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Abstract

In stochastic low-rank matrix bandit, the expected
reward of an arm is equal to the inner product
between its feature matrix and some unknown d1
by d2 low-rank parameter matrix Θ∗ with rank
r ≪ d1 ∧ d2. While all prior studies assume the
payoffs are mixed with sub-Gaussian noises, in
this work we loosen this strict assumption and con-
sider the new problem of low-rank matrix ban-
dit with heavy-tailed rewards (LowHTR), where
the rewards only have finite (1 + δ) moment for
some δ ∈ (0, 1]. By utilizing the truncation on ob-
served payoffs and the dynamic exploration, we
propose a novel algorithm called LOTUS attain-
ing the regret bound of order Õ(d

3
2 r

1
2T

1
1+δ /D̃rr)

1

without knowing T , which matches the state-of-
the-art regret bound under sub-Gaussian noises [Lu
et al., 2021, Kang et al., 2022] with δ = 1.
Moreover, we establish a lower bound of the or-
der Ω(d

δ
1+δ r

δ
1+δ T

1
1+δ ) = Ω(T

1
1+δ ) for LowHTR,

which indicates our LOTUS is nearly optimal in
the order of T . In addition, we improve LOTUS
so that it does not require knowledge of the rank
r with Õ(dr

3
2T

1+δ
1+2δ ) regret bound, and it is effi-

cient under the high-dimensional scenario. We also
conduct simulations to demonstrate the practical
superiority of our algorithm.

1Õ ignores polylogarithmic factors. We denote d :=
d1 ∨ d2 and D̃rr := (Drr − 1)1δ=1 + 1 where Drr is
the r-th singular value of Θ∗.

1 INTRODUCTION

The Multi-armed Bandit (MAB) has proven to be a pow-
erful framework to model various decision-making prob-
lems with great applications to medical trials [Villar et al.,

2015], personalized recommendation [Li et al., 2010], and
hyperparameter learning [Ding et al., 2022, Kang et al.,
2024], etc. To leverage the side information (contexts) of
arms in real-world scenarios, the most important variant of
MAB, named stochastic linear bandit (SLB), has been exten-
sively investigated. However, the rise of high-dimensional
sparse data in modern applications [Zou, 2006, Han and
Lee, 2022] has revealed the inefficiencies of the traditional
SLB, particularly in its failure to account for sparsity. To ad-
dress this limitation, the stochastic high-dimensional bandit
with low-dimensional structures has emerged as the pioneer-
ing model, such as the LASSO bandit [Bastani and Bayati,
2020] and the low-rank matrix bandit [Jun et al., 2019]. In
this work, we investigate the stochastic low-rank matrix ban-
dit, where at each round t the agent first observes the arm
set Xt ⊆ Rd1×d2 composing of context matrices (Xt can be
infinite and changing over time). Then the agent pulls an
arm Xt ∈ Xt and only obtains its associated noisy reward
yt = ⟨Xt,Θ

∗⟩+ ηt with some inherent low-rank parameter
Θ∗ and zero-mean white noise ηt. This bandit problem is
broadly applicable in recommendation systems with pair
contexts, like dating service and combined flight-hotel pro-
motion [Kang et al., 2022].

In all existing literature on low-rank matrix bandit, a default
assumption is that the noise ηt is sub-Gaussian conditioned
on historical observations [Jun et al., 2019]. However, in var-
ious real-world scenarios such as financial markets [Bradley
and Taqqu, 2003, Cont and Bouchaud, 2000], there’s a no-
table trend where extreme noise, a.k.a. heavy-tailed noise,
in observations occur more frequently than what would be
expected under a sub-Gaussian distribution, in which case
previous studies would become futile. These heavy-tailed
observations do not exhibit exponential decay and may cru-
cially affect the estimation. To address this challenge, a
line of algorithms has been proposed to handle heavy-tailed
noise under MAB [Bubeck et al., 2013] and SLB [Medina
and Yang, 2016]. However, to the best of our knowledge,
effectively managing heavy-tailed noise under the more
complex and efficient low-rank matrix bandit framework
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remains unexplored. In this study, we examine this crucial
problem: low-rank matrix bandit with heavy-tailed rewards
(LowHTR). Specifically, to keep consistent with the heavy-
tailed studies under MAB and SLB, we assume that the
noise has finite (1 + δ) moment for some δ ∈ (0, 1]. We
first propose an efficient algorithm named LOTUS when T
is unrevealed to the agent. Then we demonstrate it attains a
regret lower bound of LowHTR for the order of T ignoring
logarithmic factors. Our LOTUS can be further improved to
be agnostic to rank r with slightly worse regret bound.

The detailed contributions of our work can be summarized
as follows: (1) inspired by the success of Huber loss [Kang
and Kim, 2023, Sun et al., 2020] and nuclear norm penal-
ization [Negahban and Wainwright, 2011], we first revisit
the convex-relaxation-based estimator to approximate the
low-rank parameter matrix with heavy-tailed noise. As far
as we’re aware, our work is the first one to solve the trace
regression problem under arbitrary heavy-tailed noise with
bounded (1 + δ) moment (δ ∈ (0, 1)), which is highly non-
trivial and stands as a noteworthy advancement on its own
merits. (2) Equipped with the aforementioned estimator, we
develop an algorithm named LOTUS for LowHTR. LOTUS
exploits the estimated subspace by proposing a sub-method
called LowTO that extends from the TOFU algorithm [Shao
et al., 2018] designed for SLB with heavy-tailed noise. Our
LowTO truncates the rewards to mitigate the heavy-tailed ef-
fect and penalizes the redundant features within the sparsity
structure. When the total horizon T is unrevealed, our algo-
rithm could adaptively switch between exploration and ex-
ploitation to achieve the Õ(d

3
2 r

1
2T

1
1+δ /D̃rr) regret bound.

(3) We further provide a lower bound for LowHTR of or-
der Ω(d

δ
1+δ r

δ
1+δ T

1
1+δ ), which indicates that our LOTUS is

nearly optimal in the scale of T . (4) While all existing works
on low-rank matrix bandits require a priori knowledge of the
rank r, we further improve our LOTUS to operate without
knowing r even under the more difficult heavy-tailed set-
ting with Õ(dr

3
2T

1+δ
1+2δ + d

3
2 r

1
2T

1
1+δ ) regret bound, which

is better than the trivial one in high-dimensional case, i.e.

when d ≳ T
δ2

(1+2δ)(1+δ) . Intuitively, it obtains a useful rank
r̂ by truncating the estimated singular values at each batch.
(4) The practical superiority of our LOTUS is then firmly
validated in our simulations.

Notations: For any vector x ∈ Rn, we use ∥x∥p to de-

note the lp-norm of the vector x and ∥x∥H =
√
x⊤Hx to

denote its weighted 2-norm with regard to some positive def-
inite matrix H ∈ Rn×n. For matrices X,Y ∈ Rn1×n2 , we
use ∥X∥op, ∥X∥nuc and ∥X∥F to define the operator norm,
nuclear norm and Frobenious norm of the matrix X respec-
tively, and we write ⟨X,Y ⟩ := trace(X⊤Y ) as their inner
product. We also write f(n) ≍ g(n) if f(n) = O(g(n))
and g(n) = O(f(n)), f(n) ≳ g(n) if g(n) = O(f(n)),
and f(n) ≲ g(n) if f(n) = O(g(n)), and these are the
common notations used in the high-dimensional statistics

literature [Wainwright, 2019].

2 RELATED WORK

Bandit under Heavy-tailedness Research on bandits with
heavy-tailed rewards assumes the noise has finite (1 + δ)
moment, δ ∈ (0, 1), and most existing algorithms follow
two key strategies: truncation and median of means. Start
with Bubeck et al. [2013], a UCB-based algorithm was
proposed for MAB with heavy-tailed rewards, enjoying a
logarithmic regret bound. To extend their study to the SLB
setting, Medina and Yang [2016] developed two algorithms
based on the truncation and median of means ideas, but both
methods could only attain the regret bound of order Õ(T

3
4 )

when ϵ = 1, which fails to fulfill our expectations. Shao
et al. [2018] then refined their results on SLB and intro-
duced two algorithms with improved regret bound. They
also constructed a matching lower bound with T . Xue et al.
[2020] investigated on the finite arm case and provided two
SubLinUCB-based [Chu et al., 2011] algorithms. Recently,
Kang and Kim [2023] borrowed the ideas from Huber re-
gression and proposed an improved Huber bandit under
finite arm sets. However, their work is confined to the low-
dimensional bandit without sparsity, and their parameter
vectors are presumed to be arm-dependent under the finite
arm set. Another contemporary work Xue et al. [2023] devel-
oped a nearly optimal algorithm for arbitrary arm sets with
reduced computation in practice. Yet, none of these studies
tackle the heavy-tailedness under the more challenging con-
textual high-dimensional bandits problem with sparsity, a
useful niche our work aims to fill.

Low-rank Matrix Bandit There has been a line of litera-
ture on stochastic low-rank matrix bandit with sub-Gaussian
noise. Initially, Jun et al. [2019] introduced the bilinear
low-rank matrix bandit problem and proposed the two-stage
ESTR algorithm with Õ(

√
d3rT/Drr) regret bound. Jang

et al. [2021] then constructed a new algorithm improving the
regret bound by

√
r. Lu et al. [2021], Kang et al. [2022] ex-

tended the problem setting to low-rank matrix bandit where
feature matrices no longer have to be rank-one. Specifi-
cally, Lu et al. [2021] first proposed the LowGLOC with
Õ(

√
d3rT ) regret bound, but this method is computation-

ally prohibitive and cannot handle the contextual setting.
Subsequently, Lu et al. [2021], Kang et al. [2022] devel-
oped several more efficient algorithms, achieving regret
bound of order Õ(

√
d3rT/Drr). Our work broadens this re-

search scope to encompass arbitrary heavy-tailed noise with
bounded (1+δ) moment (δ ∈ (0, 1)), and our algorithm LO-
TUS obtains the Õ(d

3
2 r

1
2T

1
1+δ /D̃rr) regret bound, which

coincides with the aforementioned leading one with δ = 1.
Moreover, we showcase that our regret bound is optimal
concerning the order of T with a matching lower bound.
Another notable limitation in existing algorithms for low-
rank matrix bandits is their dependence on the rank r, which
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is impractical. We further improve our LOTUS method to
be agnostic to r with a slightly worse regret bound, which
represents the first attempt at this real-world issue. Jang
et al. [2024] recently proposed a new estimator utilizing the
geometry of the arm set to conduct estimation.

Matrix Recovery under Heavy-tailedness All studies on
low-rank matrix estimation revolve around two ideas: Con-
vex approaches tend to replace the classic square loss with
some more robust ones, like the renowned Huber loss [Hu-
ber, 1965, Sun et al., 2020]. Tan et al. [2022] considered
the sparse multitask regression under heavy-tailed noise,
contrasting our focus on the trace regression problem. The
two works most closely related to ours are Fan et al. [2021],
Yu et al. [2023]. Fan et al. [2021] established a two-step
method for the robust trace regression, but they assumed
the noise possesses finite 2k moment for k > 1 and their
approximation error is not even proportional to the noise
size. Yu et al. [2023] further employed the Huber loss to
develop an enhanced regressor with error aligned with the
noise scale as long as the noise has bounded variance. In
our work, we further complement their result and utilize
the Huber-type estimator robust to noise with only finite
(1 + δ) moment for any δ ∈ (0, 1], and we deduce the error
rate of order Õ((d/n)

δ
1+δ E(|ηt|1+δ)

1
1+δ ) scaling with the

noise scale decently. On the other hand, nonconvex methods
aim to seek local optima of the matrix recovery problem
via gradient descent. The notable work [Shen et al., 2022]
developed a Riemannian sub-gradient method and attained
the optimal statistical rate under heavy-tailed noises with
bounded (1 + δ) moment, but their work relies on some
additional assumptions like the noise is symmetric or zero-
median. In summary, our work stands as the first solution to
address the trace regression problem under arbitrary heavy-
tailed noise with only bounded (1+ δ) moment (δ ∈ (0, 1)),
which is significant on its own strengths.

3 PRELIMINARIES

We will present the setting of LowHTR and introduce the
common assumptions for theoretical analysis in this section.
Denote T as the total horizon, which may be unknown to
the agent. At each round t ∈ [T ], the agent is given an arm
set Xt ⊆ Rd1×d2 (d1 ≍ d2) that can be fixed or varying over
time. Then the agent chooses an arm Xt ∈ Xt and observes
the associated stochastic reward yt such that,

yt = ⟨Xt,Θ
∗⟩+ ηt, (1)

where Θ∗ ∈ Rd1×d2 is an unknown parameter matrix with
rank r ≪ d1 ∧ d2 and ηt is the heavy-tailed noise. Specifi-
cally, we assume E(ηt|Ft) = 0 and E(|ηt|1+δ|Ft) ≤ c for
some δ ∈ (0, 1], c > 0 conditional on the history filtration
Ft = {Xt, Xt−1, ηt−1, . . . , X1, η1}, which indicates that
E(yt|Ft) = ⟨Xt,Θ

∗⟩. The compact SVD of Θ∗ can be writ-
ten as Θ∗ = UDV ⊤ for some U ∈ Rd1×r and V ∈ Rd2×r,

and we denote Dii as its i-th largest singular value. Fur-
thermore, we define X∗

t := argmaxX∈Xt⟨X,Θ∗⟩ as the
feature matrix of the optimal arm at round t, and the goal is
to minimize the cumulative regret in total T rounds formu-
lated as RT =

∑T
t=1⟨X∗

t ,Θ
∗⟩ − ⟨Xt,Θ

∗⟩.

Next, we present two mild and regular assumptions.

Assumption 3.1. We can find a sampling distribution D
over Xt with the covariance matrix Σ, such that D is sub-
Gaussian with parameter σ2 ≍ cl := λmin(Σ) ≍ 1/(d1d2).

Assumption 3.1 is commonly used in the modern low-rank
matrix bandits [Lu et al., 2021, Kang et al., 2022], and can
be easily satisfied in many cases. For instance, when Xt is
a region in Rd1×d2 (e.g., Euclidean unit ball), we can find
such a sampling distribution if the convex hull of this region
contains a ball with some constant radius. And when Xt

is a finite set, it suffices if the arms are IID drawn from
some sub-Gaussian distribution at each time. Note a random
matrix X ∈ Rd1×d2 follows sub-Gaussian distribution with
parameter σ2 if for any t ∈ R s.t.,

P(⟨A,X⟩ ≥
√
2 ∥A∥F t)≤2 exp

(
−t2/σ2

)
, ∀A∈Rd1×d2 .

Assumption 3.2. We have ∥Θ∗∥F ≤ S, and for any t ∈
[T ], X ∈ Xt, it holds that ∥X∥F ≤ S.

Assumption 3.2 is very standard in contextual bandit litera-
ture. As a consequence, we can deduce that E(|yt|1+δ|Ft) ≤
2δS2 + 2δc := b. Based on the conditions on the sub-
Gaussian parameter σ in Assumption 3.1, we can prove
that ∥X∥F is bounded in a constant scale with high proba-
bility with its proof in Appendix G. But for simplicity and
consistency with previous literature, we still impose this
common assumption to bound ∥X∥F here. Note our work
can be naturally extended to the generalized low-rank matrix
bandit problem by further assuming the derivative of the
inverse link function is bounded in the interval [−S2, S2].
Such an adaptation would result in the final regret bound
being affected only by a constant factor, and we will leave
it as our future work.

4 METHODS

In this section, we present our novel LowTO With Estimated
Subspaces (LOTUS) algorithm for the LowHTR problem.
Our algorithm runs in a batched format adapted from the
doubling trick [Besson and Kaufmann, 2018]. And inspired
by the success of the two-stage framework in ESTR Jun
et al. [2019], in each batch our algorithm also first recovers
the subspaces spanned by Θ∗, and then invokes a new ap-
proach called LowTO that heavily penalizes on columns and
rows complementary to our estimated subspaces. Contrast-
ing prior works, our algorithm could dynamically switch
between the exploration and exploitation stages so as to be
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agnostic to the horizon T , which is significantly more useful.
We further improve LOTUS to operate without knowing the
sparsity r, which further enhances its practicality.

Initially, we will introduce the nuclear penalized Huber-
type low-rank matrix estimator under heavy-tailed noise
as follows. Contracting the results in [Yu et al., 2023], we
further prove that our Huber-type estimator is robust to
arbitrary heavy-tailed noise with the finite (1 + δ) moment
for δ ∈ (0, 1) on the trace regression problem.

4.1 LOW-RANK MATRIX ESTIMATION

Suppose we collect n pairs of data {(Xi, yi)} according to
some distribution satisfying Assumption 3.1 for Xi and the
model of Eqn. (1) for the associated yi after time n. Define
the Huber loss [Huber, 1965] lτ (·) parameterized by the
robustification τ > 0 [Sun et al., 2020] as:

lτ (x) =

{
x2/2 if |x| ≤ τ,

τ |x| − τ2/2 if |x| > τ.

To obtain a low-rank matrix estimate, we use the nuclear
norm penalization as a convex surrogate for the rank and
implement the following nuclear norm regularized Huber
regressor [Yu et al., 2023] to recover the subspaces under
heavy-tailedness:

Θ̂ = arg min
Θ∈Rd1×d2

L̂τ,[n](Θ) + λ ∥Θ∥nuc , (2)

L̂τ,[n](Θ) =
1

n

∑
i∈[n]

lτ (yi − ⟨Xi,Θ⟩) ,

where τ and λ stand for the Huber loss robustification and
the nuclear norm penalization parameters, respectively.

We then establish the following statistical properties of the
estimator defined in Eqn. (2):

Theorem 4.1. By extending Assumption 3.1 with any order
of σ and cl, With probability at least 1− ϵ, the low-rank esti-
mator Θ̂ in Eqn. (2) with τ ≍ (n/(d+ ln (1/ϵ)))

1
1+δ c

1
1+δ

and λ ≍ σ ((d+ ln (1/ϵ))/n)
δ

1+δ c
1

1+δ satisfies

∥∥∥Θ̂−Θ∗
∥∥∥

F
≤ C1

σ

cl

(
d+ ln (1/ϵ)

n

) δ
1+δ

c
1

1+δ
√
r,

for some constant C1 as long as we have n ≳ drν3, d, ν2,
and (d− ln (ϵ))

√
rν3 with ν = σ2/cl.

The proof of Theorem 4.1 involves a construction of the
restricted strong convexity for the empirical Huber loss
function L̂τ (·) and a deduction of an upper bound for∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op
, and the details are presented in Appendix A.

Note Theorem 4.1 generally holds without any restriction
on the scale of σ and cl. Provided the noise has a finite

variance, i.e., δ = 1, the deduced l2-error rate aligns with
the minimax value [Fan et al., 2019] under the standard pe-
nalized low-rank estimator with sub-Gaussian noise. Based
on our knowledge, this is the first error bound in the trace
regression problem under noise with finite (1 + δ) moment
(δ < 1) assuming nothing further.

To solve the convex optimization problem in Eqn. (2), we
adopt the local adaptive majorize-minimization (LAMM)
method [Fan et al., 2018, Sun et al., 2020, Yu et al., 2023]
that is fast to use and scalable to large datasets. This method
constructs an isotropic quadratic function to upper bound the
Huber loss and utilizes a majorize-minimization algorithm
for finding the optimal solution. One noteworthy advantage
of this procedure is that the minimizer often yields a closed-
form solution. Due to the space limit, we defer more details
and the pseudocode to Appendix I.

4.2 LOTUS: THE RANK r IS KNOWN

We will present our LOTUS algorithm in this subsection.
To improve the two-stage framework introduced in Jun et al.
[2019] which requires the knowledge of T and to further
yield robust performance against heavy-tailedness, our LO-
TUS adaptively switches between exploration and exploita-
tion in a batch manner without knowing T , and is equipped
with a new LowTO algorithm designed for heavy-tailed re-
wards. The LOTUS algorithm is presented in Algorithm 1,
with three core steps introduced in detail as follows:

Adaptive Exploration and Exploitation: Drawing inspira-
tion from the doubling trick [Besson and Kaufmann, 2018],
after some warm-up iterations of size T0, our LOTUS op-
erates with batches until termination where the batch sizes
increase exponentially as {2i}+∞

i=1 . We define H1 and H2

as the history and exploration buffer index sets, where after
time t all the indexes [t] of past observations are included in
H1 while H2 only contains sample indexes particularly used
for subspace estimation of Θ∗. At the i-th batch of length 2i,
we first set T i

1 = min{(d2+4δr1+δ2i+iδ/D2+2δ
rr )

1
1+3δ , 2i}

as the exploration length, and we randomly sample T1 arms
according to the sampling distribution in Assumption 3.1
and put their indexes into both H1 and H2. Subsequently,
we obtain an estimate Θ̂ based on Eqn.(2) with samples
indexed by H2, and then leverage the recovered subspaces
in the remaining T i

2 = 2i − T i
1 rounds as the exploitation

phase, where we invoke a new algorithm named LowTO.
The details of this exploitation phase will be elaborated in
the following two points. As shown in Algorithm 1 line 8,
indexes of observations under LowTO are only added to H1

but not H2 and hence will not be used for matrix estima-
tion. Unlike the traditional doubling trick that restarts the
algorithm at each batch, our algorithm facilitates interaction
across different batches. Specifically, at the i-th batch, it
utilizes all the samples in H1 and H2 accumulated from
the previous batches for more informed decision-making.
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Algorithm 1 LowTO With Estimated Subspaces (LOTUS)

Input: Arm set Xt, sampling distribution Dt, δ, T0, η, λ, {λi,⊥}+∞
i=1 .

Initialization: The history buffer index set H1 = {}, the exploration buffer index set H2 = {}.
1: Pull arm Xt ∈ Xt according to Dt and observe payoff yt. Then add (Xt, yt) into H1 and H2 for t ≤ T0.
2: for i = 1, 2, . . . until the end of iterations do

3: Set the exploration length T1 = min

{[
d2+4δr1+δ

D2+2δ
rr

2i(1+δ)
] 1

1+3δ

, 2i
}

.

4: For iteration t from |H1| + 1 to |H1| + T1, pull arm Xt ∈ Xt according to Dt and observe payoff yt. Then add
(Xt, yt) into H1 and H2

5: Obtain the estimate Θ̂ based on Eqn. (3) with H2, where we set τi ≍
(
|H2|/(d+ ln (2i+1/ϵ))

) 1
1+δ c

1
1+δ , λi ≍

σ
(
(d+ ln (2i+1/ϵ))/|H2|

) δ
1+δ c

1
1+δ .

6: Calculate the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤ where Û ∈ Rd1×r, V̂ ∈ Rd2×r.

7: For T2 = 2i − T1 rounds, invoke LowTO with δ, [Û , Û⊥], [V̂ , V̂⊥], λ, λi,⊥,H1 and obtain the updated H1.
8: end for

Another point to highlight is that our LOTUS algorithm can
also be run in a more randomized manner with the same
regret bound: at the i-th batch, there is an option to explore
with a probability of T i

1/2
i and to exploit with the remain-

ing probability. We defer its pseudocode to Appendix H. For
simplicity, we consider our original approach in this work,
which involves an initial exploration phase of deterministic
length followed by the use of LowTO.

Subspace Transformation: At the i-th batch, after we ran-
domly sample arms for a carefully designed duration and
add their observations into H2, we first acquire the estimated
Θ̂ based on the current H2 as shown in Eqn. (3). With the
knowledge of r, then we can obtain its corresponding full
SVD as Θ̂ = [Û , Û⊥]D̂[V̂ , V̂⊥]

⊤ where Û ∈ Rd1×r, Û⊥ ∈
Rd1×(d1−r), V̂ ∈ Rd2×r and V̂⊥ ∈ Rd2×(d2−r).

Θ̂ = arg min
Θ∈Rd1×d2

L̂τi,H2
(Θ) + λi ∥Θ∥nuc (3)

Intuitively, Theorem 4.1 implies that our estimated column
and row subspaces should align with the ground truth U, V .
Borrowing the ideas from ESTR [Jun et al., 2019], we aim
to transform the original LowHTR into the linear bandit
problem under heavy-tailed rewards with some sparsity fea-
ture. Specifically, we first orthogonally rotate the actions set
Xj in the exploitation phase as

X−
j =

{
[Û , Û⊥]

⊤X[V̂ , V̂⊥] : X ∈ Xj

}
, (4)

Θ∗,′ = [Û , Û⊥]
⊤Θ∗[V̂ , V̂⊥]. (5)

Define the total dimension p := d1d2 and the effective
dimension k := p− (d1−r)(d2−r). We perform a tailored
vectorization of the arm set X−

j as in Algorithm 2 line 4
to obtain a new arm set X ′

t ⊆ Rp, and denote θ∗ to be the
corresponding rearranged version of vec(Θ∗,′) such that
θ∗k+1:p = vec(Θ∗,′

r+1:d1,r+1:d2
). Then it holds that θ∗k+1:p

is nearly zero based on the results in Stewart [1990] and
Theorem 4.1. The formal result is shown as follows for the

i-th batch with probability at least 1− ϵ:

∥∥θ∗k+1:p

∥∥
2
≲ S⊥ :=

rσ2c
2

1+δ

c2lD
2
rr

(
d+ ln (1/ϵ)

|H2|

) 2δ
1+δ

, (6)

with the parameter setting that

τi ≍ (|H2|/(d+ ln (1/ϵ)))
1

1+δ c
1

1+δ ,

λi ≍ σ ((d+ ln (1/ϵ))/|H2|)
δ

1+δ c
1

1+δ ,

Its complete proof is presented in Appendix C. Conse-
quently, we can simplify the LowHTR problem to an equiv-
alent p-dimensional linear bandits under heavy-tailedness
with a unique sparse pattern, i.e., the final (p− k) entries of
θ∗ are almost zero based on Eqn. (6).

Following the recovery of row and column subspaces of Θ∗

and the particular arm set transformation after T i
1 rounds

in the i-th batch, we will leverage the resulting almost-low-
dimensional structure by using the following LowTO algo-
rithm for the rest of the batch’s duration.

LowTO Algorithm: To begin with, we reformulate the
resulting p-dimensional linear bandit problem under heavy-
tailed rewards in the following way: at round t, the agent
chooses an arm xt ∈ X ′

t of dimension p where X ′
t is a

rearranged vectorization of X−
t as defined in Algorithm 2

line 4, and observes a noisy payoff yt = x⊤t θ
∗ + ηt mixed

with some heavy-tailed noise ηt.

Our LowTO algorithm is presented in Algorithm 2. Inspired
by LowOFUL in the ESTR method [Jun et al., 2019], to
exploit the additional pattern of θ∗ shown in Eqn. (6), we
propose the almost-low-dimensional TOFU (LowTO) algo-
rithm that extends the truncation-based TOFU [Shao et al.,
2018]. The original TOFU trims the observed payoffs for
each dimension individually and takes the contexts of his-
torical arms into account for the truncation, which could
yield a tight regret bound of order Õ(pT

1
1+δ ). As shown in

Algorithm 2 line 2, our LowTO also truncates each entry of
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Algorithm 2 LowTO

Input: T, δ, [Û , Û⊥], [V̂ , V̂⊥], λ0, λ⊥,H1.
Initialization:M=

∑
(x,y)∈H′

1
xx⊤+Λ =

∑|H′
1|

t=1 xs,tx
⊤
s,t+

Λ, X⊤=[xs,1, . . . , xs,|H′
1|], [u1, . . . , up]

⊤=M− 1
2X⊤

with H′
1 =

{(
x⊤s,t = [vec(Û⊤XV̂ )⊤, vec(Û⊤XV̂⊥)

⊤,

vec(Û⊤
⊥XV̂ )⊤, vec(Û⊤

⊥XV̂⊥)
⊤], ys,t = y

)
: (X, y)∈H1

}
.

Λ = diag([λ0, . . . , λ0︸ ︷︷ ︸
k

, λ⊥, . . . , λ⊥︸ ︷︷ ︸
p− k

])

1: for t = 1 to T do
2: Get ŷi=[ys,11ui,1ys,1≤bt−1

, . . . , yt−11ui,|H1|+t−1yt−1

≤bt−1 ]
⊤ for i ∈ [p], where ŷi ∈ R|H1|+t−1.

3: Calculate θ̂t−1 =M−1/2[u⊤1 ŷ1, . . . , u
⊤
p ŷp]

⊤.
4: Transform the arm set Xt as

X ′
t =
{
[vec(Û⊤XV̂ )⊤, vec(Û⊤XV̂⊥)

⊤, vec(Û⊤
⊥XV̂ )⊤,

vec(Û⊤
⊥XV̂⊥)

⊤]⊤ ∈ Rp : X ∈ Xt

}
.

5: Pull xt = argmaxx∈X ′
t
x⊤θ̂t−1 + βt−1 ∥x∥M−1

and observe the reward yt.
6: Restore xt into its original matrix form Xt and then

add (Xt, yt) into H1.
7: Update M = M + xtx

⊤
t , X

⊤ = [X⊤, xt] and
[u1, . . . , up]

⊤ =M−1/2X⊤.
8: end for
9: return The history buffer H1.

M−1/2xiyi for i = 1, . . . , t−1 at time t by some increasing
threshold bt, Different from TOFU, when calculating the
estimator θ̂ in Algorithm 2 line 3, we put a weighted regular-
izer as the diagonal matrix Λ = diag(λ, . . . , λ, λ⊥, . . . , λ⊥)
with λ only applied to the first k coordinates. By amplify-
ing λ⊥, we ensure greater penalization is applied to the
final p− k elements of θ̂ leading to their diminished values,
and this phenomenon is well intended under the almost-
low-dimensional structure. Subsequently, we utilize a UCB-
based criterion to choose the pulled arm according to Al-
gorithm 2 line 5, where we also decrease the variation of
the last p − k elements with M−1 to further reduce their
impact on the decision-making. It is also noteworthy that we
always reuse all the past observations stored in H1 at each
batch when initializing the matrix M , which can facilitate a
consistent and accurate estimator θ̂ in the early stage of the
exploitation phase. And the randomly drawn samples in H1

contain more stochasticity and thus are more preferable for
the parameter estimation.

We then state the regret bound of LowTO in Theorem 4.2:

Theorem 4.2. Suppose the input H1 is of size H ≲

T and we run our LowTO algorithm for T rounds.
By setting bt = (b/ log(2p/ϵ))

1
1+δ (t + H)

1−δ
2+2δ , βt =

4
√
pb

1
1+δ log(2p/ϵ)

δ
1+δ (t + H)

1−δ
2+2δ +

√
λ0S +

√
λ⊥S⊥

with λ⊥ = S2T2/(k log(1 + S2T
kλ0

)), with probability at
least 1− ϵ, the regret of LowTO can be bounded by:

Õ
(√

kp (T +H)
1

1+δ +
√
kT + S⊥T

)
,

where S⊥ is the upper bound of ∥θk+1:p∥2 as shown in Eqn.
(6) depending on |H2|.

In standard linear bandit under heavy-tailed noise case, we
can recover the same regret bound of TOFU in the order of
Õ(p · T

1
1+δ ) by setting S⊥ = S and λ⊥ = λ.

Overall regret: Now we are ready to present the overall
regret bound for LOTUS in the following Theorem 4.3.

Theorem 4.3. By using the configuration of LowTO de-
scribed in Theorem 4.2 and the parameter values of LOTUS
shown in Algorithm 1 for each batch, and set ϵ as ϵ/2i+1 in
βt (formulated in Theorem 4.2) for the i-th batch. Then with
probability at least 1− ϵ, it holds that

R(T ) ≤ Õ

(
d

2+4δ
1+3δ r

1+δ
1+3δ T

1+δ
1+3δ /D

2+2δ
1+3δ
rr + d

3
2 r

1
2T

1
1+δ

)
,

under the condition that T1 ≥ 5d
1+2δ

δ r
1+δ
2δ /D

1+δ
δ

rr . Further-
more, we can simplify the above result as

R(T ) ≤


Õ
(
d

3
2 r

1
2T

1
2 /Drr

)
, δ = 1;

Õ
(
d

3
2 r

1
2T

1
1+δ

)
, δ < 1, T ≳ (dr)

1+δ
2δ /D

2(1+δ)2

δ(1−δ)
rr .

Note the regret bound in Theorem 4.3 improves upon the
one attained for a simple linear bandit reduction, which
contains the order of d2. When the rewards have bounded
variance, i.e., δ = 1, our regret bound matches the modern
one for low-rank matrix bandit under sub-Gaussian noise
up to logarithmic terms [Lu et al., 2021, Kang et al., 2022].

4.3 LOTUS: THE RANK r IS UNKNOWN

While all existing algorithms for low-rank matrix bandits re-
quire prior knowledge of the rank r, this information is never
revealed to agents in real-world applications, and hence mis-
specification of r will not only undermine the theoretical
foundations but also severely compromise the performance
of these methods. To solve this crucial challenge, in this
section we aim to enhance our LOTUS algorithm to be
agnostic to r even under the more complex heavy-tailed
scenario. For the Lasso bandit, which is another popular
and easier high-dimensional bandit with sparsity, some algo-
rithms [Oh et al., 2021, Ariu et al., 2022] free of the sparsity
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index have been recently introduced. However, when com-
pared with our work, all of them necessitate some additional
assumptions on the structure of the underlying parameter
as well as the sampling distribution. For example, Oh et al.
[2021] further assumes that the active entries of the param-
eter vector are relatively independent and the skewness of
the sampling distribution is bounded. This fact substantiates
the huge difficulty of devising an efficient algorithm for
LowHRT without additional conditions. Note our work also
opens up a potential avenue for exploring low-rank matrix
bandits without the need for knowledge about r, and we
believe that completely addressing this intriguing problem
must require more specific assumptions and investigations.

To improve our batched-explore-then-exploit-based LOTUS
algorithm, an intuitive idea is to estimate the effective rank
of Θ̂ right after the matrix recovery in each batch. By trim-
ming the estimated singular values {Dii}di=1 with some
craftily designed increasing sequence that is deduced from
Theorem 4.1, we could obtain a useful rank r̂ with r̂ ≤ r
and then only focus on the top-r̂ row and column subspaces.
We can demonstrate that all the ground truth singular values
{Dii}di=r̂+1 omitted are nearly null and hence negligible.
Therefore, by penalizing the subspaces parallel to those
omitted directions with a similar idea used in our original
LOTUS, we could enjoy the low-rank benefit of LowHTR.
Specifically, to modify line 6 and line 7 in Algorithm 1,
we abuse the notation here and denote D̂ as the singular
value matrix of Θ̂ that is deduced in line 5. Subsequently,
we estimate the useful rank r̂ as

r̂ = min

{
i ∈ [d+1] :D̂ii≤C1

σ
√
i

cl

(
d+ ln (2i+1/ϵ)

|H2|

) δ
1+δ

·c
1

1+δ

}
− 1 ∧ 1,

where C1 is some specific constant in Theorem 4.1 and
D̂(d+1)(d+1) is set to be 0 to avoid the empty set case.
Afterward, we rewrite the full SVD of Θ̂ as Θ̂ =
[Û , Û⊥] D̂ [V̂ , V̂⊥]

⊤ with Û ∈ Rd1×r̂, V̂ ∈ Rd2×r̂ for each
batch in line 6. In new line 7 of our improved LOTUS, we
then input the new [Û , Û⊥] and [V̂ , V̂⊥] with the estimated
rank r̂ as described above, and the effective dimension k in
the following subspace estimation and LowTO implementa-
tion will become k = p− (d1 − r̂)(d2 − r̂). Note r̂ might
differ across different batches, but r̂ ≤ r consistently holds.

Conclusively, we can obtain the following regret bound of
our improved LOTUS algorithm agnostic to r:

Theorem 4.4. By using the same setting and conditions of
LOTUS as described in Theorem 4.3 and Algorithm 1 with
T1 = min

{
d · 2

i(1+δ)
1+2δ , 2i

}
in line 3 of Algorithm 1, and

utilizing the estimated useful rank r̂ to set the corresponding
value of k at each batch, the cumulative regret of our LOTUS
agnostic to r can be bounded as

R(T ) ≤ Õ
(
d

3
2 r

1
2T

1
1+δ + dr

3
2T

1+δ
1+2δ

)
,

with probability at least 1− ϵ.

While there exists a disparity between our derived regret
bound in cases where r remains undisclosed and the optimal
one, as previously discussed in this section, it would prove
exceptionally difficult to devise an algorithm for LowHTR
that remains agnostic to r while achieving a similar regret
bound without more stringent assumptions. Solving this
issue would necessitate the formulation of more specific
assumptions on the underlying structure of the arm matrices
and Θ∗.

Moreover, we will showcase the superior efficiency of our
LOTUS algorithm in both scenarios, whether the agent pos-
sesses knowledge of r or not, in the following experimental
results in Section 6.

5 LOWER BOUNDS

In this section, we provide a lower bound for the expected
cumulative regret in LowHTR particularly regarding the
order of T . The result is given as follows:

Theorem 5.1. Under the LowHTR problem with d, r, T and
S = 1 in Assumption 3.2, there exists an instance with a
fixed Xt containing (d− 1)r arms for which any algorithm
must suffer an expected regret of order Ω(d

δ
1+δ r

δ
1+δ T

1
1+δ ),

i.e., E(RT ) ≳ d
δ

1+δ r
δ

1+δ T
1

1+δ ≳ T
1

1+δ .

Theorem 5.1 demonstrates that our LOTUS could attain the
lower bound for LowHTR regarding the order of T when
r is given. And this lower bound is tight with r = d and
finite arm sets since it matches the minimax rate for standard
linear bandits under heavy-tailed noise [Xue et al., 2020].
Further exploring the regret lower bound for d and r under
LowHTR is notably challenging, given the fact that even the
simpler low-rank matrix bandits under sub-Gaussian noise
this problem is not thoroughly studied [Kang et al., 2022].
And the regret lower bound may differ in the order of d
when the arm set is infinitely large and arbitrary [Shao et al.,
2018]. We will leave them as future directions.

6 EXPERIMENTS

We demonstrate that our proposed LOTUS yields superior
performance over the existing LowESTR algorithm [Lu
et al., 2021] in the presence of heavy-tailed noise under a
suite of simulations. Since our work is the first one to study
the LowHTR problem and currently there is no existing
method for comparison, we utilize the LowESTR algorithm
specifically designed for the sub-Gaussian noise to validate
the robustness of our proposed LOTUS. LowESTR also
borrows the idea of the two-stage framework from ESTR,
and it improves upon ESTR on the computational efficiency
of the matrix recovery step. It requires both the knowledge
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Figure 1: Plots of cumulative regrets of LowESTR and our proposed LOTUS with fixed or changing contextual arm set
under t-distribution, Pareto, and Laplace heavy-tailed noise. We use the LOTUS algorithm agnostic to r in the first three
experiments displayed in the first row, and we utilize the value of r in LOTUS in experiments shown in the second row.

of the horizon T and the rank r as inputs. In the following
experiments, we showcase that it becomes vulnerable and
achieves suboptimal performance under heavy-tailed noise
in practice as expected. The values of hyperparameters in
our LOTUS are strictly aligned with their theoretical results
deduced in Theorem 4.1 and Theorem 4.2.

We consider two different settings of the parameter matrices
Θ∗ with d1 = d2 = 10 and r = 2. For the first scenario,
we set the parameter matrix as a diagonal matrix Θ∗ =
diag([7, 4, 0, . . . , 0]). The arm set is fixed where we draw
500 random matrices from {X ∈ R10×10 : ∥X∥F ≤ 1} in
the beginning. And we implement the improved LOTUS
algorithm introduced in Subsection 4.3 that is unaware of
the rank r in this scenario. For the second case, we con-
sider a more challenging parameter matrix Θ∗ such that
its first row represents a random vector of norm 7 and its
second row is a perpendicular vector of norm 4 with other
entries set to 0. Contrasting the first scenario, we consider
a contextual arm set with 10 feature matrices drawn from
{X ∈ R10×10 : ∥X∥F ≤ 1} at each round. And we use the
original LOTUS algorithm introduced in Subsection 4.2 re-
quiring the knowledge of r = 2. For the heavy-tailed noise
ηt, we consider the following three types of distribution for
both scenarios introduced above:

• Student’s t-distribution: The density function is given
as f(x) ≍ (1 + x2/ν)−

ν+1
2 with degree of freedom

parameter ν > 0 and x ∈ R. By setting ν = 1.7, it has
infinite variance but finite 1.5 moment bounded by 6.
The heavy-tail index is equal to 1.60.1

1A greater heavy-tail index [Hoaglin et al., 2000] above 1 indi-

• Pareto distribution: The density function is given
as f(x) ≍ α/(x + 1)α+1 for some shape parameter
α > 0 and x > 0. By setting α = 1.9, it also has
infinite variance but finite 1.5 moment bounded by 5.
And the heavy-tail index is equal to 2.20.

• Laplace distribution: The density distribution is for-
mulated as f(x) ≍ exp(−|x|/b) with some scale pa-
rameter b for x ∈ R. By setting b = 1, the distribution
possesses a finite variance bounded by 2. The heavy-
tail index of this distribution is 1.36.

According to Figure 1, we observe that our LOTUS algo-
rithm consistently exhibits superior and more resilient per-
formance across all six scenarios compared to LowESTR.
This advantage is particularly evident when dealing with
distributions with a higher heavy-tail index, which is aligned
with our expectations. On the contrary, LowESTR performs
fairly in the presence of Laplace noise with a finite vari-
ance but struggles when faced with Pareto noise possessing
stronger heavy-tailedness. Furthermore, it is noteworthy that
the cumulative regret of the LOTUS algorithm exhibits a
batch-wise increase, with a progressively clearer sub-linear
pattern emerging in subsequent batches. This fact firmly
validates the practical superiority of our LOTUS algorithm
under both cases when the rank r is presented or not.

7 CONCLUSIONS

In this work, we introduce and examine the new problem of
LowHTR, and we propose a robust algorithm named LO-

cates stronger fluctuation and heavy-tailedness of the distribution.
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TUS that can be agnostic to T and even the rank r with a
slightly milder regret bound. We also develop a matching
lower bound to demonstrate our LOTUS is nearly optimal
in the order of T . Meanwhile, we prove that our Huber-
type estimator could solve the trace regression problem
under arbitrary heavy-tailed noise with finite (1 + δ) mo-
ment (δ ∈ (0, 1]) and its Frobenious norm error is of scale
Õ((d/n)

δ
1+δ E(|η|1+δ)

1
1+δ ). The practical superiority of our

proposed method is validated under simulations.

Limitations: Although our work represents the first solution
to the low-rank matrix bandits without knowing r, it leaves
a gap with our deduced lower bound. Closing this regret gap
seems highly non-trivial without additional assumptions [Oh
et al., 2021], and we will leave it as a future work.
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Appendix for Low-rank Matrix Bandits with Heavy-tailed Rewards
(Supplementary Material)
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A ANALYSIS OF THEOREM 4.1

The analysis of Theorem 4.1 is inspired by and extended from Yu et al. [2023].

A.1 PRELIMINARIES

Lemma A.1. (Bernstein Inequality) Let X be a random variable with mean µ and variance σ2. Assume we can find some
b > 0 such that

E|X − µ|k ≤ 1

2
k!σ2bk−2, k = 3, 4, 5, . . .

Then it holds that

P (|X − µ| ≥ t) ≤ 2 exp

(
− t2

2(σ2 + bt)

)
, ∀t > 0.

Corollary A.2. (Adapted from Bernstein Inequality) Let X be a random variable with mean µ and variance σ2. Assume we
can find some b > 0 such that

E|X − µ|k ≤ 1

2
k!σ2bk−2, k = 3, 4, 5, . . .

Then it holds that
P
(
X − µ ≥

√
2tσ + 2bt

)
≤ exp (−t), ∀t > 0.

Proof. Based on Lemma A.1, we have that for any t > 0

P
(
X − µ ≥

√
2tσ + 2bt

)
≤ exp

(
− (

√
2tσ + 2bt)2

2σ2 + 2b(
√
2tσ + 2bt)

)
≤ exp

(
−2σ2t+ 4b2t2 + 4

√
2bσt

3
2

2σ2 + 4σ2t+ 2
√
2bσ

√
t

)
≤ exp(−t).

Definition A.3. (Local Restricted Strong Convexity) For the empirical loss function L̂τ (·), we can define the event of local
restricted strong convexity E(s, l, κ) in terms of the radius parameter s, l and the curvature parameter κ as

E(s, l, κ) =

{
inf

Θ∈M(Θ∗,s,l)

⟨∇L̂τ (Θ)−∇L̂τ (Θ
∗),Θ−Θ∗⟩

∥Θ−Θ∗∥2F
≥ κ

}
,

where M(Θ∗, s, l) =
{
Θ ∈ Rd1×d2 : ∥Θ−Θ∗∥F ≤ s, ∥Θ−Θ∗∥nuc ≤ l ∥Θ−Θ∗∥F

}
.
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We assume d1 ≥ d2 without loss of generality, and denote ∆̂ := Θ̂−Θ∗ in the following argument. To start with, we will
show that our target

∥∥∥∆̂∥∥∥
F

can be bounded conditioned on the event E(s, l, κ) and λ ≥ 2
∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op
.

Theorem A.4. Conditioned on the event λ ≥ 2
∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op
and the event E(s, l, κ) with s ≥ 9

√
r λκ and l ≥ 4

√
2r, then

we can deduce that ∥∥∥∆̂∥∥∥
F
=
∥∥∥Θ̂−Θ∗

∥∥∥
F
≤ 9

√
r · λ

κ
.

Proof. We will prove Theorem A.4 by contradiction. Assume we have that λ ≥ 2
∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op
and E(s, l, κ) holds with

s ≥ 9
√
r λκ and l ≥ 4

√
2r, and we assume

∥∥∥∆̂∥∥∥
F
> 9

√
r · λκ holds. Define Θ̃x = Θ∗+x(Θ̂−Θ∗) as a function of x ∈ [0, 1],

then there exists some ζ ∈ (0, 1) such that Θ̃ζ = Θ∗ + ζ(Θ̂−Θ∗) satisfying
∥∥∥Θ̃ζ −Θ∗

∥∥∥
F
= 9

√
r · λ

κ since
∥∥∥Θ̃x −Θ∗

∥∥∥
F

is

a continuous function in terms of x ∈ [0, 1]. Furthermore, we define Q(x) = L̂τ (Θ̃x)− L̂τ (Θ
∗)− ⟨∇L̂τ (Θ

∗), Θ̃x −Θ∗⟩.
Note x ∈ [0, 1] → Q(x) can be easily shown as a convex function: first, we observe that Θ̃x is a linear function of x, and
the Huber loss function defined in Section 4.1 is convex [Huber, 1965], which implies that L̂τ (Θ̃x) is convex. On the other
hand, the inner product ⟨∇L̂τ (Θ

∗), Θ̃x − Θ∗⟩ is bi-linear and hence naturally convex as well. Therefore, we know that
Q′(x) = ⟨∇L̂τ (Θ̃x)−∇L̂τ (Θ

∗), Θ̂−Θ∗⟩ is monotonically increasing. And it holds that

ζQ′(ζ) ≤ ζQ′(1) =⇒ ⟨∇L̂τ (Θ̃ζ)−∇L̂τ (Θ
∗), Θ̃ζ −Θ∗⟩ ≤ ζ⟨∇L̂τ (Θ̂)−∇L̂τ (Θ

∗), Θ̂−Θ∗⟩ (7)

To bound the right-hand side of Eqn. (7), since Θ̂ is the solution to the convex optimization problem in Eqn. (2), then we
have the sub-gradient condition as:

⟨∇L̂τ (Θ̂) + λẐ, Θ̂−Θ∗⟩ ≤ 0, where Ẑ ∈ ∂
∥∥∥Θ̂∥∥∥

nuc
.

Due to the definition of the sub-gradient, it holds that ∥Θ∗∥nuc ≥ ∥Θ̂∥nuc + ⟨Ẑ,Θ∗− Θ̂⟩. By assuming λ ≥ 2
∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op
,

we can have that

⟨∇L̂τ (Θ̂)−∇L̂τ (Θ
∗), Θ̂−Θ∗⟩ ≤ ⟨λẐ,Θ∗ − Θ̂⟩+ ⟨∇L̂τ (Θ

∗),Θ∗ − Θ̂⟩

≤ λ
(
∥Θ∗∥nuc − ∥Θ̂∥nuc

)
+
λ

2

∥∥∥Θ∗ − Θ̂
∥∥∥

nuc
≤ 3λ

2

∥∥∥∆̂∥∥∥
nuc

To bound
∥∥∥∆̂∥∥∥

nuc
, we utilize the regular procedure [Negahban and Wainwright, 2011, Yu et al., 2023]. We restate the

notation and define the reduced SVD of Θ∗ as Θ∗ = UΣV ⊤ with U ∈ Rd1×r and V ∈ Rd2×r. Then we denote two sets as:

M =
{
Θ ∈ Rd1×d2 : row(Θ) ⊆ col(V ), col(Θ) ⊆ col(U)

}
,

M̄⊥ =
{
Θ ∈ Rd1×d2 : row(Θ) ⊆ col(V )⊥, col(Θ) ⊆ col(U)⊥

}
,

and hence M ⊆ M̄. Next we will show that ∥∆̂M̄⊥∥nuc ≤ 3∥∆̂M̄∥nuc in the following part. First, since Θ̂ is the solution to the
problem defined in Eqn.(2), we have that

L̂τ (Θ̂) + λ
∥∥∥Θ̂∥∥∥

nuc
≤ L̂τ (Θ

∗) + λ ∥Θ∗∥nuc ⇐⇒ L̂τ (Θ̂)− L̂τ (Θ
∗) ≤ λ

(
∥Θ∗∥nuc −

∥∥∥Θ̂∥∥∥
nuc

)
.

For the left-hand side, it holds that

L̂τ (Θ̂)− L̂τ (Θ
∗) ≥ ⟨∇L̂τ (Θ

∗), Θ̂−Θ∗⟩ ≥ −
∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op

∥∥∥∆̂∥∥∥
nuc

≥ −
∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op

(∥∥∥∆̂M

∥∥∥
nuc

+
∥∥∥∆̂M̄⊥

∥∥∥
nuc

)
≥ −λ

2

(∥∥∥∆̂M̄

∥∥∥
nuc

+
∥∥∥∆̂M̄⊥

∥∥∥
nuc

)
. (8)

And for the right-hand side, we have that∥∥∥Θ̂∥∥∥
nuc

=
∥∥∥Θ∗ + ∆̂

∥∥∥
nuc

=
∥∥∥Θ∗

M + ∆̂M̄ + ∆̂M̄⊥

∥∥∥
nuc

≥ ∥Θ∗
M∥nuc +

∥∥∥∆̂M̄⊥

∥∥∥
nuc

−
∥∥∥∆̂M̄

∥∥∥
nuc
,
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and hence we have that

∥Θ∗∥nuc −
∥∥∥Θ̂∥∥∥

nuc
= ∥Θ∗

M∥nuc −
∥∥∥Θ̂∥∥∥

nuc
≤
∥∥∥∆̂M̄

∥∥∥
nuc

−
∥∥∥∆̂M̄⊥

∥∥∥
nuc
. (9)

Combining the results from Eqn. (8) and Eqn. (9), we can deduce that ∥∆̂M̄⊥∥nuc ≤ 3∥∆̂M̄∥nuc. Next, since we have that
rank(∆̂M̄) ≤ 2r, then based on Cauchy-Schwarz inequality it holds that∥∥∥∆̂∥∥∥

nuc
≤
∥∥∥∆̂M

∥∥∥
nuc

+
∥∥∥∆̂M̄⊥

∥∥∥
nuc

≤
∥∥∥∆̂M̄

∥∥∥
nuc

+
∥∥∥∆̂M̄⊥

∥∥∥
nuc

≤ 4
∥∥∥∆̂M̄

∥∥∥
nuc

≤ 4
√
2r
∥∥∥∆̂M̄

∥∥∥
F
≤ 4

√
2r
∥∥∥∆̂∥∥∥

F
.

Therefore, we can show that
∥∥∥Θ̃ζ −Θ∗

∥∥∥
nuc

≤ 4
√
2r
∥∥∥Θ̃ζ −Θ∗

∥∥∥
F
. And remember that we assume

∥∥∥Θ̃ζ −Θ∗
∥∥∥

F
= 9

√
r · λκ .

These facts indicate that Θ̃ζ ∈ M(Θ∗, s, l) with s ≥ 9
√
r λκ and l ≥ 4

√
2r. Therefore, based on the local restricted strong

convexity, we have

κζ
∥∥∥∆̂∥∥∥

F

∥∥∥Θ̃ζ −Θ∗
∥∥∥

F
= κ

∥∥∥Θ̃ζ −Θ∗
∥∥∥2

F
≤ ⟨∇L̂τ (Θ̃ζ)−∇L̂τ (Θ

∗), Θ̃ζ −Θ∗⟩.

For the left-hand side, it holds that

κζ
∥∥∥∆̂∥∥∥

F

∥∥∥Θ̃ζ −Θ∗
∥∥∥

F
= κζ

∥∥∥∆̂∥∥∥
F
9
√
r
λ

κ
= ζλ

∥∥∥∆̂∥∥∥
F
9
√
r,

and for the right-handed side, based on Eqn. (7) we have that

⟨∇L̂τ (Θ̃ζ)−∇L̂τ (Θ
∗), Θ̃ζ −Θ∗⟩ ≤ ζ⟨∇L̂τ (Θ̂)−∇L̂τ (Θ

∗), Θ̂−Θ∗⟩

≤ η
3λ

2

∥∥∥∆̂∥∥∥
nuc

≤ ζ6
√
2λ

√
r
∥∥∥∆̂∥∥∥

F

Consequently, we have 9 ≤ 6
√
2 that contradicts the fact, which means that∥∥∥∆̂∥∥∥

F
≤ 9

√
r · λ

κ
.

Next, we will show the event E(s, l, κ) and the event λ ≥ 2
∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op
hold with high probability individually.

Specifically, we will first give an upper bound of
∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op
in Theorem A.5 and then present the event E(s, l, κ) holds

with high probability in Theorem A.6.

Theorem A.5. By taking τ = ( n
5d−ln(ϵ) )

1
1+δ c

1
1+δ , then with probability at least 1− ϵ, it holds that∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op
≤ (10 + 11

√
2)σ

(
n

5d− ln(ϵ)

) δ
1+δ

c
1

1+δ .

Proof. Define the zero-mean random matrix Γ = ∇L̂τ (Θ
∗)− E∇L̂τ (Θ

∗), then we have that∥∥∥∇L̂τ (Θ
∗)
∥∥∥

op
=
∥∥∥∇L̂τ (Θ

∗)− E∇L̂τ (Θ
∗) + E∇L̂τ (Θ

∗)
∥∥∥

op
≤ ∥Γ∥op +

∥∥∥E∇L̂τ (Θ
∗)
∥∥∥

op
.

Therefore, we could control these two terms separately. Denote Sd−1 = {u ∈ Rd : ∥u∥2 = 1}. For the second term, we
have that

∇L̂τ (Θ
∗) = − 1

n

n∑
i=1

l′τ (yi − ⟨Xi,Θ
∗⟩)Xi = − 1

n

n∑
i=1

l′τ (ηi)Xi.

Therefore, we can deduce that∥∥∥E∇L̂τ (Θ
∗)
∥∥∥

op
= sup

u∈Sd1−1,v∈Sd2−1

1

n

n∑
i=1

E
(
l′τ (ηi)u

⊤Xiv
)

= sup
u∈Sd1−1,v∈Sd2−1

1

n

n∑
i=1

E
(
E
(
l′τ (ηi)u

⊤Xiv|Fi

))
= sup

u∈Sd1−1,v∈Sd2−1

1

n

n∑
i=1

E
(
u⊤Xiv · E (l′τ (ηi)|Fi)

)
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By the expression of l′τ (·), we can deduce that

|E (l′τ (ηi)|Fi) | = |E (l′τ (ηi)− ηi|Fi) | ≤ E

(
|ηi|1+δ

τ δ

∣∣∣Fi

)
≤ c

τ δ

And since u⊤Xiv is sub-Gaussian with the parameter σ2, we have E(|u⊤Xiv|) ≤
√
2σ2. Conclusively, it holds that∥∥∥E∇L̂τ (Θ

∗)
∥∥∥

op
≤

√
2

τ δ
c · σ. (10)

To bound the operator norm of Γ, we use the regular covering technique: Let N d
1
4

be the 1/4 covering of Sd−1, then we
claim that

∥Γ∥op ≤ 5

2
max

u∈Nd1
1
4

,v∈Nd2
1
4

u⊤Γv. (11)

To prove this result, for any u ∈ Sd1−1, v ∈ Sd2−1, we denote S(u) ∈ Rd1 (S(v) ∈ Rd2) as the nearest neighbor of u (v)
in Nd1

1
4

(N d2
1
4

) such that ∥u− S(u)∥2, ∥v − S(v)∥2 ≤ 1
4 . We take u, v such that u⊤Γv = ∥Γ∥op. Therefore, it holds that

∥Γ∥op = u⊤Γv = S(u)⊤ΓS(v) + (u− S(u))⊤Γv + u⊤Γ(v − S(v)) + (u− S(u))⊤Γ(v − S(v))

≤ max
u∈Nd1

1
4

,v∈Nd2
1
4

u⊤Γv +
1

4
∥Γ∥op +

1

4
∥Γ∥op +

1

16
∥Γ∥op ≤ max

u∈Nd1
1
4

,v∈Nd2
1
4

u⊤Γv +
3

5
∥Γ∥op ,

which leads to Eqn. (11). And then it holds that

∥Γ∥op ≤ 5

2
max

u∈Nd1
1
4

,v∈Nd2
1
4

1

n

n∑
i=1

[
E
(
l′τ (ηi)u

⊤Xiv
)
− l′τ (ηi)u

⊤Xiv
]
.

To bound the right-hand side term, we aim to use a union bound of probability with Corollary A.2. Since u⊤Xiv is
sub-Gaussian with parameter σ for arbitrary u ∈ N d1

1
4

, v ∈ N d2
1
4

, then we have that for k = 2, 3, . . .

E|u⊤Xiv|k =

∫ ∞

0

P
(
|u⊤Xiv|k > t

)
dt ≤ 2

∫ ∞

0

exp

(
− t2

2kσ2

)
dt ≤ 1

2
· k! · (

√
2σ)k.

The above results along with the fact that |l′τ (·)| ≤ τ can lead to the following inequality for k = 2, 3, . . . :

E
∣∣∣ n∑
i=1

l′τ (ηi)u
⊤Xiv

∣∣∣k ≤ n · τk−1−δE
(
|l′τ (ηi)|1+δ|u⊤Xiv|k

)
≤ 1

2
· k! ·

(√
2στ

)k−2

· (2nσ2τ1−δc).

Based on Corollary A.2, it holds that

P

(
u⊤Γv ≥ 4

√
xσ2τ1−δc

1√
n
+ 4

√
2στ

x

n

)
≤ e−x.

By taking the union bound on all u ∈ N d1
1
4

, v ∈ N d2
1
4

and using the fact that 9d1+d2 ≤ e5d, it holds that

P

∥Γ∥op ≥ 5

2
max

u∈Nd1
1
4

,v∈Nd2
1
4

u⊤Γv ≥ 10σ
√
c

√
5d− ln (ϵ)

n
τ

1−δ
2 + 10

√
2στ

5d− ln(ϵ)

n

 ≤ ϵ. (12)

Combining the results in Eqn. (10) and Eqn. (12), we have that

P

(∥∥∥∇L̂τ (Θ
∗)
∥∥∥

op
≥ 10σ

√
c

√
5d− ln (ϵ)

n
τ

1−δ
2 + 10

√
2στ · 5d− ln(ϵ)

n
+

√
2

τ δ
c · σ

)
≤ ϵ.
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By taking τ =
(

n
5d−ln(ϵ)

) 1
1+δ · c

1
1+δ , we have that

P

(∥∥∥∇L̂τ (Θ
∗)
∥∥∥

op
≤ (10 + 11

√
2)c

1
1+δ ·

(
5d− ln(ϵ)

n

) δ
1+δ

)
≥ 1− ϵ.

Theorem A.6. For any s, l > 0, if we take τ and n such that

τ ≥ max

{
32σ2s

√
1

cl
,

(
64σ2c

cl

) 1
1+δ

}

n ≥ max

{
8 ln (9)(d1 + d2),

(
225σ

√
ln(9)(d1 + d2)

τ l

scl

)2

,

(
48σ2

cl

√
−2 ln(ϵ)

)2

,− τ2

cls2
ln(ϵ)

}
.

Then with probability at least 1− ϵ, the local restricted strong convexity E(s, l, κ) holds with κ = cl
4 .

Proof. Given the values of s, l > 0, for the sake of simplicity we denote the event Φ as Φ = M(Θ∗, s, l) ={
Θ ∈ Rd1×d2 : ∥Θ−Θ∗∥F ≤ s, ∥Θ−Θ∗∥nuc ≤ l ∥Θ−Θ∗∥F

}
. Since the Huber loss is convex and differentiable, we

have

D(Θ) := ⟨∇L̂τ (Θ)−∇L̂τ (Θ
∗),Θ−Θ∗⟩

=
1

n

n∑
i=1

(l′τ (yi − ⟨Xi,Θ
∗⟩)− l′τ (yi − ⟨Xi,Θ⟩)) · ⟨Xi,Θ−Θ∗⟩

≥ 1

n

n∑
i=1

(l′τ (yi − ⟨Xi,Θ
∗⟩)− l′τ (yi − ⟨Xi,Θ⟩)) · ⟨Xi,Θ−Θ∗⟩ · 1Ξi(Θ),

where the last inequality holds since Huber loss is convex, and Ξi(Θ) is defined as

Ξi(Θ) =
{
|ηi| ≤

τ

2

}
∩
{
|⟨Xi,Θ−Θ∗⟩| ≤ τ

2s
∥Θ−Θ∗∥F

}
.

Note whenever Θ ∈ Φ and Ξi(Θ) hold we have that

|yi − ⟨Xi,Θ⟩| ≤ |yi − ⟨Xi,Θ
∗⟩|+ τ

2s
· ∥Θ−Θ∗∥F ≤ τ.

Since we have l′′τ (u) = 1 with |u| ≤ τ , it holds that

D(Θ) ≥ 1

n

n∑
i=1

⟨Xi,Θ−Θ∗⟩2 · 1Ξi(Θ).

Furthermore, we define the function ϕR(x) with some R > 0 as

ϕR(x) =


x2, if |x| ≤ R

2 ;

(x−R)2, if R
2 < x ≤ R;

(x+R)2, if −R ≤ x < −R
2 ;

0, otherwise.

And we know ϕr(·) is R-Lipschitz continuous with the properties that

ϕαR(αx) = α2ϕR(x) ∀α > 0, and x2 · 1|x|≤R/2 ≤ ϕR(x) ≤ x2 · 1|x|≤R.
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Then we can deduce that

D(Θ)

∥Θ−Θ∗∥2F
≥ 1

n

n∑
i=1

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

)2

· 1Ξi(Θ) ≥
1

n

n∑
i=1

ϕ τ
2s

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

)
· 1{|ηi|≤ τ

2 }

:=
1

n

n∑
i=1

βτ,s(Xi,Θ, ηi)

=
1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi)) +
1

n

n∑
i=1

βτ,s(Xi,Θ, ηi)−
1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi))

≥ 1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi))− sup
Θ∈Φ

∣∣∣∣∣ 1n
n∑

i=1

βτ,s(Xi,Θ, ηi)−
1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi))

∣∣∣∣∣
:= A1 −A2.

For simplicity we write ∆ = Θ−Θ∗ as a function of Θ. To lower bound the first term A1, we have that for any i ∈ [n],

E (βτ,s(Xi,Θ, ηi)) ≥ E

[(
⟨Xi,∆⟩
∥∆∥F

)2

· 1{|⟨Xi,∆⟩|≤ τ
4s∥∆∥F} · 1{|ηi|≤ τ

2 }

]

≥ E

(
⟨Xi,∆⟩
∥∆∥F

)2

− E

[(
⟨Xi,∆⟩
∥∆∥F

)2

· 1{|⟨Xi,∆⟩|> τ
4s∥∆∥F}

]
− E

[(
⟨Xi,∆⟩
∥∆∥F

)2

· 1{|ηi|> τ
2 }

]
:= A11 −A12 −A13.

Based on Assumption 3.1, we have A11 ≥ cl. Furthermore, it holds that

A12 ≤

√
E

(
⟨Xi,∆⟩
∥∆∥F

)4

·

√
E

(
⟨Xi,∆⟩
∥∆∥F

)4/( τ
4s

)4
≤ 256σ4 · s

2

τ2

A13 ≤
(
2

τ

)1+δ

E

(
⟨Xi,∆⟩
∥∆∥F

)2

· E|ηi|1+δ ≤ 16

τ1+δ
σ2 · c.

By choosing that τ ≥ max

{
32σ2s

√
1
cl
,
(

64σ2c
cl

) 1
1+δ

}
, it holds that A12 ≤ cl

4 and A13 ≤ cl
4 , which indicates that

E (βτ,s(Xi,Θ, ηi)) ≥
cl
2
, ∀i ∈ [n],

which implies that

A1 ≥ cl
2

(13)

Afterward, we’d like to upper-bound the term A12. Since we have that ∀i ∈ [n]

0 ≤ βτ,s(Xi,Θ, ηi) ≤
τ2

16s2
, E (βτ,s(Xi,Θ, ηi))

2 ≤ E

(
⟨Xi,∆⟩
∥∆∥F

)4

≤ 16σ4.

Then based on the Bousquet’s inequality [Bousquet, 2002], with probability at least 1− ϵ it holds that

A2 ≤ EA2 +
√

EA2 ·
τ

2s

√
− ln(ϵ)

n
+ 4σ2

√
−2 ln(ϵ)

n
+

τ2

16s2
− ln(ϵ)

3n

≤ 2EA2 + 4σ2

√
−2 ln(ϵ)

n
++

τ2

16s2
−4 ln(ϵ)

3n
.

To bound the first term EA2, we use the regular Rademacher symmetrization argument by defining a series of iid Rademacher
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random variables {ei} with X̃i, η̃i that are iid with Xi, ηi:

EA2 = E

[
sup
Θ∈Φ

∣∣∣∣∣ 1n
n∑

i=1

βτ,s(Xi,Θ, ηi)−
1

n

n∑
i=1

E (βτ,s(Xi,Θ, ηi))

∣∣∣∣∣
]

≤ E

[
sup
Θ∈Φ

∣∣∣∣∣
(
1

n

n∑
i=1

βτ,s(Xi,Θ, ηi)−
1

n

n∑
i=1

E
(
βτ,s(X̃i,Θ, η̃i)

))
ei

∣∣∣∣∣
]

≤ 2E

[
sup
Θ∈Φ

1

n

n∑
i=1

βτ,s(Xi,Θ, ηi)ei

]
.

Denote the event c(l) :=
{
Θ ∈ Rd1×d2 : ∥Θ−Θ∗∥nuc ≤ l ∥Θ−Θ∗∥F

}
. Recall that we define as:

βτ,s(Xi,Θ, ηi) = ϕ τ
2s

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

)
· 1{|ηi|≤ τ

2 } = ϕ τ
2s

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

· 1{|ηi|≤ τ
2 }

)
.

Define c(t) = 2s
τ ϕ τ

2s
(t) and it is easy to show that c(·) is a 1-Lipschitz function. By using the Talagrand’s concentration

inequality [Wainwright, 2019], it holds that

EA2 ≤ τ

s
· E

[
sup

Θ∈c(l)

1

n

n∑
i=1

ei ·
2s

τ
· ϕ τ

2s

(
⟨Xi,Θ−Θ∗⟩
∥Θ−Θ∗∥F

· 1{|ηi|≤ τ
2 }

)]
τ

s
· E

[
sup

Θ∈c(l)

1

n

n∑
i=1

ei ·
2s

τ
· ⟨Xi,Θ−Θ∗⟩

∥Θ−Θ∗∥F
· 1{|ηi|≤ τ

2 }

]

≤ τ

s
· E

 sup
Θ∈c(l)

1

n

∥∥∥∥∥
n∑

i=1

eiXi · 1{|ηi|≤ τ
2 }

∥∥∥∥∥
op

·
∥∥∥∥ Θ−Θ∗

∥Θ−Θ∗∥F

∥∥∥∥
nuc


≤ τ l

sn
· E

∥∥∥∥∥
n∑

i=1

eiXi · 1{|ηi|≤ τ
2 }

∥∥∥∥∥
op

.

By using the same technique in the proof of Theorem A.5, we can bound the operator norm by using the covering argument.
Denote N d

1
4

be the 1/4 covering of Sd−1, then it holds that

E

∥∥∥∥∥
n∑

i=1

eiXi · 1{|ηi|≤ τ
2 }

∥∥∥∥∥
op

≤ 5

2
· E

 max
u∈Nd1

1
4

,v∈Nd2
1
4

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2 }

 .
Note for any pair of u ∈ N d1

1
4

, v ∈ N d2
1
4

, we have that

E

(
n∑

i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2 }

)
= 0

E

(
n∑

i=1

|ei|k|u⊤Xiv|k · 1{|ηi|≤ τ
2 }

)
≤ E|u⊤Xiv|k ≤ 1

2
· k! · (

√
2σ)k−2 · 2σ2, k = 2, 3, . . . .

We can write the moment generating function M(λ) of the random variable
∑n

i=1 ei · u⊤Xiv · 1{|ηi|≤ τ
2 } as:

M(λ) = E

[
exp

(
λ

n∑
i=1

ei · u⊤Xiv · 1{|ηi|≤ τ
2 }

)]
=

n∏
i=1

E
[
exp

(
λei · u⊤Xiv · 1{|ηi|≤ τ

2 }

)]
≤

n∏
i=1

[
1 +

λ2 · 2σ2

2
+
λ2 · 2σ2

2

( ∞∑
k=3

(|λ|
√
2σ)k−2

)]

=

n∏
i=1

[
1 +

2λ2σ2

2
· 1

1−
√
2σ|λ|

]
≤ exp

(
nλ2σ2 1

1−
√
2σ|λ|

)
, |λ| ≤ 1√

2σ
.
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Therefore, it holds that for any s0 > 0

E

 max
u∈Nd1

1
4

,v∈Nd2
1
4

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2 }

 =
1

s0
E

[
ln

(
exp

(
s0 ·

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2 }

))]

≤ 1

s0
ln

E

 max
u∈Nd1

1
4

,v∈Nd2
1
4

exp

(
s0 ·

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2 }

)
≤ 1

s0
ln

(
9d1+d2E

[
exp

(
s0 ·

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2 }

)])

=
(d1 + d2) ln(9) + ns20σ

2 · 1
1−

√
2σ|s0|

s0
, ∀|s0| ≤

1√
2σ
.

By taking s0 =

√
(d1+d2) ln(9)

σ·
√
n

, and conditioned on n ≥ 8 ln(9)(d1 + d2), we have that

E

 max
u∈Nd1

1
4

,v∈Nd2
1
4

n∑
i=1

eiu
⊤Xiv · 1{|ηi|≤ τ

2 }

 ≤ 3
√
ln(9) ·

√
n(d1 + d2) · σ.

And this fact implies that

EA2 ≤ 15τσl

2s

√
ln(9)

√
d1 + d2
n

.

Conclusively, with probability at least 1− ϵ we have that

A2 ≤ 15τσl

s

√
ln(9)

√
d1 + d2
n

+ 4σ2

√
−2 ln(ϵ)

n
++

τ2

16s2
−4 ln(ϵ)

3n
.

Therefore, by ensuring that

n ≥ max

{
8 ln (9)(d1 + d2),

(
225σ

√
ln(9)(d1 + d2)

τ l

scl

)2

,

(
48σ2

cl

√
−2 ln(ϵ)

)2

,− τ2

cls2
ln(ϵ)

}
,

we have

P
(
A2 ≤ cl

4

)
≥ 1− ϵ. (14)

Given the results shown in Eqn. (13) and Eqn. (14), we have that with probability at least 1− ϵ, it holds that

⟨∇L̂τ (Θ)−∇L̂τ (Θ
∗),Θ−Θ∗⟩

∥Θ−Θ∗∥2F
≥ cl

4
, ∀Θ ∈ Φ.

A.2 PROOF OF THEOREM 4.1

Theorem 4.1 can be naturally proved based on the above Theorem A.4, Theorem A.5 and Theorem A.6. Here we assume
cl and σ are in constant scale in general, and for the LowHTR problem with σ2 ≍ cl ≍ 1

d1d2
, our proof can be slightly

modified as we discuss later.

By taking λ ≍ σ
(

d−ln(ϵ)
n

) δ
1+δ

c
1

1+δ , and τ ≍
(

n
d−ln (ϵ)

) 1
1+δ

c
1

1+δ , we can guarantee that λ ≥ 2
∥∥∥∇L̂τ (Θ

∗)
∥∥∥

op
with

probability at least 1− ϵ from Theorem A.5. By choosing l ≍ 4
√
2r and s = τ

32σ2

√
cl, then the conditions in Theorem A.4

can be satisfied as long as n ≳ (d − ln (ϵ))
√
rν3 where we denote ν = σ2

cl
. Furthermore, under the above setting, we

know the local restricted strong convexity E(s, l, cl/4) holds with probability at least 1 − ϵ as long as the conditions in
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Theorem A.6 hold. By reviewing the conditions of Theorem A.6, we know it suffices to have n ≳ d, ν2, drν3. Therefore,
with probability at least 1− 2ϵ, the final error bound in Theorem A.4 indicates that

∥∥∥Θ̂−Θ∗
∥∥∥

F
≲
σ

cl

(
d+ ln (1/ϵ)

n

) δ
1+δ

c
1

1+δ
√
r.

B PROOF OF THEOREM 4.2

We now prove the regret bound given in Theorem 4.2: We have ∥θ∗∥ ≤ S based on Section 3 and ∥θ∗k+1:p∥ ≤ S⊥ for some
small S⊥. In the beginning, we have the transformed buffer set H′

1 of size H := |H′
1|, and we write the pair information

(X, y) in H′
1 as {(xs,1, ys,1), . . . , (xs,H , ys,H)}. And we denote (xe,t, ye,t) as the pair of pulled arm and corresponding

stochastic payoff at round t. To abuse the notation, at round t+ 1 we denote {(xi, yi)}t+H
i=1 as the pairs of observations in

the initial buffer set and obtained by the end of round t in order.

At the beginning of the round t + 1, the current M := Mt can be written as Mt =
∑H

i=1 xs,ix
⊤
s−i

∑t
j=1 xe,jx

⊤
e,j + Λ,

where Λ is a positive diagonal matrix with λ occupying the first k diagonal entries and λ⊥ the next p− k entries. According
to Algorithm 2, we denote Xt ∈ R(t+H)×p where each row of Xt is the feature vector of the pulled arm (in the history
buffer set or not). Assume t+H > p, we denote its full SVD as Xt = UxΣxV

⊤
x with Ux ∈ R(t+H)×p and Vx ∈ Rp×p. We

also write Mt = Vx(Σ
2 + Λ)V ⊤

x ∈ Rp×p. And we further denote
u⊤1
u⊤2
...
u⊤p

 =M
− 1

2
t X⊤

t = Vx(Σ
2
x + Λ)−

1
2 · ΣxU

⊤
x ⪯ VxU

⊤
x =

Vx,11 · · · Vx,1p
...

. . .
...

Vx,p1 · · · Vx,pp

 ·

U
⊤
x,1
...

U⊤
x,p

 ∈ Rp×(t+H).

We first show that for all i ∈ [p],

∥ui∥2 ≤ ∥
p∑

j=1

VijUj∥2 =

√√√√ p∑
j=1

V 2
ij∥Uj∥22 = 1

∥ui∥1+δ ≤ (t+H)
1

1+δ−
1
2 · ∥ui∥2 ≤ (t+H)

1−δ
2(1+δ) ,

where the last inequality is deduced from the Cauchy-Schwarz inequality. With the formulation of θ̂t in Algorithm 2 line 3,
we have that

∥θ̂t − θ∗∥Mt =

∥∥∥∥∥∥∥M− 1
2

t

u
⊤
1 ŷ1
...

u⊤p ŷp

−M−1
t X⊤

t Xtθ
∗ −M−1

t Λθ∗

∥∥∥∥∥∥∥
Mt

≤

∥∥∥∥∥∥∥M− 1
2

t

u
⊤
1 ŷ1
...

u⊤p ŷp

−M
− 1

2
t

u
⊤
1
...
u⊤p

Xtθ
∗

∥∥∥∥∥∥∥
Mt

+ ∥Λθ∗∥M−1
t

≤

∥∥∥∥∥∥∥
u

⊤
1 (ŷ1 −Xtθ

∗)
...

u⊤p (ŷp −Xtθ
∗)


∥∥∥∥∥∥∥
2

+ ∥θ∗∥Λ

≤

√√√√ p∑
i=1

(
u⊤i (ŷi −Xtθ∗)

)2
+
√
λ0S +

√
λ⊥S⊥.

1881



To present a bound on the first term, we divide it into two separate parts.

u⊤i (ŷi −Xtθ
∗) =

t+H∑
j=1

ui,j(ŷi,j − E(yj |Fj−1))

=

t+H∑
j=1

ui,j
[
(ŷi,j − E(ŷi,j |Fj−1))− E(yj1{|ui,jyj |>bt}|Fj−1)

]

≤

∣∣∣∣∣∣
t+H∑
j=1

ui,j(ŷi,j − E(ŷi,j |Fj−1))

∣∣∣∣∣∣+
∣∣∣∣∣∣
t+H∑
j=1

ui,jE(yj1{|ui,jyj |>bt}|Fj−1)

∣∣∣∣∣∣ := A1 +A2

For the first term A1, based on Bernstein’ inequality for martingales [Seldin et al., 2012], for any i ∈ [p] it holds that with
probability at least 1− ϵ

p :

A1 ≤ 2bt ln

(
2p

ϵ

)
+

∣∣∣∣∣∣ 1

2bt

t+H∑
j=1

E
[
u2i,j (ŷi,j − E(ŷi,j |Fj−1))

2 |Fj−1

]∣∣∣∣∣∣
≤ 2bt ln

(
2p

ϵ

)
+
bt
2

∣∣∣∣∣∣
t+H∑
j=1

E

[(
ui,j (ŷi,j − E(ŷi,j |Fj−1))

bt

)2

|Fj−1

]∣∣∣∣∣∣ := 2bt ln

(
2p

ϵ

)
+
bt
2

∣∣∣∣∣∣
t+H∑
j=1

E [T |Fj−1]

∣∣∣∣∣∣ .
Since we know that |T | ≤ 1 and hence E(T 2) ≤ E(|T |1+δ), and we can then deduce that

A1 ≤ 2bt ln

(
2p

ϵ

)
+
bt
2
·
∑t+H

j=1 |ui,j |1+δ · b
b1+δ
t

≤ 2bt ln

(
2p

ϵ

)
+

b

2bδt
(t+H)

1−δ
2 .

Therefore, we know that with probability at least 1− ϵ the following result holds for all i ∈ [p] simultaneously:∣∣∣∣∣∣
t+H∑
j=1

ui,j(ŷi,j − E(ŷi,j |Fj−1))

∣∣∣∣∣∣ ≤ 2bt ln

(
2p

ϵ

)
+

b

2bδt
(t+H)

1−δ
2 .

For the term A2, with the help of Holder’s inequality, we have for all i ∈ [p]:

A2 ≤
t+H∑
j=1

E
(
|ui,jyj |1+δ

) 1
1+δ · E

(
1|ui,jyj |>bt

) δ
1+δ

≤
t+H∑
j=1

|ui,j | · b
1

1+δ · P (|ui,jyj | > bt)
δ

1+δ

≤
t+H∑
j=1

|ui,j | · b
1

1+δ ·
(
|ui,j |1+δb

b1+δ
t

)
≤ b

bδt
· (t+H)

1−δ
2 .

Therefore, by taking

bt =

(
b

ln
(
2p
ϵ

)) 1
1+δ

· (t+H)
1−δ
2+2δ ,

we can deduce that with probability at least 1− ϵ the following result holds for all i ∈ [p] simultaneously:

u⊤i (ŷi −Xtθ
∗) ≤ 4b

1
1+δ

(
ln

(
2p

δ

)) δ
1+δ

· (t+H)
1−δ
2+2δ .

Therefore, with probability at least 1− ϵ it holds that

∥θ̂t − θ∗∥Mt ≤ 2
√
p · b

1
1+δ

(
ln

(
2p

δ

)) δ
1+δ

· (t+H)
1−δ
2+2δ := βt(ϵ).
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Denote the optimal arm at time t+ 1 as x∗e,t+1. Therefore, the instance regret at time t+ 1 can be bounded by

x∗e,t+1
⊤θ∗−x⊤e,t+1θ

∗ = x∗e,t+1
⊤θ∗ − x∗e,t+1

⊤θ̂t + x∗e,t+1
⊤θ̂t − x⊤e,t+1θ̂t + x⊤e,t+1θ̂t − x⊤e,t+1θ

∗

≤ βt(ϵ)∥x∗e,t+1∥M−1
t

+ x⊤e,t+1θ̂t + βt(ϵ)∥xe,t+1∥M−1
t

− x⊤e,t+1θ̂t − ∥x∗e,t+1∥M−1
t

+ βt(ϵ)∥xe,t+1∥M−1
t

≤ min{S2, 2βt(ϵ)∥xe,t+1∥M−1
t

}.

Therefore, with probability at least 1− ϵ, it holds that

T∑
t=1

rt =

T∑
t=1

min{S2, 2βt

( ϵ
T

)
∥xe,t+1∥M−1

t
}

≤ 2βT

( ϵ
T

) T∑
t=1

min{ S2

βT
(

ϵ
T

) , ∥xe,t+1∥M−1
t

} ≤ 2βT

( ϵ
T

)
·
√
T ·

√√√√ T∑
t=1

min{∥xe,t+1∥2M−1
t

, 1}

We denote M̃T+1 =
∑T

t=1 xe,tx
⊤
e,t + Λ, and by Lemma 9 of Dani et al. [2008], it holds that√√√√ T∑

t=1

min{∥xe,t+1∥2M−1
t

, 1} ≤ 2 ln

(
det(M̃T+1)

det(Λ)

)
≤ 2k · ln

(
1 +

S2

kλ0
T

)
+ 2(p− k) ln

(
1 +

S2

(p− k)λ⊥
T

)

≤ 2k · ln
(
1 +

S2

kλ0
T

)
+

2S2

λ⊥
T ≤ 4k · ln

(
1 +

S2

kλ0
T

)
,

by taking that λ⊥ = S2T

k ln
(
1+ S2

kλ0
T
) . Therefore, with probability at least 1− ϵ, it holds that

R(T ) ≤ 2
√
T ·

√
4k · ln

(
1 +

S2

kλ0
T

)
·

[
2
√
p · b

1
1+δ

(
ln

(
2p

δ

)) δ
1+δ

· (T +H)
1−δ
2+2δ +

√
λ0S +

√
λ⊥S⊥

]
= Õ

(√
kp · T

1
1+δ +

√
kT + S⊥T

)
.

C PROOF OF EQN. (6)

Our argument is adapted from the proof of Theorem 3 in Jun et al. [2019], and we will still present details here for
completeness of our work. Furthermore, the proof of Theorem 4.4 in our work still relies on the same Lemma.

Lemma C.1. (Wedin’s sinΘ Theorem) Let the SVDs of matrices A and Ã be defined as follows:

(
U1 U2 U3

)⊤
A
(
V1 V2

)
=

Σ1 0
0 Σ2

0 0

 ,

(
Ũ1 Ũ2 Ũ3

)⊤
Ã
(
Ṽ1 Ṽ2

)
=

Σ̃1 0

0 Σ̃2

0 0

 .

Let R = AṼ1 − Ũ1Σ̃1 and S = A⊤Ũ1 − Ṽ1Σ̃1, and define U1⊥ = [U2 U3] and V1⊥ = [V2 V3]. Then suppose there is a
number q > 0 such that

min
i,j

|σi(Σ̃1)− σj(Σ2)| ≥ q, min
i
σi(Σ̃1) ≥ q,

Then it holds that √∥∥∥U⊤
1⊥Ũ1

∥∥∥2
F
+
∥∥∥V ⊤

1⊥Ṽ1

∥∥∥2
F
≤

√
∥R∥2F + ∥S∥2F

q
.
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Based on Lemma C.1, we define A = Θ̂, U1 = Û ,Σ1 = D̂, V1 = V̂ , Ã = Θ∗, Ũ1 = U, Σ̃1 = D, Ṽ1 = V, q = Drr.
Therefore, according to Lemma C.1, we have that R = (Θ̂−Θ∗)V̂ and S = −(Θ̂−Θ∗)⊤U , and then it holds that

√
2
∥∥∥Û⊤

⊥U
∥∥∥

F

∥∥∥V̂ ⊤
⊥ V

∥∥∥
F
≤
√∥∥∥Û⊤

⊥U
∥∥∥2

F
+
∥∥∥V̂ ⊤

⊥ V
∥∥∥2

F
≤

√
∥R∥2F + ∥S∥2F

Drr
≤

√
2 ·
∥∥∥Θ̂−Θ∗

∥∥∥
F

Drr
.

And then by using the bound on
∥∥∥Θ̂−Θ∗

∥∥∥
F

we can deduce that

∥θ∗k+1:p∥2 =
∥∥∥Û⊤

⊥UDV
⊤V̂⊥

∥∥∥
F
≤
∥∥∥Û⊤

⊥U
∥∥∥

F

∥∥∥V̂ ⊤
⊥ V

∥∥∥
F
· ∥D∥op ≲

rσ2c
2

1+δ

c2lD
2
rr

(
d+ ln (1/ϵ)

|H2|

) 2δ
1+δ

.

D PROOF OF THEOREM 4.3

We now prove Theorem 4.3 in this section. We first bring up the result shown in Eqn. (3) again: under Assumption 3.1, if we
estimate Θ∗ based on the exploration set H2 of size H , then our estimator Θ̂ satisfies the following property:

∥θ∗k+1:p∥2 ≲
rd2c

2
1+δ

D2
rr

(
d+ ln (1/ϵ)

H

) 2δ
1+δ

,

under σ2 ≍ cl ≍ 1/(d1d2) with probability at least 1 − ϵ. Our Algorithm 1 first randomly samples arms for the first T1
rounds, and then for the rest of the time horizon it utilizes a doubling-trick-based idea. Based on line 3 of Algorithm 1, when
we have that [

d2+4δr1+δ

D2+2δ
rr

2i(1+δ)

] 1
1+3δ

≥ 2i =⇒ i ≤

⌊
log2

(
d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

)⌋
:= L,

then in the first L batches, we will run out of time to do random exploration. Since we have that

2d
1+2δ

δ r
1+δ
2δ

D
1+δ
δ

rr

≥
L∑

j=1

2j = 2L+1 − 2 ≥ d
1+2δ

δ r
1+δ
2δ

D
1+δ
δ

rr

− 2,

we know before the batch L+ 1, we already repeat random sampling for Tinit rounds, with

T1 +
d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

− 2 ≤ Tinit ≤ T1 +
2d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

.

For the sake of simplicity in our proof, we assume that our algorithm terminates exactly at the end of some batch, i.e. the
M -th batch. And otherwise, our proof will be the same by using the index of the last batch. In other words, it holds that

M∑
i=L+1

2i + Tinit = T ⇐⇒ 2M+1 = T + 2L+1 − Tinit.

Therefore, if we set ϵ as ϵ/2i+1 in both βt of Algorithm 2 and λ, τ in the matrix estimation for the i-th batch, then based on
Theorem 4.2, with probability at least 1− ϵ it holds that

R(T ) = Õ

Tinit +

M∑
i=L+1

C (2 1+δ
1+3δ

)i
+
√
d3r

(
2

1
1+δ

)i
+

√
dr2i + 2i · d

2+4δ
1+δ r

D2
rr

·

 1

Tinit +
∑i

j=L+1 C
(
2

1+δ
1+3δ

)j


2δ
1+δ




= Õ

(
A1 +

M∑
i=L+1

[Ai,2 +Ai,3 +Ai,4 +Ai,5]

)
,
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with C =
(

d2+4δr1+δ

D2+2δ
rr

) 1
1+3δ

. For A1, it naturally holds that A1 ≲ Tinit. For Ai,2, we have that

M∑
i=L+1

Ai,2 ≲ C · 1

2
1+δ
1+3δ − 1

· T
1+δ
1+3δ .

For Ai,3, we have that

M∑
i=L+1

Ai,3 ≲
√
d3r

1

2
1

1+δ − 1
· (T − Tinit)

1
1+δ ≲

√
d3r · T

1
1+δ .

For Ai,3, it holds that

M∑
i=L+1

Ai,4 ≲
√
dr
√
2i ≲

√
dr · 1√

2− 1
· (T − Tinit)

1
2 ≲

√
drT .

And finally for Ai,5 we can show that

M∑
i=L+1

Ai,5 =

M∑
i=L+1

2i · d
2+4δ
1+δ r

D2
rr

·

 1

Tinit +
∑i

j=L+1 C
(
2

1+δ
1+3δ

)j


2δ
1+δ

≲
M∑

i=L+1

2 · C ·


(
2

1+δ
2δ

)i
T1−2
C + d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr C

+
∑i

j=L+1

(
2

1+δ
1+3δ

)j


2δ
1+δ

≲ 2 · C ·
M∑

L+1


(
2

1+δ
1+3δ − 1

) 2δ
1+δ

2
(1+δ)(2δ)

(1+3δ)(1+δ)

· 2(
1+δ
1+3δ )i

 ≲ C · T
1+δ
1+3δ ,

given that

T1 ≥ 2− d
1+2δ

δ r
1+δ
2δ

D
1+δ
δ

rr

+

(
d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

) 1+δ
1+3δ

· 1

2
1+δ
1+3δ − 1

· C ≥ 2 +

(
2√
2− 1

)
· d

1+2δ
δ r

1+δ
2δ

D
1+δ
δ

rr

.

Therefore, with the above condition on T1 satisfied, the following result holds with probability at least 1− ϵ

R(T ) = Õ

(
d

2+4δ
1+3δ r

1+δ
1+3δ

D
2+2δ
1+3δ
rr

· T
1+δ
1+3δ + d

3
2 r

1
2T

1
1+δ

)
.

E PROOF OF THEOREM 4.4

The proof of Theorem 4.4 is adapted from that of Theorem 4.3 presented in the above Appendix D. According to Li [1998],
it holds that

|σi(Θ̂)− σi(Θ
∗)| ≤

∥∥∥Θ̂−Θ∗
∥∥∥

F
, ∀i ∈ [d].

Denote H as the size of the exploration buffer set H2 at the end of the exploration phase for the i−th batch, then according
to Theorem 4.1 we know that∥∥∥Θ̂−Θ∗

∥∥∥
F
≤ C1

σ
√
r

cl

(
d+ ln (2i+1/ϵ)

H

) δ
1+δ

· c
1

1+δ := E, C1 > 0, (15)
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with probability at least 1− ϵ/2i+1. We define the useful rank r̂ as:

r̂ = min

{
i ∈ [d+ 1] : D̂ii ≤ C1

σ
√
i

cl

(
d+ ln (2i+1/ϵ)

H

) δ
1+δ

· c
1

1+δ := R(i)

}
− 1 ∧ 1,

We will first show that D̂(r+1)(r+1) ≤ R(r + 1) and hence r̂ ≤ r holds if we have Eqn. (15). This is because that
D̂(r+1)(r+1) ≤ E = R(r) < R(r + 1). Furthermore, we will illustrate that all the subspaces we remove based on our
estimated r̂ are sufficiently minimal. Specifically, we know that

D(r̂+1)(r̂+1) ≤ D̂(r̂+1)(r̂+1) + |D̂(r̂+1)(r̂+1) −D(r̂+1)(r̂+1)| ≤ R(r̂ + 1) + E ≤ 2R(r + 1).

To abuse the notation, we rewrite the SVD of Θ̂ and Θ∗ as

Θ̂ =
(
Û Ûr Û⊥

)
·

D̂r̂ 0 0

0 D̂r−r̂ 0

0 0 D̂0

 ·

V̂ ⊤

V̂ ⊤
r

V̂ ⊤
⊥


Θ∗ =

(
Ũ Ũr Ũ⊥

)
·

D̃r̂ 0 0

0 D̃r−r̂ 0
0 0 0

 ·

Ṽ ⊤

Ṽ ⊤
r

Ṽ ⊤
⊥

 .

And by making sure that H is sufficiently large such that R(r + 1) ≤ Drr/2, we have that

min |σi(Dr̂)− σj(Dr−r̂)| ≥
Drr

2
, minσi(Dr̂) ≥ Drr.

In Lemma C.1, with A = Θ̂, U1 = Û , U1⊥ = [Ûr, Û⊥],Σ1 = D̂, V1 = V̂ , V1⊥ = [V̂r, V̂⊥], Ã = Θ∗, Ũ1 = Ũ , Σ̃1 =
D, Ṽ1 = Ṽ , q = Drr/2, we can show that

∥∥∥Û⊤
1⊥Ũ

∥∥∥
F

∥∥∥V̂ ⊤
1⊥Ṽ

∥∥∥
F
≤

4
∥∥∥Θ̂−Θ∗

∥∥∥2
F

D2
rr

.

After we do the same transformation in Algorithm 2, we know the effective dimension (denoted by k̂) satisfies that
k̂ = d1d2 − (d1 − r̂)(d2 − r̂) ≤ d1d2 − (d1 − r)(d2 − r) = k. And it holds that

∥θ∗
k̂+1:p

∥2 =

∥∥∥∥U⊤
1⊥
(
Ũ Ũr

)
·
(
Dr̂ 0
0 Dr−r̂

)
·
(
Ṽ ⊤

Ṽ ⊤
r

)
V1⊥

∥∥∥∥
F

=
∥∥∥U⊤

1⊥ŨDr̂Ṽ
⊤V1⊥ + U⊤

1⊥ŨrDr−r̂Ṽ
⊤
r V1⊥

∥∥∥
F

≤
∥∥∥U⊤

1⊥Ũ
∥∥∥

F

∥∥∥Ṽ ⊤V1⊥

∥∥∥
F
· ∥Dr̂∥op +

∥∥∥U⊤
1⊥Ũr

∥∥∥
F

∥∥∥Ṽ ⊤
r V1⊥

∥∥∥
F
· ∥Dr−r̂∥op

≤ ∥Θ∗∥op ·
4
∥∥∥Θ̂−Θ∗

∥∥∥2
F

D2
rr

+
√
r − r̂

2
· 2R(r + 1)

Õ

(
rd2

D2
rr

(
d

H

) 2δ
1+δ

+ r
3
2 d

(
d

H

) δ
1+δ

)
≍ Õ

(
r

3
2 d

(
d

H

) δ
1+δ

)
.

Note the second term will be dominant for large H , s.t. H ≥ d
1+2δ

δ

r
1+δ
2δ D

2+2δ
δ

rr

.

By using T1 = min
{
d · 2

i(1+δ)
1+2δ , 2i

}
at each batch in line 3 of Algorithm 1, we can identically prove Theorem 4.4 with the

same procedure as the proof of Theorem 4.3. And the only slight difference lies in the control of the term Ai,5. Therefore,
we will omit the redundant details here.
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F PROOF OF THEOREM 5.1

In this section, we will present a regret lower bound for the LowHTR. Our proof relies on the following Lemma for the
MAB with heavy-tailed rewards:

Lemma F.1. [Xue et al., 2020] For any multi-armed bandit algorithm B with T ≥ K ≥ 4 where K is the number of arms,
an arm a∗ ∈ {1, . . . ,K} is chosen uniformly at random, this arm pays 1/γ with probability p(a∗) = 2γ1+δ and the rest
pays 1/γ with probability γ1+δ (2γ1+δ < 1). If we set γ = (K/(T + 2K))

1
1+δ , and denote rt,a as the observed reward of

arm a at round t under algorithm B, we have

E

[
T∑

t=1

rt,a∗ −
T∑

t=1

rt,at

]
≥ 1

8
T

1
1+δK

δ
1+δ .

Therefore, we can naturally consider the LowHTR problem with a finite and fixed arm set of size K. For simplicity, we set
d1 = d2 = d and set K = (d − 1)r ≥ 4. To adapt the results from Lemma F.1, we make the reward function of an arm
Xt,a ∈ Rd2

as

rt,a =

{
1
γ , with probability γ · ⟨Xt,a,Θ

∗⟩
0, with probability 1− γ · ⟨Xt,a,Θ

∗⟩
,

and then we only need to make ⟨Xt,a∗ ,Θ∗⟩ = 2γδ and ⟨Xt,a,Θ
∗⟩ = γδ for any other arm a where a∗ is uniformly chosen

from [K].

The contextual matrices are designed in the following way. For the first column, the first r entries are set to be[√
1

r(r+1) ,
√

2
r(r+1) , . . . ,

√
r

r(r+1)

]
. And for the rest (d − 1)r entries in the first r rows, we flatten them and set the

i-th entry as 1√
2

for the i-th arm matrix. All the other elements in the last (d− k) rows are set to null for all arm matrices.
We can easily check that the Frobenious norm of all arm matrices are bounded by 1.

Next, we consider the parameter matrix Θ∗ of rank r. For the first column, the first r entries are set to be[√
4

r(r+1)γ
δ,
√

8
r(r+1)γ

δ, . . . ,
√

4r
r(r+1)γ

δ
]
. And similarly for the rest (d − 1)r entries in the first r rows, we flatten

them and uniformly choose an index from [(d− 1)r], then the corresponding entry is
√
2γδ and all the rest elements in Θ∗

are 0. The norm of Θ∗ can also be bounded with large T . By using the feature matrices and the parameter matrix described
above, we can recover the scenario in Lemma F.1, and thus we have that

ER(T ) ≥ 1

8
T

1
1+δ (d− 1)

δ
1+δ r

δ
1+δ ≍ T

1
1+δ d

δ
1+δ r

δ
1+δ ≳ T

1
1+δ .

G REMARKS OF ASSUMPTION 3.2

We will show that when a series of iid random matricesXi
m
i=1 follows a sub-Gaussian distribution with parameter σ ≍ 1√

d1d2
,

then the scale of maxi∈[m] ∥Xi∥F can be bounded by some constant up to some very small logarithmic terms. The results
can be directly deduced from the following Lemma:

Lemma G.1. If iid random matrices Xi
m
i=1 ∈ Rd1×d2 follows a sub-Gaussian distribution with parameter σ, then with

probability at least 1− δ it holds that:

∥Xi∥F ≤ 4σ
√
d1d2 + 2

√
2σ

√
ln (

m

δ
), ∀i ∈ [m].

Proof. Denote N 1
2

as the 1
2 -covering of the matrix space {X : ∥X∥F ≤ 1}, then it holds that |N 1

2
| ≤ (1 + 1/0.5)d1d2 =
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5d1d2 . And for ∥V ∥F ≤ 1 we define S(V ) as the closest point in N 1
2

such that ∥V − S(V )∥F ≤ 1
2 . Next, we can have that

∥Xi∥F = max
∥V ∥F=1

⟨V,Xi⟩ = max
∥V ∥F=1

⟨V − S(V ) + S(V ), Xi⟩ ≤ max
Z∈N 1

2

⟨Z,Xi⟩+ max
∥W∥F=

1
2

⟨W,Xi⟩

≤ max
Z∈N 1

2

⟨Z,Xi⟩+
1

2
max

∥W∥F=1
⟨W,Xi⟩,

which indicates that ∥Xi∥F ≤ 2maxZ∈N 1
2

⟨Z,Xi⟩. Therefore, it holds that for any t > 0

P (∥Xi∥F ≥ t) ≤ P

(
max
Z∈N 1

2

⟨Z,Xi⟩ ≥
1

2

)
≤ |N 1

2
| · exp

(
− t2

8σ2

)
≤ 5d1d2 · exp

(
− t2

8σ2

)
.

This fact indicates that

P

(
∥Xi∥F ≥ 2

√
2σ

√
ln

(
1

δ

)
+ 4σ

√
d1d2

)
≤ δ.

Therefore, we have that

P

(
max
i∈[m]

∥Xi∥F < 2
√
2σ

√
ln

(
1

α

)
+ 4σ

√
d1d2

)
≥ (1− α)m = 1− δ, where α = 1− (1− δ)

1
m .

For any m > 1 and x ∈ [0, 1], based on the taylor series of the function f(x) = (1− x)
1
m = 1− x

m −O(x2), it holds that
1− x

m > (1− x)
1
m . And this fact leads to the final result:

P

(
max
i∈[T ]

∥Xi∥F < 2
√
2σ

√
ln

(
T

δ

)
+ 4σ

√
d1d2

)
> 1− δ,

which indicates that maxi∈[T ] ∥Xi∥F can be uniformly bounded by a constant scale up to some minimal error.

In our case with σ ≍ 1√
d1d2

, with probability at least 1− δ it holds that

max
i∈[m]

∥Xi∥F ≲
2
√
2√

d1d2

√
ln
(m
δ

)
+ 4.

H ALTERNATIVE VERSION OF LOTUS

As we mention in Subsection 4.2, we also have an alternative version of our LOTUS algorithm in a more randomized manner.
Specifically, at each batch, our original version illustrated in Algorithm 1 uses the static explore-then-exploit framework,
where it first randomly samples some arms from the distribution Dt in Assumption 3.1 and then exploits the recovered
low-rank subspaces with our LowTO method. However, we can mix these two exploration and exploitation steps in each
batch. Specifically, we can explore by the sampling distributionDt with the probability of T i

1/2
i at each time t, otherwise we

will conduct the subspace transformation and LowTO algorithm based on the current Ht. The full pseudocode is presented
in Algorithm 3. We can expect the same order of regret as in Theorem 4.3 based on the fact that if we do a series of iid
Bernoulli trials with probability p for n times, then with a high probability the sum of success will be close to np for large n
up to some logarithmic terms.

I DETAILS OF THE LAMM ALGORITHM

We implement the LAMM algorithm that was first proposed in [Fan et al., 2018] and recently extended to the matrix
estimation setting Yu et al. [2023] for the Huber-type estimator formulated in Eqn. (2). Here we use the unified framework
proposed in [Yu et al., 2023], and for the sake of completeness we will still present its details as follows:

LAMM is presented in Algorithm 4. The LAMM method is a very efficient and scalable algorithm under high-dimensional
datasets, and its first crux is establishing an isotropic quadratic function that locally upper bounds the objective function
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Algorithm 3 Randomized LOTUS

Input: Arm set Xt, sampling distribution Dt, δ, T0, η, λ, {λi,⊥}+∞
i=1 .

Initialization: The history buffer index set H1 = {}, the exploration buffer index set H2 = {}.
1: Pull arm Xt ∈ Xt according to Dt and observe payoff yt. Then add (Xt, yt) into H1 and H2 for t ≤ T0.
2: for i = 1, 2, . . . until the end of iterations do

3: Set the expected exploration length T1 = min

{[
d2+4δr1+δ

D2+2δ
rr

2i(1+δ)
] 1

1+3δ

, 2i
}

.

4: for t = |H1|+ 1 + |H1|+ 2i do
5: if Randomly sample from Bernoulli(T1/2i) and get 1 then
6: Pull arm Xt ∈ Xt according to Dt and observe payoff yt. Then add (Xt, yt) into H1 and H2

7: else
8: Obtain the estimate Θ̂ based on Eqn. (3) with H2, where we set τi ≍(

|H2|/(d+ ln (2i+1/ϵ))
) 1

1+δ c
1

1+δ , λi ≍ σ
(
(d+ ln (2i+1/ϵ))/|H2|

) δ
1+δ c

1
1+δ .

9: Calculate the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]
⊤ where Û ∈ Rd1×r, V̂ ∈ Rd2×r.

10: For the next round, invoke LowTO with δ, [Û , Û⊥], [V̂ , V̂⊥], λ, λi,⊥,H1 and obtain the updated H1.
11: end if
12: end for
13: end for

Algorithm 4 LAMM Algorithm for the Solution to Eqn.(2)

Input: Initial Θ̂0, stopping threshold ϵ, α0, ψ, λ.
1: for i = 1, 2, . . . until

∥∥∥Θ̂i − Θ̂i−1

∥∥∥
F
≤ ϵ do

2: Initialize Θ̂i = Θ̂i−1, αi = max(α0, αi−1/ψ) and si = 0.
3: while F (Θ̂i; Θ̂i−1, αi) < L̂τ (Θ̂i) or si = 0 do
4: Θ̂i = S(Θ̂i−1 − α−1

i ∇L̂τ (Θ̂i−1), α
−1
i λ).

5: si = si + 1, αi = ψ · αi.
6: end while
7: end for

L̂τ (Θ) at each iteration until convergence. Based on the second-order Taylor expansion, given the previous estimate Θ̂t−1 at
iteration t− 1, we can define the quadratic function at iteration t as:

F (Θ; Θ̂t−1, αk) = L̂τ (Θ̂t−1) + ⟨∇L̂τ (Θ̂t−1),Θ− Θ̂t−1⟩+
αt

2

∥∥∥Θ− Θ̂t−1

∥∥∥2
F
,

with some quadratic parameter αt > 0. This parameter needs to be sufficiently large as we illustrated above such that
L̂τ (Θ̂t) ≤ F (Θ̂t; Θ̂t−1, αt) holds where

Θ̂t = arg min
Θ∈Rd1×d2

F (Θ; Θ̂t−1, αt) + λ ∥Θ∥nuc .

We will use an iterative increment approach on αt with some multiplier ψ > 1 to guarantee the quadratic function F
majorizes the objective function L̂ at each descent. This fact ensures the descent of the objective function at each iteration
with a closed-formed solution. Specifically, to minimize the penalized isotropic quadratic function, we can deduce the
solution in the following ways: for k > 0, define the soft-thresholding operator on a diagonal matrix Σ = diag({σi}) as
S(Σ, k) = diag({max(σi − k, 0)}). For any general matrix Θ with its SVD decomposition as Θ = UΣV ⊤, we write
S(Θ, k) = US(Σ, k)V ⊤. Then the solution of Θ̂t can be represented as:

Θ̂t = S(Θ̂t−1 − α−1
t ∇L̂τ (Θ̂t−1), α

−1
t λ).
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