
Equilibrium Computation in Multidimensional Congestion Games: CSP and
Learning Dynamics Approaches

Mohammad T. Irfan1 Hau Chan2 Jared Soundy2

1Department of Computer Science, Bowdoin College, Brunswick, Maine, USA
2School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Abstract

We present algorithms of two flavors—one rooted
in constraint satisfaction problems (CSPs) and
the other in learning dynamics—to compute
pure-strategy Nash equilibrium (PSNE) in k-
dimensional congestion games (k-DCGs) and their
variants. The two algorithmic approaches are
driven by whether or not a PSNE is guaranteed to
exist. We first show that deciding the existence of a
PSNE in a k-DCG is NP-complete even when play-
ers have binary and unit demand vectors. For gen-
eral cost functions (potentially non-monotonic), we
devise a new CSP-inspired algorithmic framework
for PSNE computation, leading to algorithms that
run in polynomial time under certain assumptions
while offering exponential savings over standard
CSP algorithms. We further refine these algorithms
for variants of k-DCGs. Our experiments demon-
strate the effectiveness of this new CSP framework
for hard, non-monotonic k-DCGs. We then provide
learning dynamics-based PSNE computation algo-
rithms for linear and exponential cost functions.
These algorithms run in polynomial time under cer-
tain assumptions. For general cost, we give a learn-
ing dynamics algorithm for an (α, β)-approximate
PSNE (for certain α and β). Lastly, we also de-
vise polynomial-time algorithms for structured de-
mands and cost functions.

1 INTRODUCTION

In non-cooperative games, a player’s payoff depends on their
own choice of action and the choices of actions by the other
players. In general, the payoff may change depending on
who chose a particular action. In a seminal paper, Rosenthal
presented a special class of games—to become famously
known as congestion games later—where the number of

players rather than the identities of the players choosing an
action is relevant [Rosenthal, 1973]. In a congestion game,
there is a set of resources (e.g., edges in a road network).
Each player has a set of strategies, where each strategy is
a subset of resources (e.g., paths in a network). A strategy
profile consists of a strategy for each player. The cost of a
resource (e.g., edge) is a function of the number of players
using that resource. Given a strategy profile, a player’s cost
is the sum of the costs of the resources used by the player. A
strategy profile is a pure-strategy Nash equilibrium (PSNE)
if no player has an incentive to deviate unilaterally.

The congestion games literature can be divided into three
main frontiers: unweighted, weighted one-dimensional, and
weighted multidimensional. Unweighted congestion games
are the classical ones [Rosenthal, 1973], where the guaran-
teed existence of a PSNE naturally leads to computational
questions. In their seminal work, Monderer and Shapley
[1996] showed that any unweighted congestion game is a
potential game, which is appealing for learning dynamics.
For unweighted congestion games on networks, if the game
is symmetric (same start-end pair for all), then there exists
a polynomial-time network-flow algorithm to find a PSNE;
otherwise, the problem is PLS-complete [Fabrikant et al.,
2004], even for linear cost [Ackermann et al., 2008].

In a weighted congestion game, each player has a weight
or demand, and the cost of a resource is a function of the
sum of the demands of the players using that resource. Un-
like unweighted congestion games, a PSNE is not guaran-
teed to exist in weighted congestion games [Libman and
Orda, 1997, Fotakis et al., 2005]. Dunkel and Schulz [2008]
went one step further and showed that PSNE existence in
weighted congestion games is strongly NP-complete, even
for a constant number of players.

On the positive side, a PSNE is guaranteed to exist in a
weighted congestion game when the cost function is linear
[Fotakis et al., 2005] or exponential [Harks and Klimm,
2012]. Harks et al. [2011] characterized the existence of
potential functions. Special cases involving parallel edges

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:1751–1779.

mailto:<mirfan@bowdoin.edu>?Subject=Your UAI 2024 paper
mailto:<hchan3@unl.edu>?Subject=Your UAI 2024 paper
mailto:<jared.soundy@huskers.unl.edu>?Subject=Your UAI 2024 paper

Table 1: Our main results on k-dimensional congestion games (k-DCGs), k-class congestion games (k-CCGs), and variants.
Notation: NPC ≡ NP-Complete, n = # players, m = # resources, p = max # strategies, di = player i’s demand vector,
dN =

∑
i di, wmax = maxj dNj

, ň = max # players selecting a resource in a binary k-DCG, or max # players of a type in
a k-DCG with player types, l(i) = nonzero-element index in di for k-CCG, amax, bmax, and z are cost parameters.
† We give approximation algorithms for (α, β)-PSNE, which always exists. ‡ Klimm and Schütz [2022].

Problem PSNE Time Complexity to Determine or Compute PNSE

C
SP

fr
am

ew
or

k General Cost k-DCG NPC† O
(
(wmax)

km(nkp2m2 + nkmp(wmax)
km)

)
Subclass: Binary k-DCG NPC O

(
ňkm(nkp2m2 +min{nkmpňkm, nkm+1p})

)
Subclass: k-CCG NPC O

(
(wmax)

km(np2m2 + nkpm(wmax)
m)
)

Subclass: k-DCG with player types NPC O
(
(ň)τm(np2m2 + nτpm(ň)m) + τnk

)

L
ea

rn
in

g
dy

na
m

ic
s

Linear Cost k-DCG Always‡ O
(
nkpm2 × n2m(amax + bmax)

maxi[z·di]
2

mini[z·di]

)
Linear Subclass: Binary k-DCG Always O

(
nkpm2 × n2m(amax + bmax)

(
kmaxj zj

)2)
Linear Subclass: k-CCG Always O

(
nkpm2 × n2m(amax + bmax)

maxj z2
j

minj zj

maxi d
2
i,l(i)

mini di,l(i)

)
Exponential Cost k-DCG Always‡ O

(
nkpm2 × e

e−1

(
m exp(z · dN)amax + nmbmax

))

St
ru

ct
-

tu
re

d Ordered di’s, nondec. cost, singleton strt. Always O(n log n+ nmk)
Ordered di’s, nondec. cost, shared strt. Always O(n log n+ npmk)

Structured cost, singleton strt. Always O(n log n+ nmk)

have also received attention [Milchtaich, 1996, Fotakis et al.,
2002, Gairing et al., 2004, Mavronicolas et al., 2007].

Multidimensional congestion games are a very recent fron-
tier which we investigate here. Introduced by Klimm and
Schütz [2014], this class of games is a generalization of
weighted congestion games where the demand of each
player is a k-dimensional vector. Very recently, Klimm and
Schütz [2022] have shown that certain affine and exponen-
tial cost functions are the only ones for which a PSNE exists
for sure. Their characterization leads to the following com-
putational questions investigated here: How can we compute
a PSNE (if it exists) in multidimensional congestion games
and their variants? How hard is this computation?

These questions are motivated by many real-world applica-
tions. Advances in multidimensional congestion games may
contribute to richer traffic models that account for the het-
erogeneity in vehicles (e.g., weight, length, etc.). Such mul-
tidimensional models were envisioned by transportation re-
searchers many decades ago [Dafermos, 1972] and are now
topics of active investigation [Van Lint et al., 2008, Pi et al.,
2019, Wang et al., 2019]. Computational advances may also
contribute to various other application areas—wireless net-
works [Yamamoto, 2015], distributed systems [Nadig et al.,
2022, 2019], telecommunication [Altman et al., 2006], and
smart grids [Fadlullah et al., 2011], to name just a few.

Our Contributions

Driven by whether or not a PSNE is guaranteed to exist, we
take two fundamentally different computational approaches

inspired by CSPs and learning dynamics. The CSP approach
can handle any k-DCGs (for which a PSNE may not exist),
whereas learning dynamics can handle certain k-DCGs with
a PSNE. We exploit the structure of multidimensional con-
gestion games to give new computational insights into k-
dimensional congestion games (k-DCGs) and their variants,
as summarized in Table 1.

For general k-DCGs, we devise a CSP whose dual decou-
ples the players’ strategies. We give algorithms that utilize
this decoupling and run in polynomial time under certain as-
sumptions (Section 4). 1 To our knowledge, this CSP frame-
work is new within the rich congestion games literature
spanning over five decades. The significance of our CSP
framework lies not only in the exponential savings it offers
compared to well-known CSP algorithms but also in its
applicability beyond congestion games.

For linear and exponential cost, we give iterative learning
dynamics algorithms for k-DCGs and their variants by de-
riving and bounding weighted potential functions based on
the structure of the game (Section 5). For general cost, we
show that for certain α and β, there is always an (α, β)-
approximate PSNE that can be computed via learning dy-
namics. We also give polynomial-time algorithms for struc-
tured costs and demands (Section 6).

The significance of our computational results can be best
understood against the backdrop of hardness results (Section
3). We show that deciding the existence of a PSNE in a k-

1Polynomial-time algorithms are unlikely due to PLS-
completeness results for unweighted network congestion games
with linear cost functions [Ackermann et al., 2008].

1752

DCG is NP-complete even for binary demand vectors (and
other special cases). Put together, this paper addresses com-
putational questions while giving new insights for provably
hard problems on congestion games.

2 PRELIMINARIES

We formally define multi-dimensional congestion games
and related game-theoretic terms. Roughly speaking, a multi-
dimensional congestion game is a natural generalization of
weighted congestion games where the weight or demand
of each player is a multidimensional vector. The cost of
each resource is a function of the aggregated demands of
the players using that resource.

More formally, a k-dimensional congestion game (k-DCG)
consists of a set N = {1, . . . , n} of n players and a set
R = {1, . . . ,m} of m resources. Each player i ∈ N
has two elements: (1) a strategy set Si ⊆ 2R \ {∅}, de-
fined to be subsets of resources that i can select and (2)
a k-dimensional demand vector di = (di1 , ..., dik) ∈ Rk,
consisting of the weight or demand of player i at each di-
mension 1, ..., k. Each resource r ∈ R has a cost function
cr : Rk → R that maps k-dimensional real-valued vectors
to real numbers. We use p = maxi∈N |Si| to denote the
maximum number of strategies for any player. We make
the standard assumption that demands are non-negative inte-
ger vectors [Panagopoulou and Spirakis, 2007, Dunkel and
Schulz, 2008, Christodoulou et al., 2023].

Given a strategy profile s = (s1, ..., sn) ∈ S = S1×...×Sn

of n players, let xr(s) =
∑

i∈N :r∈si
di be the aggregated

k-dimensional demand vector of the players who select
resource r under the strategy profile s ∈ S. Naturally, given
a strategy profile s, the cost function of player i is defined
to be πi(s) = πi(si, s−i) =

∑
r∈si

cr(xr(s)), i.e., the sum
of the costs of the resources selected by player i under si,
given others’ strategies s−i.

We are interested in computing PSNE in k-DCGs and their
variants listed below. We present these variants with mo-
tivating examples from the domain of load balancing in
distributed systems [Nadig et al., 2022, 2019, Anantha et al.,
2017]. k-DCGs naturally model various dimensions of user
demands in distributed systems, such as bit rates, latency,
error tolerance, and throughputs.

• k-DCGs with binary demand vectors di ∈ {0, 1}k
∀i. Example: data flow in distributed systems can be
short-lived or long-lived, bursty or deterministic, etc.

• k-class congestion games (k-CCGs), where each de-
mand vector has one positive element, the rest being
zeros. Example: different use-cases (each with its own
traffic pattern), such as streaming, video conferencing,
web browsing, etc.

• k-DCGs with player types, where players of the same

type are characterized by the same demand vector. Ex-
ample: categories of traffic on a campus network: VPN,
student access, scientific computation, etc.

We next define PSNE and approximate PSNE– two solution
concepts of our interest.

Definition 1. (Pure-Strategy Nash Equilibrium (PSNE)) A
strategy profile s∗ = (s∗1, ..., s

∗
n) ∈ S is a pure-strategy

Nash equilibrium (PSNE) in a k-DCG if and only if for
each player i ∈ N and any s′i ∈ Si, we have that πi(s

∗) ≤
πi(s

′
i, s

∗
−i).

Definition 2. ((α, β)-PSNE) A strategy profile s =
(s1, ..., sn) ∈ S is an (α, β)-approximate PSNE in a k-
DCG for some α ≥ 1 and β ≥ 0 if and only if for
each player i ∈ N and any s′i ∈ Si, we have that
πi(s) ≤ απi(s

′
i, s−i)+β. When we mention α-PSNE (with-

out β), we mean β = 0.

Constraint Satisfaction Problem (CSP)

A CSP is specified by a set of variables, a domain for each
variable, and a set of constraints, each constraint being
over a subset of variables known as its scope. A CSP asks
us to assign a value to each variable from their respective
domains so that all the constraints are satisfied. A wide range
of problems, such as Boolean satisfiability, map coloring,
scheduling, and even PSNE computation in games, can be
modeled as CSPs [Dechter, 2003, Gottlob et al., 2003].

We often represent the structural information of a (primal)
CSP using a primal constraint network, where each node
represents a variable, and each edge connects two variables
that appear together in a constraint (potentially with other
variables). As a result, unless the constraints are binary, we
cannot identify the scope of a constraint just by looking at
the primal constraint network.

A CSP also has a dual constraint network, where each vari-
able represents a constraint, and each edge connects two
constraints with shared variables in their scopes and is la-
beled with these shared variables. The dual constraint net-
work leads to the dual CSP, where the domain of each dual
variable is computed as follows: Consider its correspond-
ing primal constraint and assign values to the scope of the
primal constraint to satisfy it. Such assignments constitute
the domain of the dual variable. Furthermore, the dual CSP
enforces the edge-wise dual constraint that each primal vari-
able shared between any two dual variables must have the
same value in both. Therefore, the dual CSP is a reformula-
tion of the primal CSP and contains only binary constraints.

3 COMPUTATIONAL COMPLEXITY

We show that deciding the existence of a PSNE in special
variants of k-DCGs is NP-complete. The NP-hardness of

1753

general k-DCGs is not surprising because determining a
PSNE in weighted congestion games (i.e., when k = 1) is
already strongly NP-complete [Dunkel and Schulz, 2008].

What is surprising is that we show that determining the ex-
istence of a PSNE in k-DCGs is NP-complete even when
each player i’s k-dimensional demand vector di is a binary
vector (even a unit vector) for some polynomially bounded
k. In sharp contrast, there is always a PSNE in unweighted
(1-dimensional) congestion games [Rosenthal, 1973]. Fur-
thermore, if the players have the same demand vector, the
game is guaranteed to have a PSNE by reducing it to an
unweighted congestion game. We have the following result.

Theorem 3. Deciding the existence of a PSNE in a k-DCG
is NP-complete even when the demand vector di of each
player i ∈ N is a binary vector and k is sublinear in the
number of players. That is, di ∈ {0, 1}k for all i and k =
O(log n).

Proof Sketch. The problem is in NP because verifying that a
strategy profile s∗ ∈ S is a PSNE takes polynomial time.
For NP-hardness, we reduce from weighted congestion
games [Dunkel and Schulz, 2008]. Given a weighted
congestion game we construct a k-DCG with identical sets
of players, resources, and actions. In the k-DCG game
we give the players binary demand vectors equivalent to
the binary representations of the integer weights from the
weighted congestion game. The length of the demand vector
is set to k = ⌊logmaxi∈N d̃i⌋ + 1 where d̃i is the integer
weight of player i in the weighted congestion game. Finally,
we construct cost functions for k-DCGs that we show to
yield the same cost given the same strategy profile for all
players. Therefore, a strategy profile is a PSNE in one game
if and only if it is a PSNE in the other game. □

Next, we investigate whether PSNE computation is easier
for restricted demands. Unfortunately, even when the binary
demand vector is a unit vector, the problem remains hard.

Theorem 4. Deciding the existence of a PSNE in a k-DCG
(or a k-CCG) is NP-complete even when the demand vector
di of each player i ∈ N is a binary unit vector and k
is linear of the number of players. That is, di ∈ {x ∈
{0, 1}k;

∑k
j=1 xj = 1} for all i and k = O(n).

Proof Sketch. The problem is clearly in NP. The NP-
hardness reduction is from weighted congestion games. □

4 GENERAL COST: A CSP APPROACH

We can formulate the PSNE computation problem in a k-
DCG as a CSP, which consists of (1) a variable for each
player, (2) the domain of a variable being the corresponding

player’s strategy set, and (3) a best-response constraint for
each player i, representing i’s best responses si to any s−i.

As illustrated in Fig. 1 (a) and (b), the nature of the n-
ary best-response constraints means that both the primal
and the dual constraint networks are complete networks.
Furthermore, all players appear on each edge of the dual
network. This portrays a grim picture because it is hard to
design efficient algorithms without decoupling the players’
strategies. For example, one solution approach is to check
each strategy profile for a PSNE by verifying Definition 1.
Letting p = maxi∈N |Si|, this approach takes O(npn+1)
time, which is exponential in the number of players.

The grave computational implication of not decoupling
the players’ strategies leads us to a key technical insight.
Instead of using the above CSP, we first construct a dif-
ferent CSP for k-DCGs and then consider its dual. In
the new CSP, the variables are the players and the con-
figuration Y of the game. The domain of each player i
is their strategy set Si and that of Y is the set of all k-
dimensional aggregated demand vectors for m resources,
y ≡ (y1,y2, ...,ym). There are n binary constraints, each
capturing a player’s best response to a configuration. We
use the structure of k-DCGs to define such best responses:
For any configuration y, a player i’s best-response strategies
are si ∈ Si that minimize the cost

∑
r∈si

cr(yr). There is
an additional feasibility constraint that enforces that the
strategy profile s assigned to the players leads to the aggre-
gated demand vectors (y1,y2, ...,ym) assigned to Y ; i.e.,
x1(s) = y1,x2(s) = y2, ...,xm(s) = ym. An example
of the primal constraint network for this CSP is shown in
Fig. 1(c) and its dual in Fig. 1(d). Most notably, as elab-
orated in the next paragraph, the dual CSP allows us to
decouple the players’ strategies from each other.

To our knowledge, this dual CSP, which grounds our algo-
rithmic framework, has not been studied in the congestion
games literature before. To formalize this dual CSP, each
dual node is a primal constraint. So, there is a dual node
vi,Y for each player i’s best response to the configuration
variable Y , and there is one dual variable vN,Y for the fea-
sibility constraint making sure that the strategies assigned
to the players lead to the aggregated demands assigned to
Y (see Fig. 1(d)). For each i ∈ N , there is an edge between
vN,Y and vi,Y labeled with the shared variables i, Y . For
any i ̸= j ∈ N , there is an edge between vi,Y and vj,Y
labeled with the shared variable Y . Unlike the straightfor-
ward dual (Fig. 1(b)), this new dual (Fig. 1(d)) decouples
the players’ strategies by virtue of not having all the players
appear together on any edge.

We devise algorithms based on this dual CSP. As described
in Section 2, each dual variable has a domain consisting of
satisfying assignments for the corresponding primal con-
straint, and the edges in the dual constraint network lead
to dual constraints that ensure that the shared primal vari-

1754

1 2

34

(a)

BR1 BR2

BR3BR4

(b)

1,2,3,4

1,2,3,41,
2,

3,
4 1,2,3,4

1,2
,3,

4

1,2,3,4

1 2

34

Y

(c)

v1,Y v2,Y

v3,Yv4,Y

vN,Y

(d)

Y

Y
Y Y

Y

Y

1,
Y
2, Y

3, Y
4, Y

Figure 1: The four constraint networks shown here illustrate our key technical insight.
(a) A typical CSP (not used here) for N = {1, · · · , 4}: Each node is a player with their strategy set as the domain, and each
player has a best-response constraint involving all the players.
(b) The dual of (a): Each dual node BRi represents player i’s best-response constraint with its domain being strategy
profiles (si, s−i) where si is i’s best response to s−i. Each edge shows that all players are shared between its endpoints,
which makes it hard to decouple the strategies of the players.
(c) A new CSP we present where in addition to the players, there is a node Y for the configuration representing aggregated
demand vectors (y1,y2, ...,ym). The constraints are: (1) best-response constraint: Each player i plays its best response to
Y , leading to the edge (i, Y), and (2) feasibility constraint: the strategies assigned to the players are consistent with the
configuration assigned to Y , leading to all the edges because this constraint involves all the nodes.
(d) The dual of (c): Each vi,Y node (for i = 1, · · · , 4) represents the best response constraint described above, and the
vN,Y node represents the feasibility constraint described above. Each edge is labeled with the shared variables between its
endpoints. Most notably, the edges show the decoupling of the players’ strategies. Contrast this with (b).

ables across any edge are assigned the same value in both
endpoints of the edge.

Before presenting our algorithmic framework, we show that
the dual CSP has a solution if and only if there is a PSNE. To
see why, note that the assignments (si,y) made to the vi,Y
variables capture the players’ best responses to y, and the
edge label between any two vi,Y and vj,Y variables enforces
sharing the same y in these assignments. Furthermore, the
assignment (s,y′) made to the vN,Y variable makes sure
that the strategy profile s leads to the configuration y′, and
the labels on the edges connecting vN,Y to vi,Y enforce that
s = (s1, · · · , sn) and y = y′.

Our algorithmic framework consists of two procedures. Pro-
cedure 1 computes the domains of each vi,Y dual variable
and Procedure 2 searches for a solution using the computed
domains. As a preview, our algorithms are polynomial in n
(the number of players), p (the maximum number of strate-
gies for any player), and a maximum weight term when k
(number of dimensions) and m (number of resources) are
bounded. This is useful when the number of resources and
strategies is constant but the number of players can be large.
In fact, even with a constant number of players, determining
PSNE existence in a weighted congestion game is already
strongly NP-complete [Dunkel and Schulz, 2008].

As Fig 1(d) shows, Y is shared across all edges. Therefore,
we parameterize our algorithms by any configuration given
as input. This leads to the question of how many configura-
tions there can be. The demand vector di = (di1 , ..., dik) of
each player i being an integer vector (standard assumption
[Dunkel and Schulz, 2008]), we define wj =

∑
i∈N dij

for each j = 1, ..., k. Letting wmax = maxj∈[k] wj , we

have y1,y2, ...,ym ∈ {0, ..., wmax}k. Thus, we only need
to consider at most (wmax +1)km or O((wmax)

km) config-
urations. We are now ready for the algorithms.

Procedure 1: Compute Domains of Dual Variables vi,Y

Given a configuration y ≡ (y1,y2, ...,ym), where each
yj ∈ {0, ..., wmax}k, we compute the set of strategies for
each player i that makes i “happy" under the configuration.
To do this, abusing the notation πi slightly, we define and
compute, for any i ∈ N , si, s′i ∈ Si, and si ̸= s′i,

πi(si,y) =
∑
r∈si

cr(yr)

πi(si,y, s
′
i) =

∑
r∈s′i∩si

cr(yr) +
∑

r∈s′i\si

cr(yr + di)

BRi(y) = {si ∈ Si | ∀s′i ∈ Si, πi(si,y) ≤ πi(si,y, s
′
i)}

The first equation calculates player i’s cost. The second
calculates player i’s cost when deviating from si (under y)
to s′i. BRi(y) computed in the last equation is the set of
i’s best responses to y. Therefore, the domain of vi,Y is the
union of sets {(si,y) | si ∈ BRi(y)} for all y.

We deliberately do not compute the domain of vN,Y (the
dual variable for the primal feasibility constraint) because it
may contain numerous strategy profiles that are not PSNE.
We next show in Procedure 2 how we can search for a
PSNE without explicitly computing the domain of vN,Y .

1755

Procedure 2: Search for PSNE

Given a configuration y ≡ (y1,y2, ...,ym), a PSNE un-
der it is a strategy profile s = (s1, ..., sn) such that (1)
(si,y) is in the domain of vi,Y for each player i, and (2)
x1(s) = y1,x2(s) = y2, ...,xm(s) = ym. The first condi-
tion enforces players’ best responses to y, while the second
condition enforces the feasibility constraint. We get the fol-
lowing general result.

Theorem 5. For any k-DCG, there is an algorithm to deter-
mine the existence of a PSNE in O((wmax)

km(nkp2m2 +
nkmp(wmax)

km)). The algorithm is polynomial in n, p,
and wmax, when m and k are constants.

Proof Sketch. Procedure 1 runs in O(nkp2m2) for all play-
ers. Procedure 2 can be done efficiently using dynamic pro-
gramming (DP), where we (1) first order the players 1, ..., n
and (2) create a binary table Ti(y

′
1,y

′
2, ...,y

′
m) ∈ {0, 1} for

each y′
1,y

′
2, ...,y

′
m ∈ {0, ..., wmax}k of size O((wmax)

km)
for each player i. We first initialize T0(0, ...,0) = 1 where
we have an all zero configuration. We then define
Ti(y

′
1,y

′
2, ...,y

′
m) = 1 if and only if there is y1,y2, ...,ym

such that Ti−1(y1,y2, ...,ym) = 1 and for some
si ∈ BRi(y1,y2, ...,ym), y′

r = yr + 1[r ∈ si]di for each
r ∈ R. Table Ti can be constructed by looking at all the 1
entries of Ti−1 and adding the player demand vector to the
corresponding resources for each si ∈ BRi(y1,y2, ...,ym).
The DP runs in O(nkmp(wmax)

km). □

Algorithm 1 presents the decision version of the DP algo-
rithm given in the proof of Theorem 5. Please note that we
are going to refine it for variants of k-DCGs.

To see the significance of the above result, note
that we can use well-known algorithms to solve
the dual CSP. For instance, backtracking algorithms
with graph-based learning can solve the dual CSP in
O
(
(n+ 1)2 ·

(
2 · pn · wkm

max

)n+1
)

time, which is exponen-
tial in n [Dechter, 2003][Ch 6]. In contrast, our algorithm
guarantees an exponential saving.

VARIANT: BINARY DEMAND VECTORS

In Section 3, we showed that k-DCGs with binary demand
vectors are provably hard. We can still apply Theorem 5
to derive a pseudopolynomial time algorithm when k and
m are bounded. However, an improved analysis gives us
the following result. Note that in the case of binary demand
vectors, any j-th element of an aggregated demand vector
corresponds to the number of players having the j-th bit
of their demand vector “on.” Therefore, for clarity, we use
ň = maxj∈[k]

∑
i∈N dij in place of wmax to denote the

maximum number of players having a demand vector bit on.
The following result is particularly interesting when ň ≪ n.

Algorithm 1: Determine if there is a PSNE
Input: A multidimensional congestion game
Output: TRUE if a PSNE exists, FALSE otherwise.

1 for configuration y1,y2, · · · ,ym ∈ {0, · · · , wmax}k
do

2 for each player i ∈ {1, 2, · · · , n} do
3 Compute BRi(y1,y2, · · · ,ym)
4 end
5 Create a binary table T0 with T0(0, · · · ,0) = 1
6 for each player i ∈ {1, 2, · · · , n} do
7 Create a binary table Ti as follows:
8 for each y1,y2, · · · ,ym such that

Ti−1(y1,y2, · · · ,ym) = 1 do
9 for si ∈ BRi(y1,y2, · · · ,ym) do

10 Set Ti(y
′
1,y

′
2, · · · ,y′

m) = 1 where
y′
r = yr + 1[r ∈ si]di for each r ∈ R

11 end
12 end
13 end
14 if Tn(y1,y2, · · · ,ym) = 1 then
15 return TRUE
16 end
17 end
18 return FALSE

Theorem 6. For k-DCGs with binary demand, there is an
O(ňkm(nkp2m2+min{nkmpňkm, nkm+1p}))-time algo-
rithm to compute a PSNE or decide none exists. The algo-
rithm is polynomial in n and p when m and k are constants.

Proof Sketch. Putting wmax = ň in Theorem 5, the running
time is O(ňkm(nkp2m2 + nkmpňkm)). However, using a
different analysis that exploits the bit-vector structure, we
can shave off a factor of km from the second term at the ex-
pense of having nkm instead of ňkm. This would be useful
when ň ≈ n. The main idea is when we consider player i in
Procedure 2, the number of configurations for Ti is at most
(i + 1)km, leading to O

(∑n
i=1

[
(i+ 1)km + kpmikm

])
or O(nkm+1p) time for Procedure 2. □

VARIANT: k-CLASS CONGESTION GAME (k-CCG)

Let the class of player i be the index where the positive
element appears in di. Although Theorem 5 can be directly
applied to this case, we can exploit the structure of the game
to improve the running time. The key intuition is that the
players can be partitioned according to their classes. The
players in a class j ∈ [k] can only affect the j-th index of the
aggregated demand on any resource. That is, they affect the
j-th index of each of y1,y2, ...,ym. As a result, Procedure
2 can be broken into k different computational tasks, each

1756

corresponding to a class. This idea leads us to the following
result. Notably, compared to Theorem 5, this partition-based
algorithm removes a k term from the exponent.

Theorem 7. For k-CCGs, there is an
O((wmax)

km(np2m2 + nkpm(wmax)
m)) algorithm

to compute a PSNE or decide none exists. The algorithm is
polynomial in n, p, and wmax when m and k are constants.

Proof Sketch. As a preprocessing step, we partition
the players into C1, ..., Ck based on their classes. We
now do the following operations in each partition
Cj independently. We start the DP by ordering the
players in Cj as 1, 2, ..., |Cj | (wlog). We then create
a binary table Ti(z1, z2, ..., zm) ∈ {0, 1} for each
z1, z2, ..., zm ∈ {0, ..., wmax} of size O((wmax)

m) for
each player i in Cj . We initialize T0(0, ..., 0) = 1. We
then define Ti(z1, z2, ..., zm) = 1 if and only if there is
z′1, z

′
2, ..., z

′
m such that Ti−1(z

′
1, z

′
2, ..., z

′
m) = 1 and for

some si ∈ BRi(y1,y2, ...,ym), zr = z′r + 1[r ∈ si]dij
for each r ∈ R. We have a PSNE if and only if for each
partition Cj , T|Cj |(y1j , y2j , ..., ymj) = 1. □

We next consider the special case of k-CCGs with binary
demand vectors (i.e., exactly one bit is “on” in each player’s
demand vector). This will be useful when we consider player
types next. We get the following corollary from Theorems 6
and 7. Once again, the result is interesting when ň ≪ n.

Corollary 8. For k-CCGs with binary demand vectors,
there is an O((ň)km(np2m2 + nkpm(ň)m))-time algo-
rithm to compute a PSNE or decide none exists. The algo-
rithm is polynomial in n and p when m and k are constants.

VARIANT: k-DCG WITH PLAYER TYPES

To motivate this variant, consider a road-traffic setting.
There are different types of vehicles, and vehicles of the
same type share similarities in their demand vectors. We
define players to be of the same type if their demand vectors
are the same. Although this setting is very natural, to our
knowledge, it has not been fully explored in the literature.
Here, other than player types, we do not make any assump-
tions about the demands or cost functions. While this variant
is NP-hard (reduction from k-DCG by making a type for
each player), the following result is very appealing when
the maximum number of players of any type ň ≪ n.

Theorem 9. Given a k-DCG with τ types of players and at
most ň players of any type, there is an O((ň)τm(np2m2 +
nτpm(ň)m) + τnk) time algorithm to compute a PSNE or
decide that there exists none. The algorithm is polynomial
in n and p for bounded m and τ .

Proof. Let (N,R, {Si, di}i∈N , {cr}r∈R, k) be a k-DCG

instance with τ types of players. We reduce this in-
stance to a PSNE-equivalent τ -DCG instance (N,R, {Si,

d̃i}i∈N , {c̃r}r∈R, τ) as follows. First, we partition the k-
DCG players into τ types and store the k-dimensional de-
mand vector (from k-DCG) of any player of type t into dt

(i.e., dt = di if player i is of type t). This takes O(τnk)
time. For each player i of type t in τ -DCG, we define a
τ -dimensional unit demand vector d̃i where only the t-
th element is 1, the rest being 0. Given a τ -dimensional
aggregated demand vector x̃r(s) = (x̃r(s)1, ..., x̃r(s)τ),
where any t-th element represents the total number of
players of type t using r, we define the cost function
c̃r(x̃r(s)) = cr

(∑τ
t=1(x̃r(s))tdt

)
. Thus, c̃r(x̃r(s)) =

cr(xr(s)), where xr(s) is the aggregated demand in the k-
DCG instance under s. Therefore, with the PSNE-equivalent
τ -DCG being a τ -CCG with binary demands and ň =

maxj∈[τ]

∑
i∈N d̃ij , Corollary 8 gives us the result.

Comparing Theorems 9 and 5, when we have the type infor-
mation, Theorem 9 offers a major saving in running time by
replacing (wmax)

km with ňτm in the multiplicative factor
as well as (wmax)

km with ňm (note the exponential saving
of k) in the interior expression. These savings are especially
pronounced when ň is small.

Theorem 9 can be extended to general k-DCGs without any
player types, in which case ň = n. This insight helps us
avoid potentially large wmax ≫ n in the running time of
Theorem 5 by using Theorem 9 instead. Further running
time reduction for the case of ň = n is possible through the
alternative analysis given in the proof of Theorem 6.

EXPERIMENTS

We have performed experiments to investigate the practical
aspects of the CSP framework for non-monotonic k-DCGs
with binary demand vectors. Even with small-scale exper-
iments, we show that the theoretical running time greatly
overestimates the practical, worst-case running time. These
experiments further show that our CSP framework supports
a variety of implementation possibilities.

We have implemented two instantiations of the framework:
(1) Table-based DP (TDP), where we use bit vectors to im-
plement the tables, and (2) Set-based DP (SDP), where we
use hash-set data structures to represent the tables. In addi-
tion, we have implemented the brute-force (BF) algorithm
mentioned for the CSP shown in Fig. 1(a). BF is the only
prior algorithm known to us for general k-DCGs.

All three algorithms exhaustively search for all PSNE and
discard a strategy profile as soon as it is clear it cannot lead
to a PSNE. We have benchmarked the theoretical running
time in the worst case by running Procedure 2 on a small
table and extrapolating that running time to the table size

1757

10−2

100

102

104

106

2 4 6 8 10 12 14
n

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Algorithm

SDP
TDP
TDPA

Figure 2: Running-time comparison among table-based DP
(TDP), set-based DP (SDP), and table-based DP asymptotic
(TDPA). Encouragingly, even at small scales, TDPA hugely
overestimates the actual running time. Here, m = 4 and
k = 2.

10−3

10−2

10−1

100

101

102

2 10 18 26 34 42
n

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Algorithm

BF
SDP
TDP

Figure 3: Running-time comparison among brute force (BF),
table-based DP (TDP), and set-based DP (SDP). Even at
small scales, brute force does not finish within the allocated
time when n > 20. SDP is the fastest. Here, m = 2 and
k = 3.

appearing in Theorem 5. We call this table-based DP asymp-
totic (TDPA). We have used non-monotonic k-DCGs with
m parallel links. Each parameter-combination was repeated
15 times. See the Appendix for details.

Fig. 2 shows that the asymptotic running time greatly over-
estimates the actual running time. E.g., for n = 4, TDPA is
about eight orders of magnitude slower than SDP. Further-
more, Fig. 3 shows that SDP and TDP outperform BF easily,
even for very small n. For example, SDP is two orders of
magnitude faster than BF for n = 18. These signify the
practical appeal of our CSP framework against the backdrop
of hardness results. Most importantly, Procedure 2 opens
up a range of possibilities for new CSP-based search algo-
rithms rooted in, for example, backjumping and learning
[Kumar, 1992, Dechter, 2003, Van Beek, 2006, Rossi et al.,
2008], backtracking with tree decomposition [Jégou and
Terrioux, 2003], AND/OR search [Marinescu and Dechter,
2009], etc. We leave a comprehensive experimental study
as future work.

5 LEARNING DYNAMICS APPROACH

The second class of algorithms we present is grounded in
learning dynamics, which often presents a natural way of
studying how players arrive at an equilibrium point [Fu-
denberg and Levine, 1998]. As such, learning dynamics is
prominently featured in a wide range of areas from evolu-
tionary game theory [Weibull, 1997], to wireless network
[Lasaulce and Tembine, 2011], to our topic of congestion
games [Shah and Shin, 2010]. In general, learning algo-
rithms may not converge, which leads us to two threads.

First, we consider linear and exponential cost functions with
convergence guarantees [Klimm and Schütz, 2022]. We de-
rive explicit running times for k-DCGs and their variants
for these cost functions. Second, we consider the general

(potentially non-monotonic) cost functions with no conver-
gence guarantees. We present approximation algorithms for
this general case.

LINEAR COST FUNCTIONS

We study an iterative best-response algorithm, where players
start with an arbitrary strategy profile and iteratively play
best responses until convergence to a PSNE, for k-DCGs
and their variants using potential functions. Let the linear
cost function of any resource r under a strategy profile s be
cr(xr(s)) ≡ ar

∑
j∈[k] zjxr,j(s)+ br = ar[z ·xr(s)]+ br,

where ar, br ≥ 0 ∀r and the k-dimensional vector z ≥ 0.

We have the following results on k-DCGs and their variants.
Notably, Klimm and Schütz [2022] provide an alternative
proof of the existence of a potential function for this class of
congestion games via the isomorphism technique. However,
their proof is focused on existence and leaves open compu-
tational questions, especially for variants of k-DCGs, which
we address here. The complete proofs are in the Appendix.

Theorem 10. For linear-cost k-DCGs, the best-response
algorithm runs in polynomial time if maxr ar,maxr br,
and maxi[z·di]

2

mini[z·di]
are polynomial in n.

Theorem 11. For linear-cost k-DCGs with binary demand
vectors vectors, the best-response algorithm runs in poly-
nomial time if the following cost function parameters are
polynomial in n: maxr ar, maxr br, and maxj zj .

Theorem 12. For linear-cost k-CCGs, the best-response
algorithm runs in polynomial time if maxr ar, maxr br,
maxj z2

j

minj zj
, and

maxi d
2
i,l(i)

mini di,l(i)
are polynomial in n, where l(i) ∈

[k] denotes the index of the non-zero element in di.

Please note that polynomial-time algorithms for linear cost

1758

are unlikely to exist due to the PLS-completeness of un-
weighted network congestion games with linear cost [Ack-
ermann et al., 2008].

Experiments

We have performed experiments to evaluate the effect of the
dimension k and the number of resources on the running
time of the algorithm given by Theorem 10. We vary k =
2, 3, 4 and the number of links m in a parallel network from
2 to 10. We also vary the number of players n from 5 to
100. In the iterative best-response algorithm, we apply a
tweak suggested by Panagopoulou and Spirakis [2007] that
prioritizes players with relatively high impacts on the cost
function due to their demand vectors.

Our experiments show that the PSNE computation time of
Theorem 10 scales up gracefully as we increase the number
of players and links. This is perhaps not surprising given the
pseudopolynomial running time of the algorithm. Further-
more, our experiments are consistent with those on single-
dimensional weighted congestion games [Panagopoulou
and Spirakis, 2007]. Details, including figures, are in the
Appendix.

EXPONENTIAL COST FUNCTIONS

For one-dimensional weighted congestion games, it has
been shown that the uniform exponential cost function
cr(xr(s)) = exp(xr(s)) leads to a potential function
[Panagopoulou and Spirakis, 2007]. For (one-dimensional)
weighted congestion games, this result has been ex-
tended to non-uniform exponential functions of the shape
cr(xr(s)) = ar exp(xr(s)) + br [Harks et al., 2011,
Harks and Klimm, 2012]. For k-DCGs, it has been shown
that games with cost functions of the shape cr(xr(s)) =
ar exp(z · xr(s)) + br are isomorphic to one-dimensional
congestion games [Klimm and Schütz, 2022]. For this cost
function, we use Harks et al. [2011]’s results on 1-DCGs
to derive a potential function for k-DCGs, which ultimately
leads to the following result. Details, including the interme-
diate steps, are in the Appendix.

Theorem 13. The best-response algorithm runs in poly-
nomial time for exponential-cost k-DCGs if maxr ar and
maxr br are polynomial in n and [z · dN] is O(log n).

Since the cost function is exponential and an exponential
term appears directly in the potential function, it is not
surprising that in the above result, we need [z · dN] to be
O(log n) for polynomial running time.

APPROXIMATE PSNE FOR GENERAL COST
FUNCTIONS

Very recently, several algorithms to compute approximate
PSNE (in the multiplicative sense) have appeared. For α ≥
1, an α-PSNE s∗ means that for any player i, πi(s

∗) ≤
απi(s

′
i, s

∗
−i) for all s′i. For polynomial cost functions of

maximum degree δ, an algorithm for computing a (δ +
1)-approximate PSNE has been given in [Caragiannis and
Fanelli, 2021]. This result has been extended to an n-PSNE
algorithm for monotonic costs [Christodoulou et al., 2023].
The idea is to relate the decrease in cost due to any player’s
unilateral deviation to the decrease in social cost and reach
a local minimum of the social cost.

We present an (α, β)-PSNE algorithm for general cost.
Let ∆r ≡ max{maxi∈N,s∈S;r∈si cr(xr(s) − di) −
cr(xr(s)), 0} be the maximum non-negative marginal de-
crease of any player for resource r. When the congestion
function is nondecreasing, ∆r = 0. Otherwise, ∆r > 0. Let
∆max = maxr∈R ∆r. The following result generalizes the
result in Christodoulou et al. [2023] by removing the mono-
tonicity assumption on the cost function while retaining the
non-negative cost assumption.

Theorem 14. Every k-DCG has an (α, β)-PSNE for α = n
and β = (n− 1)m∆max. Furthermore, it can be computed
using an iterative algorithm that is guaranteed to converge.

In the iterative algorithm of Theorem 14, at each round, if
πi(si, s−i) > nπi(s

′
i, s−i)+(n−1)m∆max for any player

i currently playing si, i deviates to s′i. As the set of strategy
profiles is finite, we eventually reach an (α, β)-PSNE. The
result is especially useful for small ∆max (e.g., noise).

6 STRUCTURED COSTS AND DEMANDS

Our study of structured costs and demands is motivated by
a variety of realistic examples of traffic congestion games,
where resources represent roads. As an example of struc-
tured/ordered demands, vehicles can be ordered by their de-
mand vectors representing width, length, weight, etc. (e.g.,
semis, pickup trucks, SUVs, sedans, and so on). A common
example of a nondecreasing cost function is more vehicles
on the road means higher costs for everyone. Singleton
strategies are seen in grid-patterned road networks with par-
allel roads to go from source to destination [Milchtaich,
2006]. We also consider structured cost functions– e.g., dif-
ferent types of roads have different speed limits: highways,
county routes, local roads, etc.

ORDERED DEMAND, NONDECREASING COST,
AND SINGLETON STRATEGIES

Suppose that the players can be ordered according to their
demand vectors: d1 ≥ d2 ≥ ... ≥ dn (w.l.o.g.). Let each

1759

player i’s set of singleton strategies Si = {{r} | r ∈ R}. In
addition, assume that the cost functions are nondecreasing.
We can compute a PSNE using the greedy best response
algorithm, which orders the players from high to low de-
mand and lets them play their best response in that order
[Milchtaich, 2006]. Details are in the Appendix.

Theorem 15. For a k-DCG with ordered demand vectors,
nondecreasing cost functions, and singleton-resource strate-
gies, a PSNE can be computed in O(n log n+ nmk) time.

ORDERED DEMAND, NONDECREASING COST,
AND SHARED STRATEGIES

We relax the assumption of singleton-resource strategies.
We show that as long as the players have the same set of
strategies, we can compute a PSNE efficiently using the
greedy best response algorithm.

Theorem 16. For a k-DCG with ordered demand vectors,
nondecreasing cost functions, and a shared set of strategies
of size p, a PSNE can be computed in O(n log n+ npmk).

STRUCTURED COST FUNCTIONS AND
SINGLETON STRATEGIES

In this scenario, we do not assume any ordering among
the demands of the players. Instead, we assume that the
cost functions are nondecreasing and that the resources are
ordered by their cost functions. That is, w.l.o.g., c1(x) ≥
c2(x) ≥ ... ≥ cm(x) for any x. We also assume that there
are constants αj ≥ 1 such that cj−1(x) = αjcj(x) for any
resource j > 1 and x. These assumptions mean that some
resources are more costly than others and that the costs of
the resources are “nicely separated.” Finally, we assume
singleton-resource strategies. We get the following result.

Theorem 17. For a k-DCG with nondecreasing and struc-
tured cost functions, where there are constants αj ≥ 1 such
that cj−1(x) = αjcj(x) for any resource j > 1 and aggre-
gate demand vector x, and singleton-resource strategies, a
PSNE can be computed in O(n log n+ nmk) time.

7 CONCLUSION

We have conducted a thorough computational study of k-
DCGs and their variants using two different computational
methods: CSP and learning dynamics. These two computa-
tional approaches are driven by whether or not a PSNE is
guaranteed to exist in a class of k-DCGs. We prove the hard-
ness of some very special cases and give polynomial-time
algorithms for various problems under certain assumptions.
Our CSP-based framework is applicable to general (poten-
tially non-monotonic) cost functions for k-DCGs and their

variants. We also give pseudo-polynomial time algorithms
based on learning dynamics for linear and exponential cost
functions. We extend the learning dynamics approach to the
study of approximation algorithms for general cost func-
tions and exact algorithms for various types of structured
demands and costs.

In particular, our CSP framework, which has not been stud-
ied before within the extremely rich congestion games litera-
ture, holds promise for future research within and outside of
congestion games. We are particularly interested in design-
ing and implementing CSP-inspired search algorithms for
network congestion games, such as backjumping (Gaschnig,
graph-based, conflict directed, etc.) and learning algorithms
[Dechter, 2003], backtracking with tree decomposition [Jé-
gou and Terrioux, 2003], AND/OR search algorithms [Mari-
nescu and Dechter, 2009], etc. We are also interested in
exploring some of the widely used solvers because to our
knowledge, very large-scale experimental work is yet to be
done on congestion games. Beyond the realm of congestion
games, our key insight of decoupling players’ strategies may
have applications in many other game-theoretic problems.

Acknowledgements

We thank the reviewers for their kind words and many help-
ful suggestions. MTI is grateful to the National Science
Foundation for support from Award IIS-1910203. HC is
supported by the National Institute of General Medical Sci-
ences of the National Institutes of Health (P20GM130461),
the Rural Drug Addiction Research Center at the University
of Nebraska-Lincoln, and the National Science Foundation
under grant IIS-2302999. The content is solely the responsi-
bility of the authors and does not necessarily represent the
official views of the funding agencies.

References

Heiner Ackermann, Heiko Röglin, and Berthold Vöcking.
On the impact of combinatorial structure on congestion
games. Journal of the ACM (JACM), 55(6):1–22, 2008.

Eitan Altman, Thomas Boulogne, Rachid El-Azouzi, Tania
Jiménez, and Laura Wynter. A survey on networking
games in telecommunications. Computers & Operations
Research, 33(2):286–311, 2006.

Deepak Nadig Anantha, Byrav Ramamurthy, Brian Bock-
elman, and David Swanson. Differentiated network
services for data-intensive science using application-
aware sdn. In 2017 IEEE International Conference on
Advanced Networks and Telecommunications Systems
(ANTS), pages 1–6, 2017. doi: 10.1109/ANTS.2017.
8384105.

Ioannis Caragiannis and Angelo Fanelli. On approximate
pure Nash equilibria in weighted congestion games with

1760

polynomial latencies. Journal of Computer and System
Sciences, 117:40–48, 2021.

George Christodoulou, Martin Gairing, Yiannis Gian-
nakopoulos, Diogo Poças, and Clara Waldmann. Ex-
istence and complexity of approximate equilibria in
weighted congestion games. Mathematics of Operations
Research, 48(1):583–602, 2023.

Stella C Dafermos. The traffic assignment problem for
multiclass-user transportation networks. Transportation
Science, 6(1):73–87, 1972.

Rina Dechter. Constraint Processing. Morgan Kaufmann,
San Francisco, USA, 2003.

Juliane Dunkel and Andreas S Schulz. On the complexity
of pure-strategy Nash equilibria in congestion and local-
effect games. Mathematics of Operations Research, 33
(4):851–868, 2008.

Alex Fabrikant, Christos Papadimitriou, and Kunal Tal-
war. The complexity of pure Nash equilibria. In Pro-
ceedings of the 36th ACM Symposium on Theory of
Computing - STOC 2004, page 604, Chicago, IL, USA,
2004. ACM Press. ISBN 978-1-58113-852-8. doi: 10.
1145/1007352.1007445. URL http://portal.acm.
org/citation.cfm?doid=1007352.1007445.

Zubair Md Fadlullah, Yousuke Nozaki, Akira Takeuchi, and
Nei Kato. A survey of game theoretic approaches in
smart grid. In 2011 International Conference on Wireless
Communications and Signal Processing (WCSP), pages
1–4, China, 2011. IEEE.

Dimitris Fotakis, Spyros Kontogiannis, Elias Koutsoupias,
Marios Mavronicolas, and Paul Spirakis. The structure
and complexity of Nash equilibria for a selfish routing
game. In International Colloquium on Automata, Lan-
guages, and Programming, pages 123–134, Spain, 2002.
Springer.

Dimitris Fotakis, Spyros Kontogiannis, and Paul Spi-
rakis. Selfish unsplittable flows. Theoreti-
cal Computer Science, 348(2):226–239, December
2005. ISSN 0304-3975. doi: 10.1016/j.tcs.2005.09.
024. URL https://www.sciencedirect.com/
science/article/pii/S0304397505005347.

Drew Fudenberg and David K Levine. The theory of learn-
ing in games, volume 2. MIT press, 1998.

Martin Gairing, Thomas Lücking, Marios Mavronicolas,
and Burkhard Monien. Computing Nash equilibria for
scheduling on restricted parallel links. In Proceedings
of the 36th ACM Symposium on Theory of Computing
- STOC 2004, pages 613–622, Chicago, IL, USA, 2004.
ACM Press.

Georg Gottlob, Gianluigi Greco, and Francesco Scarcello.
Pure nash equilibria: Hard and easy games. In Proceed-
ings of the 9th Conference on Theoretical Aspects of
Rationality and Knowledge, pages 215–230, 2003.

Tobias Harks and Max Klimm. On the existence of pure
nash equilibria in weighted congestion games. Mathe-
matics of Operations Research, 37(3):419–436, August
2012. ISSN 0364-765X. doi: 10.1287/moor.1120.0543.
URL https://pubsonline.informs.org/
doi/abs/10.1287/moor.1120.0543. Publisher:
INFORMS.

Tobias Harks, Max Klimm, and Rolf H Möhring. Charac-
terizing the existence of potential functions in weighted
congestion games. Theory of Computing Systems, 49(1):
46–70, 2011.

Philippe Jégou and Cyril Terrioux. Hybrid backtracking
bounded by tree-decomposition of constraint networks.
Artificial Intelligence, 146(1):43–75, 2003.

Max Klimm and Andreas Schütz. Congestion games with
higher demand dimensions. In Tie-Yan Liu, Qi Qi, and
Yinyu Ye, editors, Web and Internet Economics, Lec-
ture Notes in Computer Science, pages 453–459, Cham,
2014. Springer International Publishing. ISBN 978-3-
319-13129-0. doi: 10.1007/978-3-319-13129-0_39.

Max Klimm and Andreas Schütz. Equilibria in multiclass
and multidimensional atomic congestion games. Mathe-
matics of Operations Research, 47(4):2743–2764, 2022.

Vipin Kumar. Algorithms for constraint-satisfaction prob-
lems: A survey. AI magazine, 13(1):32–32, 1992.

Samson Lasaulce and Hamidou Tembine. Game theory
and learning for wireless networks: fundamentals and
applications. Academic Press, 2011.

L. Libman and A. Orda. Atomic resource sharing in non-
cooperative networks. In Proceedings of INFOCOM ’97,
volume 3, pages 1006–1013 vol.3, Japan, April 1997.
IEEE. doi: 10.1109/INFCOM.1997.631115. ISSN: 0743-
166X.

Radu Marinescu and Rina Dechter. And/or branch-and-
bound search for combinatorial optimization in graphical
models. Artificial Intelligence, 173(16-17):1457–1491,
2009.

Marios Mavronicolas, Igal Milchtaich, Burkhard Monien,
and Karsten Tiemann. Congestion games with player-
specific constants. In Luděk Kučera and Antonín Kučera,
editors, Mathematical Foundations of Computer Sci-
ence 2007, pages 633–644, Berlin, Heidelberg, 2007.
Springer. ISBN 978-3-540-74456-6. doi: 10.1007/
978-3-540-74456-6_56.

1761

http://portal.acm.org/citation.cfm?doid=1007352.1007445
http://portal.acm.org/citation.cfm?doid=1007352.1007445
https://www.sciencedirect.com/science/article/pii/S0304397505005347
https://www.sciencedirect.com/science/article/pii/S0304397505005347
https://pubsonline.informs.org/doi/abs/10.1287/moor.1120.0543
https://pubsonline.informs.org/doi/abs/10.1287/moor.1120.0543

Igal Milchtaich. Congestion games with player-
specific payoff functions. Games and Economic
Behavior, 13(1):111–124, March 1996. ISSN
08998256. doi: 10.1006/game.1996.0027. URL
https://linkinghub.elsevier.com/
retrieve/pii/S0899825696900275.

Igal Milchtaich. The equilibrium existence problem in finite
network congestion games. In Internet and Network
Economics: Second International Workshop, WINE 2006,
Patras, Greece, December 15-17, 2006. Proceedings 2,
pages 87–98. Springer, 2006.

Dov Monderer and Lloyd S Shapley. Potential games.
Games and economic behavior, 14(1):124–143, 1996.

Deepak Nadig, Byrav Ramamurthy, Brian Bockelman, and
David Swanson. April: An application-aware, predictive
and intelligent load balancing solution for data-intensive
science. In IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications, pages 1909–1917, 2019.
doi: 10.1109/INFOCOM.2019.8737537.

Deepak Nadig, Byrav Ramamurthy, and Brian Bockelman.
Snag: Sdn-managed network architecture for gridftp trans-
fers using application-awareness. IEEE/ACM Trans-
actions on Networking, 30(4):1585–1598, 2022. doi:
10.1109/TNET.2022.3150000.

Panagiota N. Panagopoulou and Paul G. Spirakis. Algo-
rithms for pure Nash equilibria in weighted congestion
games. ACM Journal of Experimental Algorithmics, 11:
2–7, February 2007. ISSN 1084-6654, 1084-6654. doi:
10.1145/1187436.1216584. URL https://dl.acm.
org/doi/10.1145/1187436.1216584.

Xidong Pi, Wei Ma, and Zhen Sean Qian. A general formu-
lation for multi-modal dynamic traffic assignment con-

sidering multi-class vehicles, public transit and parking.
Transportation Research Part C: Emerging Technologies,
104:369–389, 2019.

Robert W. Rosenthal. A class of games possessing pure-
strategy Nash equilibria. International Journal of Game
Theory, 2(1):65–67, December 1973. ISSN 0020-7276,
1432-1270. doi: 10.1007/BF01737559. URL http://
link.springer.com/10.1007/BF01737559.

Francesca Rossi, Peter Van Beek, and Toby Walsh. Con-
straint programming. Foundations of Artificial Intelli-
gence, 3:181–211, 2008.

Devavrat Shah and Jinwoo Shin. Dynamics in congestion
games. ACM SIGMETRICS Performance Evaluation
Review, 38(1):107–118, 2010.

Peter Van Beek. Backtracking search algorithms. In Foun-
dations of artificial intelligence, volume 2, pages 85–134.
Elsevier, 2006.

JWC Van Lint, Serge P Hoogendoorn, and Marco Schreuder.
Fastlane: New multiclass first-order traffic flow model.
Transportation Research Record, 2088(1):177–187, 2008.

Jian Wang, Srinivas Peeta, and Xiaozheng He. Multiclass
traffic assignment model for mixed traffic flow of human-
driven vehicles and connected and autonomous vehicles.
Transportation Research Part B: Methodological, 126:
139–168, 2019.

Jörgen W Weibull. Evolutionary game theory. MIT press,
1997.

Koji Yamamoto. A comprehensive survey of potential game
approaches to wireless networks. IEICE Transactions on
Communications, 98(9):1804–1823, 2015.

1762

https://linkinghub.elsevier.com/retrieve/pii/S0899825696900275
https://linkinghub.elsevier.com/retrieve/pii/S0899825696900275
https://dl.acm.org/doi/10.1145/1187436.1216584
https://dl.acm.org/doi/10.1145/1187436.1216584
http://link.springer.com/10.1007/BF01737559
http://link.springer.com/10.1007/BF01737559

Equilibrium Computation in Multidimensional Congestion Games: CSP and
Learning Dynamics Approaches

(Supplementary Material)

Mohammad T. Irfan1 Hau Chan2 Jared Soundy2

1Department of Computer Science, Bowdoin College, Brunswick, Maine, USA
2School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Due to space constraints, we could only provide proof sketches for most of our results within the main text. We provide
complete proofs here. We also provide additional details on our experiments. We minimally repeat some parts from the main
text so that the reader can follow the proofs without having to switch back and forth between the main text.

The section numbers in this Appendix have been changed to the corresponding letter in the alphabetic ordering, but the
theorem numbers are unchanged from the main text.

C COMPUTATIONAL COMPLEXITY

Theorem 3. Deciding the existence of a PSNE in a k-DCG is NP-complete even when the demand vector di of each player
i ∈ N is a binary vector and k is sublinear in the number of players. That is, di ∈ {0, 1}k for all i and k = O(log n).

Proof. We first show that the problem is in NP. In particular, given any strategy profile s ∈ S, we show that it can be verified
in polynomial time that the profile is a PSNE. Observe that according to Definition 1, it is sufficient to check the potential
deviation of each player i ∈ N . Since each player i ∈ N has |Si| strategies and there are n players, the verification takes at
most some polynomial of the representation of the game.1

Next, we show that the considered problem is NP-hard by reducing from the problem of determining a PSNE in a weighted
congestion game, which is known to be strongly NP-hard even for weighted network congestion games [Dunkel and Schulz,
2008].

More specifically, given a 1-DCG
(
ň, R̃, {S̃i, d̃i}i∈ň, {c̃r}r∈R̃

)
with integer weights/demands bounded by some polynomial

in the number of players (i.e., via Strongly NP-hardness), we construct a k-DCG (N,R, {Si, di}i∈N , {cr}r∈R, k) via the
following:

• Let N = ň be the same set of n players;

• Let R = R̃ be the same set of m resources;

• For each player i ∈ N , let Si = S̃i be the same set of strategies;

• Let k = ⌊logmaxi∈N d̃i⌋+ 1 be the maximum length of the binary representation;

• For each player i ∈ N , let di = (dik , ..., di1) be the binary demand vector induced by the binary representation of d̃i;

• For each resource r ∈ R and x = (xk, ..., x1) ∈ {0, 1, ..., n}k, we define cr(x) = c̃r

(∑k
j=1 2

(j−1)xj

)
.

1Note that there are special types of 1-DCG (e.g., network congestion games) with more compact representations [Dunkel and Schulz,
2008]. The verification question for these types of games is in NP, and our hardness proof still holds for them.

1763

mailto:<mirfan@bowdoin.edu>?Subject=Your UAI 2024 paper
mailto:<hchan3@unl.edu>?Subject=Your UAI 2024 paper
mailto:<jared.soundy@huskers.unl.edu>?Subject=Your UAI 2024 paper

Then for all r ∈ R, s = (s1, ..., sn) ∈ S, and xr(s) =
∑

i∈N ;r∈si
di,

cr(xr(s)) = cr

 ∑
i∈N ;r∈si

di

= cr

 ∑
i∈N ;r∈si

(dik , ..., di1)

= c̃r

 k∑
j=1

2(j−1)
∑

i∈N ;r∈si

dij

= c̃r

 ∑
i∈N ;r∈si

k∑
j=1

2(j−1)dij

= c̃r

 ∑
i∈N ;r∈si

d̃i

 = c̃r (x̃r(s)) ,

where x̃r(s) =
∑

i∈N ;r∈si
d̃i, the first equality is by the definition of xr(s), the second equality is by the definition of di,

the third equality is by our construction of the cost function, the fourth equality is by moving the sum over dimensions
inside, and the fifth equality is because di is the binary representation of d̃i by our construction.

Because of the above equivalence and the fact that πi(s) =
∑

r∈si
cr(xr(s)) =

∑
r∈si

c̃r(x̃r(s)) = π̃i(s) for all r ∈ R and
s ∈ S, there is a PSNE in the 1-DCG instance if and only if it is a PSNE in the k-DCG instance.

We finally note that the reduction can be done in polynomial time. First, because the reduced 1-DCG instance is strongly
NP-hard, the demands are polynomially bounded by n. Hence, k = O(log n) is sublinear in the number of players by
constructions. Second, converting an integer x to its binary representation can be done in O(log x) by repeatedly dividing x
and storing its remainders. Thus, constructing di’s can be done in polynomial time.

Theorem 4. Deciding the existence of a PSNE in a k-DCG (or a k-CCG) is NP-complete even when the demand vector di of
each player i ∈ N is a binary unit vector and k is linear of the number of players. That is, di ∈ {x ∈ {0, 1}k;

∑k
j=1 xj = 1}

for all i and k = O(n).

Proof. The problem is clearly in NP because we can verify a PSNE in polynomial time.

To show the problem is NP-hard, we reduce from the problem of determining a PSNE in a weighted congestion game, which
is known to be strongly NP-hard even for weighted network congestion games [Dunkel and Schulz, 2008].

More specifically, given a 1-DCG (N,R, {Si, di}i∈N , {cr}r∈R) with integer weights/demands bounded by some polyno-
mial in the number of players (i.e., via Strongly NP-hardness), we construct a k-DCG (N,R, {Si, di}i∈N , {cr}r∈R, k) via
the following:

• Let N = N be the same set of n players;

• Let R = R be the same set of m resources;

• For each player i ∈ N , let Si = Si be the same set of strategies;

• Let k = n be the number of dimensions corresponding to the number of players;

• For each player i ∈ N , we let di to be the binary unit demand vector of player i of length k where all entries are zero
except the ith entry;

• For each resource r ∈ R and x = (x1, ..., xk) ∈ {0, 1}k, we define

cr(x) = cr

 k∑
j=1

djxj

 .

1764

Following from the above construction, for all r ∈ R, strategy profile s = (s1, ..., sn) ∈ S, and xr(s) =
∑

i∈N ;r∈si
di, we

have

cr(xr(s)) = cr

 ∑
i∈N ;r∈si

di

= cr

 ∑
i∈N ;r∈si

(dik , ..., di1)

= cr

 k∑
j=1

dj
∑

i∈N ;r∈si

dij

= cr

 k∑
j=1

dj1[r ∈ sj]

= cr

 ∑
i∈N ;r∈si

di

= cr (xr(s)) ,

where xr(s) =
∑

i∈N ;r∈si
di, 1[r ∈ sj] is an indicator function that returns 1 if the condition is true or 0 otherwise, the first

equality is by the definition of xr(s), the second equality is by the definition of di, the third equality is by our construction
of the cost function, the fourth equality is by noting that the demand of each player is zero for the jth entry except player j
for each dimension j in our construction, and the fifth equality is because we account for players that use r.

Because of the above equivalence and the fact that πi(s) =
∑

r∈si
cr(xr(s)) =

∑
r∈si

cr(xr(s)) = πi(s) for all r ∈ R
and s ∈ S, it is not hard to verify that there is a PSNE for one game if and only if it is a PSNE for the other.

D GENERAL COST: A CSP APPROACH

For the ease of reading, we repeat the description of Procedures 1 and 2 of the CSP approach from the main text.

Procedure 1: Compute Domains of Dual Variables vi,Y

Given a configuration y ≡ (y1,y2, ...,ym), where each yj ∈ {0, ..., wmax}k, we compute the set of strategies for each
player i that makes i “happy" under the configuration. To do this, abusing the notation πi slightly, we define and compute,
for any i ∈ N , si, s′i ∈ Si, and si ̸= s′i,

πi(si,y) =
∑
r∈si

cr(yr)

πi(si,y, s
′
i) =

∑
r∈s′i∩si

cr(yr) +
∑

r∈s′i\si

cr(yr + di)

BRi(y) = {si ∈ Si | ∀s′i ∈ Si, πi(si,y) ≤ πi(si,y, s
′
i)}

The first equation calculates player i’s cost. The second calculates player i’s cost when deviating from si (under y) to s′i.
BRi(y) computed in the last equation is the set of i’s best responses to y. Therefore, the domain of vi,Y is the union of sets
{(si,y) | si ∈ BRi(y)} for all y.

We deliberately do not compute the domain of vN,Y (the dual variable for the primal feasibility constraint) because it may
contain numerous strategy profiles that are not PSNE. We next show in Procedure 2 how we can search for a PSNE without
explicitly computing the domain of vN,Y .

1765

Procedure 2: Search for PSNE

Given a configuration y ≡ (y1,y2, ...,ym), a PSNE under it is a strategy profile s = (s1, ..., sn) such that (1) (si,y) is in
the domain of vi,Y for each player i, and (2) x1(s) = y1,x2(s) = y2, ...,xm(s) = ym. The first condition enforces players’
best responses to y, while the second condition enforces the feasibility constraint. We get the following general result.

Theorem 5. For any k-DCG, there is an algorithm to determine the existence of a PSNE in O((wmax)
km(nkp2m2 +

nkmp(wmax)
km)). The algorithm is polynomial in n, p, and wmax, when m and k are constants.

Proof. For each configuration y1,y2, ...,ym ∈ {0, ..., wmax}k, we perform Procedures 1 and 2 to verify and construct if
there is any PSNE that is consistent with the configuration.

Regarding Procedure 1, for each player i ∈ N , computing BRi takes at most O(kp2m2) time for each configuration. This
is because the first equation takes O(m) time for a given configuration and si, and the second equation takes O(km2) for a
given configuration, si, and si. Thus, this procedure’s overall running time is O(nkp2m2) for all players.

Procedure 2 can be done efficiently using dynamic programming, where we (1) first order the players 1, ..., n and (2)
create a binary table Ti(y

′
1,y

′
2, ...,y

′
m) ∈ {0, 1} for each y′

1,y
′
2, ...,y

′
m ∈ {0, ..., wmax}k of size O((wmax)

km) for each
player i. We first initialize T0(0, ...,0) = 1 where we have an all zero configuration. We then define Ti(y

′
1,y

′
2, ...,y

′
m) = 1

if and only if there is y1,y2, ...,ym such that Ti−1(y1,y2, ...,ym) = 1 and, for some si ∈ BRi(y1,y2, ...,ym), y′
r =

yr + 1[r ∈ si]di for each r ∈ R. Table Ti can be constructed by looking at all the 1’s entries of Ti−1 and adding the player
demand vector to the corresponding resources for each si ∈ BRi(y1,y2, ...,ym).

Because there are at most O((wmax)
km) configurations, and each of the n players has at most p strategies with size at

most m and at most k dimensions, the time for this procedure is at most O(nkmp(wmax)
km). To verify whether a given

y1,y2, ...,ym can be achieved, one can check if Tn(y1,y2, ...,ym) is 1, in which case a corresponding PSNE can be
constructed via the standard tracing back procedure of dynamic programming.

The total time (Procedures 1 and 2) to check a given configuration can be formed as a PSNE is O(nkp2m2 +
nkmp(wmax)

km). Thus, to verify all configurations, the total time is O((wmax)
km(nkp2m2 + nkmp(wmax)

km)), which
is polynomial in n, p, and wmax, when m and k are constants.

If there is such a strategy profile for some configuration, then the game has a PSNE. Otherwise, the game does not have
any PSNE. The reason is that each PSNE must correspond to some configuration, and we enumerate each configuration to
search for a PSNE. For a given configuration that corresponds to a PSNE, each player i’s equilibrium strategy must be in
BRi because BRi contains all strategies in which player i does not have any incentive to deviate to other strategies from the
configuration. We note that there are some configurations that might not be feasible (e.g., some yr that are too small or
yr + di outside of the wmax). The above procedure would eliminate them when searching for a PSNE, thereby removing
configurations that are not consistent with any strategy profiles.

VARIANT: BINARY DEMAND VECTORS

In Section 3, we showed that k-DCGs with binary demand vectors are provably hard. We can still apply Theorem 5 to derive
a pseudopolynomial time algorithm when k and m are bounded. However, an improved analysis gives us the following
result. Note that in the case of binary demand vectors, any j-th element of an aggregated demand vector corresponds to the
number of players having the j-th bit of their demand vector “on.” Therefore, for clarity, we use ň = maxj∈[k]

∑
i∈N dij in

place of wmax to denote the maximum number of players having a demand vector bit on. The following result is particularly
interesting when ň ≪ n.

Theorem 6. For k-DCGs with binary demand, there is an O(ňkm(nkp2m2 +min{nkmpňkm, nkm+1p}))-time algorithm
to compute a PSNE or decide none exists. The algorithm is polynomial in n and p when m and k are constants.

Proof. Due to the binary demand vectors, an element of the k-dimensional aggregated demand vector can be at most n.
Putting wmax = ñ, as a corollary of Theorem 5, the running time of the algorithm is O(ñkm(nkp2m2 + nkmpñkm)).
However, using the structure of the game, we can shave off a factor of km from the second term, as shown below.

Here, we focus on the running time of Procedure 2. Recall that we are given a configuration y1,y2, ...,ym and
BRi(y1,y2, ...,ym) for each player i. We want to pick a strategy from BRi for each player i so that the aggregated
demand of the picked strategy profile is exactly y1,y2, ...,ym. As usual, we start with an all zero configuration and define

1766

T0(0, ...,0) = 1. We then go over the players 1, ..., n, one at a time. Observe that when we consider player 1, the number
of configurations (or table entries) for T1 is at most 2km because the elements of the k-dimensional vector for each of the
m resources are either 0 or 1. In this fashion, when we consider player i, the number of configurations for Ti is at most
(i+ 1)km. We initialize Ti to 0 for these configurations in O((i+ 1)km) time. We set Ti(y

′
1,y

′
2, ...,y

′
m) = 1 if and only if

there is y1,y2, ...,ym such that Ti−1(y1,y2, ...,ym) = 1 and, for some si ∈ BRi(y1,y2, ...,ym), y′
r = yr +1[r ∈ si]di

for each r. Note that there are ikm possibilities of y1,y2, ...,ym from player i− 1.

Therefore, the running time of Procedure 2 is O
(∑n

i=1

[
(i + 1)km + kpmikm

])
, which is dominated by

O
(∑n

i=1 kpmikm
)
= O

(
kpm

∑n
i=1 i

km
)
. Here,

∑n
i=1 i

km is O
(
nkm+1

km+1

)
. As a result, the running time of Procedure

2 is O(nkm+1p).

The running time of Procedure 1 is unchanged from Theorem 5. Since both Procedures 1 and 2 are run for each of the ñkm

configurations, the total running time is O(ñkm(nkp2m2 +min{nkmpñkm, nkm+1p})).

VARIANT: k-CLASS CONGESTION GAME (k-CCG)

Let the class of player i be the index where the positive element appears in di. Although Theorem 5 can be directly applied
to this case, we can exploit the structure of the game to improve the running time. The key intuition is that the players can be
partitioned according to their classes. The players in a class j ∈ [k] can only affect the j-th index of the aggregated demand
on any resource. That is, they affect the j-th index of each of y1,y2, ...,ym. As a result, Procedure 2 can be broken into k
different computational tasks, each corresponding to a class. This idea leads us to the following result. Notably, compared to
Theorem 5, this partition-based algorithm removes a k term from the exponent.

Theorem 7. For k-CCGs, there is an O((wmax)
km(np2m2 + nkpm(wmax)

m)) algorithm to compute a PSNE or decide
none exists. The algorithm is polynomial in n, p, and wmax when m and k are constants.

Proof. When we apply Procedure 1 to k-CCG, computing πi(si,y), πi(si,y, s
′
i), and BRi (using the three equations in

Procedure 1) for each player i takes O(m), O(m2), and O(p2m2), respectively. The saving of a factor of k compared to
Theorem 5 is due to the addition in the second equation for πi(si,y, s

′
i) being basically one-dimensional as opposed to

k-dimensional. Thus, Procedure 1 runs in O(np2m2) time.

We now focus on Procedure 2. As a preprocessing step, we partition the players into C1, ..., Ck based on their classes. The
players in Cj can only affect the j-th element of the aggregated demand on any resource. Recall that in Procedure 2, we are
given a configuration y1,y2, ...,ym. For each class j ∈ [k], we construct a vector yj = [y1j , y2j , ..., ymj] to be used by the
players in Cj . We now do the following operations in each partition Cj independently.

We start the DP by ordering the players in Cj as 1, 2, ..., |Cj | (wlog). We then create a binary table Ti(z1, z2, ..., zm) ∈ {0, 1}
for each z1, z2, ..., zm ∈ {0, ..., wmax} of size O((wmax)

m) for each player i in Cj . We initialize T0(0, ..., 0) = 1. We
then define Ti(z1, z2, ..., zm) = 1 if and only if there is z′1, z

′
2, ..., z

′
m such that Ti−1(z

′
1, z

′
2, ..., z

′
m) = 1 and for some

si ∈ BRi(y1,y2, ...,ym), zr = z′r + 1[r ∈ si]dij for each r ∈ R.

Once we finish the table construction in all partitions, we have a PSNE if and only if for each partition Cj , T|Cj |(y
j) = 1.

The argument is similar to the proof of Theorem 5, only that we have to collate m-dimensional vectors yj for each class
j ∈ [k] to form the given configuration y1,y2, ...,ym.

Here, the running time of Procedure 2 is O(nkpm(wmax)
m). This is because in each of the k partitions, we do

O(npm(wmax)
m) work due to at most n players in that partition, at most p best-response strategies for each player,

m resources, and (wmax)
m table entries.

Since both Procedures 1 and 2 are performed for each of the (wmax)
km configurations, the total running time of the algorithm

is O((wmax)
km(np2m2 + nkpm(wmax)

m)). Note that the running time has an exponential saving of k in the second term
compared to Theorem 5.

Corollary 8. For k-CCGs with binary demand vectors, there is an O((ň)km(np2m2 + nkpm(ň)m))-time algorithm to
compute a PSNE or decide none exists. The algorithm is polynomial in n and p when m and k are constants.

Proof. The argument is similar to the proof of Theorem 5, only that we have to collate m-dimensional vectors yj for each
class j ∈ [k] to form the given configuration y1,y2, ...,ym.

1767

Here, the running time of Procedure 2 is O(nkpm(wmax)
m). This is because in each of the k partitions, we do

O(npm(wmax)
m) work due to at most n players in that partition, at most p best-response strategies for each player,

m resources, and (wmax)
m table entries.

Since both Procedures 1 and 2 are performed for each of the (wmax)
km configurations, the total running time of the algorithm

is O((wmax)
km(np2m2 + nkpm(wmax)

m)). Note that the running time has an exponential saving of k in the second term
compared to Theorem 5.

EXPERIMENTS

The algorithm given in theorem 5 is theoretically efficient under some assumptions. Here, we show that it is practically effi-
cient. To our knowledge, brute force is the only other algorithm guaranteed to work on games of interest: multi-dimensional
congestion games with non-monotonic cost functions. First, we compare two implementations of our algorithm against
brute force. Our algorithm overtakes brute-force at a relatively small value of n. Second, we compare the implementations
against the simulated worst-case complexity of the algorithm: O((wmax)

km(nkp2m2 + nkmp(wmax)
km)). This shows

that, in practice, our algorithm greatly outperforms its asymptotic behavior.

All algorithms were implemented in Python. Source code and data can be found in the supplementary material. Results were
obtained on a Linux machine with an Intel® Xeon® E3-1225 @ 3.1 GHz and 24GB of RAM.

Game Generation

The evaluation was done on a k-dimensional parallel link model with m links or resources. Every player chooses one link
r ∈ R from the set of all m links. Each link r ∈ R had a non-monotonic cost function of cr(xr(s)) = αrfr(xr(s)) + βr.
Where αr and βr are integers drawn uniformly randomly from the range [0, 100]. The non-monotonic component is
fr(xr(s)) = f1

r (x
1
r(s)) + f2

r (x
2
r(s)) + · · ·+ fk

r (x
k
r (s)), where xj

r(s) is the aggregate demand in the jth dimension and f j
r

is the cost of the aggregate demand in the jth dimension. The cost of f j
r for any given input is an integer drawn uniformly

randomly from the range [0, 100]. Every element of the demand vector dij was an integer drawn uniformly randomly from
the range [0, q]. If every element of the demand vector was 0 then the entire demand vector was discarded and randomly
generated again. For each combination of parameters (m, k, q), 15 games were randomly generated and then n players were
randomly generated, all using the master seed 2024.

Methods

The dynamic program was implemented in two ways. The first method is as described in section 4. The second method
exploits the sparsity of 1’s in the binary table, by replacing the binary table with a hashset. Both implementations contain the
optimization where if a single player is found to have no best response for a configuration (Procedure 1, section 4) then
the algorithm will stop computations on that configuration. Likewise the brute force implementation has the optimization
where as soon as a single player is found who is willing to deviate from a strategy profile then computations for that strategy
profile will stop. For each n the time to enumerate all configurations or strategy profiles (respectively) was measured and
averaged across each of the 15 games. The binary table dynamic program was also constrained by memory, so that if a level
of the binary table consumed more than 1 GB of memory for a single game then execution for that parameter combination
would be halted.

In order to chart the asymptotic behavior of the binary table dynamic program we had to ensure that it ran at its big-O speed
not faster. First, all mentioned optimizations were removed. Second, because the asymptotic behavior of the algorithm in
theorem 5 is based on the size of the binary table, all bits of the binary table were set to 1. To approximate the speed of the
asymptotic binary table algorithm at a large n the average time to check if a configuration contains a NE was measured
separately for both procedure 1 z1 and procedure 2 z2. This was done because of memory and time constraints related to
binary table size, which only affected procedure 2. The binary table size was forced to 1000 for each n. The average time
was multiplied by (nq)km(z1 +

z2(nq+1)km

1000) to approximate the asymptotic runtime.

1768

E LEARNING DYNAMICS APPROACH

Appendix Definition 1 (w-potential game [Monderer and Shapley, 1996]). Given a vector of positive numbers w =
(wi)i∈N > 0, a game is called a w-potential game if it admits function P : S → R such that for every i ∈ N and for every
s−i, the following holds for any si and s′i.

πi(si, s−i)− πi(s
′
i, s−i) = wi · (P (si, s−i)− P (s′i, s−i)).

Here, P is called a w-potential function.

LINEAR COST FUNCTIONS

Let the linear cost function of any resource r under a strategy profile s be cr(xr(s)) ≡ ar
∑

j∈[k] zjxr,j(s) + br =

ar[z · xr(s)] + br, where ar, br ≥ 0 ∀r and the k-dimensional vector z ≥ 0.

Basically, resource r’s cost function is a weighted sum of the k elements of the aggregated demand vector xr(s) with
resource-specific multiplicative and additive terms ar and br, respectively.

Let the linear cost function of any resource r under a strategy profile s be cr(xr(s)) ≡ ar
∑

j∈[k] zjxr,j(s) + br =

ar[z · xr(s)] + br, where ar, br ≥ 0 for all r and the k-dimensional vector z ≥ 0. Basically, resource r’s cost function is a
weighted sum of the k elements of the aggregated demand vector xr(s) with resource-specific multiplicative and additive
terms ar and br, respectively.

We study an iterative best-response algorithm, where players iteratively play best responses until convergence to a PSNE, for
several variants of k-DCGs based on bounding a potential function. This algorithm starts with an arbitrary strategy profile.
As long as some player can improve their cost, their best response is updated.

The next theorem presents a potential function for linear cost. Notably, Klimm and Schütz [2022] provide an alternative
proof of this theorem via the isomorphism technique, but their proof is focused on existence and leaves open computational
questions, which we address here.

Appendix Theorem 2. Any multidimensional congestion game with linear resource costs is a w-potential game.

Proof. The proof follows the same line of argument as the single dimensional case [Fotakis et al., 2005]. Here, the main
task is to devise a potential function when the demands are vectors instead of scalars.

We show that the Φ(s) defined below is a w-potential function for the choice of wi =
1

2[z·di]
for each i.

Φ1(s) =
∑
r∈R

cr(xr(s))[z · xr(s)].

Φ2(s) =
∑
i∈N

∑
r∈si

cr(di)[z · di].

Φ(s) = Φ1(s) + Φ2(s). (3)

Consider any set of resources s′i ̸= si. Define s′ = (s−i, s
′
i). For any resource r that is picked either by both si and s′i or

none of them:

cr(xr(s)) = cr(xr(s
′)). (4)

cr(xr(s))xr(s) = cr(xr(s
′))xr(s

′). (5)

For any r ∈ si \ s′i:

cr(xr(s))− cr(xr(s
′))

= ar[z · xr(s)] + br − ar[z · xr(s
′)]− br

= ar[z · (xr(s)− xr(s
′))]

= ar[z · di], and

1769

cr(xr(s))xr(s)− cr(xr(s
′))xr(s

′)

= (ar[z · xr(s)] + br)xr(s)− (ar[z · xr(s
′)] + br)xr(s

′)

= (ar[z · xr(s)] + br)xr(s)− (ar[z · (xr(s)− di)] + br)(xr(s)− di)

= ar[z · xr(s)]xr(s) + brxr(s)− ar[z · xr(s)]xr(s) + ar[z · di]xr(s)− brxr(s)

+ ar[z · xr(s)]di − ar[z · di]di + brdi.

= ar[z · di]xr(s) + ar[z · xr(s)]di − ar[z · di]di + brdi

Similarly, for any resource r ∈ s′i \ si,

cr(xr(s))− cr(xr(s
′)) = −ar[z · di], and

cr(xr(s))xr(s)− cr(xr(s
′))xr(s

′)

= (ar[z · xr(s)] + br)xr(s)− (ar[z · xr(s
′)] + br)xr(s

′)

= (ar[z · xr(s)] + br)xr(s)− (ar[z · (xr(s) + di)] + br)(xr(s) + di)

= ar[z · xr(s)]xr(s) + brxr(s)− ar[z · xr(s)]xr(s)− ar[z · di]xr(s)− brxr(s)

− ar[z · xr(s)]di − ar[z · di]di − brdi

= −ar[z · di]xr(s)− ar[z · xr(s)]di − ar[z · di]di − brdi.

The difference in the Φ1 function under s and s′ is

Φ1(s)− Φ1(s
′)

=
∑
r∈R

(
cr(xr(s))[z · xr(s)]− cr(xr(s

′))[z · xr(s
′)]
)

= z ·
∑
r∈R

(
cr(xr(s))xr(s)− cr(xr(s

′))xr(s
′)
)

= z ·
∑

r∈si\s′i

(
cr(xr(s))xr(s)− cr(xr(s

′))xr(s
′)
)
+ z ·

∑
r∈s′i\si

(
cr(xr(s))xr(s)− cr(xr(s

′))xr(s
′)
)

= z ·
∑

r∈si\s′i

(
ar[z · di]xr(s) + ar[z · xr(s)]di − ar[z · di]di + brdi

)
−

z ·
∑

r∈s′i\si

(
ar[z · di]xr(s) + ar[z · xr(s)]di + ar[z · di]di + brdi

)
=

∑
r∈si\s′i

(
ar[z · di][z · xr(s)] + ar[z · xr(s)][z · di]− ar[z · di][z · di] + br[z · di]

)
−

∑
r∈s′i\si

(
ar[z · di][z · xr(s)] + ar[z · xr(s)][z · di] + ar[z · di][z · di] + br[z · di]

)
.

=
∑

r∈si\s′i

(
2ar[z · di][z · xr(s)]− ar[z · di]

2 + br[z · di]
)
−

∑
r∈s′i\si

(
2ar[z · di][z · xr(s)] + ar[z · di]

2 + br[z · di]
)
.

1770

The difference in the Φ2 function under s and s′ is

Φ2(s)− Φ2(s
′)

=
∑
l∈N

∑
r∈sl

cr(dl)[z · dl]−
∑
l∈N

∑
r∈s′l

cr(dl)[z · dl]

=
∑
r∈si

cr(di)[z · di]−
∑
r∈s′i

cr(di)[z · di]

[because only i’s strategy changed between s and s′]

=
∑

r∈si\s′i

cr(di)[z · di]−
∑

r∈s′i\si

cr(di)[z · di].

=
∑

r∈si\s′i

(
ar[z · di] + br

)
[z · di]−

∑
r∈s′i\si

(
ar[z · di] + br

)
[z · di]

=
∑

r∈si\s′i

(
ar[z · di]

2 + br[z · di]
)
−

∑
r∈s′i\si

(
ar[z · di]

2 + br[z · di]
)
.

Combining the differences in Φ1 and Φ2, following is the difference in the proposed potential function.

Φ(s)− Φ(s′)

= Φ1(s)− Φ1(s
′) + Φ2(s)− Φ2(s

′)

=
∑

r∈si\s′i

(
2ar[z · di][z · xr(s)] + 2br[z · di]

)
−

∑
r∈s′i\si

(
2ar[z · di][z · xr(s)] + 2ar[z · di]

2 + 2br[z · di]
)

=
∑

r∈si\s′i

2[z · di]
(
ar[z · xr(s)] + br

)
−

∑
r∈s′i\si

2[z · di]
(
ar[z · xr(s)] + ar[z · di)] + br

)
=

∑
r∈si\s′i

2[z · di]
(
ar[z · xr(s)] + br

)
−

∑
r∈s′i\si

2[z · di]
(
ar

[
z · (xr(s) + di)

]
+ br

)
=

∑
r∈si\s′i

2[z · di]cr(xr(s))−
∑

r∈s′i\si

2[z · di]cr(xr(s
′))

= 2[z · di]
(∑

r∈si\s′i

cr(xr(s))−
∑

r∈s′i\si

cr(xr(s
′))
)
.

The difference between player i’s costs under s and s′ is

πi(s)− πi(s
′)

=
∑
r∈si

cr(xr(s))−
∑
r∈s′i

cr(xr(s
′))

=
∑

r∈si\s′i

cr(xr(s))−
∑

r∈s′i\si

cr(xr(s
′)) [by Eqn 4]

Therefore, for any player i and any strategy profile s and s′ (as defined above),

Φ(s)− Φ(s′) = 2[z · di](πi(s)− πi(s
′)). (6)

If [z · di] > 0 for all i, then this concludes the proof that multidimensional congestion games with a linear cost function
are w-potential games with wi = 1

2[z·di]
for each i. However, if [z · di] = 0 for some i, note that player i does not

affect the payoff of any other player. This is because cr(xr(s)) = ar[z · xr(s)] + br = ar
[
z ·
(
xr(s−i) + di

)]
+ br =

ar[z · xr(s−i)] + ar[z · di] + br = ar[z · xr(s−i)] + br. As a result, we can exclude such players i from the game without
impacting the other players’ choices, and the resulting game is a w-potential game.2

Below, we formalize the best-response algorithm outlined in the main text.
2For the purpose of equilibrium computation, the best responses of the excluded player i can be added back later on without impacting

the choices of the other players.

1771

Algorithm 2: Best Response Dynamics
Input: A multidimensional congestion game
Output: Pure-strategy Nash equilibrium

1 Choose an arbitrary strategy profile s
2 while some player i can improve their cost do
3 Update si with i’s best response to s−i

4 end
5 return s

To analyze the best-response algorithm, we establish an upper bound on the potential function in Appendix Lemma 3. We
make the typical integrality assumption on all ar, br and the elements of the vectors z and di for any player i [Fotakis
et al., 2002, 2005]. We use the below notations. The sum of all players’ demand vectors is denoted by dN ≡

∑
i∈N di. In

addition, let A ≡
∑

r∈R ar and B ≡
∑

r∈R br.

Appendix Lemma 3. For any strategy profile s, the potential function Φ(s) is upper bounded by 2A[z ·dN]2+(n+1)B[z ·
dN].

Proof. We first get the following bounds on the Φ1 and Φ2 functions.

Φ1(s) =
∑
r∈R

cr(xr(s))[z · xr(s)]

≤
∑
r∈R

cr(xr(s))[z · dN]

= [z · dN]
∑
r∈R

cr(xr(s))

≤ [z · dN]
∑
r∈R

cr(dN).

Φ2(s) =
∑
i∈N

∑
r∈si

cr(di)[z · di]

≤
∑
r∈R

∑
i∈N

cr(di)[z · di]

=
∑
i∈N

[z · di]
∑
r∈R

cr(di)

≤ [z · dN]
∑
i∈N

∑
r∈R

cr(di)

= [z · dN]
∑
i∈N

∑
r∈R

(
ar[z · di] + br

)
= [z · dN]

∑
r∈R

(
ar[z · dN] + nbr

)
= [z · dN]

(∑
r∈R

(
ar[z · dN] + br

)
+ (n− 1)

∑
r∈R

br

)

= [z · dN]

(∑
r∈R

cr(dN)

)
+ (n− 1)B[z · dN].

Combining the bounds on Φ1 and Φ2, we get the following bound on the potential function.

1772

Φ(s) ≤ 2[z · dN]

(∑
r∈R

cr(dN)

)
+ (n− 1)B[z · dN]

= 2[z · dN]

(∑
r∈R

(
ar[z.dN] + br

))
+ (n− 1)B[z · dN]

= 2[z · dN]
(
A[z.dN] +B

)
+ (n− 1)B[z · dN]

= 2A[z · dN]2 + (n+ 1)B[z · dN]

Next, we upper bound the number of iterations. Each iteration runs in O
(
nkpm2

)
time, giving us the following theorems.

Appendix Theorem 4. The best-response algorithm runs in pseudo-polynomial time.

Proof. Using Equation 6, whenever a player i reduces their cost by 1 in Algorithm 2, the potential function decreases by
2[z · di] ≥ 2 due to the integrality of z and di. Also, as detailed in the proof of Appendix Theorem 2, if [z · di] = 0 for
some players i, those players do not impact the cost of the other players and thereby can be excluded from the game. As a
result, the maximum number of iterations of the algorithm is A[z · dN]2 + n+1

2 B[z · dN].

The following theorem gives us the multidimensional counterpart of the single-dimensional result by Panagopoulou and
Spirakis [2007].

Theorem 10. For linear-cost k-DCGs, the best-response algorithm runs in polynomial time if maxr ar,maxr br, and
maxi[z·di]

2

mini[z·di]
are polynomial in n.

Proof. Whenever a player i reduces their cost by 1, the decrease in the potential function is 2[z · di] ≥ 2mini[z · di].3

Number of iterations

=
2A[z · dN]2

2mini[z · di]
+

(n+ 1)B

2

[z · dN]

mini[z · di]

≤
A
(
n2 maxi[z · di]

2
)

mini[z · di]
+

(n+ 1)B

2

nmaxi[z · di]

mini[z · di]

≤ n2(A+B)
maxi[z · di]

2

mini[z · di]

≤ n2m(max
r

ar +max
r

br)
maxi[z · di]

2

mini[z · di]
.

Therefore, when maxr ar, maxr br, and maxi[z·di]
2

mini[z·di]
are polynomial in n, then the number of iterations is O

(
m× poly(n)

)
,

where n is the number of players and m is the number of resources, as defined earlier.

We next consider the cases of binary demand vectors and k-CCGs.

Theorem 11. For linear-cost k-DCGs with binary demand vectors vectors, the best-response algorithm runs in polynomial
time if the following cost function parameters are polynomial in n: maxr ar, maxr br, and maxj zj .

3Note that unlike one-dimensional demands, mini di is not well defined.

1773

Proof. First, note that maxi[z · di] ≤
∑

j∈[k] zj ≤ kmaxj∈[k] zj . Whenever a player i reduces their cost by 1, the decrease
in the potential function is 2[z · di] ≥ 2mini[z · di] ≥ 2.

Number of iterations

=
2A[z · dN]2

2
+

(n+ 1)B[z · dN]

2

≤ An2 max
i

[z · di]
2 +

(n+ 1)B

2
nmax

i
[z · di]

≤ n2(A+B)max
i

[z · di]
2

≤ n2m(max
r

ar +max
r

br)
(
kmax

j
zj
)2
.

Therefore, the number of iterations is O(mk2 × poly(n)).

Theorem 12. For linear-cost k-CCGs, the best-response algorithm runs in polynomial time if maxr ar, maxr br,
maxj z2

j

minj zj
,

and
maxi d

2
i,l(i)

mini di,l(i)
are polynomial in n, where l(i) ∈ [k] denotes the index of the non-zero element in di.

Proof. We get maxi[z · di] = maxi
[
zl(i)di,l(i)

]
≤(

maxi zl(i)
)(

maxi di,l(i)
)
≤
(
maxj zj

)(
maxi di,l(i)

)
.

Similarly, mini[z · di] ≥
(
minj zj

)(
mini di,l(i)

)
.

Using Theorem 10, the number of iterations is at most

n2m(maxr ar +maxr br)
maxj z2

j

minj zj

maxi d
2
i,l(i)

mini di,l(i)
.

Number of iterations

≤ n2m(max
r

ar +max
r

br)
maxj z

2
j

minj zj

maxi d
2
i,l(i)

mini di,l(i)
.

Therefore, the number of iterations is O(n2m× poly(n)).

Experimental Results. We have performed experiments to evaluate the performance of Algorithm 2. The cost function is
cr(xr(s)) = ar[z · xr(s)] + br, where ar and br are random integers between 0 and 5, and z is a vector of random integers
between 0 and 5 (all inclusive). Every player has a random demand vector where each element is between 0 and 5 (both
inclusive except that the demand vector cannot be all zeros). In the implementation of the algorithm, we order the players i
from the highest to lowest value of z · di.

We vary the number of dimensions k = 2, 3, 4 and the number of links from 2 to 10. We also vary the number of players
from 5 to 100. Figure 4 illustrates our experimental results for a subset of representative experiments. It shows that
Algorithm 2 scales up gracefully as we increase the number of players and links. This is perhaps not surprising given the
pseudopolynomial running time of the algorithm. Our experiments are consistent with those on single-dimensional weighted
congestion games [Panagopoulou and Spirakis, 2007].

EXPONENTIAL COST FUNCTIONS

We know that k-DCGs with cost functions of the shape cr(xr(s)) = ar exp(z·xr(s))+br are isomorphic to one-dimensional
congestion games [Klimm and Schütz, 2022]. We use Harks et al. [2011]’s results on 1-DCGs to derive the following
potential function for k-DCGs.

Appendix Theorem 5. Any multidimensional congestion game with exponential resource costs is a w-potential game.

1774

Figure 4: Performance of the learning dynamics algorithm for linear cost functions. The figures show that Algorithm 2
scales up nicely with an increasing number of links and dimension k. Instead of selecting the players in a linear order, we
prioritize players with higher weights according to z ·di for player i. This leads to a greater impact on the potential function.

1775

Proof. We show that the Φ(s) defined below is a w-potential function for the choice of wi =
1

1−exp(−z·di)
for each i.

Φ1(s) =
∑
r∈R

cr(xr(s)).

Φ2(s) =
∑
i∈N

∑
r∈si

br(1− exp(−z · di)).

Φ(s) = Φ1(s) + Φ2(s). (7)

Consider any set of resources s′i ̸= si. Define s′ = (s−i, s
′
i). For any resource r that is picked either by both si and s′i or

none of them:

cr(xr(s)) = cr(xr(s
′)). (8)

For any r ∈ si \ s′i:

cr(xr(s))− cr(xr(s
′))

= ar exp(z · xr(s)) + br − ar exp(z · xr(s
′))− br

= ar exp(z · xr(s))− ar exp(z · (xr(s)− di))

= ar exp(z · xr(s))− ar exp(z · xr(s)) exp(−z · di))

= ar exp(z · xr(s))(1− exp(−z · di)).

Similarly, for any resource r ∈ s′i \ si,

cr(xr(s))− cr(xr(s
′))

= ar exp(z · (xr(s
′)− di)) + br − ar exp(z · xr(s))− br

= ar exp(z · xr(s
′)) exp(−z · di)− ar exp(z · xr(s))

= −ar exp(z · xr(s
′))(1− exp(−z · di)).

The difference in the Φ1 function under s and s′ is

Φ1(s)− Φ1(s
′)

=
∑
r∈R

(
cr(xr(s))− cr(xr(s

′))
)

=
∑

r∈si\s′i

(
cr(xr(s))− cr(xr(s

′))
)
+

∑
r∈s′i\si

(
cr(xr(s))− cr(xr(s

′))
)

=
∑

r∈si\s′i

(
ar exp(z · xr(s))(1− exp(−z · di))

)
+

∑
r∈s′i\si

(
− ar exp(z · xr(s

′))(1− exp(−z · di))
)

= (1− exp(−z · di))

(∑
r∈si\s′i

ar exp(z · xr(s))−
∑

r∈s′i\si

ar exp(z · xr(s
′))

)
.

The difference in the Φ2 function under s and s′ is

Φ2(s)− Φ2(s
′)

=
∑
l∈N

∑
r∈sl

br(1− exp(−z · dl))−
∑
l∈N

∑
r∈s′l

br(1− exp(−z · dl))

=
∑
r∈si

br(1− exp(−z · di))−
∑
r∈s′i

br(1− exp(−z · di))

[because only i’s strategy changed between s and s′]

=
∑

r∈si\s′i

br(1− exp(−z · di))−
∑

r∈s′i\si

br(1− exp(−z · di))

= (1− exp(−z · di))

(∑
r∈si\s′i

br −
∑

r∈s′i\si

br

)
.

1776

Combining the differences in Φ1 and Φ2, following is the difference in the proposed potential function.

Φ(s)− Φ(s′)

= Φ1(s)− Φ1(s
′) + Φ2(s)− Φ2(s

′)

=
(
1− exp(−z · di)

)(∑
r∈si\s′i

(
ar exp(z · xr(s)) + br

)
−

∑
r∈s′i\si

(
ar exp(z · xr(s

′)) + br

))

=
(
1− exp(−z · di)

)(∑
r∈si\s′i

cr(xr(s))−
∑

r∈s′i\si

cr(xr(s
′))
)

=
(
1− exp(−z · di)

)(∑
r∈si

cr(xr(s))−
∑
r∈s′i

cr(xr(s
′))
)

[by Eqn 8]

=
(
1− exp(−z · di)

)(
πi(s)− πi(s

′)
)
.

Therefore,

Φ(s)− Φ(s′) =
(
1− exp(−z · di)

)(
πi(s)− πi(s

′)
)
. (9)

We next give an upper bound on the potential function defined in Appendix Theorem 5. As defined in the previous subsection,
dN =

∑
i∈N di.

Appendix Lemma 6. The potential function for multidimensional congestion games with an exponential cost function is
upper bounded by m exp(z · dN)maxr ar + (n+ 1)mmaxr br.

Proof. We get

Φ(s) =
∑
r∈R

cr(xr(s)) +
∑
i∈N

∑
r∈si

br(1− exp(−z · di))

=
∑
r∈R

(
ar exp(z · xr(s)) + br

)
+
∑
i∈N

∑
r∈si

br(1− exp(−z · di))

≤
∑
r∈R

(
ar exp(z · dN) + br

)
+
∑
i∈N

∑
r∈R

br(1− 0)

≤ exp(z · dN)
∑
r∈R

ar +
∑
r∈R

br +
∑
i∈N

(
mmax

r
br
)

≤ exp(z · dN)mmax
r

ar +mmax
r

br + nmmax
r

br

= m exp(z · dN)max
r

ar + (n+ 1)mmax
r

br.

Following is the running time analysis of the best response algorithm. Recall that each iteration runs in O
(
nkpm2

)
time.

Theorem 13. The best-response algorithm runs in polynomial time for exponential-cost k-DCGs if maxr ar and maxr br
are polynomial in n and [z · dN] is O(log n).

Proof. Using Appendix Theorem 5, whenever a player i reduces its cost by 1, the potential function reduces by 1− exp(−z ·
di) ≥ 1− 1

e = e−1
e . Using Appendix Lemma 6, the number of iterations is at most e

e−1

(
m exp(z · dN)maxr ar + (n+

1)mmaxr br

)
.

1777

APPROXIMATE PSNE FOR GENERAL COST FUNCTIONS

In this section, we remove the condition of monotonicity imposed in [Christodoulou et al., 2023] and give an (α, β)-PSNE
algorithm for arbitrary cost functions. For this, we first define a term that bounds the degree of non-monotonicity of the
congestion functions.

Recall that xr(s) =
∑

i∈N ;r∈si
di for any s ∈ S. Let ∆r = max{maxi∈N,s∈S;r∈si cr(xr(s)− di)− cr(xr(s)), 0} be the

maximum non-negative marginal decrease of any player under the cost function for resource r ∈ R. When the congestion
function is nondecreasing, ∆r = 0. Otherwise, ∆r > 0. Let ∆max = maxr∈R ∆r. We obtain the following result that
generalizes the result in [Christodoulou et al., 2023].

Theorem 14. Every k-DCG has an (α, β)-PSNE for α = n and β = (n− 1)m∆max. Furthermore, it can be computed
using an iterative algorithm that is guaranteed to converge.

Proof. Following the idea from Christodoulou et al. [2023], we start by providing a bound for the change of other player
costs when a player i changes its strategies. For any strategy profile s = (s1, ..., sn) ∈ S, si ̸= s′i ∈ Si, and i ̸= l ∈ N , we
have that

πl(s
′
i, s−i)− πl(si, s−i)

=
∑
r∈sl

cr(xr(s
′
i, s−i))−

∑
r∈sl

cr(xr(si, s−i))

=
∑

r∈sl∩(s′i\si)

cr(xr(s
′
i, s−i))− cr(xr(si, s−i)) +

∑
r∈sl∩(si\s′i)

cr(xr(s
′
i, s−i))− cr(xr(si, s−i))

≤
∑

r∈sl∩(s′i\si)

cr(xr(s
′
i, s−i))− cr(xr(si, s−i)) + ∆max|sl ∩ (si \ s′i)|

≤
∑
r∈s′i

cr(xr(s
′
i, s−i)) +m∆max

= πi(s
′
i, s−i) +m∆max.

Above, the first equality is by the definition of player cost functions, the second equality is by removing terms that s′i do not
affect and splitting terms into those that increase or decrease the total weights, the third inequality is noting that the change
of each of the second summarization terms is bounded by ∆max, and the fourth inequality is by dropping the subtracted
terms.

Define Π(s) =
∑

i∈N πi(s) to be the social cost of the players under s. By summing up all of the inequalities above except
player i ∈ N , we have that∑

l ̸=i∈N

(
πl(s

′
i, s−i)− πl(si, s−i)

)
≤ (n− 1)[πi(s

′
i, s−i) +m∆max]

(Π(s′i, s−i)− πi(s
′
i, s−i))− (Π(si, s−i)− πi(si, s−i)) ≤ (n− 1)[πi(s

′
i, s−i) +m∆max]

Π(s′i, s−i)−Π(si, s−i) ≤ nπi(s
′
i, s−i)− πi(si, s−i) + (n− 1)m∆max.

If πi(si, s−i) > nπi(s
′
i, s−i) + (n− 1)m∆max, then the social cost of the players must strictly decrease by deviating to s′i.

Because the social cost has a local minima, it follows that any sopt ∈ S that minimizes Π is an (α, β)-approximate PSNE
for α = n and β = (n− 1)m∆max.

We can compute an (α, β)-PSNE using an iterative procedure where at each round, if πi(si, s−i) > nπi(s
′
i, s−i) + (n−

1)m∆max holds for any player i currently playing si, the player deviates to s′i. As the set of strategy profiles is finite, we
eventually reach an (α, β)-PSNE.

F STRUCTURED COSTS AND DEMANDS

Our study of structured costs and demands is motivated by a variety of realistic examples of traffic congestion games, where
resources represent roads. As an example of structured/ordered demands, vehicles can be ordered by their demand vectors

1778

representing width, length, weight, etc. (e.g., semis, pickup trucks, SUVs, sedans, and so on). A common example of a
nondecreasing cost function is more vehicles on the road means higher costs for everyone. Singleton strategies are seen
in grid-patterned road networks with parallel roads to go from source to destination [Milchtaich, 2006]. We also consider
structured cost functions– e.g., different types of roads have different speed limits: highways, county routes, local roads, etc.

ORDERED DEMAND, NONDECREASING COST, AND SINGLETON STRATEGIES

Suppose that the players can be ordered according to their demand vectors: d1 ≥ d2 ≥ ... ≥ dn (w.l.o.g.). Let each player
i’s set of singleton strategies Si = {{r} | r ∈ R}. In addition, assume that the cost functions are nondecreasing. We can
compute a PSNE using the greedy best response algorithm, which orders the players from high to low demand and lets them
play their best response in that order [Milchtaich, 2006]. Details are in the Appendix.

Theorem 15. For a k-DCG with ordered demand vectors, nondecreasing cost functions, and singleton-resource strategies,
a PSNE can be computed in O(n log n+ nmk) time.

Proof. We sort and iterate through the players in the order of high to low demand vectors: 1, 2, ..., n (w.l.o.g.). Sorting
takes O(n log n). At each iteration, a player j chooses the best-response strategy with respect to the choices of the previous
players. None of the previous players i would have any incentive to deviate because di ≥ dj and the cost functions are
nondecreasing. That is, if a previous player i could benefit from deviating to r, the current player j would have chosen r. By
keeping track of the aggregate demand vector for each resource, we get the result.

ORDERED DEMAND, NONDECREASING COST, AND SHARED STRATEGIES

We relax the assumption of singleton-resource strategies. We show that as long as the players have the same set of strategies,
we can compute a PSNE efficiently using the greedy best response algorithm.

Theorem 16. For a k-DCG with ordered demand vectors, nondecreasing cost functions, and a shared set of strategies of
size p, a PSNE can be computed in O(n log n+ npmk).

Proof Sketch. The proof of Theorem 15 extends from singleton resources to sets of resources because the cost functions are
additive over the resources. □

STRUCTURED COST FUNCTIONS AND SINGLETON STRATEGIES

In this scenario, we do not assume any ordering among the demands of the players. Instead, we assume that the cost functions
are nondecreasing and that the resources are ordered by their cost functions. That is, w.l.o.g., c1(x) ≥ c2(x) ≥ ... ≥ cm(x)
for any x. We also assume that there are constants αj ≥ 1 such that cj−1(x) = αjcj(x) for any resource j > 1 and x.
These assumptions mean that some resources are more costly than others and that the costs of the resources are “nicely
separated.” Finally, we assume singleton-resource strategies. We get the following result.

Theorem 17. For a k-DCG with nondecreasing and structured cost functions, where there are constants αj ≥ 1 such that
cj−1(x) = αjcj(x) for any resource j > 1 and aggregate demand vector x, and singleton-resource strategies, a PSNE can
be computed in O(n log n+ nmk) time.

Proof Sketch. We can compute a PSNE in such k-DCGs using the greedy best response algorithm. We first order the players
according to the cost c1 of their demand vectors. W.l.o.g., let c1(d1) ≥ c1(d2) ≥ ... ≥ c1(dn). Note that we are not
assuming d1 ≥ d2 ≥ ... ≥ dn. In fact, the demand vectors may not be comparable at all. We next prove by induction that the
same ordering of players (1, 2, ... n) applies to the cost function of every resource. Suppose this is true for resource j−1. We
show it to be true for resource j. Consider any two consecutive players i−1 and i. By assumptions, cj−1(di−1) ≥ cj−1(di),
cj−1(di−1) = αjcj(di−1), and cj−1(di) = αjcj(di). Therefore, cj(di−1) ≥ cj(di).

Therefore, even though we cannot order the demand vectors intrinsically, we are able to order them w.r.t. the cost functions,
which is all that matters for greedy best response. □

1779

	Introduction
	Preliminaries
	Computational Complexity
	General Cost: A CSP Approach
	Learning Dynamics Approach
	Structured Costs and Demands
	Conclusion
	Computational Complexity
	General Cost: A CSP Approach
	Learning Dynamics Approach
	Structured Costs and Demands

