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Abstract

Early-exit neural networks (EENNs) enable adap-
tive and efficient inference by providing predic-
tions at multiple stages during the forward pass. In
safety-critical applications, these predictions are
meaningful only when accompanied by reliable
uncertainty estimates. A popular method for quan-
tifying the uncertainty of predictive models is the
use of prediction sets. However, we demonstrate
that standard techniques such as conformal pre-
diction and Bayesian credible sets are not suitable
for EENNs. They tend to generate non-nested sets
across exits, meaning that labels deemed improba-
ble at one exit may reappear in the prediction set of
a subsequent exit. To address this issue, we investi-
gate anytime-valid confidence sequences (AVCSs),
an extension of traditional confidence intervals
tailored for data-streaming scenarios. These se-
quences are inherently nested and thus well-suited
for an EENN’s sequential predictions. We explore
the theoretical and practical challenges of using
AVCSs in EENNs and show that they indeed yield
nested sets across exits. Thus our work presents
a promising approach towards fast, yet still safe,
predictive modeling.

1 INTRODUCTION

Modern predictive models are increasingly deployed to en-
vironments in which computational resources are either
constrained or dynamic. In the constrained setting, the avail-
able resources are fixed and often modest. For example,
when models are deployed on low-resource devices such
as mobile phones, they need to make fast yet accurate pre-
dictions for the sake of the user experience. On the other
hand, in the dynamic setting, the available resources can
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vary due to external conditions. Consider an autonomous
vehicle: when it is moving at high speeds, the model must
make rapid predictions. However, as the vehicle slows down,
the model can afford more time to process information or
‘think’. Early-exit neural networks (EENNs) [??] present a
promising solution to challenges arising in both of these set-
tings. As the name implies, these architectures have multiple
exits that allow a prediction to be generated at an arbitrary
stopping time. This is in contrast to traditional NNs that
yield a single prediction after processing all layers or model
components.

To employ EENNs in safety-critical applications such as
autonomous driving, it is necessary to estimate the predic-
tive uncertainty at each exit [?]. One prominent approach
to capture a model’s predictive uncertainty is constructing
prediction sets or intervals.1 Prediction sets aim to cover
the ground-truth label with high probability, and their size
measures the model’s certainty in its prediction. Prediction
sets based on Bayesian methods [?] and conformal predic-
tion [?] have been explored for EENNs. However, no work
that has accounted for the fact that prediction sets computed
at neighboring exits are dependent. A prediction interval
at a given exit should be nested within the intervals at the
preceding exits (see Figure 1). In other words, if a candidate
prediction y0 is in the interval at exit t− 1 and drops out of
the interval at exit t, y0 should not re-enter the interval at
exit t+1. An even worse case would if the intervals at exit t
and t+ 1 are disjoint. Such non-nested behaviour limits the
decisions that can be made at the initial exits of an EENN,
thereby undermining their anytime properties [?].

We address this open problem by applying anytime-valid
confidence sequences (AVCSs) [???] to the task of construct-
ing prediction sets across the exits of an EENN. AVCSs
extend traditional, point-wise confidence intervals to stream-
ing data scenarios [?]. Importantly, AVCSs are guaranteed
to have a non-increasing interval width [?] and are therefore

1We use the terms prediction sets and prediction intervals
interchangeably, unless otherwise specified.
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Figure 1: Illustrative example of a 1-dimensional regression
problem using an Early-Exit neural network (EENN) with
T = 5 exits. Upper: At each exit, the EENN produces a pre-
diction interval Ct nested within its previous estimates, i.e.,
Ct ⊆ Ct−1. Lower: An example of non-nested prediction
intervals across different exits, e.g., C2 contains candidate
labels y not included in C1 (area denoted with ( ) lines).
Such behavior often results from an EENN becoming over-
confident, i.e., exhibiting low uncertainty, too early.

nested by definition. Our main insight is that AVCSs can
be applied (with assumptions) when only one data point is
observed, as is the case when constructing the prediction set
for a single test point. To achieve this for EENNs, we con-
sider the model parameters (e.g., the output weights) to be
‘streaming’ across exits. We detail the approximations neces-
sary to make AVCSs applicable for the sequential prediction
setting of EENNs and provide bounds on the errors intro-
duced by our approximations. In our experiments across
various classification and regression tasks, we demonstrate
that our AVCS-based procedure yields nested estimates of
predictive uncertainty across the exits of EENNs.

2 BACKGROUND

Data Let X ⊆ RD denote a D-dimensional feature space
and Y the response (output) space. In the case of regression,
we have Y ⊆ R, and for classification Y = {1, . . . ,K}.
We assume x and y are realizations of the random vari-
ables x and y, drawn from the unknown data distribution
P(x,y) = P(y|x) P(x). The training data consists of
N feature-response pairs D = {(xn, yn)}Nn=1. Lastly, let
(x∗, y∗) denote a test point, which may be drawn from a
different distribution than the one used for training.

Early-Exit Neural Networks EENNs [??] generate
predictions at various depths by having several predic-
tion heads branch out from a shared backbone net-
work. Specifically, an EENN defines a sequence of pre-

dictive models: f(x;Wt,U1:t), t = 1, . . . , T , where
Wt represents the parameters of the predictive head
at exit t and Ut denotes the parameters of the t-th
block in the backbone architecture. EENNs are usually
trained by fitting all exits at once L(W1:T ,U1:T ;D) :=∑N

n=1
1
T

∑T
t=1 ℓ

(
yn, f(xn;Wt,U1:t)

)
where ℓ is a suit-

able loss function such as negative log-likelihood.

At test time, we can utilize the intermediate predictions
of EENNs in various ways. For instance, if the model is
deemed sufficiently confident at exit t, we can halt computa-
tion without propagating through blocks t+ 1, . . . , T , thus
speeding up prediction time. Naturally, the merit of such an
approach relies on quality estimates of the EENN’s uncer-
tainty at every exit. EENNs can also be employed as anytime
predictors [??]: the aim is to quickly provide an approximate
prediction—ideally with its associated uncertainty—and
continuously improve upon it as long as the environment
permits.

Prediction Sets Quantifying the uncertainty of a predic-
tive model fθ : X → Y is crucial for its robustness and
reliability. A popular approach, which is the focus of this
study, augments the model output in the form of a prediction
set (or interval, in the case of regression) Cθ : X → 2Y .
For a given test point, Cθ(x

∗) should include (or cover) the
ground-truth y∗ with high probability. The size of Cθ(x

∗)
can be interpreted as a proxy for the model’s confidence—a
smaller set indicates certainty, a larger set indicates uncer-
tainty. Conformal prediction [??] is a popular method to con-
struct prediction sets. Requiring only a calibration dataset
Dcal, it can generate prediction sets for a given model post
hoc and with finite-sample, distribution-free guarantees on
the coverage of the ground-truth label. See ? for an introduc-
tion to conformal prediction. Alternatively, one can employ
Bayesian modeling [?] to first obtain a posterior predic-
tive distribution p(y|x∗,D) and then construct a credible
set/interval based on it.

Anytime-Valid Confidence Sequences Consider a
streaming setting in which new data arrives at every time
point t via sampling from an unknown (parametric) model
xt ∼ p(x|θ∗). Here θ∗ ∈ R represents the parameter of
the data-generating distribution for which we want to per-
form statistical inference. An anytime-valid confidence se-
quence (AVCS) [???] for θ∗ is a sequence of confidence
intervals Ct = (lt, rt) ⊆ R that have time-uniform and non-
asymptotic coverage guarantees: P(∀t, θ∗ ∈ Ct) ≥ 1− α,
where α ∈ (0, 1) represents the level of significance. The
anytime (i.e. time-uniform) property allows the user to stop
the experiment, ‘peek’ at the current results, and choose to
continue or not, all while preserving the validity of the statis-
tical inference. This is in contrast with standard confidence
intervals based on the central limit theorem (CLT), which
are valid only pointwise (i.e. for a fixed time / sample size).
The stronger theoretical properties of AVCSs come at a cost,
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as they are typically larger than CLT-based intervals [?].

An AVCS is constructed by first specifying a family of
stochastic processes {Rt(θ) : θ ∈ Θ} that depends only
on observations x1, . . . ,xt available at time t. Next, we
require that when evaluated at the parameter of interest,
Rt(θ

∗) forms a discrete, non-negative martingale [?]—a
stochastic process that remains constant in expectation:2

Ext+1
[Rt+1(θ

∗)|x1, . . . ,xt] = Rt(θ
∗),∀t. Additionally,

R0(θ
∗) should have an initial value that is constant (usu-

ally one). Once such a martingale is constructed, the AVCS
at a given t is implemented by computing Rt(θ) for all
θ ∈ Θ and adding to the set the values for which Rt

does not exceed 1/α: Ct := {θ : Rt(θ) ≤ 1/α}. Strong
theoretical properties (i.e., time-uniformity) then follow
from Ville’s inequality for nonnegative (super)martingales:
P (∃t : Rt(θ

∗) ≥ 1/α) ≤ α. One example of a random
variable Rt from which we can construct an AVCS is the
prior-posterior ratio: Rt(θ) = p(θ)/p(θ|x1, . . . ,xt) [?].
The time-uniform nature of AVCSs enables one to consider
the intersection of all previous intervals—Ct = ∩s≤tCs,
at time t—without sacrificing statistical validity [?]. This
results in nested intervals/sets, i.e., Ct ⊆ Ct−1. We wish
to exploit this pivotal property of AVCSs to ensure that the
prediction sets of EENNs remain nested across exits.

3 CONFIDENCE SEQUENCES FOR
EARLY-EXIT NEURAL NETWORKS

Our contribution is to apply AVCSs to perform inference
over the predictions generated by each exit of a EENN. As
we will see, this is not a straightforward synthesis: AVCSs
have been exclusively used in streaming-data settings, where
the goal at every time step is to produce a confidence interval
covering the parameter of the data generating distribution
θ. On the other hand, we want to apply them to EENNs
that see just one feature vector x∗ at test time. Moreover,
we are interested in obtaining a prediction set/interval at
every exit that contains the ground-truth label y∗ with high
probability. We overcome these differences by considering
the parameters of the EENN’s exits Wt as the sequence
of random variables for which the martingale is defined.
Below we first give a general recipe for constructing AVCSs
for EENNs and then describe practical implementations for
regression (Section 4) and classification (Section 5).

2It is also common to define AVCS in terms of supermartin-
gales, which are stochastic processes that decrease in expectation
over time: Ext+1 [Rt+1(θ

∗)|x1, . . . ,xt] ≤ Rt(θ
∗), ∀t.

Bayesian EENN We begin by positing a (last-layer)
Bayesian predictive model at every exit:3

pt(y|x∗,D) =

∫
p(y|x∗,Wt,U1:t) p(Wt|D,U1:t) dWt

(1)

for t = 1, . . . , T , with T representing the total number of
exits. p(y|x∗,Wt,U1:t) and p(Wt|D,U1:t) correspond to
the likelihood and (exact) posterior distribution, respectively.
To ensure minimal overhead of our approach at test time,
we treat the backbone parameters U1:t as point estimates
(e.g. found through pre-training) that are held constant when
constructing the AVCS. To reduce notational clutter, we
omit these parameters from here forward. While Bayesian
predictives pt(y|x∗,D) can be used ‘as is’ to get uncer-
tainty estimates at each exit (e.g., by constructing a credible
interval), we show in Section 7 that this results in a non-
nested sequence of uncertainty estimates. We next present
an approach based on AVCSs to rectify such behaviour.

Idealized Construction We first consider an idealized
construction that, while impossible to implement exactly,
will serve as the foundation of our approach. At test time,
upon seeing a new feature vector x∗, we wish to compute
an interval Ct for its label such that y∗ ∈ Ct ∀t with high
probability. Assume that we also have observed the true
label y∗. For the moment, ignore the circular reasoning that
this is the very quantity for which we wish to perform in-
ference. Furthermore, with (x∗, y∗) in hand, assume we
can compute (exactly) the posterior for any exit’s param-
eters: p(Wt|,D ∪ (x∗, y∗)). This distribution is the pos-
terior update we would perform after observing the new
feature-response pair. For notational brevity, we will denote
D∗ := D ∪ (x∗, y∗) from here forward.

To prepare for the proposition that follows, we define for a
given y ∈ Y the predictive-likelihood ratio

R∗
t (y) :=

t∏
l=1

pl(y|x∗,D)

p(y|x∗,Wl)
, Wl ∼ p(Wl|D∗) . (2)

Note that only the likelihood terms in the denominator de-
pend on the updated posterior (via samples Wl), whereas
the predictive terms in the numerator rely solely on training
data (via p(Wl|D)). The above ratio in (2) is inspired by the
aforementioned prior-posterior martingale [?] yet modified
for the predictive setting. We next state our key proposition
that will serve as an inspiration for constructing AVCS for
y∗ in EENNs:

3In this section, we work with Bayesian predictive models at
every exit for ease of exposition. Yet our approach is more general.
It can also accommodate models for which the ‘randomness’ does
not come from placing a distribution over weights Wt. We will
provide a concrete example of this later in Section 5, where we use
an evidential approach [??] instead of a Bayesian one.
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Proposition 1. For a given test point (x∗, y∗), the
predictive-likelihood ratio R∗

t (y) in (2) is a non-negative
martingale with R∗

0 = 1 when evaluated at y = y∗. More-
over, the prediction sets of the form C∗

t := {y ∈ Y|R∗
t (y) ≤

1/α} are (1−α)-confidence sequences for y∗, meaning that
P(∀t, y∗ ∈ C∗

t ) ≥ 1− α .

The proof follows the standard procedure for deriving para-
metric confidence sequences; see Appendix B.1. We term
the resulting confidence sequence an EENN-AVCS.

Realizable Relaxation Now we return to the aforemen-
tioned circular reasoning: we are performing inference for
y∗ while assuming we have access to it. In practice, we do
not have access to y∗ at test time; hence we cannot com-
pute R∗

t (y) (and consequently C∗
t ). As a workaround, we

propose to approximate the updated posterior with the one
based on only the training data at every exit t = 1, . . . , T :

p(Wt|D∗) ≈ p(Wt|D). (3)

With Rt(y) and Ct, we denote the resulting predictive-
likelihood ratio and confidence sequence based on
p(Wt|D), respectively. While Ct is now computable in
a real-world scenario (since it is independent of y∗), it un-
fortunately does not inherit the statistical validity of C∗

t .
Naturally, the degree to which Ct violates validity depends
on the quality of approximation in (3). If the posterior dis-
tribution p(Wt|D) is stable—meaning that adding a single
new data point (x∗, y∗) would have minimal effect—the
approximation is well-justified, and only minor validity vi-
olations can be expected. Such stability in the posterior is
likely when the training dataset D is large and the new test
datapoint originates from the same distribution. Conversely,
if the posterior is unstable, the approximation will likely be
poor, leading to larger violations of validity. This intuition
can be formalized via the following proposition:

Proposition 2. Assume C∗
t is a valid (1 − α) confidence

sequence for a given test datapoint (x∗, y∗) (c.f. Proposi-
tion 1). Then the miscoverage probability of the confidence
sequence Ct := {y ∈ Y | Rt(y) ≤ 1/α} can be upper
bounded by

P (∃l ∈ {1, . . . , t}, y∗ /∈ Cl) ≤

α+

√
1− e−

∑t
l=1 KL

(
p(Wl|D), p(Wl|D∗)

)
∀t = 1, . . . , T , where KL denotes the Kullback-Leibler di-
vergence between probability distributions.

See Appendix B.2 for the derivation. Based on the bound in
Proposition 2, it is clear that when the posteriors at different
exits are stable, i.e. the KL divergence between p(Wl|D)
and p(Wl|D∗) is small, the validity violation is minor. As a
result, Ct will be a good approximation of C∗

t .

Detecting Violations of Posterior Stability It is evident
from Proposition 2 that when the approximation in (3)
is poor—i.e. the KL divergence between p(Wl|D) and
p(Wl|D∗) is large—the validity of Ct will quickly degrade.
As aforementioned, this could happen for a particular x∗

if either (i) D is small and the posterior is not stable yet
or (ii) x∗ is not drawn from the training distribution. The
method should fail gracefully in such cases. Fortunately, the
behavior of invalid AVCSs—ones for which Rt(y) is not
a martingale for all y ∈ Y—has been previously studied
for change-point detection [?]. Based off of their theoret-
ical and empirical results, our procedure should collapse
to the empty interval if the approximation (3) is poor: ∃t0
such that Ct≥t0 = ∅. Encouragingly, in Section 7.1, we
experimentally validate that such collapses occur for out-of-
distribution points for a reasonably small t0. However, there
will be times at which the interval width will be small—
which the user might interpret as high confidence—only to
later collapse to the empty set (meaning maximum uncer-
tainty). In Section 7.1, we explore using epistemic uncer-
tainty as a measure of stability in our regression models,
and we leave to future work a more general method for
diagnosing when an EENN-AVCS has not yet collapsed but
is likely to.

4 EENN-AVCS FOR REGRESSION

We next consider a concrete instantiation of our EENN-
AVCS procedure proposed in the previous section. We focus
on the case of one-dimensional Bayesian regression as it
allows for exact inference due to conjugacy. This allows us
to assess the quality of approximation (3) without introduc-
ing the additional challenge of approximate inference. We
summarize our approach for obtaining AVCSs in EENNs in
Algorithm 1.

Bayesian Linear Regression Recall from Section 3 that
since we require fast and exact Bayesian inference, we keep
EENN’s backbone parameters Ut fixed and give only the
weights Wt of the prediction heads a Bayesian treatment.
We define the predictive model at the tth exit as a linear
model f(x;Wt,U1:t) = ht(x)

TWt where ht(· ;U1:t) :
X → RH represents the output of the first t backbone
layers or blocks. We use a Gaussian likelihood and prior:

y ∼ N
(
y;ht(x)

TWt, σ
2
t

)
, Wt ∼ N

(
Wt; Ŵt, σ

2
w,tIH

)
where σ2

t is the observation noise, σ2
w,t is the prior’s vari-

ance, and Ŵt are the prediction weights obtained during
(pre)training of the EENN. Due to conjugacy, we can obtain
a closed form for the posterior and predictive distributions:

p(Wt|D) = N
(
Wt; µ̄t, Σ̄t

)
,

pt(y|x∗,D) = N
(
y;ht(x

∗)T µ̄t, v∗ + σ2
t

)
, (4)
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where v∗ := ht(x
∗)T Σ̄tht(x

∗). See Appendix B.3 for ex-
act expressions for posterior parameters µ̄t, Σ̄t. To estimate
σ2
t and σ2

w,t, we optimize the (exact) marginal likelihood
on the training data (type-II maximum likelihood). Combin-
ing the obtained Bayesian quantities, we can compute the
predictive-likelihood ratio in (2) at every exit.

Solving for Interval Endpoints To construct Ct, we next
have to evaluate Rt at every y ∈ Y and discard those where
the ratio exceeds 1/α, with α representing a significance
level (e.g., 0.05). However, in the case of regression, where
the output space is continuous, the method of evaluation is
not immediately clear. One possible approach would be
to define a grid of points over Y and then evaluate the
predictive-likelihood ratio using a finite number of labels.
Fortunately, the Bayesian linear regression model above al-
lows us to obtain the endpoints of the prediction interval, at
all exits, via a closed-form expression: Ct = [ytL, y

t
R]. This

is computationally valuable since it eliminates the overhead
of iterating over Y , which could be prohibitively expensive
in the low-resource settings in which EENNs typically op-
erate. To arrive at the analytical form, we first observe that
logRt represents a convex quadratic function in y:

logRt(y) = αt(x
∗) · y2 + βt(x

∗,W1:t) · y + γt(x
∗,W1:t) .

Expressions for the coefficients αt, βt, γt are provided in
Appendix B.4. To obtain the bounds ytL, y

t
R of the prediction

interval at the tth exit, we then simply need to find the
roots of the quadratic equation logRt(y)− log(1/α) = 0.
If the discriminant β2

t − 4αt(γt + logα) is negative, the
equation has no real-valued roots, resulting in an empty
prediction interval. In such cases, we interpret x∗ as an
out-of-distribution sample, as mentioned in Section 3.

Epistemic Uncertainty as a Measure of Stability In
our assumed Bayesian linear regression scenario, both the
posterior and updated posterior are Gaussian. This allows
us to derive a closed-form expression for the KLD term
KL

(
p(Wt|D), p(Wt|D∗)

)
in the upper bound from Propo-

sition 2. See Appendix B.5 for the derivation. Recall that
v∗ represents the epistemic uncertainty (c.f. Eq. (4)), which
is the uncertainty that stems from observing limited data.
In turn, the KLD is small for a given x∗ when v∗ is small.
The uncertainty decreases as we collect more data4, which,
together with Proposition 2, implies that the statistical cov-
erage of our EENN-AVCS will improve as the dataset size
increases. Moreover, v∗ is independent of the test label y∗.
Thus, we can employ it as a measure of the stability of a
EENN-AVCS: for a given x∗, a higher v∗ can signal to
the user that the resulting confidence sequence may not be
reliable. We illustrate this in Section 7.1.

4limN→∞ v∗ = 0 where N represents the number of training
data points (c.f. Section 3.3.2 in ?).

5 EENN-AVCS FOR CLASSIFICATION

In this section, we propose a concrete instantiation of our
EENN-AVCS for classification. Unlike the regression sce-
nario in the previous section, an additional challenge is pre-
sented by a lack of conjugacy. Specifically, we cannot obtain
a closed-form expression for the Bayesian predictive poste-
rior (see Eq. (1)) at every exit when using the usual Gaussian
assumption for the posterior over parameters. To circum-
vent this, we depart from the Bayesian predictive model and
utilize instead Dirichlet Prior Networks [?], which enable
analytically tractable predictive distributions at each exit.
Our EENN-AVCS approach for classification is summarized
in Algorithm 2.

Dirichlet Prior Networks Instead of positing a dis-
tribution over (last-layer) weights Wt at every exit,
we posit a distribution over categorical distributions
p(πt|D,x∗), πt ∈ ∆K 5 for a given test datapoint x∗.
Assuming a categorical likelihood, the posterior is Dirichlet
via conjugacy:

p(y|πt) = Cat(y|πt), p(πt|x∗,D) = Dir(πt|αt(x
∗;D))

where αt ∈ RK
>0 are the concentration parameters. The

predictive distribution also has a closed form:

pt(y = y|x∗,D) =∫
p(y = y|πt) p(πt|x∗,D) dπt =

αt,y∑
y′∈Y αt,y′

.

? propose to parameterize the Dirichlet concentration pa-
rameters via the outputs of a neural network, αt(x

∗;D) =
f(x∗;Wt,U1:t), and term this model a Dirichlet Prior Net-
work (DPN). In DPNs, the aim is to capture the distribu-
tional uncertainty that arises due to the mismatch between
test and training distributions, in addition to the data un-
certainty (often referred to as aleatoric uncertainty). This is
in contrast to Bayesian models, which focus on the model
uncertainty (or epistemic uncertainty). We refer the reader
to ? for an in-depth discussion of the different sources of
uncertainty.

Classification EENN-AVCS Having a closed-form pre-
dictive distribution, we can define the following predictive-
likelihood ratio for a given y ∈ Y:

R∗
t (y) :=

t∏
l=1

pl(y|x∗,D)

p(y|πl)
, πl ∼ p(πl|D∗) .

Our result from Proposition 1 applies here as well6, hence it
follows that C∗

t := {y ∈ Y | R∗
t (y) ≤ 1/α} is a valid

5∆K := {π ∈ RK |
∑K

k=1 πk = 1, πk ≥ 0}
6The only difference in the proof being that the martingale is

defined with respect to the sequence of categorical distributions
πt instead of the sequence of weights Wt.
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(1 − α)-confidence sequences for y∗. As in the regres-
sion case, R∗

t can not be realized in practice as it depends
on the unknown label y∗. We again approximate this or-
acle posterior with the one based solely on the training
data p(πl|D∗) ≈ p(πl|x∗,D) and denote the resulting
predictive-likelihood ratio and confidence sequence as Rt

and Ct, respectively. To reason about the quality of this
approximation, we can again rely on Proposition 2.

Post-Hoc Implementation The original DPN formula-
tion [?] requires a specialized training procedure to ensure
that the NN’s outputs represent meaningful concentration
parameters. We instead opt for a simpler post-hoc approach
as we have found it to yield satisfactory results. Specifically,
to obtain the concentration parameters, we start with a pre-
trained (classification) EENN and pass the logits at each exit
through an activation function a : R → R>0. We found that
a simple choice of ReLU activation at(x) = ReLU(x, τt)
with a different threshold τt ≥ 1 at each exit works well in
practice.7 To obtain the ReLU thresholds, we use a valida-
tion dataset and pick the largest τt such that (1 − α)% of
validation datapoints are still contained in the resulting pre-
diction sets at each exit. Lastly, since Y has a finite support
(unlike the regression case), we iterate over all of Y when
constructing a prediction set Ct.

6 RELATED WORK

Early-Exit Neural Networks (EENNs) enable faster infer-
ence in deep models by allowing predictions to be made
at intermediate layers [???]. They have been extensively
explored for computer vision [???] and natural language
processing [???]. The majority of these studies aimed to im-
prove the accuracy-speed trade-off, i.e., ensuring the model
exits as early as possible while maintaining high accuracy.
However, uncertainty quantification (UQ) within EENNs
has so far received relatively little attention [???]. When
it has, UQ has primarily been used to improve EENN ter-
mination criteria. ? employ a Bayesian predictive model at
each exit to enhance the calibration of EENNs. ? propose
a conformal prediction scheme with the goal of generating
sets/intervals that are (marginally) guaranteed to contain
the prediction of the full EENN. Yet none of the preceding
works address the fact that uncertainty estimates at suc-
cessive exits are dependent, which is the main focus of
our work. Perhaps the closest related work is by ?, who
adapt EENNs for the anytime setting [?]. Their method pro-
motes conditional monotonicity: the EENN’s performance
improves across exits for every test sample. Our idea of
nested prediction sets can be seen as an extension of condi-
tional monotonicity to EENNs that yield prediction sets, not

7We restrict concentration parameters to be larger than one
due to the Dirichlet concentrating towards the simplex’s edges for
parameter values smaller than one.

only point predictions as done by ?.

Anytime-Valid Confidence Sequences (AVCSs) are se-
quences of confidence intervals designed for streaming data
settings, providing time-uniform and non-asymptotic cover-
age guarantees [???]. They allow for adaptive experimenta-
tion that permits one to ’peek’ at the data at any time, make
decisions, yet still maintain the validity of the statistical in-
ferences. Recently, AVCSs have found applications in A/B
testing that is resistant to ‘p-hacking’ [?], Bayesian opti-
mization [?], and change-point detection [?]. AVCSs have
not been previously considered for sequential estimation of
predictive uncertainty in EENNs.

7 EXPERIMENTS

We conduct three sets of experiments, which can be re-
produced using the code at https://github.com/
metodj/EENN-AVCS. Firstly, in Section 7.1, we explore
our method (EENN-AVCS) on synthetic datasets to empiri-
cally verify its correctness and assess its feasibility. In the
subsequent set of experiments, detailed in Section 7.2, we
check that our findings extend to practical scenarios, apply-
ing EENN-AVCS to a textual semantic similarity regression
task using a transformer backbone model [?]. Lastly, in
Section 7.3, we report results on image classification tasks
(CIFAR-10/100, ImageNet) using a multi-scale dense net
(MSDNet) [?].

Evaluation Metrics To assess the quality of the prediction
sets at each exit, we utilize the standard combination of
marginal coverage and efficiency, i.e. average interval size,
on the test dataset [?]:

size(t) :=
1

ntest

ntest∑
n=1

|Ct(xn)|,

coverage(t) :=
1

ntest

ntest∑
n=1

[
yn ∈ Ct(xn)

]
,

where Ct is a prediction set at the t-th exit and [·] is the
indicator function. Marginal coverage serves as a proxy
for the statistical validity of the approach, measuring how
frequently the ground-truth falls within the predicted inter-
val on average. Among two methods with similar marginal
coverage, the one with smaller interval sizes is preferred.
To assess the nestedness of prediction sets across exits, we
define a nestedness metric: at each exit t, we compute

N(t) = | ∩s≤t Cs|/|Ct|

and report its mean across test data points. A model with
perfectly nested prediction sets will have N(t) = 1, exactly.
Otherwise, N(t) will be less than one and zero only in the
case of disjoint sets.

1785

https://github.com/metodj/EENN-AVCS
https://github.com/metodj/EENN-AVCS


0.70

0.80

0.90

1.00

A
vg

.N
es

te
dn

es
s

Wiggle

Intersection
Current

0.70

0.80

0.90

1.00

3-Clusters

EENN-Bayes
EENN-AVCS

0.85

0.90

0.95

1.00

M
ar

gi
na

lC
ov

er
ag

e

0.95

0.96

0.97

0.98

0.99

1.00

1 5 10 15

2

4

6

8

10

A
vg

.I
nt

er
va

lS
iz

e

1 5 10 15

1

2

3

4

5

Figure 2: We compare our EENN-AVCS with EENN-Bayes
baseline based on average nestedness (top), marginal cov-
erage (middle), and average interval size (bottom). EENN-
AVCS is the only approach that yields perfect nestedness
while maintaining reasonably high marginal coverage across
exits. The nestedness comes at a price of larger intervals
in the initial exits, though. Note that in the top plot, the
nestedness curves of EENN-AVCS ( ) and EENN-Bayes-
intersection ( ) overlap at N(t) = 1.

Baselines We compare EENN-AVCS against standard UQ
techniques—namely Bayesian methods and conformal pre-
diction. As a Bayesian baseline, we use the same underlying
Bayesian EENN but without applying the AVCS. We term
this approach EENN-Bayes since it uses the Bayesian predic-
tive distribution at each exit to perform UQ. EENN-Bayes
can be seen as an adaptation of the last-layer Laplace ap-
proach for early-exiting [?]. For the conformal baselines,
we perform conformal inference independently at every exit.
Specifically, we use the Regularized Adaptive Predictive
Sets algorithm [RAPS; ?] for the classification experiments
(c.f., 7.3) and Conformalized Quantile Regression [CQR;
?] for the NLP regression experiments (c.f., Sec 7.2). The
primary difference between our approach and the baselines
should be that EENN-AVCS has nested intervals, without
sacrificing coverage, whereas the baselines have no such
guarantee.

7.1 SYNTHETIC REGRESSION DATA

We use two non-linear regression simulations [?]: wiggle
and 3-clusters. The EENN used in this experiment has a
backbone architecture of T = 15 feed-forward layers with
residual connections. Each layer consists of M = 20 hidden
units, and we attach an output layer on top of it to enable
early-exiting. We fit the (last-layer) Bayesian linear regres-
sion model at each exit using the training data and construct

t=
1

EENN-Bayes EENN-AVCS

t=
5

t=
15

t=
1

t=
5

t=
15

Figure 3: Prediction intervals ( ) for EENN-Bayes (left) and
our EENN-AVCS (right) on two simulated regression tasks
?: wiggle (up) and 3-clusters (bottom). Blue points denote
training data. In cases where the EENN-AVCS collapses
to an empty set (out-of-distribution), we do not depict any-
thing, which explains the gaps in EENN-AVCS predictions.
We set the significance level to α = 0.05 for EENN-AVCS,
while for EENN-Bayes, we plot intervals that capture 2 stan-
dard deviations away from the predicted mean ( ). With
different background colors we denote different regions of
data distribution, see Section 7.1.

S = 10 confidence sequences in parallel at test time for each
datapoint (see Appendix A.1 for more details on the parallel
construction). We set the significance level to α = 0.05 for
EENN-AVCS, while for EENN-Bayes, we plot intervals that
capture two standard deviations away from the predicted
mean. Further details regarding data generation, the model
architecture, and the training can be found in Appendix C.1.

In the top row of Figure 2, we compare our EENN-AVCS
( ) against the EENN-Bayes ( ) baseline on the test
dataset based on how nested the prediction intervals are
across exits. We observe that, due to their theoretical foun-
dation, EENN-ACVSs attain perfect nestedness. In contrast,
EENN-Bayes’s nestedness deteriorates over time on both
datasets considered, indicating that there are labels that re-
enter the EENN-Bayes prediction intervals after being ruled
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out at some earlier exit(s). In the top row, we additionally
observe that perfect nestedness can be achieved in EENN-
Bayes by considering a running intersection of all previous
prediction intervals at each exit (denoted with ( ) line),
similar to EENN-AVCS (the two nestedness lines of both
intersection methods overlap at N(t) = 1). However, as
shown in the middle row, this approach leads to a decrease
in marginal coverage, indicating that fewer data points are
covered by the intersection of EENN-Bayes intervals as
more exits are evaluated. In contrast, EENN-AVCS main-
tains high marginal coverage despite utilizing an intersection
of intervals at each exit. This is a direct consequence of the
time-uniform nature of AVCS. The nestedness of EENN-
AVCS comes at a price, though, as the interval size tends
to be larger than that of EENN-Bayes at the initial exits
(bottom plot). This observation is in line with existing work
on AVCSs [?].

To better understand our method’s behavior on in-
distribution (ID) vs out-of-distribution (OOD) points, we
construct a new test dataset by considering equidistantly
spaced points across the entire X space8. We report results
for both datasets considered in Figure 3. Initially, we ob-
serve that for ID datapoints (with ID regions of X depicted
using background), our method satisfactorily covers the
data distribution, especially at later exits. Encouragingly,
AVCSs are also observed to quickly collapse to empty in-
tervals outside of the data distribution (OOD regions are
depicted with a white background). Whenever the AVCS
collapses to an empty interval, we omit plotting the EENN-
AVCS’s predictions, showing the collapse via gaps in Figure
3. Recall that in our setting, an empty interval represents
that a distribution shift has been detected (i.e. maximal pre-
dictive uncertainty), which is exactly the desired behavior
in OOD regions.

On the wiggle dataset, we also have the opportunity to study
the behavior on the so-called in-between (IB) datapoints
that reside between ID and OOD regions. We depict the IB
region with a background. We observe that our method en-
counters challenges in this regime to some extent, as the pre-
diction intervals are, counterintuitively, smaller compared
to those in the ID region despite the density of observed
training datapoints being lower in the IB area. A partial
remedy is provided by the epistemic uncertainty v∗ (see Eq.
(4)), which in our framework can be interpreted as a proxy
for the stability of posterior distributions at different exits
as explained in Section 4. As depicted in Figure 4, v∗ is
larger for IB points compared to the ID ones (as expected).
Thus, a higher v∗ can serve as a warning that the resulting
confidence sequence should not be blindly relied upon.9

8Specifically, for X = [L,R], we construct Xtest =
np.linspace(L− ϵ, R+ ϵ,Ntest) for ϵ > 0.

9The IB region also poses challenges for other UQ methods; a
similar behavior was reported for Gaussian processes [?], with the
in-between region being referred to as the extrapolation region.

Wiggle 3-Clusters

v∗

Figure 4: Average epistemic uncertainty v∗ ( ) across
Bayesian linear regression models at different exits. As
expected, v∗ is larger in the regions where we observe less
training data: out-of-distribution (denoted with a white back-
ground) and in-between (denoted with a grey background

). Hence, v∗ can serve as an indicator for assessing the
reliability of EENN-AVCSs.

7.2 SEMANTIC SIMILARITY USING ALBERT

In this experiment, we examine the STS-B dataset from
the GLUE Benchmark [?] and the SICK dataset [?]. For
both, the task is predicting the degree of semantic similar-
ity between two input sentences. The similarity score is
a continuous label ranging between 0 and 5, denoted as
Y = [0, 5]. As the backbone model, we employ ALBERT
with 24 transformer layers [?], providing the model an op-
tion to early exit after every layer. Bayesian linear regression
models are fitted on the development set. At test time, we
construct a single AVCS (S = 1) with α = 0.05. We ob-
served that constructing multiple AVCSs in parallel leads to
a quicker decay of marginal coverage on this dataset. Since
we know that the true label is within [0, 5], we clip the re-
sulting prediction intervals for all approaches to this region
(if they should extend beyond it). Refer to Appendix C.2
for additional details on data, model, and training for this
experiment.

Results are presented in Figure 5. Encouragingly, the obser-
vations here align qualitatively with those made on synthetic
datasets in Section 7.1. In the top plot, considering only the
current Bayesian ( ) or conformal ( ) interval at each
exit again results in non-nested uncertainty estimates. As
shown in the middle plot, using the running intersection of
EENN-Bayes ’s ( ) and CQR’s ( ) intervals rectifies this
non-nestedness. However, using the running intersection re-
sults in a larger decay in marginal coverage. EENN-AVCS’s
( ) coverage does not suffer nearly to the same extent.
The marginal coverage in the case of the STS-B dataset is
worse across all approaches when compared to the cover-
age observed on synthetic data experiments, c.f. Figure 2.
We attribute this to there being a larger shift between train-
ing, development, and test data splits for the STS-B dataset,
as evidenced by the difference in model performance on
each of those splits (see Appendix C.2 for further details).
Finally, the bottom plot reaffirms that the nestedness of
EENN-AVCS comes at the expense of larger intervals.
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Figure 5: Comparison of our EENN-AVCS with CQR [?]
and EENN-Bayes baselines on the NLP regression datasets.
Similar to findings on the synthetic data (c.f., Figure 2),
EENN-AVCS attains perfect nestedness (upper plot) while
maintaining reasonably high marginal coverage across exits
(middle plot). However, the intervals generated by EENN-
AVCS at each exit are larger compared to the baseline (bot-
tom row). Note that in the upper plot, the nestedness curves
of EENN-AVCS ( ), EENN-Bayes-intersection ( ), and
EENN-CQR-intersection ( ) overlap at N(t) = 1.

7.3 IMAGE CLASSIFICATION WITH MSDNET

In the last experiment, we quantify uncertainty at every exit
on an image classification task. We consider CIFAR-10/100,
[?], and ILSVRC 2012 (ImageNet; ?). As our backbone
EENN, we employ a Multi-Scale Dense Network [MSDNet;
?], which consists of stacked convolutional blocks. At each
exit, we map the logits to concentration parameters of the
Dirichlet distribution using the ReLU activation function, as
discussed in Section 5. To find the exact ReLU thresholds at
each exit, we allocate 20% of the test dataset as a validation
dataset and evaluate the performance on the remaining 80%.
We construct a single AVCS (S = 1) at each exit. We use
significance level α = 0.05 for EENN-AVCS as well as for
both baselines.

In Figure 6, we observe that constructing conformal RAPS
( ) or Bayesian credible ( ) sets at every exit indepen-
dently leads to non-nested behavior (see top row). Taking
the intersection of RAPS sets ( ) corrects this; however, as
expected this leads to a violation of conformal marginal cov-
erage guarantees (see middle row). The same observations
hold for the intersection of EENN-Bayes sets ( ). Encour-
agingly, as in our regression experiments, our EENN-AVCS
based on the Dirichlet Prior Network ( ) yields perfect nest-
edness while maintaining high marginal coverage. In the
bottom row, we also see that EENN-AVCS sets are roughly
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Figure 6: Comparison of our EENN-AVCS with RAPS [?]
and EENN-Bayes baselines based on average nestedness
(top), marginal coverage (middle), and average interval size
(bottom) for our image classification experiments using MS-
DNet as a backbone. EENN-AVCS is the only approach
that attains perfect nestedness (top) while maintaining high
marginal coverage across different exits (middle). Nested-
ness comes at a price, though, as EENN-AVCS sets are
larger compared baseline ones (bottom). Note that in the top
plot, the nestedness curves of EENN-AVCS ( ), RAPS-
intersection ( ), and EENN-Bayes -intersection ( ) over-
lap at N(t) = 1.

two times (or less) larger than the sets from both baselines,
which might be a reasonable price to pay for the nestedness.

8 CONCLUSION

We proposed using anytime-valid confidence sequences for
predictive uncertainty quantification in EENNs. We showed
that our approach yields nested prediction sets across exits—
a property that is lacking in prior work, yet is crucial when
deploying EENNs in safety critical applications. We de-
scribed the theoretical and practical challenges associated
with using AVCSs for predictive tasks. Moreover, we empir-
ically validated our approach across a range of EENNs and
datasets. Our work is an important step towards models that
are not only fast but also safe.

Limitations and Future Work For future work, it is
paramount to improve the efficiency of EENN-AVCSs, aim-
ing for smaller intervals. This is especially crucial for the
initial exits, which are of the highest practical interest for
resource-constrained settings. While we explored ways to
reduce the set size (c.f., Appendix A.1), further efforts are
necessary to ensure faster convergence without sacrificing
marginal coverage in the process. Additionally, studying
alternatives to the predictive-likelihood ratio (c.f., Eq. (2))
for constructing confidence sequences might be a promis-
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ing way to improve efficiency. Finally, from a theoretical
standpoint, it would be interesting to study the behaviour
of EENN-AVCS as the number of exits goes to infinity.
Implicit deep models [??] could be used to this end.
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A ADDITIONAL RESULTS

A.1 SPEEDING UP CONVERGENCE OF EENN-AVCS

In our original formulation in Section 3, we draw a single sample of the weighs Wt (or predictive distribution µt in the
case of classification) at each exit. This invariably leads to large prediction intervals/sets at the initial exits - a phenomenon
analogous to AVCSs being large for the initial few observed data points in the conventional data streaming scenario [?]. In
this section, we explore two distinct approaches to mitigate this issue, aiming to attain more efficient confidence estimates
right from the initial exits.

In the first approach, we simply take multiple samples St > 1 at each exit. Consequently, the predictive likelihood ratio for a
given test point x∗ takes the following form:

Rt(y) :=

t∏
l=1

Sl∏
s=1

pl(y|x∗,D)

p(y|x∗,W
(s)
l )

, W
(s)
l ∼ p(Wl|D) .

We term this approach Multiple-Samples AVCS. As an alternative, we construct multiple AVCSs {C(s)
t }St

s=1 based on a
single sample in parallel. At each exit, we then consider their intersection C∩

t =
⋂St

s=1 C
(s)
t and pass it on to the next exit.

We refer to this method as Parallel AVCS.

We present the results for both approaches in Figure 7 using synthetic datasets from Section 7.1. While both methods yield
more efficient, i.e., smaller, intervals in the initial exits (top row), it is interesting to observe that the Multiple-Samples
approach leads to a much faster decay in marginal coverage compared to the Parallel one (see bottom row). We attribute
this to the fact that by sampling multiple samples within a single confidence sequence at each exit, we are essentially
‘committing’ more to our approximation of the updated posterior (c.f., Eq. (3)), which results in larger coverage violations.
Hence, we recommend using the Parallel approach when attempting to speed up the convergence of our EENN-AVCS .
Nonetheless, we acknowledge that this area warrants further investigation, and we consider this an important direction for
future work.
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Figure 7: Average interval size and marginal coverage for regression synthetic datasets. While both of the considered
approaches yield more efficient intervals (top row), the Parallel method is better at preserving high marginal coverage
(bottom row). AVCS(S) denotes a confidence sequence based on S samples at each exit in the case of Multiple-Samples,
and the sequence based on S parallel ones in the case of Parallel.
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B SUPPORTING DERIVATIONS

B.1 PROOF OF PROPOSITION 1

The proof can be divided into two steps. In the first step, we demonstrate that the predictive-likelihood ratio R∗
t (y) in (2) is

a non-negative martingale when evaluated at the true value y∗, with an initial value of one. In the second step, we utilize
Ville’s inequality to construct AVCS. Throughout this process, we closely adhere to the proof technique outlined in ? (refer
to Appendix B.1 in that work).

We begin the first step by showing that the expectation of the predictive-likelihood ratio evaluated at y∗ remains constant
over time:

EWt+1 [R
∗
t+1(y

∗) |W1, . . . ,Wt] =∫
R∗

t+1(y
∗) p(Wt+1|D ∪ (x∗, y∗)) dWt+1

(i)
=∫

R∗
t+1(y

∗)
p(y∗|x∗,Wt+1)p(Wt+1|D)

pt+1(y∗|x∗,D)
dWt+1 =∫ t+1∏

l=1

pl(y
∗|x∗,D)

p(y∗|x∗,Wl)

p(y∗|x∗,Wt+1)p(Wt+1|D)

pt+1(y∗|x∗,D)
dWt+1 =

∫ t∏
l=1

pl(y
∗|x∗,D)

p(y∗|x∗,Wl)︸ ︷︷ ︸
R∗

t (y
∗)

(((((((
pt+1(y

∗|x∗,D)

(((((((
p(y∗|x∗,Wt+1)

(((((((
p(y∗|x∗,Wt+1) p(Wt+1|D)

(((((((
pt+1(y

∗|x∗,D)
dWt+1 =

∫
R∗

t (y
∗) p(Wt+1|D) dWt+1 =

R∗
t (y

∗)

∫
p(Wt+1|D) dWt+1 =

R∗
t (y

∗) ,

where the step (i) follows from the (sequential) Bayesian updating of the current posterior p(Wt+1|D) based on the new
data-point (x∗, y∗).

To show that initial value is equal to one, we proceed similarly:

EW1
[R∗

1(y
∗)] =∫

R∗
1(y

∗) p(W1|D ∪ (x∗, y∗)) dW1 =∫
R∗

1(y
∗)

p(y∗|x∗,W1)p(W1|D)

p1(y∗|x∗,D)
dW1 =∫

p(W1|D) dW1 = 1 =: R∗
0 .

In the second step, we make use of Ville’s inequality, which provides a bound on the probability that a non-negative
supermartingale exceeds a threshold β > 0.

P (∃t : R∗
t (y

∗) ≥ β) ≤ E[R∗
0(y

∗)] / β .

Since every martingale is also a supermartingale, Ville’s inequality is applicable in our case. Then, for a particular threshold
α ∈ (0, 1) and since we have a constant initial value (one), Ville’s inequality implies: P (∃t : R∗

t (y
∗) ≥ 1/α) ≤ α. If we

define the sequence of sets as C∗
t := {y ∈ Y |R∗

t (y) ≤ 1/α}, their validity can be shown as

P(∀t, y∗ ∈ C∗
t ) = P(∀t, R∗

t (y
∗) ≤ 1/α) =

1− P(∃t : R∗
t (y

∗) ≥ 1/α) ≥ 1− α ,

which concludes the proof.
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B.2 PROOF OF PROPOSITION 2

We first note that due to C∗
t being a valid (1− α) confidence sequence, we have

P (∃l ∈ [t], y∗ /∈ C∗
l ) ≤ P (∃l ∈ [T ], y∗ /∈ C∗

l ) ≤ α , (5)

where we adopt the notation [t] := {1, . . . , t} for brevity. Additionaly we observe that randomness in P (∃l ∈ [t], y∗ /∈ Cl)
and P (∃l ∈ [t], y∗ /∈ C∗

l ) comes from p(W1, . . . ,Wt|D) and p(W1, . . . ,Wt|D∗), respectively. Hence, we can use total
variation distance (TV) to upper bound the difference

P (∃l ∈ [t], y∗ /∈ Cl)− P (∃l ∈ [t], y∗ /∈ C∗
l ) ≤∣∣P (∃l ∈ [t], y∗ /∈ Cl)− P (∃l ∈ [t], y∗ /∈ C∗
l )
∣∣ ≤

TV
(
p(W1, . . . ,Wt|D), p(W1, . . . ,Wt|D∗)

)
.

Next, we apply Bretangnolle and Huber inequality [?] to upper bound the TV distance in terms of KL divergence and use
the fact that weights at different exits are independent which gives rise to a factorized joint distribution

TV
(
p(W1, . . . ,Wt|D), p(W1, . . . ,Wt|D∗)

)
≤√

1− e−KL
(
p(W1,...,Wt|D), p(W1,...,Wt|D∗)

)
≤√

1− e−
∑t

l=1 KL
(
p(Wl|D), p(Wl|D∗)

)
Rearranging the terms and using (5), the proposition follows

P (∃l ∈ [t], y∗ /∈ Cl) ≤
P (∃l ∈ [t], y∗ /∈ C∗

l ) +
√
1− e−

∑t
l=1 KLl ≤

α+
√
1− e−

∑t
l=1 KLl

where KLl := KL
(
p(Wl|D), p(Wl|D∗)

)
.

B.3 BAYESIAN LINEAR REGRESSION

In Section 4, we define the predictive model at the tth exit as a linear model f(x;Wt,U1:t) = h(x;U1:t)
TWt. For

notational brevity, we omit U1:t and denote h(x;U1:t) as ht(x) in this section. Additionally, let y = [y1, . . . , yN ]T ∈ RN

and Ht = [ht(x1), . . . , ht(xN )]T ∈ RN×H represent a concatenation of training labels and (deep) features, respectively.
Assuming a Gaussian likelihood N

(
y;ht(x)

TWt, σ
2
t

)
and a prior N

(
Wt;0, σ

2
w,tIH

)
, the posterior over weights Wt has

the following form [?]:

p(Wt|D) = N
(
Wt; µ̄t, Σ̄t

)
,

µ̄t =
1

σ2
t

Σ̄tH
T
t y ,

Σ̄−1
t =

1

σ2
t

HT
t Ht +

1

σ2
w,t

IH .

Similarly, for a new test point x∗, the posterior predictive can be obtained in a closed-form:

pt(y|x∗,D) = N
(
y;ht(x

∗)T µ̄t, ht(x
∗)T Σ̄tht(x

∗) + σ2
t

)
.

For the exact derivation of both distributions above, we refer the interested reader to the Section 3.3 in ?.
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B.4 SOLVING FOR INTERVAL ENDPOINTS

Due to the assumed Bayesian linear regression model at each exit t, logRt is a convex quadratic function in y:

logRt(y) =

t∑
l=1

log pl(y|x∗,D)− log p(y|x∗,Wl) =

αt(x
∗) · y2 + βt(x

∗,W1:t) · y + γt(x
∗,W1:t) .

Coefficients have the following form:

αt(x
∗) =

1

2

t∑
l=1

(
1

σ2
l

− 1

v∗,l + σ2
l

)
,

βt(x
∗,W1:t) =

t∑
l=1

hl(x
∗)T µ̄l

v∗l + σ2
l

− hl(x
∗)TWl

σ2
l

,

γt(x
∗,W1:t) =

1

2

t∑
l=1

(
(hl(x

∗)TWl)
2

σ2
l

− (hl(x
∗)T µ̄l)

2

v∗l + σ2
l

+ log
σ2
l

v∗l + σ2
l

)
where v∗l := hl(x

∗)T Σ̄lhl(x
∗), and we provide expressions for hl, µ̄l, Σ̄l in Appendix B.3. It is easy to show that αt ≥ 0,

from which the convexity follows.

To find AVCS Ct = {y ∈ Y |Rt(y) ≤ 1/α}, we look for the roots of the equation logRt(y)− log(1/α) = 0. This yields
an analytical expression for Ct = [ytL, y

t
R] :

ytL,R =
−βt ±

√
β2
t − 4αtγ̃t

2αt

where γ̃t = γt + logα. See Figure 8 for a concrete example of log-ratios.

B.5 EPISTEMIC UNCERTAINTY AND KL DIVERGENCE

To compute the KL divergence between the posterior and update posterior in the Bayesian linear regression model (c.f.
Appendix B.3), we first use the Bayes rule to rewrite the latter as:

p(Wt|D∗) =
p(y∗|x∗,Wt) p(Wt|D)

pt(y∗|x∗,D)
.

Using the definition of the KL divergence together with the formulas for posterior predictive and posterior distributions from
Appendix B.3, we proceed as

KL
(
p(Wt|D), p(Wt|D∗)

)
=

Ep(Wt|D)

[
log

p(Wt|D)

p(Wt|D∗)

]
=

log pt(y
∗|x∗,D)− Ep(Wt|D)

[
log p(y∗|x∗,Wt)

]
=

0.5

(
log

( σ2
t

σ2
t + v∗t

)
+

( 1

σ2
t + v∗t

− 1

σ2
t

)
r2∗ +

v∗t
σ2
t

)
where r∗ = y∗ − µ̄T

t ht(x
∗) represents a residual, v∗ = ht(x

∗)T Σ̄tht(x
∗) denotes epistemic uncertainty, and σ = σy,t.

Based on the obtained expression, it is evident that a small v∗, implies small KL-divergence.
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Figure 8: Plot of logRt(y) at various exits t for a randomly selected test data point (x∗, y∗) from the 3-clusters dataset. As
described in Appendix B.4, we observe that the log-ratios exhibit a quadratic shape, allowing for an analytical solution for
the endpoints of prediction intervals Ct.

C IMPLEMENTATION DETAILS

C.1 SYNTHETIC DATA EXPERIMENTS

Data Generation We closely follow data generation process from ?. Specifically, for wiggle dataset we sample N points
from

y = sin(πx) + 0.2 cos(4πx)− 0.3x+ ϵ

where ϵ ∼ N (0, 0.25) and x ∼ N (5, 2, 5). For 3-clusters dataset, we simulate data via

y = x− 0.1x2 + cos(xπ/2)

where ϵ ∼ N (0, 0.25) and we sample N/3 points from [−1, 0], [1.5, 2.5] and [4, 5], respectively. For both datasets, we
sample a total of N = 900 points and allocate 80% of the data for training, while the remaining 20% constitutes the test
dataset.

Model Architecture Our EENN is composed of an input layer and T = 15 residual blocks. The residual blocks consist
of a Dense layer (with M = 20 hidden units), followed by a ReLU activation and BatchNorm (with default PyTorch
parameters). We attach an output layer at each residual block to facilitate early exiting.

Training We train our EENN for 500 epochs using SGD with a learning rate of 1 × 10−3, a momentum of 0.9, and a
weight decay of 1× 10−4. For the loss function, we use the average mean-square error (MSE) across all exits.
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C.2 SEMANTIC TEXTUAL SIMILARITY EXPERIMENT
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Figure 9: Mean Absolute Error (MAE) performance of the
ALBERT-large model across different datasets: train, devel-
opment (dev), and test. A large performance gap between the
train and dev/test datasets is observed. Note that in our work,
we reuse the exact model and training setup from previous
approaches [?].

Datasets We use the STS-B dataset, the only regression
dataset in the GLUE benchmark [?], as well as the SICK
dataset [?]. The task is to measure the semantic similarity
y ∈ [0, 5] between the two input sentences. For STS-B,
the training, development, and test datasets consist of
5.7K, 1.5K, and 1.4K datapoints, respectively. For SICK,
, the training, development, and test datasets consist of
4.4K, 2.7K, and 2.7K datapoints, respectively.

Model Architecture and Training For the model ar-
chitecture and training we reuse the code from ?. Specif-
ically, we work with ALBERT-large which is a 24-
layers transformer model. To facilitate early exiting, a
regression head is attached after every transformer block.

EENN-AVCS In the results presented in the main text,
we construct a single (S = 1) AVCS at test time with α =
0.05. To fit the Bayesian linear regression models (i.e.,
empirical Bayes) at every exit, we use the development
set. Note that this contrasts with our experiments on the
synthetic dataset (c.f., Section 7.1) where we utilized the
training dataset for this purpose. We observed that when
fitting the regression model on the training dataset for
STS-B, the noise parameters σ̂t get underestimated, resulting in a rapid decay of marginal coverage for both EENN-AVCS
and EENN-Bayes . We attribute this to a distribution shift present in the STS-B dataset, which is evident based on the
different performances (MAE) that the ALBERT model achieves on different datasets, as seen in Figure 9.
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D EENN-AVCS ALGORITHM

Here, we outline in detail the implementation of our EENN-AVCS model. In Algorithm 1, we present EENN-AVCS
for regression tasks. We start by fitting a Bayesian posterior model p(Wt|D) at every exit using the training data D (c.f.
Appendix B.3). To estimate the observation noise σ̂t at every exit, we perform empirical Bayes (type-II maximum likelihood).
Then, for a given test point x∗, we first sample the weights from the posterior and compute the epistemic uncertainty v∗t at
every exit. Next, we use the obtained quantities to update the coefficients of the (logarithm of) predictive-likelihood ratio Rt

(c.f. Appendix B.4). To get the prediction interval at a given exit, we then solve the quadratic equation based on the updated
coefficients from the previous step (c.f. Appendix B.4). Finally, we take the running intersection with the intervals obtained
at the previous exits. In case the intersection results in an empty interval, we stop evaluating exits and label the given test
point x∗ as an out-of-distribution (OOD) example (c.f. Detecting Violations of Posterior Stability in Section 3).

In Algorithm 2, we present EENN-AVCS for classification tasks. To determine the concentration parameters αt of the
Dirichlet distribution at each exit for a given test point x∗, we apply a ReLU activation to the logits from the backbone
EENN, retaining only the classes that "survive" the ReLU. We then sample from the Dirichlet distribution to obtain the
denominator part of the predictive-likelihood ratio Rt (refer to Section 5). For the numerator part of Rt , we calculate the
(closed-form) posterior distribution using the concentration parameters at a specific exit. To create a predictive set at a given
exit, we iterate over classes and include only those classes in the set for which the predictive-likelihood ratio Rt is less than
1/αS . Finally, as in the regression case, we consider the running intersection with all sets computed at previous exits. We
label the test example v∗ as out-of-distribution (OOD) if the set collapses to an empty set.

Algorithm 1: EENN-AVCS Regression

input :Backbone EENN {h(·|U1:t)}Tt=1, Regression
models {p(Wt|D), σ̂2

t }Tt=1,
test datapoint x∗, significance level αS

output :AVCS for x∗

C0 = Y
α, β, γ = 0, 0, logαS

for t = 1, ..., T do
Wt ∼ p(Wt|D) = N (Wt|µ̄t, Σ̄t)

v∗t := ht(x
∗)T Σ̄tht(x

∗)

# update coefficients of logRt(y)

α += 1
2 ( 1

σ̂2
t
− 1

v∗
t +σ̂2

t
)

β += ht(x
∗)T µ̄t

v∗
t +σ̂2

t
− ht(x

∗)TWt

σ̂2
t

γ += 1
2

( (ht(x
∗)TWt)

2

σ̂2
t

− (ht(x
∗)T µ̄t)

2

v∗
t +σ̂2

t
+log

σ̂2
t

v∗
t +σ̂2

t

)
# find the roots of quadratic equation

ytL,R =
−β±

√
β2−4αγ

2α

Ct = Ct−1 ∩ [ytL, y
t
R]

if Ct = ∅ then
return ∅ # OOD

return {Ct}Tt=1

Algorithm 2: EENN-AVCS Classification

input :Backbone EENN {f(·|U1:t,Wt)}Tt=1, ReLU
thresholds {τt}Tt=1,
test datapoint x∗, significance level αS

output :AVCS for x∗

C0 = Y
R = [1, . . . , 1]

for t = 1, ..., T do
# get concentration parameters, only keep classes
that "survive" ReLU
αt = ReLU(f(x∗|U1:t,Wt), τt)

α̃t = αt[αt > 0]

πt ∼ Dir(α̃t)

St =
∑

k αt,k

Ct = [ ]

# update the predictive-likelihood ratio
for k = 1, . . . ,K do

if αt,k > 0 then
R[k] ∗= αt,k/St

πt,k

else
R[k] = ∞

if R[k] ≤ 1
αS

then
Ct.append(k)

Ct = Ct ∩ Ct−1

if Ct = ∅ then
return ∅ # OOD

return {Ct}Tt=1
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