditional
independence3, we get

paMa(x) ⊥⊥ ndMa(x) \ paMa(x) | paMa(x).

3This fact states that for random vectors X and Y , it holds that X ⊥⊥ Y | X , see, e.g., Definition 1.5.2 in Studenỳ [2018] and the
comment below this definition.
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Therefore,

g
(
paMa(x)

)
⊥⊥ ndMa(x) \ paMa(x) | paMa(x),

and hence,

x ⊥⊥ ndMa(x) \ paMa(x) | paMa(x).

Thus, by (7), the decomposition property of conditional independence4 and the fact that mbMa(x,A) = paMa(x),

x ⊥⊥ A \ (mbMa(x,A) ∪ {x}) | mbMa(x,A).

Case 2: x is a proper noise vertex

If x is a noise vertex, then x does not have a parent in Ma, so paMa(x) = ∅. Moreover, disMa(x) = {x}. Thus,
mbMa(x,A) = ∅.

One can write the nondescendants of x inMa as a deterministic function g of the auxiliary variables saux and the remaining
noise variables sϵ excluding x, that is ndMa(x) = g(saux, sϵ). Note that g is measurable because it is a composition of the
measurable fi’s. By Assumptions (A0) and (A3),

Px,sϵ,saux = Px,sϵ
⊗ Psaux

= Px ⊗ Psϵ
⊗ Psaux

= Px ⊗ Psϵ,saux

and thus,

x ⊥⊥ (saux, sϵ).

Therefore,

x ⊥⊥ g(saux, sϵ),

and hence,

x ⊥⊥ ndMa(x).

Because A ⊆ preMa,≺(x) ⊆ ndMa(x) ∪ {x}, the decomposition property of conditional independence together with
mbMa(x,A) = ∅ implies

x ⊥⊥ A \ (mbMa(x,A) ∪ {x}) | mbMa(x,A).

Case 3: x is an auxiliary vertex

Every vertex in the district of x has no parents; so mbMa(x,A) = disMa
A
(x)\{x}. Moreover, preMa,≺(x) ⊆ ndMa(x)∪

{x}.

One can write A \ {x} as a function g of all auxiliary ancestors saux of A \ {x} inMa and of all noise ancestors sϵ of
A \ {x} in Ma, that is A \ {x} = g(saux, sϵ). Note that x /∈ saux because A \ {x} ⊆ ndMa(x). Also note that g is
measurable because the fi’s are measurable. Furthermore, because A is ancestral, saux and sϵ are contained in A. Also, by
assumption, x ∈ A.

Now, suppose that

disMa
A
(x)⊥̸⊥ saux \ disMa

A
(x).

Then, by the extended Reichenbach common cause principle (Lemma 1), disMa
A
(x) and saux \ disMa

A
(x) have a common

ancestor in the full time graph. By construction of the augmented (t0, n)-cutoff graphMa, there thus is a bidirected edge
between some vertex in disMa

A
(x) and some vertex in saux \ disMa

A
(x) inMa. Because A contains both disMa

A
(x) and

4See, e.g., Section 1.5 in Studenỳ [2018] for this and other properties of conditional independence.
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saux \ disMa
A
(x), there hence is a bidirected edge between the two sets inMa

A. This fact, however, is a contradiction to the
definition of districts. Thus,

disMa
A
(x) ⊥⊥ saux \ disMa

A
(x). (8)

Therefore and because of Assumption (A3),

PdisMa
A
(x), saux\disMa

A
(x), sϵ = PdisMa

A
(x), saux\disMa

A
(x) ⊗ Psϵ

= PdisMa
A
(x) ⊗ Psaux\disMa

A
(x) ⊗ Psϵ

= PdisMa
A
(x) ⊗ Psaux\disMa

A
(x), sϵ

.

Thus,

disMa
A
(x) ⊥⊥ (saux \ disMa

A
(x), sϵ).

By the weak union property of conditional independence and the fact that x ∈ disMa
A
(x) by definition,

x ⊥⊥ (saux \ disMa
A
(x), sϵ) | (disMa

A
(x) \ {x}).

Also, from a standard property of conditional independence5,

x ⊥⊥ (disMa
A
(x) \ {x}) | (saux \ disMa

A
(x), sϵ,disMa

A
(x) \ {x}).

Thus, by the contraction property of conditional independence

x ⊥⊥ (saux, sϵ) | (disMa
A
(x) \ {x})

and therefore,

x ⊥⊥ g(saux, sϵ) | (disMa
A
(x) \ {x}).

Thus,

x ⊥⊥ A \ {x} | (disMa
A
(x) \ {x}).

Hence, due to the decomposition property of conditional independence and because mbMa(x,A) = disMa
A
(x) \ {x},

x ⊥⊥ A \ (mbMa(x,A) ∪ {x}) | mbMa(x,A).

Remaining proof:

Thus, we have shown the ordered local m-separation Markov property for the augmented (t0, n)-cutoff graph and cor-
responding distribution of {(Xt, ϵt)}t∈Z. As mentioned above, Theorem 2 in Richardson [2003] now yields the global
m-separation Markov property for the augmented (t0, n)-cutoff graph and corresponding distribution of {(Xt, ϵt)}t∈Z.

Now, for any sets of non-noise vertices S1, S2 and S3, note that S1 and S3 are m-separated inMa if and only if they are
m-separated inM because the noise variables are at most adjacent to one non-noise variable and thus no new paths between
S1 and S2 are created when consideringMa. Therefore, from the global m-separation Markov property for the augmented
graph follows the global m-separation Markov property for the not-augmented graph and corresponding distribution of
{Xt}t∈Z.

5This fact states that for random vectors X , Y , Z, it holds that X ⊥⊥ Y | (X,Z), see, e.g., Definition 1.5.2 in Studenỳ [2018] and
the comment below this definition.
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C FURTHER LEMMAS AND EXAMPLES

Example 2 (Violation of Assumption (A2)). Consider the stochastic difference equations in equation (4) with ϕ = 1 and
the stochastic processes {ϵt}t∈Z = {(ϵ1t , ϵ2t )}t∈Z and {Xt}t∈Z = {(X1

t , X
2
t )}t∈Z where each ϵt is normally distributed

with mean zero and identity covariance matrix, where X1
0 is standard normally distributed and independent of {ϵt}t∈Z, and

where the remaining variables of {Xt}t∈Z are generated by

X1
t+1 = X1

t +X2
t + ϵ1t+1 for t > 0,

X1
t = X1

t+1 −X2
t − ϵ1t+1 for t < 0, and

X2
t = ϵ2t for all t ∈ Z.

Note that these equations are not the stochastic difference equations, these are just the equations that define {Xt}t∈Z.

The process {(Xt, ϵt)}t∈Z is a solution of the stochastic difference equations in (4): For t > 0, this claim follows by
definition; for t ≤ 0, this claim follows from rearranging X1

t = X1
t+1 −X2

t − ϵ1t . One can also see that {Xt}t∈Z is not
strictly stationary: The variance of X1

1 equals 3, however, the variance of X1
0 equals just 1 by definition. Also note that

Assumption (A3) and the d-separation global Markov property are violated: We have

Cov(X1
−2, X

2
−1) = Cov(X1

−2, ϵ
2
−1)

= Cov(X1
−1 −X2

−2 − ϵ1−1, ϵ
2
−1)

= Cov(X1
−1 − ϵ2−2 − ϵ1−1, ϵ

2
−1)

= Cov(X1
−1, ϵ

2
−1)

= Cov(X1
0 −X2

−1 − ϵ10, ϵ
2
−1)

= Cov(X1
0 − ϵ2−1 − ϵ10, ϵ

2
−1)

= −Var(ϵ2−1)

= −1

where we used that ϵ2−2, ϵ1−1, ϵ2−1, ϵ10 and X1
0 are independent of ϵ2−1 by definition. However, in the full time graph X1

−2

and X2
−1 are d-separated given the empty set. The other assumptions are satisfied — the explanations are similar as for the

violation of Assumption (A3) in the main paper.

So we have an example that violates Assumption (A1), but the real reason why the d-separation global Markov property is
violated is the violation of Assumption (A3) because X2

t = ϵ2t for all t ∈ Z and thus a violation of Assumption (A3) directly
carries over to a violation of the d-separation global Markov property.

Lemma 4. Let ϕ ∈ R with |ϕ| > 1. Let ϵt := {ϵ1t , ϵ2t}t∈Z be a stochastic process satisfying (A0) and having finite second
moments. Define the stochastic process {Xt}t∈Z := {X1

t , X
2
t }t∈Z for each t ∈ Z by

X1
t = −

∞∑
i=1

ϕ−i(ϵ1t+i + ϵ2t+i−1) and

X2
t = ϵ2t .

Then, {Xt}t∈Z and {ϵt}t∈Z solve the VAR stochastic difference equations

X1
t = ϕ ·X1

t−1 +X2
t−1 + ϵ1t and

X2
t = ϵ2t

P -almost surely for all t ∈ Z. Moreover, define the time reversed processes {X̃t}t∈Z and {ϵ̃t}t∈Z by (X̃1
t , X̃

2
t ) =

(X1
−t,−X2

−t−1/ϕ) and (ϵ̃1t , ϵ̃
2
t ) = (−ϵ1−t+1/ϕ,−ϵ2−t−1/ϕ). Then, {X̃t}t∈Z and {ϵ̃t}t∈Z satisfy the VAR stochastic differ-

ence equations

X̃1
t =

1

ϕ
X̃1

t−1 + X̃2
t−1 + ϵ̃1t and

X̃2
t = ϵ̃2t

P -almost surely for all t ∈ Z.
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Proof. First of all, note that {ϕ−i}i∈N≥1
is absolutely summable and hence,

∑∞
i=1 ϕ

−i(ϵ1t+i + ϵ2t+i−1) :=

limN→∞
∑N

i=1 ϕ
−i(ϵ1t+i + ϵ2t+i−1), interpreted as a limit in mean-square, exists and is uniquely defined up to P -nullsets

[Lütkepohl, 2005, Section C.3]. Therefore, the below algebraic manipulations of this infinite sum such as multiplication by a
scalar, shifting the summation index, and adding other random variables correspond to the same operations on the finite
sums

∑N
i=1 ϕ

−i(ϵ1t+i + ϵ2t+i−1) and then taking the limit.

First part of the lemma:

For an arbitrary but fixed t ∈ Z, we P -almost surely have

ϕ ·X1
t−1 +X2

t−1 + ϵ1t = ϕ·
(
−

∞∑
i=1

ϕ−i(ϵ1t−1+i + ϵ2t−1+i−1)

)
+ ϵ2t−1 + ϵ1t

=

(
−

∞∑
i=1

ϕ−(i−1)(ϵ1t+i−1 + ϵ2t+(i−1)−1)

)
+ ϵ2t−1 + ϵ1t

=

(
−

∞∑
i=0

ϕ−i(ϵ1t+i + ϵ2t+i−1)

)
+ ϵ2t−1 + ϵ1t

=

(
−

∞∑
i=1

ϕ−i(ϵ1t+i + ϵ2t+i−1)

)
− ϵ2t−1 − ϵ1t + ϵ2t−1 + ϵ1t

= −
∞∑
i=1

ϕ−i(ϵ1t+i + ϵ2t+i−1)

= X1
t .

Moreover, X2
t = ϵ2t trivially holds. Thus, we have finished the first part of the lemma.

Second part of the lemma: From the first part of the lemma, for an arbitrary but fixed t ∈ Z, we P -almost surely have

X1
−t+1 = ϕ ·X1

−t +X2
−t + ϵ1−t+1.

Rearranging this equation yields

X1
−t =

1

ϕ

(
X1

−t+1 −X2
−t − ϵ1−t+1

)
.

Plugging in the definition of {X̃t}t∈Z and {ϵ̃t}t∈Z, we obtain

X̃1
t =

1

ϕ
X̃1

t−1 + X̃2
t−1 + ϵ̃1t .

Similarly, from the first part of the lemma, we have

X2
−t−1 = ϵ2−t−1.

Plugging in the definition of {X̃t}t∈Z and {ϵ̃t}t∈Z yields

X̃2
t = ϵ̃2t .

Thus, we have finished the second part of the lemma.

Lemma 5. Let {Xt}t∈Z be a stochastic process such that each Xt is defined on the probability space (Ω,F , P ) and takes
values in the measurable space (SX ,ΣX). Furthermore, assume that {Xt}t∈Z is strictly stationary. Then for all a ∈ Z and
m ∈ N≥0,

sup
A∈σ(Xt: t≤a)

B∈σ(Xt: t≥a+m)

∣∣P (A ∩B)− P (A)P (B)
∣∣ = sup

A∈σ(Xt: t≤0)
B∈σ(Xt: t≥m)

∣∣P (A ∩B)− P (A)P (B)
∣∣. (9)
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Proof. Notational remark: In this proof, we always implicitly assume that time indices are in Z.

Write

α(m) := sup
A∈σ(Xt: t≤0)
B∈σ(Xt: t≥m)

∣∣P (A ∩B)− P (A)P (B)
∣∣

Define

M≤a := {X−1
t (E) : E ∈ ΣX , t ≤ a}.

Recall that σ(Xt : t ≤ a) = σ(M≤a). Furthermore, define

C≤a :=

{⋃
i∈I

⋂
j∈J

X−1
tij (Eij) : I, J are finite index sets, and ∀i, j : Eij ∈ ΣX , tij ≤ a

}
.

We now show that

σ(M≤a) = σ(C≤a).

Note that

M≤a ⊆ C≤a,

so σ(M≤a) ⊆ σ(C≤a). Also note that every σ-algebra containingM≤a contains C≤a, so

C≤a ⊆ σ(M≤a).

Therefore,

σ(C≤a) ⊆ σ
(
σ(M≤a)

)
= σ(M≤a)

where the last equality follows because σ(M≤a) is a σ-algebra and thus the smallest one containing itself. Hence, we
conclude that σ(C≤a) = σ(M≤a).

We next show that C≤a is an algebra (see, e.g., §4 in Halmos [1974] for the notion of an algebra):

• Ω ∈ C≤a because SX ∈ ΣX and for all t ≤ a, it holds that X−1
t (SX) = Ω.

• If A ∈ C≤a, then Ac ∈ C≤a: Write A :=
⋃

i∈I

⋂
j∈J X−1

tij (Eij). Then,

Ac =

(⋃
i∈I

⋂
j∈J

X−1
tij (Eij)

)c

=
⋂
i∈I

( ⋂
j∈J

X−1
tij (Eij)

)c

=
⋂
i∈I

⋃
j∈J

(
X−1

tij (Eij)

)c

=
⋂
i∈I

⋃
j∈J

X−1
tij (E

c
ij).

The last line is again a finite union of finite intersections of preimages, just apply the distributive law for unions and
intersections (however, one cannot simply interchange

⋂
i∈I and

⋃
j∈J ). So because every Ec

ij ∈ ΣX since ΣX is a
σ-algebra, Ac ∈ C≤a.

• If A,B ∈ C≤a, then A ∪ B ∈ C≤a : This result follows immediately since the union of two finite unions of finite
intersections of preimages is again a finite union of finite intersections of preimages, just some relabelling is necessary.
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Therefore, C≤a is an algebra and we have that σ(Xt : t ≤ a) = σ(C≤a).

An analogous result holds for σ(Xt : t ≥ a+m) and

C≥a+m :=

{⋃
i∈I

⋂
j∈J

X−1
tij (Fij) : I, J are finite index sets, and ∀i, j : Fij ∈ ΣX , tij ≥ a+m

}
,

so σ(Xt : t ≥ a+m) = σ(C≥a+m) and C≥a+m is an algebra.

Now, for all A =
⋃

i∈I1

⋂
j∈J1

X−1
tij (Eij) ∈ C≤a and for all B =

⋃
i∈I2

⋂
j∈J2

X−1
tij (Fij) ∈ C≥a+m, define A′ =⋃

i∈I1

⋂
j∈J1

X−1
tij−a(Eij) and B′ =

⋃
i∈I2

⋂
j∈J2

X−1
tij−a(Fij). Clearly, A′ ∈ σ(Xt : t ≤ 0) and B′ ∈ σ(Xt : t ≥ m).

By strict stationarity and the inclusion-exclusion formula,

P (A ∩B)− P (A)P (B) = P (A′ ∩B′)− P (A′)P (B′),

Thus,

|P (A ∩B)− P (A)P (B)| = |P (A′ ∩B′)− P (A′)P (B′)| ≤ α(m).

For general sets A ∈ σ(Xt : t ≤ a) and B ∈ σ(Xt : t ≥ a + m), we use the following result from measure theory
(see, e.g., Theorem D in §13 in Halmos [1974]) that relies on the generating set of a σ-algebra being an algebra: For all
A ∈ σ(Xt : t ≤ a), for all B ∈ σ(Xt : t ≥ a+m) and for all ε > 0, one can find Â ∈ C≤a and B̂ ∈ C≥a+m such that

P

((
A \ Â

)
∪
(
Â \A

))
≤ ε̃ and

P

((
B \ B̂

)
∪
(
B̂ \B

))
≤ ε̃, (10)

where ε̃ := −2 +
√
4 + ε; note that ε̃2 + 4ε̃ = ε. Also note that (10) implies

P

([(
A ∩B

)
\
(
Â ∩ B̂

)]
∪
[(
Â ∩ B̂

)
\
(
A ∩B

)])
≤ P

((
A \ Â

)
∪
(
Â \A

)
∪
(
B \ B̂

)
∪
(
B̂ \B

))
≤ P

((
A \ Â

)
∪ (Â \A)

)
+ P

((
B \ B̂

)
∪
(
B̂ \B

))
≤ ε̃+ ε̃

= 2ε̃.

Here, the first inequality follows from[(
A ∩B

)
\
(
Â ∩ B̂

)]
∪
[(
Â ∩ B̂

)
\
(
A ∩B

)]
⊆
(
A \ Â

)
∪
(
Â \A

)
∪
(
B \ B̂

)
∪
(
B̂ \B

)
. (11)

The subset relation in (11) is true due to following argumentation: Let

ω ∈
[(
A ∩B

)
\
(
Â ∩ B̂

)]
∪
[(
Â ∩ B̂

)
\
(
A ∩B

)]
.

Without loss of generality, assume that

ω ∈
(
A ∩B

)
\
(
Â ∩ B̂

)
.

Then,

ω ∈ A \
(
Â ∩ B̂

)
.
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Now, suppose that

ω /∈ A \ Â.

Then, ω ∈ A and ω ∈ Â but ω /∈ B̂. Because ω ∈
(
A ∩ B

)
\
(
Â ∩ B̂

)
, it follows that ω ∈ B and hence, ω ∈ B \ B̂.

Arguing analogously for the other cases, we conclude that the subset-relation in (11) is true.

Combining the previous approximations of the probability measures, we now have

P (Â)− ε̃

= P (A ∩ Â) + P (Â \A)− ε̃

≤ P (A) + P (Â \A)− ε̃

≤ P (A) + P

((
A \ Â

)
∪
(
Â \A

))
− ε̃

≤ P (A)

= P (A ∩ Â) + P (A \ Â)

≤ P (Â) + P (A \ Â)

≤ P (Â) + P

((
A \ Â

)
∪
(
Â \A

))
≤ P (Â) + ε̃.

Similarly, P (B̂)− ε̃ ≤ P (B) ≤ P (B̂) + ε̃ and P (Â ∩ B̂)− 2ε̃ ≤ P (A ∩B) ≤ P (Â ∩ B̂) + 2ε̃. Thus,

P (Â ∩ B̂)− P (Â)P (B̂)− ε

= P (Â ∩ B̂)− P (Â)P (B̂)− 4ε̃− ε̃2

≤ P (Â ∩ B̂)− P (Â)P (B̂)− 2ε̃−
(
P (Â) + P (B̂)

)
· ε̃− ε̃2

=

(
P (Â ∩ B̂)− 2ε̃

)
−
(
P (Â) + ε̃

)
·
(
P (B̂) + ε̃

)
≤ P (A ∩B)− P (A)P (B)

≤
(
P (Â ∩ B̂) + 2ε̃

)
−
(
P (Â)− ε̃

)
·
(
P (B̂)− ε̃

)
= P (Â ∩ B̂)− P (Â)P (B̂) + 2ε̃+

(
P (Â) + P (B̂)

)
· ε̃− ε̃2

≤ P (Â ∩ B̂)− P (Â)P (B̂) + 4ε̃− ε̃2

≤ P (Â ∩ B̂)− P (Â)P (B̂) + 4ε̃+ ε̃2

= P (Â ∩ B̂)− P (Â)P (B̂) + ε

Therefore,

|P (A ∩B)− P (A)P (B)| ≤ max

{∣∣P (Â ∩ B̂)− P (Â)P (B̂)− ε
∣∣, ∣∣P (Â ∩ B̂)− P (Â)P (B̂) + ε

∣∣}
≤ max

{∣∣P (Â ∩ B̂)− P (Â)P (B̂)
∣∣+ ε,

∣∣P (Â ∩ B̂)− P (Â)P (B̂)
∣∣+ ε

}
=
∣∣P (Â ∩ B̂)− P (Â)P (B̂)

∣∣+ ε

≤ α(m) + ε.

Because ε > 0 was arbitrary, |P (A ∩B)− P (A)P (B)| ≤ α(m). Therefore,

sup
A∈σ(Xt: t≤a)

B∈σ(Xt: t≥a+m)

∣∣P (A ∩B)− P (A)P (B)
∣∣ ≤ α(m).

Arguing analogously the other way round, we conclude that equation (9) is true.
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Lemma 6. Let {Xt}t∈Z be a stochastic process such that each Xt is defined on the probability space (Ω,F , P ) and takes
values in the measurable space (SX ,ΣX). Furthermore, assume that {Xt}t∈Z is strictly stationary and α-strongly mixing.
Then, the time-reversed process {X̃t}t∈Z defined by X̃t := X−t is also α-strongly mixing.

Proof. Notational remark: In this proof, we always implicitly assume that time indices are in Z.

For arbitrary but fixed m ∈ N≥0,

αX̃(m) := sup
A∈σ(X̃t: t≤0)

B∈σ(X̃t: t≥m)

∣∣P (A ∩B)− P (A)P (B)
∣∣

= sup
A∈σ(X−t: t≤0)
B∈σ(X−t: t≥m)

∣∣P (A ∩B)− P (A)P (B)
∣∣

= sup
A∈σ(X−t: −t≥0)

B∈σ(X−t: −t≤−m)

∣∣P (A ∩B)− P (A)P (B)
∣∣

= sup
A∈σ(Xt: t≥0)

B∈σ(Xt: t≤−m)

∣∣P (A ∩B)− P (A)P (B)
∣∣

(∗)
= sup

A∈σ(Xt: t≥m)
B∈σ(Xt: t≤0)

∣∣P (A ∩B)− P (A)P (B)
∣∣

(∗∗)
= sup

A∈σ(Xt: t≤0)
B∈σ(Xt: t≥m)

∣∣P (A ∩B)− P (A)P (B)
∣∣

=: αX(m)

Here, (∗) follows from Lemma 5 and (∗∗) follows from relabelling. Thus, we obtain the statement that we wanted to
prove.

Lemma 7. Let {Xt}t∈Z = {(X1
t , X

2
t )}t∈Z be a stochastic process such that each X1

t and each X2
t is defined on the

probability space (Ω,F , P ) and takes values in the measurable space (X1,ΣX1
) respectively (X2,ΣX2

). Define a new
stochastic process {X̃t}t∈Z by X̃t = (X̃1

t , X̃
2
t ) := (X1

t−k,X
2
t ) for some fixed k ≥ 0. If {Xt}t∈Z is α-strongly mixing,

then {X̃t}t∈Z is α-strongly mixing.

Proof. Remark: In this proof, we always implicitly assume that time indices are in Z.

Let m ∈ N≥k be arbitrary but fixed. Write

αX(m) := sup
A∈σ(Xt: t≤0)
B∈σ(Xt: t≥m)

∣∣P (A ∩B)− P (A)P (B)
∣∣.

Define

S≤0 := {X̃−1
t (E) : E ∈ ΣX

1 ⊗ ΣX
2 , t ≤ 0}.

Recall that σ(X̃t : t ≤ 0) = σ(S≤0). Furthermore, define

M≤0 := {X̃−1
t (E1 × E2) : E1 ∈ ΣX

1 , E2 ∈ ΣX
2 , t ≤ 0}.

and

C≤0 :=

{⋃
i∈I

⋂
j∈J

(X̃
lij
tij )

−1(Eij) : I, J are finite index sets, and ∀i, j : tij ≤ 0, lij ∈ {1, 2}, Eij ∈ ΣX
lij ;

}
.

We first show that

σ(M≤0) = σ(C≤0).
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First, note that for all E1 ∈ ΣX
1 and for all E2 ∈ ΣX

2 ,

X̃−1
t (E1 × E2) =

(
X̃1

t

)−1
(E1) ∩

(
X̃2

t

)−1
(E2).

Thus,

M≤0 ⊆ C≤0

and hence,

σ(M≤0) ⊆ σ(C≤0).

Vice versa, note that every σ-algebra containingM≤0 contains

X̃−1
t (E1 ×X2) =

(
X̃1

t

)−1
(E1) ∩

(
X̃2

t

)−1
(X2) =

(
X̃1

t

)−1
(E1) ∩ Ω =

(
X̃1

t

)−1
(E1)

for every E1 ∈ ΣX
1 . Similarly, every such σ-algebra contains(

X̃2
t

)−1
(E2)

for every E2 ∈ ΣX
2 . Thus, every σ-algebra containingM≤0 contains C≤0 and hence,

σ(C≤0) ⊆ σ(σ(M≤0)) = σ(M≤0),

where the last equality follows because σ(M≤0) is a σ-algebra and thus the smallest one containing itself. Therefore, we
have shown σ(M≤0) = σ(C≤0).

We next show that

σ(S≤0) = σ(M≤0).

First, we (trivially) have that

M≤0 ⊆ S≤0,

so

σ
(
M≤0

)
⊆ σ(S≤0).

Vice versa, we argue as follows: Note that for all E := E1×E2 with E1 ∈ ΣX
1 and E2 ∈ ΣX

2 and for all t ≤ 0, it (trivially)
holds that

X̃−1
t (E) ∈ σ

(
{X̃−1

t (E′1 × E′2) : E′1 ∈ ΣX
1 , E′2 ∈ ΣX

2 }
)
.

Now, recall that by definition of ΣX
1 ⊗ ΣX

2 ,

σ
(
{E1 × E2 : E′1 ∈ ΣX

1 , E′2 ∈ ΣX
2 }

)
= ΣX

1 ⊗ ΣX
2 .

From a standard result in measure theory (see, e.g., Theorem 1.3.1 in Durrett [2019]), it then follows that

X̃−1
t (E) ∈ σ

(
{X̃−1

t (E′1 × E′2) : E′1 ∈ ΣX
1 , E′2 ∈ ΣX

2 }
)

for all E ∈ ΣX
1 ⊗ ΣX

2 and for all t ≤ 0. Thus,

σ(X̃t) ⊆ σ
(
{X̃−1

t (E′1 × E′2) : E′1 ∈ ΣX
1 , E′2 ∈ ΣX

2 }
)
.

Vice versa, it is immediately clear by definition that

σ(X̃t) ⊇ σ
(
{X̃−1

t (E′1 × E′2) : E′1 ∈ ΣX
1 , E′2 ∈ ΣX

2 }
)
,
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so, we conclude that

σ(X̃t) = σ
(
{X̃−1

t (E′1 × E′2) : E′1 ∈ ΣX
1 , E′2 ∈ ΣX

2 }
)
.

Therefore,

σ(S≤0) = σ

( ⋃
t≤0

σ(X̃t)

)
= σ

( ⋃
t≤0

σ
(
{X̃−1

t (E′1 × E′2) : E′1 ∈ ΣX
1 , E′2 ∈ ΣX

2 }
))

.

Now, by definition, for all t ≤ 0,

{X̃−1
t (E′1 × E′2) : E′1 ∈ ΣX

1 , E′2 ∈ ΣX
2 } ⊆ σ(M≤0).

So, for all t ≤ 0,

σ({X̃−1
t (E′1 × E′2) : E′1 ∈ ΣX

1 , E′2 ∈ ΣX
2 }) ⊆ σ(σ(M≤0)) = σ(M≤0),

where the last equality follows because σ(M≤0) is a σ-algebra and thus the smallest one containing itself. Hence,⋃
t≤0

σ
(
{X̃−1

t (E′1 × E′2) : E′1 ∈ ΣX
1 , E′2 ∈ ΣX

2 }
)
⊆ σ(M≤0)

and thus,

σ(S≤0) = σ

( ⋃
t≤0

σ
(
{X̃−1

t (E′1 × E′2) : E′1 ∈ ΣX
1 , E′2 ∈ ΣX

2 }
))
⊆ σ(σ(M≤0)) = σ(M≤0),

where the last equality follows because σ(M≤0) is a σ-algebra and thus the smallest one containing itself. Therefore,
σ(C≤0) = σ(M≤0) = σ(S≤0) = σ(X̃t : t ≤ 0).

By a similar argument as in the proof of Lemma 6, one can show that C≤0 is an algebra.

In an analogous fashion, one can also show that

C≥m :=

{⋃
i∈I

⋂
j∈J

(X̃
lij
tij )

−1(Fij) : I, J are finite index sets, and ∀i, j : tij ≥ m, lij ∈ {1, 2}, Fij ∈ ΣX
lij

}
,

is an algebra with σ(C≥m) = σ(X̃t : t ≥ m).

Now, for all sets A =
⋃

i∈I1

⋂
j∈J1

(X̃
lij
tij )

−1(Eij) ∈ C≤0 and for all sets B =
⋃

i∈I2

⋂
j∈J2

(X̃
lij
tij )

−1(Fij) ∈ C≥m, we

can by definition write A =
⋃

i∈I1

⋂
j∈J1

(X
lij
tij−k·1lij=1

)−1(Eij) and B =
⋃

i∈I2

⋂
j∈J2

(X
lij
tij−k·1lij=1

)−1(Fij). Thus,

A ∈ σ(Xt : t ≤ 0) and B ∈ σ(Xt : t ≥ m− k). Therefore,

|P (A ∩B)− P (A)P (B)| ≤ αX(m− k).

For general sets A ∈ σ(X̃t : t ≤ 0) and B ∈ σ(X̃t : t ≥ m), one can do the exact same ε-approximation argument as in
the proof of Lemma 6 because C≤0 and C≥m are algebras.

Therefore, we conclude that

αX̃(m) := sup
A∈σ(Xt: t≤0)
B∈σ(Xt: t≥m)

∣∣P (A ∩B)− P (A)P (B)
∣∣ ≤ αX(m− k).

Because {Xt}t∈Z is α-strongly mixing, and hence, αX(m−k)→ 0 for m→∞, we obtain, αX̃(m)→ 0 for m→∞.

Lemma 8. Suppose that a sequence of Rd1 -valued random variables {Zn}n∈N≥1
converges in probability to an Rd1 -valued

random variable Z, in short, Zn
p→ Z. Moreover, let S be an Rd2 -valued random variable and suppose that for all n ∈ N≥1

it holds that Zn ⊥⊥ S. Then, Z ⊥⊥ S.
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Proof. Notational remark: For vectors a ∈ Rd1 and b ∈ Rd2 , we write (a, b) ∈ Rd1+d2 to denote the vector whose first
components are the components of a and whose second components are the components of b. We write a · b to denote the
standard scalar product between a and b.

Note that Zn
p→ Z and S

p→ S implies that (Zn,S)
p→ (Z,S). Thus, (Zn,S)

d→ (Z,S). By Levy’s continuity theorem
[Durrett, 2019, Theorem 3.3.17],

lim
n→∞

E[ei(t1,t2)·(Zn,S)] = E[ei(t1,t2)·(Z,S)]

for all t1 ∈ Rd1 and for all t2 ∈ Rd2 . Also, by Levy’s continuity theorem,

lim
n→∞

E[eit1·Zn ] = E[eit1·Z ]

for all t1 ∈ Rd1 . Now, because Zn ⊥⊥ S for all n ∈ N, we have

E[ei(t1,t2)·(Zn,S)] = E[eit1·Zn ]E[eit2·S ]

for all t1 ∈ Rd1 and for all t2 ∈ Rd2 .

Thus, for all t1 ∈ Rd1 and for all t2 ∈ Rd2 ,

E[ei(t1,t2)·(Z,S)] = lim
n→∞

E[ei(t1,t2)·(Zn,S)]

= lim
n→∞

E[eit1·Zn ]E[eit2·S ]

= E[eit2·S ] lim
n→∞

E[eit1·Zn ]

= E[eit1·Z ]E[eit2·S ].

So (Z,S) ∼ PZ,S has characteristic function E[eit1·Z ]E[eit2·S ]. The random vector (Z̃, S̃) ∼ PZ ⊗ PS also has
characteristic function E[eit1·Z ]E[eit2·S ]. Because equality of characteristic functions implies equality of the corresponding
distributions [Durrett, 2019, Theorem 3.3.11], we conclude that PZ,S = PZ ⊗ PS . Hence, Z ⊥⊥ S

Lemma 9. Suppose that a sequence of Rd-valued random variables {Xn}n∈N converges in distribution to an Rd-valued

random variable X , in short Xn
d→ X . Similarly, suppose that a sequence of Rd-valued random variables {Yn}n∈N

converges in distribution to an Rd-valued random variable Y , in short Yn
d→ Y . If Xn and Yn have the same distribution

for all n ∈ N, then X and Y have the same distribution.

Proof. By Levy’s continuity theorem [Durrett, 2019, Theorem 3.3.17],

lim
n→∞

E[eit·Xn ] = E[eit·X ]

and

lim
n→∞

E[eit·Yn ] = E[eit·Y ]

for all t ∈ Rd. Because Xn and Yn have the same distribution for all n ∈ N≥1,

E[eit·Xn ] = E[eit·Yn ]

for all t ∈ Rd and for all n ∈ N≥1. Therefore,

E[eit·X ] = E[eit·Y ]

for all t ∈ Rd.

Thus, X and Y have the same characteristic function and hence the same distribution [Durrett, 2019, Theorem 3.3.11].
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D NUMERICAL ILLUSTRATION

We now consider a small numerical illustration of the violation of Assumption (A3).

Example 3 (Numerical Illustration of the violation of Assumption (A3)). For different sample sizes and different ϕ’s, we
simulate X1

0 from the given solution in equation (3): For that, we first generate the noise variables an then approximate
the infinite sum with a finite sum consisting of the first 50 summands. We then estimate the covariance between X1

0 and
X2

1 = ϵ21; the theoretical covariance between the two is −ϕ−2. For each combination of sample size and ϕ, we do 100
different runs and calculate the mean and standard error of the estimated covariances.

We have implemented this example in R (version 3.6.3) [R Core Team, 2020] and provide the code in the attached
supplementary material.

ϕ sample size est_cov_mean est_cov_se
2 102 −0.25 0.01
2 103 −0.25 0.00
2 104 −0.25 0.00
2 105 −0.25 0.00
3 102 −0.12 0.01
3 103 −0.11 0.00
3 104 −0.11 0.00
3 105 −0.11 0.00
5 102 −0.04 0.00
5 103 −0.04 0.00
5 104 −0.04 0.00
5 105 −0.04 0.00

Table 1: Results for the numerical illustration of Example 3.

The numerical results correspond well to our theoretical considerations.
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