
Adaptive Softmax Trees for Many-Class Classification

Rasul Kairgeldin1 Magzhan Gabidolla1 Miguel Á. Carreira-Perpiñán1

1Department of Computer Science and Engineering , University of California , Merced, CA, USA

Abstract

NLP tasks such as language models or document
classification involve classification problems with
thousands of classes. In these situations, it is dif-
ficult to get high predictive accuracy and the re-
sulting model can be huge in number of parame-
ters and inference time. A recent, successful ap-
proach is the softmax tree (ST): a decision tree
having sparse hyperplane splits at the decision
nodes (which make hard, not soft, decisions) and
small softmax classifiers at the leaves. Inference
here is very fast because only a small subset of
class probabilities need to be computed, yet the
model is quite accurate. However, a significant
drawback is that it assumes a complete tree, whose
size grows exponentially with depth. We propose
a new algorithm to train a ST of arbitrary structure.
The tree structure itself is learned optimally by in-
terleaving steps that grow the structure with steps
that optimize the parameters of the current struc-
ture. This makes it possible to learn STs that can
grow much deeper but in an irregular way, adapt-
ing to the data distribution. The resulting STs im-
prove considerably the predictive accuracy while
reducing the model size and inference time even
further, as demonstrated in datasets with thou-
sands of classes. In addition, they are interpretable
to some extent.

1 INTRODUCTION

Classification problems involving thousands to millions of
classes occur naturally in many real-world applications.
Examples include predicting the next word in a sentence
where the vocabulary size can be in the order of hundreds of
thousands, and categorizing products for e-commerce sys-
tems where the number of distinct labels can be in the order
of millions. Designing fast yet accurate methods for these

types of problems remains an active area of research.

A linear softmax model, either standalone or as the last
layer in a neural network, is widely used for general clas-
sification problems. Its inference time, however, is propor-
tional to the number of classes K , as it needs to evaluate

the score for every class no matter the input, which makes
it very slow for large-K classification problems. A natural
way to speed it up would be through conditional computa-
tion during inference, so that only a small subset of classes
needs consideration. Decision trees do this: they follow a

single, instance-dependent root-leaf path during prediction,
and their inference time can potentially be logarithmic on
the number of classes. However, traditional axis-aligned
trees with constant-label leaves do not produce accurate re-
sults for problems with many classes [Choromanska and
Langford, 2015].

Recently, Zharmagambetov et al. [2021a] proposed a novel
Softmax Tree (ST) model that strikes a good balance be-
tween linear methods and decision trees: the model takes
the form of a (hard) decision tree with sparse oblique (lin-
ear) decision nodes and small softmaxes at the leaves. To
learn these more complex forms of trees the authors adapt
a recent Tree Alternating Optimization (TAO) algorithm
[Carreira-Perpiñán and Tavallali, 2018], which can opti-
mize various types of tree-based models but only of a fixed
structure and size. Experimentally, STs demonstrate much
faster inference than the linear classifier and other base-
lines, as well as being very accurate for these large clas-
sification tasks. However, a significant drawback is that it

assumes a complete tree structure, whose size grows expo-

nentially with depth, and this limits their power in both

accuracy and inference time. We discuss this in detail in
section 3, where we show that the key to achieve fast in-

ference time is to decrease the size of the leaf softmaxes

by increasing the depth of the leaf path. Thus, we propose
a new model, Adaptive Softmax Trees (ASTs), where we
learn jointly the structure and parameters of the tree, by in-
terleaving steps that grow the structure optimally with steps
that optimize the parameters of the current structure. This

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:1825–1841.

makes it possible to learn ASTs that can grow much deeper
but in an irregular way, adapting to the data distribution. As
we show experimentally, the resulting ASTs improve con-
siderably the predictive accuracy while reducing the num-
ber of parameters and inference time even further.

We now review related work (section 2), discuss the diffi-
culty of searching over tree structures (section 3), and de-
scribe the original softmax tree (ST) model and TAO-based
optimization (section 4) and our proposed adaptive softmax
trees (AST) (section 5). Then (section 6) we experimentally
show the superiority of ASTs over STs and other baselines
for several multi-class classification problems with a large
number of classes and for language modeling.

2 RELATED WORK

2.1 SOFTMAX APPROXIMATION

While a softmax linear classifier defines a convex prob-
lem with the cross-entropy, it has long been recognized
that training it with many classes is a huge computational
bottleneck, so that one-vs-all can often be the only afford-
able option, in part due to its inherent parallelism [Deng
et al., 2010]. Indeed, even the widely used, extremely effi-
cient LIBLINEAR [Fan et al., 2008] implements one-vs-all
but not the cross-entropy softmax. And, once trained, infer-
ence time in a large softmax is also very large—for exam-
ple, in a language model having a large vocabulary. Hence,
much work has been devoted to approximating the soft-
max classifier. The Hierarchical Softmax (HSM) [Good-
man, 2001] addresses this by using a predetermined tree
structure with linear decision nodes and fixed leaf labels
(corresponding to the words in vocabulary) to speed up
the training of language models. Originally developed for
a two-level tree, it has been extended to deeper architec-
tures [Morin and Bengio, 2005, Mnih and Hinton, 2009].
The structure of the tree can be random, or based on word
similarities [Brown, 1992, Le et al., 2011, Mikolov et al.,
2013b], or on word frequencies [Mikolov et al., 2013a, Le
et al., 2013], or based on speed-optimal dynamic program-
ming [Zweig and Makarychev, 2013], and optimized for
GPUs [Grave et al., 2017]. Training HSM-based language
models is efficient (usually logarithmic in vocabulary size),
but it leads to no speedup at inference time: during predic-
tion, although some pruning is possible, an input instance
is propagated to nearly all the leaves. Apart from HSMs,
other methods of softmax approximation are possible, such
as singular value decomposition [Shim et al., 2017] and
model compression techniques such as pruning or quanti-
zation [Deng et al., 2020].

2.2 DECISION TREE METHODS

Decision trees enjoy fast prediction and interpretability, but
traditional methods such as CART [Breiman et al., 1984]

have low accuracy for problems with many classes [Choro-
manska and Langford, 2015]. This is due to two reasons:
firstly, a suboptimal training based on greedy recursive par-
titioning, where the tree parameters are fixed using a local
heuristic as one grows the tree (so the result is not opti-
mal in any sense); and secondly, a limited modeling ability
because of using trees with axis-aligned splits (which are
poorly suited for high-dimensional data) and constant-label
leaves. The trees can be made more complex by allowing
for oblique (hyperplane) splits [Breiman et al., 1984] and
small linear classifiers at the leaves [Daumé III et al., 2017].
However, this leads to a more difficult optimization prob-
lem for which various heuristics have been proposed within
the many-class setting [Jernite et al., 2017, Daumé III et al.,
2017]. Zharmagambetov et al. [2021a] use Tree Alternating
Optimization to learn these models, but it is limited to trees
of fixed structure. Decision trees are usually ensembled to
boost accuracy but traditional implementations are not suit-
able for problems with many classes. Si et al. [2017] adapt
gradient boosting trees to output ℓ0-regularized sparse pre-
diction and apply this to many-class problems. Besides tree-
based techniques, other methods exist such as sampling
[Joshi et al., 2017] and hashing [Medini et al., 2019].

Instead, we build on the line of work initiated by the
Tree Alternating Optimization (TAO) algorithm [Carreira-
Perpiñán and Tavallali, 2018] (described in section 4) and
follow-up works. TAO is able to optimize a very general
objective function over the parameters of a fixed-structure
tree by repeatedly optimizing each node given the rest are
fixed, and it achieves trees that are smaller but more accu-
rate than traditional ones [Zharmagambetov et al., 2021b].
It makes it possible to train new types of trees, such as hav-
ing sparse oblique splits [Carreira-Perpiñán and Tavallali,
2018], bivariate splits [Kairgeldin and Carreira-Perpiñán,
2024], or having neural nets in the leaves [Zharmagambe-
tov and Carreira-Perpiñán, 2021]. The ability to use dif-
ferent loss functions makes it possible to learn trees opti-
mally for tasks where they were never or rarely used be-
fore, such as clustering [Gabidolla and Carreira-Perpiñán,
2022b], dimensionality reduction [Zharmagambetov and
Carreira-Perpiñán, 2022a], semi-supervised learning [Zhar-
magambetov and Carreira-Perpiñán, 2022b], imbalanced
classification [Gabidolla et al., 2024], or for probing the
meaning of individual neurons in neural nets via model
distillation [Hada et al., 2023], among others. Finally,
TAO also makes it possible to ensemble trees into forests
for classification or regression using bagging [Carreira-
Perpiñán and Zharmagambetov, 2020, Zharmagambetov
and Carreira-Perpiñán, 2020], boosting [Gabidolla et al.,
2022, Gabidolla and Carreira-Perpiñán, 2022a] or even a
joint global optimization over all trees [Carreira-Perpiñán
et al., 2023], which results in forests that are smaller but
more accurate than traditional, axis-aligned ones, such as
XGBoost [Chen and Guestrin, 2016] or LightGBM [Ke
et al., 2017].

1826

2.3 CONDITIONAL COMPUTATION

There is growing interest in having neural networks use
only a small portion of their computational graph to en-
able fast prediction. Although several works [Shazeer et al.,
2017, Hazimeh et al., 2020, Veit and Belongie, 2018] have
shown promising results in terms of runtime and accuracy
tradeoff, the non-differentiability of the conditional compu-
tation makes it difficult to apply gradient-based optimiza-
tion [Hazimeh et al., 2021]. One way to achieve this is to
train a continuous model, such as a soft tree, and harden its
decisions a posteriori, but this leads to degradation in accu-
racy, as observed by Zharmagambetov et al. [2021a]. In our
adaptive softmax trees, conditional computation is built in
by design during training and inference.

2.4 GROWING NEURAL NETS AND NEURAL
ARCHITECTURE SEARCH

The idea of growing the neural architecture by adding more
neurons during training has a long history [Fahlman and
Lebiere, 1990, Gallant, 1993, Fritzke, 1994, Bruske and
Sommer, 1995, Evci et al., 2022]. A related, recently very
active area that aims to learn an optimal neural net struc-
ture is Neural Architecture Search (reviewed by Elsken
et al. [2019], Ren et al. [2021]). A major issue in learn-
ing/growing neural architectures is the vast number of
choices: layerwise or depthwise growth, how to connect
neurons, etc. With trees the search space is more directed:
either one expands leaves or prunes nodes. Tanno et al.
[2019] adaptively grow and train neural trees using back-
propagation, but the potential gains in inference speed are
limited: firstly, their trees are soft, so an input instance has
to follow all root-leaf paths (each with a positive probabil-
ity), which is proportional to the number of leaves (typi-
cally exponential on the depth); and secondly, their trees
are very small, having just a few leaves, which forces each
node to use a relatively large neural net, so even if we fol-
low a single path (as a fast approximation) it will still be
computationally costly. In contrast, a deeper tree, having
many, deep, lighter leaves, is faster at inference, and can
still have high accuracy, as we show here with our adaptive
softmax trees.

3 OPTIMIZING TREES OVER
PARAMETERS AND STRUCTURES:
DEEP PATHS, THIN SOFTMAXES

Learning a tree-based model has two important difficulties.
One is that the space of tree structures is huge: with n nodes
(in total), there are 1

n+1

(

2n
n

)

ordered trees [Knuth, 1997],
which already exceeds one million for n = 14. The other
is that a (hard) tree defines a non-differentiable, highly non-
convex optimization problem.

The traditional, widely used approach for learning axis-
aligned trees is based on greedy top-down induction

[Breiman et al., 1984, Quinlan, 1993]: starting from the
root node, splits are recursively fixed (to optimize a local
purity criterion) until the tree is fully grown. This is usually
followed by a form of pruning to reduce overfitting. While
suboptimal, this two-step process does effect a form of lo-
cal search over tree structures and can produce adequate
results with simple axis-aligned constant-leaf trees, but it
works poorly with more complex trees, e.g. with oblique or
neural nodes.

The Tree Alternating Optimization (TAO) algorithm
[Carreira-Perpiñán and Tavallali, 2018], reviewed in sec-
tion 4 for Softmax Trees, works by optimizing the parame-
ters of each node in alternation, for a tree of a given struc-
ture. It does a much better job at optimizing a complex tree,
as it can monotonically decrease a loss function, regulariza-
tion term, and node models of general form. It also does a
restricted form of structure search: an ℓ1 penalty sparsifies
the node weight vectors, which can make nodes redundant
and thus pruned, resulting in a learned structure that is a
subtree of the initial tree. But, beyond that, TAO does not
search over tree structures, and in particular, it cannot learn
a bigger tree than the initial one.

The original Softmax Tree [Zharmagambetov et al., 2021a],
consisting of a tree with oblique (hard) splits and softmax
leaves, relied directly on TAO to optimize the cross-entropy.
As an initial tree, it used a complete tree of depth ∆ and 2∆

softmaxes each having k classes. By tuning these two hy-
perparameters ∆ and k, it achieved good results on large,
many-class datasets. But it has a major limitation: the num-

ber of nodes grows exponentially with the depth, which

is thus computationally limited in memory and time (to

∆ ≈ 14 in that paper), which in turn forces the softmaxes to

use many classes (k up to 800 in that paper). If the tree was
deeper, the softmaxes could be smaller, accelerating the in-
ference. Crucially, depending on the data distribution, the
tree may need to be quite deep in some parts and shallow
in others, i.e., an unbalanced structure. If we could guess
the right structure, we could have TAO use that from the
beginning, but guessing it is far from simple. Using, say,
a structure from a CART tree does not work at all. This
calls for searching over structures properly as proposed in
our Adaptive Softmax Trees (ASTs), described in section 5.
And, as it turns out, we find in our experiments that ASTs
achieve higher test accuracy than using a complete ST of
the same depth (which is far more costly).

At the heart of the improvement of ASTs is the interplay
between tree depth ∆ and leaf softmax width k. Let D ∈ N

be the feature dimensionality. In a complete ST, the infer-
ence time is O(D(∆ + k)) (actually less if the weight vec-
tors and softmaxes are sparse and some tree paths are shal-
lower than∆), and typically∆≪ k. This already improves
greatly over a single softmax, O(DK), if ∆+ k ≪ K . In

1827

ASTs, an irregular tree structure makes it possible to re-
duce k further by increasing ∆ selectively for each branch.
Besides, our ASTs learn the number of classes kj for each
leaf j automatically, so that some leaves specialize on a
few select classes while others handle more, which affords
more speedups. The inference time is thenO(D(∆j + kj))
for each leaf j, and usually larger ∆j are associated with
smaller kj .

4 SOFTMAX TREES (STs) AND TREE
ALTERNATING OPTIMIZATION (TAO)

We now describe the Softmax Tree (ST) model and the
extension of TAO to train them over a fixed tree struc-
ture [Zharmagambetov et al., 2021a]. Let {(xn, yn)}Nn=1 ⊂
RD × {1, . . . ,K} be our training set of size N of D-
dimensional input features and K classes. Write the Soft-

max Tree as τ (x;Θ), a rooted binary tree with a set of de-
cision (internal) nodes Ndec and a set of leaf nodes Nleaf.
Each decision node i ∈ Ndec has a decision function
gi(x; θi): R

D → {lefti, righti} ⊂ {Ndec ∪ Nleaf}
that sends an instance x to its left or to its right child.
We use oblique (linear) decision nodes: “if wT

i x + wi0 ≥
0 then gi(x) = righti, otherwise gi(x) = lefti” where
the learnable parameters are θi = {wi, wi0}. Note how the
decision function makes hard decisions, unlike in soft trees,
where an instance x is propagated to both children with a
positive probability. Each leaf j ∈ Nleaf contains a predic-
tive function fj(x; θj): R

D → S
K that produces the actual

output of the tree τ (x;Θ) for an instance x, where SK =
{x ∈ [0, 1]K : 1Tx = 1}. In Softmax Trees, fj(x; θj) takes
the form of a small softmax linear classifier: fj(x; θj) =
σ(Wjx + wj0) where θj = {Wj ∈ Rk×D, wj0 ∈ Rk}
are the learnable parameters, and σ(·) is the softmax func-
tion. The leaf predictor function fj(x; θj) can output only
k nonzero probabilities, with k ≤ K , for a set of k classes
(this set is learned); for all the other K−k classes fj(x; θj)
assigns exactly zero probability. For problems with a large
number of classes we want k ≪ K to allow for fast in-
ference. The predictive function of the whole Softmax Tree
τ (x;Θ) then works by routing an instance x to exactly one
leaf through a root-leaf path of (oblique) decision nodes
and applying that leaf’s small softmax predictor function.
Overall, a ST can be seen as a hierarchical collection of lo-
cal softmax classifiers each operating on a small subset of
classes.

Now we describe how the TAO algorithm applies in learn-
ing a ST. TAO is a general method for optimizing a given
objective function over a given decision tree model. Un-
like CART-type methods, TAO works similarly to how one
would optimize a (say) neural network: by taking an initial
tree structure (cf. network architecture) and parameters (cf.
network weights) it performs alternating optimization over
the nodes (cf. gradient descent in a neural net) to mono-

tonically decrease the objective function. Unlike with neu-
ral nets and soft decision trees, gradient-based optimiza-
tion is not applicable because hard decision trees are non-
differentiable functions. Given a Softmax Tree τ (x;Θ) of
fixed structure (e.g. a complete tree of depth ∆) and initial
parameters (e.g. random), the goal of TAO is to minimize
the following objective:

E(Θ) =

N
∑

n=1

L(yn, τ (xn))+

λ
∑

i∈Ndec

‖wi‖1 + µ
∑

j∈Nleaf

‖Wj‖1 (1)

where L(·, ·) is the cross-entropy loss, Θ =
{wi, wi0}i∈Ndec ∪ {Wj,wj0}j∈Nleaf are the set of all
learnable model parameters, and there is an ℓ1 penalty over
the weight vectors to promote sparsity via hyperparameters
λ, µ ≥ 0. In general, we use the same regularization value
for both decision nodes and leaves λ = µ, but in some
experiments we explore the effect of the leaf sparsity µ.

The TAO algorithm is based on two theorems. First, the sep-

arability condition states that eq. (1) separates over a set of
non-descendant nodes, e.g. all the nodes at a given depth.
This is a consequence of the tree making hard decisions.
All such non-descendant nodes can be optimized indepen-
dently and in parallel. Second, the reduced problem over a

node states that optimizing the top-level problem of eq. (1)
over the parameters of a given node i ∈ {Ndec ∪ Nleaf}
reduces to a simpler, well-defined problem involving only
the training instances that currently reach that node i (the
reduced set Ri ⊂ {1, . . . , N}). The exact form of the re-
duced problem differs for leaves and for decision nodes:

• For a decision node i ∈ Ndec, the top-level problem of
eq. (1) reduces to a weighted 0/1 loss binary classifica-

tion problem:

Ei(wi, wi0) =
∑

n∈Ri

cn L(yn, gi(xn)) + λ ‖wi‖1 (2)

where L(·, ·) is the 0/1 loss, yn ∈ {lefti, righti} is a
pseudolabel indicating the “best” child (i.e., the child that
gives the lower value of the loss down its subtree) for the
instance xn, and cn ≥ 0 is the loss difference between
the “other” child and the “best” child for the instance
xn. This problem over an oblique node is in general NP-
hard, but it can be approximated well with a surrogate
loss such as the cross-entropy (i.e., solving a logistic re-
gression). We can ensure a monotonic decrease of the
top-level objective (1) by accepting the update only if it
improves (2) (in practice we find this unnecessary).

• For leaf node j ∈ Nleaf, the top-level problem of eq. (1)
reduces to a form involving the original loss but only over
the parameters of the leaf predictor function fj(·) and its

1828

reduced setRj :

Ej(Wj ,wj0) =
∑

n∈Rj

L(yn, fj(xn)) + µ ‖Wj‖1 (3)

where L(·, ·) is the same cross-entropy loss of eq. (1). Ex-
actly solving this problem would require enumerating all
(

K

k

)

class subsets, but we can approximate this well by
picking the top k majority classes in the reduced set Rj

and training a k-class softmax classifier fj(·) on them.
We solve the resulting ℓ1-regularized convex problem us-
ing SAG [Schmidt et al., 2017].

While these theorems do not prescribe the order in which
the nodes should be optimized, Zharmagambetov et al.
[2021a] follow a reverse breadth-first search order: all the
nodes at a given depth are optimized in parallel, starting
from the deepest ones until the root. Each optimization sub-
problem involves solving either an ℓ1-regularized logistic
regression or an ℓ1-regularized k-class softmax classifier.
As an initial tree, a complete tree of a given depth ∆ is
used with initial parameters set either randomly or based
on a k-means clustering assignment of training points to
the leaves. The hyperparameters of the model are the depth
∆ of the tree and the number of classes k in each of the leaf
softmaxes. Fig. 1 (left) outlines the pseudocode of TAO for
Softmax Trees. By ensuring that the (approximate) solution
of the reduced problem of a decision node improves upon
the previous node parameter values, TAO is guaranteed to
decrease the objective function (1) monotonically.

Finally, node pruning occurs automatically because the ℓ1
penalty can drive a node’s entire weight vector to zero. This
makes the node redundant (it sends all instances to the same
child) and it can be removed at the end. Thus, the final ST
is a subset of the initial (complete) ST.

5 ADAPTIVE SOFTMAX TREES (ASTs)

In the previous section, TAO was used on a complete tree of
depth ∆. Now, we improve this to explore structures. The
basic idea is to use two types of steps. One is a regular

TAO optimization of a ST of fixed structure (not necessarily
complete); this guarantees improvement of the objective de-
fined globally over this ST. The other is an expansion step

on a current leaf, which tries to replace it with a shallow ST
(having narrower softmaxes at its leaves). This local move

can improve the loss function but at the cost of additional
decision nodes; we actually expand the leaf if overall we
improve, else we do not expand it, and try another leaf. We
interleave regular and expansion steps until convergence.
Let us see this in more detail.

We first train a shallow (e.g. depth ∆ = 2) complete Soft-
max Tree τ (·;Θ) with relatively large k0-class softmaxes
in the leaves. The number of classes k0 is set such that the
total number of predictable classes by the model is at least

the total number of classes K in the dataset: k02∆ ≥ K .
We then attempt to replace each leaf j ∈ Nleaf softmax
predictor function fj(·; θj) by yet another shallow Softmax
Tree τ̂ j(·; Θ̂j) of depth ∆̂ = 1 or 2, whose leaves contain
smaller k̂j -class softmaxes, k̂j < k0. To control by how
much these large softmaxes are reduced we use the follow-
ing simple heuristic: k̂j = α k0, where α ∈ (0, 1) is the
softmax contraction coefficient hyperparameter. We obtain
this small tree τ̂ j(·; Θ̂j) by fitting it using the TAO algo-
rithm on the training instances that reach the leaf j, i.e., on
the reduced set Rj . This step can be considered as a recur-
sive application of the Softmax Tree method with the goal
of replacing large, flat softmaxes with faster “softmax sub-
trees”. But instead of directly substituting the leaf softmax
fj(·; θj) with the tree τ̂ j(·; Θ̂j), we first ensure that the ac-
curacy of τ̂ j(·; Θ̂j) is at least as good as the original soft-
max fj(·; θj) or within a reasonable tolerance ratio hyper-

parameter ρ > 1. If this is not the case, the leaf predictor
function fj(·; θj) remains unchanged. Otherwise, the sub-
stitution happens, and this results in the structure change
of the original tree model τ (·;Θ) where it is expanded
through the leaf j (the expansion step). In this way, after
attempting to expand all the leaves j ∈ Nleaf, and assuming
some or all of them are expanded, we obtain a deeper, irreg-
ular Softmax Tree τ exp(·;Θexp) with smaller leaf softmaxes
which has comparable or better training accuracy and faster
inference. Now, importantly, we retrain the whole model
τ exp(·;Θexp) globally using TAO (the regular step), which
will further improve the model accuracy and possibly spar-
sify nodes. We repeat these local expansion and global op-
timization steps until the model converges or some prede-
termined stopping criterion is reached. Note that if a given
leaf j could not grow at one expansion step, it can still grow
in the next iteration because of the in-between optimization
step which can change the parameters of the whole model.
Fig. 1 outlines the proposed adaptive learning algorithm.

Note that the expansion move allows us to compare the ob-
jective function before and after the expansion in order to
decide whether or not we should pursue a new architecture.
This is possible by expanding a leaf subtree and optimizing
it separately, which in turn is possible because of the sepa-
rability condition that trees satisfy: the objective function
separates additively over the leaf subtrees, because each
leaf subtree operates only on its own parameters, its own
region of the input space and its own reduced set (training
instances reaching the leaf). Thus, the contribution to the
overall (tree-wide) objective function of optimizing over an
expanded leaf subtree is a separable term. Comparing the
loss on the leaf reduced set before (softmax) and after (soft-
max subtree optimized only on that reduced set), together
with the regularization term on the parameters, gives the
exact improvement of the overall objective function. This
makes it possible to decide locally whether to accept the
expansion or not. The subsequent, global optimization with
TAO of the expanded tree may, of course, undo some of

1829

input training set {xn, yn}
N
n=1,

Softmax Tree τ (·;Θ) of depth ∆.

repeat
update reduced setsRi for all nodes i;
for d = ∆ downto 0 do

for i ∈ nodes at depth d

if i is a leaf
fit a ki-class linear softmax fi(·; θi)
on the top-ki majority class points
inRi to optimize eq. (3)

else
fit a weighted 0/1 loss binary
classifier g(·; θi) to optimize eq. (2)

end if
end for

end for
until stopping criterion
return trained τ (·;Θ)

input training set {xn, yn}Nn=1, initial depth ∆0,
softmax contraction coefficient α ∈ (0, 1),
tolerance ratio for node expansion ρ > 1.

k0 ← αK

initialize τ (·;Θ) of depth ∆0 and k0-class leaves;
fit τ (·;Θ) using TAO;
repeat

update reduced setsRj for all j ∈ Nleaf;
for j ∈ Nleaf

initialize ST τ̂ j(·; Θ̂j) of depth ∆ = 1 or 2
and with (αkj)-class softmax leaves;
fit τ̂ j(·; Θ̂j) using TAO on {xn, yn}n∈Rj

;

if loss(τ̂ j(·;Θ̂j))
loss(fj(·;θj))

< ρ then accept the expansion of leaf j

end for
update the tree τ (·;Θ) and reoptimize with TAO;

until no changes to the tree structure
return adaptively grown τ (·;Θ)

Figure 1: Left: pseudocode of TAO for learning Softmax Trees. Right: pseudocode of the proposed adaptive growth method
for ASTs; this uses TAO (left part) as a subroutine.

the expansions, as well as update all the parameters and re-
duced sets. Also, the local expansion moves are fast thanks
to using the existing weight matrix to warm-start the opti-
mization in the leaves.

This algorithm can be motivated as performing a search
through the vast space of different tree structures and pa-
rameters. Each leaf-wise local expansion step tries to im-
prove the tree structure, and the subsequent optimization
step of the whole current tree tries to refine its parameters.
This process leads to a better structure, often highly irreg-
ular and far from complete, and better parameters than the
one produced by TAO on a random or heuristic complete
tree initialization. The hyperparameters α and ρ are de-
signed to control how fine the search over structures is: the
smaller α the faster the softmaxes contract (so shallower
trees), and the smaller ρ the more accurate the expanded
subtree must be to be accepted. They also help to control
overfitting.

5.1 COMPUTATIONAL COMPLEXITY OF ASTs

Training It is difficult to estimate the training time pre-
cisely because of the changing tree structure and softmax
sizes. A coarse upper bound results from taking the largest
structure and softmax size kmax that occur during training.
If we assume that fitting softmax classifiers is linearly pro-
portional to the training set size, then sequential optimiza-
tion of all the leaves is upper-bounded by fitting a sin-
gle kmax-class softmax for the whole training set. But af-
ter several expansion steps, the softmax sizes are usually
much smaller. Regarding the oblique decision nodes, opti-

mizing sequentially all of them at a given depth is asymptot-
ically equivalent to fitting a single logistic regression on the
whole training set. However, from TAO’s separability con-
dition, optimizing all the leaves and all the decision nodes
at the same depth can be done in parallel, which can bring
huge speedups.

Inference For the original Softmax Tree (assumed com-
plete), the inference time is O(D(∆ + k)). Compared to
a single flat softmax on all K classes, the speed-up is dra-
matic:O(K

∆+k
) ≈ O(K

k
) if k ≈ ∆+k ≪ K . For our AST,

the inference time for a leaf j is O(D(∆j + kj)). The im-
provement is that this results in quite smaller values of kj at
the expense of slightly large values of ∆j (thin softmaxes
in deep leaves).

6 EXPERIMENTS

Our experimental results consistently demonstrate the bene-
fit of our proposed adaptive learning method in learning bet-
ter Softmax Trees in terms of accuracy, inference time, and
model size for several benchmarks in classification tasks
with a large number of classes and in language modeling.
After describing our setup, we first show a detailed com-
parison of the proposed adaptive growth method against
the previous fixed tree approach. We then report bench-
mark results for document classification and language mod-
eling tasks. Finally, we analyze the produced tree struc-
ture and attempt to interpret the model by visualizing it. In
this section, “AST” refers to our proposed adaptive learn-
ing method, and “ST” refers to the previous fixed tree ap-

1830

proach.

6.1 SETUP

Unless otherwise stated, we use the following fixed values
for these hyperparameters: the initial tree depth ∆0 = 2
and the depth of expanding subtrees ∆̂ = 1. For all other
hyperparameters (the sparsity of decision nodes and leaves
λ = µ, tolerance ratio for node expansion ρ and softmax
contraction coefficient α) we set them in accordance with
cross-validation on a holdout set. All other implementation
details including hyperparameter tuning are provided in ap-
pendix A.2.

We compare our results with other baselines specifically
developed for problems with a large number of classes.
These include RecallTree [Daumé III et al., 2017], (π, κ)-
DS [Joshi et al., 2017] and MACH [Medini et al., 2019].
We use available open-source implementations of the above
methods or cite their results, where applicable. As noted in
the related work section, training a softmax classifier by
optimizing the cross-entropy is very time-consuming, so
in some of our comparisons we use one-vs-all classifiers
because training a linear softmax classifier was infeasible
even in our 256GB server. For the linear one-versus-all
classifier we use scikit-learn’s implementation [Pe-
dregosa et al., 2011]. In contrast, our ASTs can be trained
with fewer resources and are much faster at inference. Com-
pared to the original ST, ASTs can grow much deeper
with very narrow softmax layers, even using just one class
(k = 1) in some leaves. We report misclassification errors
on train and test sets, average inference time per sample
on test set, and tree parameters (tree depth ∆, average leaf
softmax sizes k̄, and the number of leaves). We time the
inference of each sample on a single CPU and average it
over the whole test set. All experiments are conducted on
the machine Intel Xeon CPU E5-2699 v3 @ 2.30GHz, 256
GB RAM.

6.2 THE BENEFIT OF ADAPTIVE GROWTH

We first perform a detailed comparison between the mod-
els produced by our adaptive growth method and the pre-
vious fixed tree approach. We use the following datasets
with a large number of classes: WIKI-Small subs., ALOI,
LSHTC1. The details about them are in appendix A.1.

For these sets of controlled experiments, we keep node and
leaf sparsity parameters λ, µ equal for both ASTs and STs.
As stated in previous sections, the AST approach expands
leaves unevenly, which produces softmaxes with different
number of classes k. To ensure that the comparison be-
tween resulting models is fair and comprehensive, we train
STs with the biggest k from an AST and cross-validated
depth ∆. For WIKI-small we provide a pairwise compari-
son of multiple STs and ASTs of similar k in Table 1. For

100 200 300
0

0.05

0.1

0.15

0.2

Iterations

0/
1

lo
ss

Figure 2: 0/1 loss of the final AST model for training
(dashed line) and test (solid line), compared with the com-
plete Softmax Tree. The arrows point to where expansions
of the AST happened. The line colors indicate the perfor-
mance of the ST (blue), ST(AST) (green) and AST (red).
This shows that the adaptive growth gradually enhances the
performance of the model on both training and test tests
(red solid and dashed lines). On the other hand, a ST initial-
ized randomly (blue line) or on the final structure of AST
(green line) is unable to improve after a certain number of
iterations.

example, the softmax size of ST∗(k = 13) and a maximum
softmax size of AST∗(α = 0.39, ρ = 1.2) are equal. Then,
we use the structure of the final tree from the AST to initial-
ize an ST (referred as “ST(from AST)”). We keep k of leaf
softmaxes but reinitialize randomly the weights of linear
classifiers in decision nodes and leaves.

Table 1 shows that ASTs considerably outperform STs in
test error (up to 5% on WIKI-Small). In many cases, the
performance of ST is improved as we lower the depth
but lowering it too much leads to an increase in test error.
Note that the depth of STs initialized from the correspond-
ing AST differs because of the post-pruning. Importantly,
ASTs have much faster inference (up to 15 times) and lower
FLOPs. Fig. 2 contains an additional experiment showing
the improved accuracy of ASTs over STs as a function of
training iterations. These sets of experiments confirm that
the progressive growth of a tree results in a better local op-
timum and justifies our proposed approach.

6.3 TEXT CLASSIFICATION

We compare our method with other baselines (including
ST) on document categorization benchmark WIKI–Small

1831

Table 1: AST vs ST. We report: train/test errors; depth ∆, number of leaves L, average leaf softmax size k̄ of the tree;
and average inference time and FLOPs per test instance. For ST we specify its leaf softmax size k, for AST the softmax
contraction coefficient α and tolerance ratio of expansion ρ. ASTs are trained with µ = 0.01 or (if marked with ∗) µ = 0.1.

Method Etrain% Etest% ∆ L k̄ inf.(µs) FLOPs

Softmax 22.30 23.20 – – – 53 416
ST(k = 7) 0.52 8.33 7 128 5.27 142 197
ST(k = 5) 0.36 8.75 8 256 3.53 98 214
ST(from AST) 2.94 8.84 11 373 1.77 86 177

L
et

te
r

AST(α=0.85,ρ=1.2) 0.30 7.03 12 153 2.13 43 162
AST(α=0.75,ρ=1.2) 2.05 6.35 15 384 1.01 9 151

Softmax 10.90 13.0 – – – 411 128000
ST∗(k = 90) 2.01 12.3 7 126 64.9 24 1493

A
L

O
I

ST(k = 75) 3.89 12.0 6 64 74.9 29 1871
ST(from AST) 2.37 12.8 8 177 38.4 18 1102
AST∗(α=0.75,ρ=1.01) 1.49 9.9 10 326 23.8 15 1016

Softmax 54.30 61.4 – – – 10680 423722
ST(k = 70) 14.20 62.7 7 128 70.0 65 12279

L
S

H
T

C
1

ST(k = 50) 6.15 61.2 8 256 49.4 55 9218
ST(from AST) 9.36 68.7 9 511 49.7 62 9388
AST∗(α=0.9,ρ=1.2) 16.10 60.8 10 1006 11.5 40 3756

Softmax 42.4 50.2 – – – 16500 9214
ST∗(k = 4) 48.7 51.5 8 30 4.6 36 691
AST∗(α=0.35,ρ=1.2) 46.3 49.5 11 73 4.1 16 586
ST∗(k = 9) 44.1 48.3 8 50 8.0 27 918
AST(α = 0.38, µ = 0.1) 43.7 46.9 11 13 44 8.4 791
ST(k = 13, µ = 0.1) 44.1 48.3 8 13 40 12.1 1104
AST∗(α=0.39,ρ=1.2) 43.6 47.5 11 34 11.7 12 929

W
IK

I-
S

m
al

ls
ub

s.

ST(k = 67, µ = 0.01) 29.6 48.4 8 21 256 8.11 2291
ST(k = 95) 19.7 44.1 8 256 5.7 30 3065
ST(from AST) 21.1 44.0 8 65 12.5 19 3296
AST(α=0.69,ρ=1.2) 37.8 42.7 13 184 2.8 13 1437

consisting of more than 36k classes. The full dataset con-
tains roughly 380k features and 800k training samples. Set-
ting the initial depth of AST to small values (2-3) while
keeping α relatively high (0.6-0.9) generates extremely big
softmaxes in the initial tree, subsequently, causing slow
training. Two ways to mitigate this problem: 1) initializ-
ing with a bigger initial tree and 2) initializing with smaller
α (0.01-0.02) while keeping α in expanding subtrees high
(0.7). As a result, as AST expands it covers more and more
classes.

Table 2 shows that AST performs better on the test set than
most of the baselines. Moreover, ASTs show 6 times faster
inference than STs (ASTs contain on average 44 classes in
the leaves). Note increasing the number of TAO iterations
during leaf expansion or global optimization (or both) may
lead to much better results at a cost of training time.

6.4 LANGUAGE MODELING

Penn Treebank (PTB) is a popular dataset often used for
language modeling. We compare the performance of AST
models on this task against Hierarchical Softmax (HSM),
STs and linear one-vs-all clasifiers. The details about
dataset preprocessing, implementation of the baselines and

the hyperparameter tuning can be found in Appendix A.3.

The perplexity score

PPL = exp

(

−
1

N

N
∑

n=1

logPr(yn|xn)

)

can be undefined for models that can output exactly zero
probability. This can happen with STs where an instance
x reaches a leaf whose softmax does not specialize in the
true class y and thus gets Pr(y|x) = 0. Therefore, in es-
timating the PPL we only include the instances for which
the model outputs nonzero probability. Although a linear
classifier provides a positive probability for all the classes,
it could not predict correctly 58% of all K ≈ 6k classes on
both training and test sets, i.e., the outputted score Pr(y|x),
though being positive, was not a maximum, not even in the
top-10 for many instances. For our AST models it is possi-
ble to control the percentage of points for which the model
outputs positive probability by tuning the hyperparameter
α, which appendix A.4 explores in detail.

Table 3 shows the results on PTB. It is clear that our method
outperforms other baselines in both top-1 test error and in-
ference time by a considerable margin. The performance of
AST can be even further improved by more optimization

1832

Table 2: Results on the text classification dataset WIKI-
Small. We report the test error, depth ∆ of the tree, and
the average inference time per test sample in milliseconds.
For STs we specify the leaf softmax size k, and for ASTs
we specify the softmax contraction coefficient (α) and the
tolerance ratio of node expansion (ρ).

Method Etest(%) ∆ inf.(ms) Train time

RecallTree 92.64 15 0.97 53m
one-vs-all 85.71 0 10.70 > 7d
MACH 84.80 – 252.64 1445m
ST(k = 200) 84.70 8 0.18 ≈1000m
(π, κ)-DS 78.50 – 10.33 –
ST(k = 150) 77.26 8 0.57 ≈1000m
AST(α=0.6, ρ=1.0) 77.30 12 0.03 ≈2000m
AST(α=0.60, ρ=1.1) 76.21 12 0.04 ≈2000m

iterations.

6.5 TREE STRUCTURE AND INTERPRETABILITY

Fig. 3 shows how the number of classes present in the
leaves changes with depth. Theoretically, the number of
classes in the leaves should only monotonically decrease
with depth. Such deviations are due to two reasons: 1) a
number of classes in the reduced set of the given depth
is lower than the theoretical upper limit; 2) post pruning
brings leaves closer to the root.

The built-in tree structure of our model makes it possible
to interpret it by visualizing the tree structure and the tree
parameters. To show this, we train an AST on a small sub-
set of Amazon Reviews dataset [He and McAuley, 2016]
which contains text reviews for the products on the Amazon
website. From four high-level product categories (Sports,
Toys, Home, Tools) we select 50 subcategories with the
highest number of reviews. We select up to 300 reviews
from each subcategory and extract tf-idf transformed bag-
of-words features. This results in a dataset of size about
60k instances with features of dimensionality 11k and 200
classes. We keep 20% of the dataset as a test set and train
a relatively smaller AST on this problem to be able to visu-
alize it in a figure. An initial tree has depth ∆0 = 2, and
α = 0.25, and we limit the expansion steps up to 2. The re-
sulting tree has an accuracy of 53%, and depth ∆ = 6, and
is visualized in fig. 4. At first glance a hierarchical structure
is obvious, where we can observe some subtrees specializ-
ing in similar groups of classes; for example, decision node
9 specializes mostly in Toy classes. Looking at the decision
node weights in any given root-leaf path one can get a local
interpretation of why the tree sends a point to that particular
leaf. A small and sparse softmax model at the leaf can also
be interpreted. Another key observation is that, for the most
part, similar classes tend to be grouped within the same leaf,

Table 3: Results on the language modeling dataset PTB. We
report test error, depth ∆ of the tree, the average inference
time per sample in microseconds and the average perplexity
(PPL) over the test set instances for which the model out-
puts nonzero probability. The percentage of such instances
is shown in parenthesis. For AST models ρ = 1.0.

Method Etest(%) ∆ inf.(µs) PPL (%nnz)

HSM 91.1 18 421 575 (100%)
one-vs-all 87.5 0 705 220 (100%)
ST(k = 50) 86.5 8 58 17 (44%)
ST(k = 100) 86.5 7 58 27 (51%)
ST(k = 400) 86.4 5 64 71 (67%)
AST(α = 0.3) 86.4 12 17 10 (37%)
AST(α = 0.4) 86.1 12 18 13 (44%)
AST(α = 0.5) 86.2 11 19 24 (51%)
AST(α = 0.75) 86.3 12 20 7 (33%)

which is quite remarkable given that the tree is initialized
randomly and unaware of any class information.

7 CONCLUSION

Softmax Trees are effective for many-class problems by
capitalizing on the conditional computation of decision
trees and the ability to define local softmax classifiers that
handle small subsets of classes, both of which make infer-
ence very fast. However, the existing algorithm operates
on a fixed, complete tree, which computationally limits the
depth of any individual leaf and forces the local softmaxes
to be wider than necessary. Our Adaptive Softmax Tree
solves this by learning the tree structure, so it can have
deeper leaves with thinner softmaxes. It achieves this by
interleaving local expansion steps that turn a wide softmax
into a softmax subtree with thin softmaxes, with a global
TAO optimization of the entire tree. Our experiments con-
vincingly show how this results in improved accuracy, in-
ference time and model size, which makes well worth its
longer training time.

Limitations Although our algorithm is guaranteed a
monotonic decrease of the objective function (at both regu-
lar and expansion steps), we lack any other theoretical guar-
antees of optimality (which are difficult to obtain for al-
ternating optimization methods on nonconvex nondifferen-
tiable problems). Also, while trees making hard decisions
result in very fast inference, training them end-to-end with
neural networks is not straightforward. One approximate
approach is to train a neural network with either a regular
flat softmax or a hierarchical softmax and then replacing
it with an AST in a teacher-student approach to obtain an
overall model with faster inference, as we do in our lan-
guage modeling experiments.

1833

31

45

45

65

65

95

95

138

138

200

200

Figure 3: AST for the Wiki-Small subs. dataset. Size of the blue nodes (on the tree) shows the actual number of classes in
the leaves after pruning. Green (left column) shows theoretical max. values at each aligned depth.

bike

pillow

steam

steamer

humidifier

coffee

doll

lego

puzzle

ball

thomas

stickers

shorts

football

1 (nnz = 840)

pillow

steam

wine

bulb

bath

towel

password

bike

coffee

humidifier

doll

ride

dolls

light

2 (nnz = 400)

pillow

soccer

doctor

steam

bubbles

password

bracelets

wine

pump

towel

game

towels

play

learning

4 (nnz = 124)

steam

mat

balloons

bubbles

pan

yoga

steamer

pillow

bulb

bulbs

pillows

tent

lamp

glue

8 (nnz = 18)

steam

bubbles

kids

balloons

steamer

doorbell

carpet

mat

pans

yoga

blocks

swing

cooker

snorkel

16 (nnz = 35)

balloons

doorbell

laundry

bracelets

soccer

pool

swim

steam

steamer

bubbles

doctor

pan

basketball

mop

32 (nnz = 27)

ToyBeauty

ToyPoolsW

SportSocc

ToyReadWr

ToyCraftK

64 (k = 12,

nnz = 995)

ToolPrepM

SportBask

ToyPushPu

HomeCarpe

HomeCookw

65 (k = 12,

nnz = 1137)

mat

blocks

yoga

swing

pans

33 (nnz = 5)

HomeBathA

HomeKitch

SportVide

ToyReadWr

SportTrai

66 (k = 12,

nnz = 476)

HomeKitch

SportTrai

HomeKitch

HomeAppli

HomeKitch

67 (k = 12,

nnz = 481)

pillow

bulb

bulbs

alarm

glue

tent

tarp

pillows

17 (nnz = 8)

pillow
bulb

bulbs

34 (nnz = 3)

SportYoga

HomeComfo

HomeDuvet

ToyDollho

HomeMattr

68 (k = 12,

nnz = 488)

ToolWallL

ToolSwitc

ToolSenso

ToolNovel

ToolOutLi

69 (k = 12,

nnz = 479)

pillows

35 (nnz = 1)

ToolBuild

ToySticke

ToyCraftK

ToolFurnH

ToolNovel

70 (k = 12,

nnz = 320)

HomeKitch

HomeGarme

ToyPlushP

ToyPlayTe

HomeLivRo

71 (k = 12,

nnz = 138)

wine

slide

towel

towels

swing

set

toy

fun

game

pump

learning

letters

magnets

basketball

9 (nnz = 22)

ToyMathCounting

ToolBathHardw

ToyPlayTentTunnel

ToyStackBlocks

ToyMusicInstrum

18 (k = 25,

nnz = 3133)

ToyReadWrite

ToyPoolsWater

ToyBalloon

SportOutdoorGameAct

ToyClayDough

19 (k = 25,

nnz = 3033)

light

coffee

lights

trash

outlet

plug

bell

humidifier

toy

rack

fun

tires

tire

kids

5 (nnz = 127)

light

lights

outlet

plug

bright

lighting

battery

bike

helmet

coffee

trash

bikes

bicycle

machine

10 (nnz = 44)

ToolHomeAutom

ToolSwitch

ToolOutletAcc

ToolCeilingLight

ToolLampShade

20 (k = 25,

nnz = 6441) coffee

loud

chain

grinder

mirror

cup

machine

bike

trash

21 (nnz = 10)

loud

mirror

coffee

chain

42 (nnz = 4)

ToolWater

ToolsTime

SportAcc

ToolFireS

HomeKitch

84 (k = 12,

nnz = 163)

HomeBrewi

HomeAppli

ToolToile

HomeStora

SportPart

85 (k = 12,

nnz = 571)

bike

bikes

bicycle

bell

saddle

seat

bag

helmet

tube

trash

timer

smoke

sensor

alarm

43 (nnz = 24)

SportWhee

SportTran

SportBike

SportPeda

SportKidB

86 (k = 12,

nnz = 907)

ToolElect

SportBike

ToolSwitc

SportHelm

ToolSenso

87 (k = 12,

nnz = 829)

toy

helmet

fun

toys

doll

daughter

loves

bike

humidifier

tire

leviton

plate

rack

tires

11 (nnz = 58)

ToyBlasters

ToyPushPullToy

ToyRCVehicl

ToyVehiclPlaysets

ToyPlayset

22 (k = 25,

nnz = 9695)

SportKidBike

SportBikeTools

SportBikeTrainAcc

SportBikes

ToolWallPlateAcc

23 (k = 25,

nnz = 1642)

bed

filter

comforter

ladder

vacuum

easel

sheets

mattress

ball

knife

paddle

furniture

door

shelves

3 (nnz = 516)

fan

comforter

vacuum

air

cord

lego

tool

bed

iron

water

shower

toilet

faucet

sink

6 (nnz = 147)

air

fan

ladder

tool

filters

comforter

cord

cords

soap

bungee

hooks

clips

12 (nnz = 12)

tool

vacuum

tools

filters

filter

store

roomba

fan

ladder

air

lego

hang

wall

quiet

24 (nnz = 25)

filters

filter

vacuum

tool

tools

48 (nnz = 5)

ToolPipes

ToolProte

HomeCarpe

ToolWater

HomeAppli

96 (k = 12,

nnz = 658)

ToolGarag

ToolMater

ToolPower

ToolMeasu

SportBike

97 (k = 12,

nnz = 1023)

fan

air

quiet

ac

room

unit

heater

ladder

lego

hang

compressor

hooks

drill

wall

49 (nnz = 22)

ToyAction

ToolPower

HomeHumid

ToolHeati

HomeDehum

98 (k = 12,

nnz = 1492)

ToolOrgan

ToolsTest

ToolMeasu

ToolGarag

ToolPower

99 (k = 12,

nnz = 1314)

ToolKitchFixt

ToolElectrBox

SportTactical

HomeBedAcc

HomeVacuums

25 (k = 25,

nnz = 796)

bed

filter

thermostat

soft

heater

rug

blanket

faucet

paint

sink

water

stickers

iron

tape

13 (nnz = 49)

filter

water

26 (nnz = 2)

bed

pad

rug

heater

thermostat

52 (nnz = 5)

HomeDecor

ToolFurnH

HomeDuvet

HomeComfo

HomeMattr

104 (k = 12,

nnz = 909)

HomeTowel

ToolPipes

HomeComfo

HomeBedAc

ToolHeati

105 (k = 12,

nnz = 1057)

ToolKitch

ToolHeati

HomeAppli

HomeVacuu

HomeCoffe

53 (k = 12,

nnz = 479)

faucet

shower

water

beer

paint

bottles

erase

toilet

iron

flush

stickers

flapper

bathroom

knives

27 (nnz = 42)

faucet shower

54 (nnz = 2)

ToolPrepM

SportHydr

ToolBathF

HomeBrewi

ToolFauce

108 (k = 12,

nnz = 1299)

HomePoste

HomeBaske

ToolBathH

HomeStorH

HomeBathR

109 (k = 12,

nnz = 342)

stickers

iron

knives

solder

humidity

dehumidifier

workbench

toilet

tape

install

easel

sink

installed

markers

55 (nnz = 45)

HomeBathA

ToolsAdhe

HomeDehum

HomeKitch

ToolMater

110 (k = 12,

nnz = 1170)

mattress

warm

knife

furniture

ball

shelves

balls

table

puzzle

figure

roller

door

lock

gloves

7 (nnz = 183)

mattress

knife

furniture

shorts

wood

train

chairs

ball

balls

workout

golf

shirt

shelves

tee

14 (nnz = 32)

knife

chairs

blade

mattress

28 (nnz = 4)

SportFish

SportDivi

ToolFurnH

ToolHandT

SportHunt

56 (k = 12,

nnz = 710)
furniture

train

wood

tracks

sword

track

thomas

mattress

shorts

hat

socks

warm

57 (nnz = 12)

ToolPaint

HomeShelv

HomeKitch

HomeOffic

HomeEntFu

114 (k = 12,

nnz = 629)

HomeSheet

HomeShams

SportRunn

HomeBedAc

SportSkii

115 (k = 12,

nnz = 674)

ball

balls

shelves

shelf

drawers

shelving

mask

29 (nnz = 7)

net

workout

shirt

warm

workouts

ball

balls

golf

golfer

disc

34

58 (nnz = 11)

HomeEntFu

SportWome

SportFoot

SportMen

SportBase

116 (k = 12,

nnz = 1045)

ToyPlayTe

SportFoot

SportOutd

ToySport

SportSocc

117 (k = 12,

nnz = 936)

shelves

59 (nnz = 1)

HomeKidsF

ToolTarps

HomeBathA

HomeBaske

HomeCloth

118 (k = 12,

nnz = 308)

HomeKitch

SportPain

SportHydr

ToolEmerg

ToolSafes

119 (k = 12,

nnz = 358)

wear

party

key

keys

pedals

socks

gloves

puzzle

door

paracord

table

chair

paddle

figure

15 (nnz = 115)

gloves

key

keys

socks

party

pedals

glasses

30 (nnz = 7)

gloves

keys

socks

key

60 (nnz = 4)

SportTrai

HomeStorH

ToolDoorH

ToolSafes

SportClim

120 (k = 12,

nnz = 626)

SportTran

SportRunn

HomeStorH

SportClim

SportClot

121 (k = 12,

nnz = 459)

wear

glasses

waist

mouth

party

pedals

books

safe

61 (nnz = 8)

SportDivi

SportRunn

SportSkii

SportClot

SportFoot

122 (k = 12,

nnz = 552)

SportOutd

HomeKidsF

SportFoot

ToyPlayRa

ToySystem

123 (k = 12,

nnz = 744)

table

chair

roller

assemble

kitchen

muscles

desk

figure

puzzle

closet

puzzles

bag

lock

gun

31 (nnz = 102)

ToolFurnH

HomeKitch

HomeBaske

SportStre

HomeKidsF

62 (k = 12,

nnz = 1679)
carabiner

figure

paddle

bag

rifle

scope

gun

door

puzzle

lock

basket

puzzles

locks

hangers

63 (nnz = 53)

SportProt

SportClim

ToolEmerg

SportHunt

ToyAction

126 (k = 12,

nnz = 2956)

ToyLifeSk

SportTran

HomeBaske

HomeStorH

SportStre

127 (k = 12,

nnz = 940)

Figure 4: Visualization of an adaptive softmax tree for a subset of the Amazon Reviews dataset. You may want to zoom in.

1834

Acknowledgements

Work partially supported by NSF award IIS–2007147.

References

Leo J. Breiman, Jerome H. Friedman, R. A. Olshen, and
Charles J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, Calif., 1984.

Lisa Gottesfeld Brown. A survey of image registration tech-
niques. ACM Computing Surveys, 24(4):325–376, De-
cember 1992.

Jörg Bruske and Gerald Sommer. Dynamic cell structure
learns perfectly topology preserving map. Neural Com-

putation, 7(4):845–865, July 1995.

Miguel Á. Carreira-Perpiñán and Pooya Tavallali. Alter-
nating optimization of decision trees, with application
to learning sparse oblique trees. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems (NEURIPS), volume 31, pages 1211–
1221. MIT Press, Cambridge, MA, 2018.

Miguel Á. Carreira-Perpiñán and Arman Zharmagambe-
tov. Ensembles of bagged TAO trees consistently im-
prove over random forests, AdaBoost and gradient boost-
ing. In Proc. of the 2020 ACM-IMS Foundations of Data

Science Conference (FODS 2020), pages 35–46, Seattle,
WA, October 19–20 2020.

Miguel Á. Carreira-Perpiñán, Magzhan Gabidolla, and Ar-
man Zharmagambetov. Towards better decision forests:
Forest Alternating Optimization. In Proc. of the 2023

IEEE Computer Society Conf. Computer Vision and Pat-

tern Recognition (CVPR’23), pages 7589–7598, Vancou-
ver, Canada, June 18–22 2023.

Tianqi Chen and Carlos Guestrin. XGBoost: A scal-
able tree boosting system. In Proc. of the 22nd ACM

SIGKDD Int. Conf. Knowledge Discovery and Data Min-

ing (SIGKDD 2016), pages 785–794, San Francisco, CA,
August 13–17 2016.

Anna E Choromanska and John Langford. Logarithmic
time online multiclass prediction. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, ed-
itors, Advances in Neural Information Processing Sys-

tems (NIPS), volume 28. MIT Press, Cambridge, MA,
2015.

Hal Daumé III, Nikos Karampatziakis, John Langford, and
Paul Mineiro. Logarithmic time one-against-some. In
Doina Precup and Yee Whye Teh, editors, Proc. of the

34th Int. Conf. Machine Learning (ICML 2017), pages
923–932, Sydney, Australia, August 6–11 2017.

Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien.
SAGA: A fast incremental gradient method with sup-
port for non-strongly convex composite objectives. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural In-

formation Processing Systems (NIPS), volume 27, pages
1646–1654. MIT Press, Cambridge, MA, 2014.

Jia Deng, Alexander C. Berg, Kai Li, and Li Fei-Fei.
What does classifying more than 10,000 image cate-
gories tell us? In Kostas Daniilidis, Petros Maragos, and
Nikos Paragios, editors, Proc. 11th European Conf. Com-

puter Vision (ECCV’10), pages 71–84, Heraklion, Crete,
Greece, September 5–11 2010.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie.
Model compression and hardware acceleration for neural
networks: A comprehensive survey. Proc. IEEE, 108(4):
485–532, April 2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. J. Machine Learn-

ing Research, 20(55):1–21, January 2019.

Utku Evci, Bart van Merriënboer, Thomas Unterthiner,
Max Vladymyrov, and Fabian Pedregosa. GradMax:
Growing neural networks using gradient information. In
Proc. of the 10th Int. Conf. Learning Representations

(ICLR 2022), Online, April 25–29 2022.

Scott E. Fahlman and Christian Lebiere. The cascade-
correlation learning architecture. In David S. Touretzky,
editor, Advances in Neural Information Processing Sys-

tems (NIPS), volume 2, pages 524–532. Morgan Kauf-
mann, San Mateo, CA, 1990.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. LIBLINEAR: A library for
large linear classification. J. Machine Learning Re-

search, 9:1871–1874, August 2008.

Bernd Fritzke. Growing cell structures —a self-organizing
network for unsupervised and supervised learning. Neu-

ral Networks, 7(9):1441–1460, 1994.

Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán.
Pushing the envelope of gradient boosting forests via
globally-optimized oblique trees. In Proc. of the 2022

IEEE Computer Society Conf. Computer Vision and Pat-

tern Recognition (CVPR’22), pages 285–294, New Or-
leans, LA, June 19–24 2022a.

Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán. Op-
timal interpretable clustering using oblique decision
trees. In Proc. of the 28th ACM SIGKDD Int. Conf.

Knowledge Discovery and Data Mining (SIGKDD 2022),
pages 400–410, Washington, DC, August 14–18 2022b.

1835

Magzhan Gabidolla, Arman Zharmagambetov, and
Miguel Á. Carreira-Perpiñán. Improved multiclass
AdaBoost using sparse oblique decision trees. In Int.

J. Conf. Neural Networks (IJCNN’22), Padua, Italy,
July 18–22 2022.

Magzhan Gabidolla, Arman Zharmagambetov, and
Miguel Á. Carreira-Perpiñán. Beyond the ROC curve:
Classification trees using Cost-Optimal Curves, with
application to imbalanced datasets. In Proc. of the 41th

Int. Conf. Machine Learning (ICML 2024), Vienna,
Austria, July 21–27 2024.

Stephen I. Gallant. Neural Network Learning and Expert

Systems. MIT Press, 1993.

Joshua Goodman. Classes for fast maximum entropy train-
ing. In Proc. of the IEEE Int. Conf. Acoustics, Speech

and Sig. Proc. (ICASSP’01), pages 561–564, Salt Lake
City, Utah, USA, May 7–11 2001.

Édouard Grave, Armand Joulin, Moustapha Cissé, David
Grangier, and Herve Jégou. Efficient softmax approxi-
mation for GPUs. In Doina Precup and Yee Whye Teh,
editors, Proc. of the 34th Int. Conf. Machine Learning

(ICML 2017), pages 1302–1310, Sydney, Australia, Au-
gust 6–11 2017.

Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán, and
Arman Zharmagambetov. Sparse oblique decision trees:
A tool to understand and manipulate neural net features.
Data Mining and Knowledge Discovery, pages 1–40,
2023.

Hussein Hazimeh, Natalia Ponomareva, Petros Mol,
Zhenyu Tan, and Rahul Mazumder. The tree ensem-
ble layer: Differentiability meets conditional computa-
tion. In Hal Daumé III and Aarti Singh, editors, Proc.

of the 37th Int. Conf. Machine Learning (ICML 2020),
pages 4138–4148, Online, July 13–18 2020.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Ma-
heswaran Sathiamoorthy, Yihua Chen, Rahul Mazumder,
Lichan Hong, and Ed H. Chi. DSelect-k: Differentiable
selection in the mixture of experts with applications to
multi-task learning. In M. Ranzato, A. Beygelzimer, P.S.
Liang, J. W. Vaughan, and Y. Dauphin, editors, Advances

in Neural Information Processing Systems (NEURIPS),
volume 34, pages 29335–29347. MIT Press, Cambridge,
MA, 2021.

Ruining He and Julian McAuley. Ups and downs: Mod-
eling the visual evolution of fashion trends with one-
class collaborative filtering. In Proc. of the 25th Int.

World Wide Web Conference (WWW’2016), pages 507–
517, Montreal, Canada, April 11–15 2016.

Yacine Jernite, Anna Choromanska, and David Sontag. Si-
multaneous learning of trees and representations for ex-
treme classification and density estimation. In Doina
Precup and Yee Whye Teh, editors, Proc. of the 34th

Int. Conf. Machine Learning (ICML 2017), pages 1665–
1674, Sydney, Australia, August 6–11 2017.

Bikash Joshi, Massih R. Amini, Ioannis Partalas, Franck
Iutzeler, and Yury Maximov. Aggressive sampling for
multi-class to binary reduction with applications to text
classification. In I. Guyon, U. v. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Sys-

tems (NIPS), volume 30. MIT Press, Cambridge, MA,
2017.

Rasul Kairgeldin and Miguel Á. Carreira-Perpiñán. Bivari-
ate decision trees: Smaller, interpretable, more accurate.
In Proc. of the 30th ACM SIGKDD Int. Conf. Knowledge

Discovery and Data Mining (SIGKDD 2024), Barcelona,
Spain, August 25–29 2024.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei
Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Light-
GBM: A highly efficient gradient boosting decision
tree. In I. Guyon, U. v. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Sys-

tems (NIPS), volume 30, pages 3146–3154. MIT Press,
Cambridge, MA, 2017.

Donald E. Knuth. The Art of Computer Programming

Vol. 1: Fundamental Algorithms. Addison-Wesley, Read-
ing, MA, third edition, 1997.

Hai-Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc
Gauvain, and François Yvon. Structured output layer
neural network language model. IEEE Trans. Audio,

Speech and Language Process., 21(1):197–106, January
2013.

Quoc Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri,
Bobby Prochnow, and Andrew Ng. On optimization
methods for deep learning. In Lise Getoor and Tobias
Scheffer, editors, Proc. of the 28th Int. Conf. Machine

Learning (ICML 2011), pages 265–272, Bellevue, WA,
June 28 – July 2 2011.

M. Lichman. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2013.

Tharun Kumar Reddy Medini, Qixuan Huang, Yiqiu Wang,
Vijai Mohan, and Anshumali Shrivastava. Extreme clas-
sification in log memory using count-min sketch: A case
study of Amazon search with 50M products. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems (NEURIPS), volume 32,
pages 13265–13275. MIT Press, Cambridge, MA, 2019.

1836

http://archive.ics.uci.edu/ml

Tomas Mikolov, Martin Karafiát, Lukáš Burget, Jan Čer-
nocký, and Sanjeev Khudanpur. Recurrent neural net-
work based language model. In Takao Kobayashi,
Keikichi Hirose, and Satoshi Nakamura, editors, Proc.

of Interspeech’10, pages 1045–1048, Makuhari, Japan,
September 26–30 2010.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector
space. In ICLR Workshop, 2013a.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploit-
ing similarities among languages for machine translation.
arXiv:1309.4168 [cs.CL], September 13 2013b.

Andriy Mnih and Geoffrey E. Hinton. A scalable hierar-
chical distributed language model. In Daphne Koller,
Yoshua Bengio, Dale Schuurmans, Leon Bottou, and
Aron Culotta, editors, Advances in Neural Information

Processing Systems (NIPS), volume 21, pages 1081–
1088. MIT Press, Cambridge, MA, 2009.

Frederic Morin and Yoshua Bengio. Hierarchical proba-
bilistic neural network language model. In Robert G.
Cowell and Zoubin Ghahramani, editors, Proc. of the

10th Int. Workshop on Artificial Intelligence and Statis-

tics (AISTATS 2005), pages 246–252, Barbados, Jan-
uary 6–8 2005.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey
Tumanov, Richard Liaw, Eric Liang, Melih Elibol,
Zongheng Yang, William Paul, Michael I. Jordan, and
Ion Stoica. Ray: A distributed framework for emerging
AI applications. In Proc. 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

18), 2018.

Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis,
Thierry Artières, George Paliouras, Éric Gaussier, Ion
Androutsopoulos, Massih-Reza Amini, and Patrick Gal-
linari. LSHTC: A benchmark for large-scale text classi-
fication. arXiv:1503.08581, 2015.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. Scikit-learn: Machine
learning in Python. J. Machine Learning Research,
12:2825–2830, October 2011. Available online at
https://scikit-learn.org.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. GloVe: Global vectors for word representa-
tion. In Proc. ACL–14 Conf. Empirical Methods in Nat-

ural Language Processing (EMNLP 2014), pages 1532–
1543, Doha, Qatar, 2014.

J. Ross Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po yao Huang,
Zhihui Li, Xiaojiang Chen, and Xin Wang. A compre-
hensive survey of neural architecture search: Challenges
and solutions. ACM Computing Surveys, 54(4):76:1–
76:34, May 2021.

M. Schmidt, Nicolas Le Roux, and Francis R. Bach. Min-
imizing finite sums with the stochastic average gradient.
Mathematical Programming, 162:83–112, 2017.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and Jeff
Dean. Outrageously large neural networks: the sparsely-
gated mixture-of-experts layer. In Proc. of the 5th Int.

Conf. Learning Representations (ICLR 2017), Toulon,
France, April 24–26 2017.

Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, and
Wonyong Sung. SVD-softmax: Fast softmax approxima-
tion on large vocabulary neural networks. In I. Guyon,
U. v. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems (NIPS), volume 30,
pages 5463–5473. MIT Press, Cambridge, MA, 2017.

Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, In-
derjit S. Dhillon, and Cho-Jui Hsieh. Gradient boosted
decision trees for high dimensional sparse output. In
Doina Precup and Yee Whye Teh, editors, Proc. of the

34th Int. Conf. Machine Learning (ICML 2017), pages
3182–3190, Sydney, Australia, August 6–11 2017.

Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander,
Antonio Criminisi, and Aditya Nori. Adaptive neural
trees. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proc. of the 36th Int. Conf. Machine Learn-

ing (ICML 2019), pages 6166–6175, Long Beach, CA,
June 9–15 2019.

Andreas Veit and Serge Belongie. Convolutional net-
works with adaptive inference graphs. In Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss,
editors, Proc. 15th European Conf. Computer Vision

(ECCV’18), pages 3–18, Munich, Germany, Septem-
ber 8–14 2018.

Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán.
Smaller, more accurate regression forests using tree alter-
nating optimization. In Hal Daumé III and Aarti Singh,
editors, Proc. of the 37th Int. Conf. Machine Learning

(ICML 2020), pages 11398–11408, Online, July 13–18
2020.

Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán.
Learning a tree of neural nets. In Proc. of the IEEE

Int. Conf. Acoustics, Speech and Sig. Proc. (ICASSP’21),
pages 3140–3144, Toronto, Canada, June 6–11 2021.

1837

https://scikit-learn.org

Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán.
Learning interpretable, tree-based projection mappings
for nonlinear embeddings. In Proc. of the 25th Int. Conf.

Artificial Intelligence and Statistics (AISTATS 2022),
pages 9550–9570, Online, March 28–30 2022a.

Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán.
Semi-supervised learning with decision trees: Graph
Laplacian tree alternating optimization. In Advances in

Neural Information Processing Systems (NEURIPS), vol-
ume 35, pages 2392–2405. MIT Press, Cambridge, MA,
2022b.

Arman Zharmagambetov, Magzhan Gabidolla, and
Miguel Á. Carreira-Perpiñán. Softmax tree: An accu-
rate, fast classifier when the number of classes is large.
In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih, editors, Proc. Conf.

Empirical Methods in Natural Language Processing

(EMNLP 2021), pages 10730–10745, Online, 2021a.

Arman Zharmagambetov, Suryabhan Singh Hada,
Magzhan Gabidolla, and Miguel Á. Carreira-Perpiñán.
Non-greedy algorithms for decision tree optimization:
An experimental comparison. In Int. J. Conf. Neural

Networks (IJCNN’21), Virtual event, July 18–22 2021b.

Geoffrey Zweig and Konstantin Makarychev. Speed reg-
ularization and optimality in word classing. In Proc.

of the IEEE Int. Conf. Acoustics, Speech and Sig. Proc.

(ICASSP’13), pages 8237–8241, Vancouver, Canada,
March 26–30 2013.

1838

Dataset Ntrain Ntest D K

Letter 16 000 4 000 16 26
ALOI 97 200 10 800 128 1000
LSHTC1 80 552 19 873 271 022 2657
WIKI–Small (subs.) 20 000 10 000 54 188 200
WIKI–Small 796 617 199 155 380 078 36 504
PTB 400 097 34 633 150 5 970

Table 4: Datasets used in the experiments: number of train and test instances (Ntrain, Ntest), number of features D, number
of classes K .

A APPENDIX

A.1 DATASETS

To create the subsampled Wiki-Small dataset, we randomly select an equal number of samples from each class to avoid
imbalance. This is done with two purposes: 1) a smaller dataset allows training for a much higher number of iterations (to
eliminate undertraining); 2) reduces the time of a single experiment which facilitates a more precise hyperparameter search.
Further, we remove features that remain constant for all the training and test points. As a result, input features of the subsam-
pled WIKI-Small have D = 37k dimension represented as normalized bag-of-words. For LSHTC1, we eliminate all classes
that contain less than 10 samples per class. We used tf-idf feature representations of D = 271k dimension and K = 2657
classes. Table 4 summarizes the used dataset statistics. ALOI can be found here https://aloi.science.uva.nl/.
Wiki-Small and LSHTC1 are both part of Large Scale Hierarchical Text Classification challenge (LSHTC) [Partalas et al.,
2015]. Preprocessed version of PTB dataset from Mikolov et al. [2010] was used. Letter dataset can be found in UCI ML
dataset repository [Lichman, 2013].

A.2 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Both ST and AST were implemented in Python 3.8.10 and parallelized using Ray 2.2.0 [Moritz et al., 2018]. The l1-
regularized logistic regression used the implementation available in scikit-learn [Pedregosa et al., 2011]: in the
decision nodes we used LIBLINEAR [Fan et al., 2008], and in the leaves we used SAGA [Defazio et al., 2014].

For ST, a search of hyperparameters was performed on a separate holdout set. We found that λ = 0.01 leads to the best
performance for most datasets and λ = 1 - for WIKI-Small. For smaller datasets we set the number of TAO iterations high
(up to 100), we report an average of 5 runs, and set the number of LIBLINEAR and SAGA iterations to 100. For larger
experiments, TAO iterations are set to 40 with an average of 3 runs, and the number of LIBLINEAR and SAGA iterations is
set to 100 and 50 respectively. Trees were initialized using random initialization as well as k-means initialization described
in Zharmagambetov et al. [2021a].

For AST, both leaf and node sparsity parameters were cross-validated separately on a range between 0.01 and 100. It was
found that for Letter and subsampled WIKI-Small λ = µ = 0.01, and for ALOI and LSHTC1 λ = µ = 0.1 performs
best. For large datasets, λ = µ = 1 produces best results. We initialized the initial tree as well as stumps during expansion
using median split. This way nodes have almost the same number of samples and training in parallel becomes faster and
generally produces better accuracy. The number of LIBLINEAR and SAGA iterations is similar to one in ST. One way of
speeding up the expansion process is to use the weight matrix of the expanding decision node to warm-start optimization in
leaves. This way SAGA converges much faster for the same tolerance. The number of TAO iterations during the expansion
is set to 10 and to 15 during global optimization, but in many cases, it converges faster.

A.3 LANGUAGE MODELING EXPERIMENTS

The Penn Treebank contains around 1M tokens and a vocabulary size of 10k words. Similar to Zharmagambetov et al.
[2021a], we filter out rare words and obtain word embeddings using pre-trained GloVe [Pennington et al., 2014]. We
predict the next word based on the previous 3 words. To form a preprocessed dataset, we simply concatenate word vector
representations. As a result preprocessed PTB consists of roughly 400k training samples, 150 features, and 5970 classes.

1839

https://aloi.science.uva.nl/

5 10 15 20
86

86.5

87

87.5

88

86.2

86.3

86.4

86.5

86.6

86.7

E
va

l(
%
)

Iterations
5 10 15 20

16

18

20

22

24

26

28

30

17.5

18

18.5

19

19.5

20

In
fe

re
nc

e
ti

m
e

(µ
s)

Iterations
5 10 15 20

10

20

30

40

50

60

70

C
ov

er
ed

(%
)

α=(0.5,0.25)
α=(0.3,0.25)
α=(0.4,0.25)
α=(0.75,0.2)
α=(0.75,0.4)
α=(0.75,0.25)

Iterations

Figure 5: Top-1 error, average inference time and percentage of covered classes for AST of different α=(α0, α) on PTB
dataset.

ρ = 1.0 ρ = 1.2 ρ = 1.7

0.01 0.1 0.2 1 10 100 1000
0

5

10

15

20

25

µ

M
ea

n
de

pt
h

(∆
a
v
)

0.01 0.1 0.2 1 10 100 1000
0

5

10

15

20

25

µ
0.01 0.1 0.2 1 10 100 1000
0

5

10

15

20

25
α = 0.4
α = 0.55
α = 0.69
α = 0.87

µ

Figure 6: Comparison of average tree depth ∆av vs softmax regularization parameter µ for different values of ρ and α,
λ = 0.01

For baselines, we used a one-vs-all classifier from scikit-learnwith ℓ1 regularizationλ = 1 and Hierarchical Softmax
from Mikolov et al. [2013a] implemented in PyTorch. We further compare AST and ST of different leaf softmax sized (k)
to show that AST wins not only in terms of top-1 test error but is up to 4 times faster in inference.

A.4 CONTROLLING LEAF SOFTMAX SIZES FOR LANGUAGE MODELING

Fig. 5 shows dependence between the proportion of covered samples of different AST models. We found experimentally
that the best validation performance is achieved when λ, µ, and ρ are set to 1. Fig. 5 shows that for high values of α0 and
α (α0 = 0.75, α = 0.4) tree grows extremely deep (high number of expansion steps) while maintaining relatively big
softmax in the leaves. Moreover, fig. 5 highlights that as softmax size decreases with tree depth so does the inference time,
however, at some point, it starts to go up again. Since the time it takes to propagate a sample to the leaf overtakes the time
of matrix multiplication in softmax there is an optimal depth of the tree for which inference is the fastest. On the other
hand, for very small α (α0 = 0.75, α = 0.2) softmax size decreases much faster with tree depth resulting in a small tree
with a very small number of classes in the leaves. Experimentally we found that such trees do not generalize very well and
typically have low class coverage. We can specify the number of expansion steps (maximum depth) of the tree to control
the minimum coverage and inference time.

We examine the effect of softmax contraction coefficient (α), tolerance ratio for node expansion (ρ), and leaf sparsity
parameter (µ) on the final tree structure. We conducted this set of experiments 5 times on a subsampled WIKI–Small
dataset to eliminate the effect of noise and any inconsistencies.

We measure average tree depth ∆av over the depth of each leave in the final AST. Fig. 6 shows that ∆av tends to increase as

1840

we increase µ. More sparse softmax in the leaves means expanded subtree is more likely to perform better on the reduced
set. It subsequently leads to more leaves being expanded on the current depth. Maximum depth, on the other hand, does not
grow significantly. Fluctuations of average depth as we increase leaf sparsity can be explained by good local optimum for
given µ. In general, it was found that as the number of TAO and SAGA (solver for softmax classifier) iterations increases
lines become more smooth.

1841

	Introduction
	Related work
	Softmax approximation
	Decision tree methods
	Conditional computation
	Growing neural nets and neural architecture search

	Optimizing trees over parameters and structures: deep paths, thin softmaxes
	Softmax Trees (STs) and Tree Alternating Optimization (TAO)
	Adaptive Softmax Trees (ASTs)
	Computational complexity of ASTs

	Experiments
	Setup
	The benefit of adaptive growth
	Text classification
	Language Modeling
	Tree structure and interpretability

	Conclusion
	Appendix
	Datasets
	Implementation details and hyperparameters
	Language modeling experiments
	Controlling leaf softmax sizes for language modeling

