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Abstract

Significant progression has been made in active
learning algorithms for graph networks in various
tasks. However real-world applications frequently
involve incomplete graphs with missing links,
which pose the challenge that existing approaches
might not adequately address. This paper presents
an active learning approach tailored specifically for
handling incomplete graphs, termed ALIN. Our al-
gorithm employs graph neural networks (GNN) to
generate node embeddings and calculates losses
for both node classification and link prediction
tasks. The losses are combined with appropriate
weights and iteratively updating the GNN, ALIN
efficiently queries nodes in batches, thereby achiev-
ing a balance between training feedbacks and re-
source utilization. Our empirical experiments have
shown ALIN can surpass state-of-the-art base-
lines on Cora, Citeseer, Pubmed, and Coauthor-CS
datasets.

1 INTRODUCTION

The concept of graphs (or networks) has become pervasive
across numerous domains, such as citation graphs and so-
cial graphs. Similar to other forms of data, graph data are
undergoing rapid expansion, presently attaining substantial
magnitudes. Consequently, the expanding dimensions of
these graphs pose formidable challenges in attempting to
analyze such type of data comprehensively.

Graph embeddings, the technique that transforms a given
graph into a lower-dimensional space while preserving its
underlying structural attributes and other inherent charac-
teristics, are now gaining considerable attention in research
areas [Goyal and Ferrara, 2018, Wang et al., 2023]. By
generating node embeddings, a spectrum of graph analyt-
ical tasks, including but not limited to node classification,

node clustering, and link prediction, can be executed with
heightened efficiency, optimizing both temporal and spatial
considerations [Ou et al., 2016]. The semi-supervised graph
embedding algorithms typically assume the training labeled
data are given, which may not be always true in real practice
[Song et al., 2023]. Given a labeling budget, the strategic
selection of training labeled nodes to maximize eventual
performance is thus of great importance. Addressing this
concern, the concept of Active Learning (AL) has been in-
troduced as a solution [Xie et al., 2022]. AL strategies offer
a highly efficient mechanism for enhancing the process of
data annotation by prioritizing the identification and label-
ing of the most informative instances. This, in turn, serves to
optimize the efficiency and overall performance of machine
learning models. Significantly, the domain of graph-based
tasks, including many applications such as social network
analysis, recommendation systems, and biological network
inference, has benefited greatly from these developments
[Deng, 2022, Vatter et al., 2023].

Recent AL-based approaches on graphs often assume the un-
derlying network is fully known [Ma et al., 2022]. However,
this assumption tends to be overly simplistic as the under-
lying network cannot be fully observed in many real-world
applications of network analyses [Valente and Pumpuang,
2007, Rice et al., 2012]. While, in theory, it is conceivable
to allocate additional resources towards the exhaustive ex-
ploration of the entire network, the endeavor to acquire a
comprehensive network structure frequently proves to be
prohibitively costly, demanding in terms of labor, or entirely
unfeasible in practice [Valente and Pumpuang, 2007]. For ex-
ample, network data extracted from social media platforms
bear privacy concern limitations as a substantial 52.6% of
Facebook users took measures to conceal their friends’ con-
nections during a demographic analysis of Facebook in New
York City in June 2011.1 Consequently, when working with
graph data, one should assume a more practical case that
only a part of the network structure is available in practice
[Hou et al., 2022, Teji et al., 2022, Tran et al., 2021]. This

1We refer to Dey et al. [2012] for the statistics.
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raises a critical challenge: How do we adapt AL methods to
effectively operate on such incomplete graphs?

To tackle this pressing challenge, we introduce a new ac-
tive learning framework explicitly tuned to handle incom-
plete networks: ALIN (Active Learning for Incomplete
Networks) 2. We propose a framework that incorporates an
edge-based scoring mechanism into the AL framework. Con-
ventionally, AL approaches in graphs have prioritized node-
centric objectives, such as optimizing node classification
accuracy, which is no longer sufficient and there is an inher-
ent need to strategically select nodes that contribute to graph
completeness. However, simply introducing edge scores can
compromise the primary goal of node classification, leading
to reduced overall accuracy. To strike a balance between
enhancing graph completeness and preserving node classifi-
cation accuracy, we introduce a two-phase training. In the
initial epochs, we focus on link prediction as an auxiliary
task. This early phase aims to establish an effective synergy
between node scores and edge scores, facilitating the cre-
ation of informative edges within the incomplete graph. In
the subsequent epochs, our approach seamlessly transitions
towards prioritizing the core task of node classification, en-
suring that the final objective is met with high accuracy. By
combining the objectives of improving graph completeness
and enhancing node classification accuracy, our proposed
AL framework addresses the unique challenges posed by in-
complete graphs. This innovative approach not only extends
the applicability of AL techniques to real-world scenarios
but also opens doors to more comprehensive and accurate
graph-based data analysis.

In this paper, we present a comprehensive set of contribu-
tions, each addressing a distinct facet of the active learning
problem in the context of incomplete graphs:

• We introduce the novel Active Learning on Incom-
plete Graphs (ALIN) framework that is meticulously
designed to tackle the unique challenges posed by in-
complete graph structures, offering a robust end-to-end
solution.

• We extend the conventional node scoring approach by
introducing edge scores. This innovation caters specifi-
cally to the optimization needs of incomplete graphs,
allowing for more effective query node selection.

• We propose a novel joint loss function that seamlessly
combines node classification and link prediction. This
integration ensures that the interplay between these
two critical components is optimized. Furthermore,
we introduce a method to harmonize these two losses,
thereby achieving superior results in the ultimate task
of node classification.

• Our contributions are substantiated through an exten-

2The source code used in this paper is available online
(https://github.com/manhtung001/ALIN).

sive series of experiments conducted on datasets. These
experiments not only establish the superior perfor-
mance of ALIN when compared to conventional active
learning methods on benchmark graphs but also un-
derscore the robustness of our approach across various
datasets and with different GNN backbones.

2 RELATED WORK

The framework that we proposed is related to the following
three research lines.

Active Learning. Traditional active learning algorithms
operate by querying individual samples for labeling in a
sequential manner. However, such an approach proves to
be suboptimal when applied to deep learning models as
it frequently retrains but updates little, and it is prone to
overfitting [Ren et al., 2021]. Therefore, in deep active
learning, the batch-mode setting, where a diverse set of
instances are sampled and queried, is more often considered.
In recent years, the optimal experimental design principle
[Pukelsheim, 2006, Allen-Zhu et al., 2017] motivated the
machine learning community to minimize the use of training
resources and avoid tuning on a validation set. Combining
the settings of one-shot learning and batch-mode active
learning, several recent studies [Contardo et al., 2017, Wu
et al., 2019] adopted a one-step batch-mode active learning
setting.

Based on the query strategy, the majority of work
can be divided into three categories [Aggarwal et al.,
2014]: heterogeneity-based, performance-based, and
representativeness-based. Heterogeneity-based [Zhang
et al., 2017] labeled the instances that are most different
from the current known model. Performance-based [Guo
and Greiner, 2007] minimize labeled uncertainty of the
remaining unlabelled instance. Representativeness-based
[Li and Guo, 2013] labeled the instance that can represent
the underlying distribution of training instances

Active Learning on Graphs. The majority of work can be
divided into four categories, including: EER, Heuristics, Un-
certainty, and GraphPart. EER (Expected Error Reduction)
[Zhu et al., 2003, Macskassy, 2009, Gu and Han, 2012] is
a criterion in active learning that selects instances with the
highest expected reduction in classification error, aiming
to improve model performance efficiently. Heuristics [Mac-
skassy, 2009, Cai et al., 2017] are rule-of-thumb strategies
used in active learning to guide the selection of informa-
tive data points for labeling, often based on measures like
uncertainty, diversity, or disagreement among models. Un-
certainty sampling [Ma et al., 2013, Cai et al., 2017, Wu
et al., 2019, Ma et al., 2022] is an active learning method
that selects instances for labeling based on the uncertainty of
their predicted class probabilities, targeting instances where
the model is least confident in its predictions. Recently,
GraphPart [Ma et al., 2022] first splits the graph into dis-
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Experiment Method Incomplete Network AdaptiveEER Heuristics Uncertainty GraphPart
Zhu et al. [2003] x No No

Macskassy [2009] x x No Yes
Gu and Han [2012] x No No

Ma et al. [2013] x No No
Cai et al. [2017] x x No Yes
Wu et al. [2019] x No Yes
Ma et al. [2022] x x No Yes

ALIN (ours) x x Yes Yes

Table 1: Summary of active learning techniques for node classification on graphs. Here, the Adaptive column indicates that
the active learner is updated based on the newly labeled instances.

joint partitions and then selects representative nodes within
each partition to query. It is worth noting that all prior work
operated under the assumption of complete graphs, which
diverges from reality given the incomplete nature character-
istic of most real-world graphs. In Table 1, we summarize
the aforementioned AL methods for the node classification
task.

Link Prediction is a fundamental problem that attempts to
estimate the likelihood of the existence of a link between
two nodes [Lü and Zhou, 2011]. This process enhances our
comprehension of the connection between specific nodes
and the evolution of the entire network. Link prediction has
been widely applied to a variety of fields such as biology
[Lei and Ruan, 2012] and social networks [Liben-Nowell
and Kleinberg, 2003, Bonchi et al., 2011]. A multitude
of methodologies exist for the prediction of links within
networks. Heemakshi Malhi [2016] provided an extensive
survey that encompasses diverse link prediction algorithms,
with a particular emphasis on scrutinizing the limitations
inherent in such methods. Lei and Ruan [2012] presented an
excellent survey by summarizing different approaches, intro-
ducing typical applications, and outlining future challenges
of link prediction algorithms. Building upon this foundation,
Martínez et al. [2016] furnished a more contemporary per-
spective by incorporating recent methodologies and conduct-
ing a meticulous comparative analysis of similarity-based
techniques. Since it is difficult to identify a method that
has the best performance in all complex networks, which
strongly depends on the structural properties of the network,
the authors in Wu et al. [2022] categorized various link
prediction strategies, including common neighbors-based,
paths-based, probabilistic and statistical models based, clas-
sifier based, and network embedding based techniques.

3 PROBLEM FORMULATION

In this section, we describe a formal definition of the prob-
lem of active learning on an incomplete graph under iterative
batch-mode settings and introduce a uniform set of nota-

tions.

Let us denote an underlying network G = (V, E) with N
nodes vi ∈ V , edges (vi, vj) ∈ E . Each node is associated
with a feature matrix X ∈ RN×F , where F denotes the
dimensionality of the feature vector for each node. Addi-
tionally, there exists a label matrix Y ∈ RN×C for labeled
nodes, where C represents the number of node classes. Here,
Yij = 1 indicates that node i has label j, where yi repre-
sents the label assigned to node i and yi = c denotes c-th
element within the set {1, 2, . . . , C}. An oracle is available
to label a query node along with its associated edges, within
a given labeling budget B. We assume yi is drawn ran-
domly from a distribution Py|xi

supported on Y. We denote
ηc(v) = Pr[y = c|v] as the probability that y = c given
node v, and η(v) = (η1(v), . . . , ηC(v))

T .

In this study, we follow the iterative batch-mode setting
[Wu et al., 2019]. In this setting, for each iteration, we
deplete a predetermined resource budget to select a batch
of nodes for labeling, streamlining the querying process
to minimize redundant retraining. We entail segmenting a
given budget B into K equitably sized partitions. For each
iteration k = {0, · · · ,K}, an active learning algorithm
A(k) selects b = [B/K] nodes for querying, which forms a
set of selected nodes, denoted as Q(k)

b . The primary objec-
tive underlying this approach is to harness the informative
feedback derived from the training process, while simultane-
ously safeguarding against excessive resource consumption.
This contrasts with the fundamental AL setup, where only
a solitary node is chosen at a time, potentially imposing
considerable training overhead.

Since we tackle a setting where graph data is incomplete, for
each iteration k = {0, · · · ,K}, we are given an incomplete

graph G̃(k) = (V, Ẽ(k)) and an incomplete label set Ỹ
(k)

,

where Ẽ(k) ⊂ E and Ỹ
(k) ⊂ Y are the edge set and the

set of updated node labels at k-th iteration, respectively.
At k-th iteration, when A(k) queries b nodes, we obtain

Ỹ
(k)

q and Ẽ(k)q as the sets of newly obtained node labels
and edges after querying, respectively. Additionally, we
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denote Ỹ
(k)

u and Ẽ(k)u as the sets of updated node labels and

updated edges set at the k-th iteration. Thus, we have Ỹ
(k)

u =

Ỹ
(k) ∪ Ỹ

(k)

q and Ẽ(k)u = Ẽ(k) ∪ Ẽ(k)q ; and the budget b is the
maximum number of updated node labels. In this setting, we
assume that the node feature matrix X is fully observable.

We aim to train a GNN-based classification modelM(k) by
iteratively updating its parameters θ(k). The GNN model

M(k) maps (Ẽ(k)u , X) to prediction vectors Ŷ
(k)

and Ê(k).
From the prediction and the observation, we compute node

classification loss lNC(Ỹ
(k)

u , Ŷ
(k)

) and link prediction loss
lLP (Ẽ(k)u , Ê(k)). To combine both losses, we sum lNC and
lLP with a hyperparameter weight β, denoted as L(k). IfM
is the same for all active learning strategies, we can slightly
abuse the notation A(k) =MA(k) to emphasize the focus
of active learning algorithms. We also assume that the class
probabilities are given by a ground truth GCN; i.e., there
exists a GCN M∗ that predicts Pr[yi = c] on the entire
training set.

Our goal is to minimize the loss under a given budget b at
the k-th iteration:

min
θ(k),Qb

L(k) (1)

4 ALIN FRAMEWORK

In this section, we represent ALIN, a comprehensive solu-
tion designed to address the challenge of active learning
within the context of an incomplete graph. The process un-
derlying our framework can be dissected into two principal
components: the query phase and the training phase, both
composed of distinct functions as follows:

• Query Phase: This phase encompasses node selection
and subsequent updates. During the initial node selec-
tion, we utilize the InitNodes function. In subsequent
iterations, we calculate node scores, edge scores and
combine them to identify the most informative node.
We then update the selected nodes and the lost edges
associated with them.

• Training Phase: In this phase, we focus on the core of
our methodology: a unified loss function that combines
node classification and link loss prediction.

Example 1. A schematic overview of our proposed ALIN
framework is visualized in Fig. 1, where we depict the
initial two iterations of the ALIN framework. In first it-
eration, (X, Ỹ

(0)
, Ẽ(0)) contains eight unlabeled nodes and

six missing edges. During the Query Phase, two nodes,
namely 4 and 5 (highlighted by yellow circles), are cho-
sen for labeling. Consequently, the three edges connected
to these nodes are integrated, resulting in the updated

(X, Ỹ
(0)

u , Ẽ(0)u ). Subsequently, (X, Ỹ
(0)

u , Ẽ(0)u ) undergoes the
GNN model to generate node embeddings and to predict

both Ŷ
(0)

and Ê(0). From (Ỹ
(0)

u , Ẽ(0)u ) and (Ŷ
(0)

, Ê(0)), we
compute lNC and lLP and its amalgamation L(0), which
is subsequently utilized in the backpropagation process
into the GNN. Moving on to the second iteration, we ob-

tain (Ỹ
(1)

, Ẽ(1) ← (Ỹ
(0)

u , Ẽ(0)u ) and two additional nodes,
namely 2 and 3 (highlighted by yellow circles), are selected
for labeling. As a result, the two associated edges are incor-

porated, leading to the update of (X, Ỹ
(1)

u , Ẽ(1)u ).

The technical details of the two phases are described in the
following.

4.1 QUERY PHASE

4.1.1 InitNodes

As our framework relies on hidden representations of nodes
or the predicted class distribution from the initial model,
we operate within iterative settings, necessitating an initial
model trained with the seed set. Consequently, we require
the ’InitNodes’ function to select the initial set of nodes.
This function allows us to employ various selection strate-
gies, such as random selection or employing recent methods
such as FeatProp [Wu et al., 2019], Centrality [Cai et al.,
2017], GraphPart [Ma et al., 2022]. For the implementation
of ALIN, we employ GraphPart as the ’InitNodes’ function.
GraphPart works by dividing the graph into separate parti-
tions and then selecting representative nodes within each
partition for active learning with GNN. To mitigate interfer-
ence across partitions in GraphPart, Ma et al. [2022] also
introduces GraphPartFar, a method that penalizes selecting
nodes close to medoids chosen in prior partitions, thereby
promoting diversity among the returned nodes. According
to two variants of GraphPart, we also present another variant
of ALIN, termed ALINFar. The distinction between ALIN
and ALINFar lies in their respective utilization of the ’InitN-
odes’ function, i.e., ALIN employs the GraphPart function
for this purpose, whereas ALINFar opts for the utilization
of GraphPartFar as the initialization function.

4.1.2 Combine Score

In the context of querying the constituents of the graph,
given a prescribed number of b queries, the query function is
constructed based on an equilibrium criterion encompassing
the informational value of nodes into node score ϕ

(k)
NS and

the informational value of edges into edge score ϕ
(k)
ES . The

amalgamation of ϕ(k)
NS and ϕ

(k)
ES with a weight parameter

denoted as α yields the composite score ϕ
(k)
CS .

Node Score. The use of entropy as a scoring metric provides
valuable insights into the confidence of the GNN model’s
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Figure 1: A schematic overview of our proposed ALIN framework.

predictions for individual nodes. Higher entropy values in-
dicate greater uncertainty, suggesting that a node’s classi-
fication is less certain and may require further exploration
or refinement in subsequent iterations of the process. In
contrast, lower entropy values signify a higher level of con-
fidence in the node’s classification, making it less likely to
be selected for additional query iterations. Following by Cai
et al. [2017], ϕNS of candidate node vi at the k-th iteration
is calculated as follows:

ϕ
(k)
NS(vi) = −

C∑
c=1

M
(k)
ic logM

(k)
ic , (2)

whereM(k)
ic = P(Ỹ

(k)

ic = 1|G̃(k), Ỹ
(k)

,X) is the probability
of node vi belonging to class c predicted by GNN at the k-th

iteration; Ỹ
(k)

ic = 1 indicates node i has label c. Furthermore,
the efficiency of our entropy-based node scoring approach
plays a crucial role in accelerating the overall query pro-
cess. With reduced computational overhead, our framework
facilitates faster exploration of the graph and enhances the
overall efficiency of the active learning framework.

Edge Score. In scenarios where the graph is incomplete,
we aim to not only select nodes with high entropy but also
nodes to allow the model to learn on a more complete graph.
Intuitively, nodes with a larger difference in observable
and predicted degrees are prioritized for inclusion in the
active learning process since they offer the potential for
improving the overall graph representation and classification
performance. Thus, ϕES of node vi at the k-th iteration is

calculated as follows:

ϕ
(k)
ES(vi) =

N∑
n=1

P(Ẽ(k)in = 1|G̃(k), Ẽ(k),X)−Dvi(Ẽ(k)),

(3)
where

∑N
n=1P(Ẽ

(k)
in = 1|G̃(k), Ẽ(k),X) is the probability

of node vi has connect to node vn and Dvi(Ẽ(k)) is the
degree of node vi in Ẽ(k); Ẽ(k)in = 1 indicates node i has a
connection to node n at the k-th. Intuitively, ϕ(k)

ES(vi) can
be interpreted as the residual degree of a node vi. By in-
corporating the ϕ

(k)
ES alongside the ϕ

(k)
NS , our active learning

framework ensures the selection of nodes that not only ex-
hibit uncertainty but also contribute to enhancing the graph’s
completeness and discriminative power.

The combination of ϕ
(k)
NS and ϕ

(k)
ES represents a promis-

ing direction for active learning in graph-based settings.
By leveraging uncertainty and graph completeness, our ap-
proach strikes a balance between exploration and exploita-
tion, thereby achieving efficient and reliable active learn-
ing in real-world scenarios. The versatility of our approach
makes it well-suited for a wide range of applications, includ-
ing social networks, recommendation systems, and bioinfor-
matics, among others

4.2 TRAINING PHASE

GNN model training: In our active learning framework, we
utilize two loss functions during the training of the Graph
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Neural Network (GNN) model. For node classification, we
employ the cross entropy loss function, and for link pre-
diction, we utilize the binary cross entropy with logits loss
function. The rationale behind using a combined loss is that
both ϕ

(k)
NS and ϕ

(k)
ES are influenced by the predictive power of

the GNN model. By simultaneously retraining both the node
classifier and the edge classifier models, we ensure that the
combined score captures valuable information about both
node attribute information and the structural information sur-
rounding each node. This concurrent retraining of the edge
classifier is motivated by the objective to query nodes that
offer a high value of information for both aspects, thereby
enhancing the overall representation of the graph. During
the model retraining phase, we update the GNN model based
on the newly acquired information from the queried nodes.
This iterative improvement of the GNN model helps refine
the parameters θ(k) with each query round, resulting in an
increasingly accurate and informative model.

4.3 THEORETICAL ANALYSIS

Recall that we use (A(k))i = (A(G̃(k), X))i ∈ RC be the
prediction for node i under input G̃(k), X , and (A(k))i,c be
the c-th element of (A(k))i (i.e., the prediction for class c).
(M∗)i ∈ RC is the prediction for node i of ground truth
GCN. Our approach shares similarities with the work of
Wu et al. [2019] in the context of active learning. How-
ever, our framework diverges significantly, particularly in
how we handle the incomplete graph structure. We focus
on the uncertainty of node, which offers a more nuanced
understanding of the incomplete graph compared to simply
relying on translated features. The concept of ’translated
features’ in Wu et al. [2019] refers to pairwise distances
between hidden representations of nodes. These features
are highly informative when computed on complete graphs,
as they encapsulate the full relational structure and interac-
tions between nodes. In a complete graph, every possible
link is present, allowing for a comprehensive and accurate
representation of node relationships through these features.
However, this approach encounters significant challenges
in the context of incomplete graphs, where some links are
missing. In such scenarios, the absence of certain links can
lead to a distorted or incomplete understanding of the node
relationships, and translated features no longer accurately
represent the actual structure of the network. Our method-
ology is designed to address this limitation by focusing
on a probability-based approach rather than relying solely
on translated features. This allows for more accurate and
reliable analysis in scenarios where the graph structure is
incomplete, ensuring that our conclusions are robust even
in the face of missing data.

At k-th iteration, Theorem 1 formally shows that choosing
the most uncertain nodes can lead to a low node classifica-
tion loss.

To understand Theorem 1, we note that the first term is the
selection of an uncertain node j ∈ Q(k)

b , and the second
term quickly decays with n, where n is the total number of
nodes in graph G. Therefore, the node classification loss of
A(k) on the graph G̃(k) is mostly dependent on the selection
of an uncertain node. The assumptions we made in Theorem
1 are pretty standard in the literature, and we illustrate the
details in the appendix.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Dataset. To compare against state-of-the-art methods, we
experiment on 4 benchmark datasets, including citation net-
works Citeseer, Cora, and Pubmed [Sen et al., 2008] and
co-authorship networks [Shchur et al., 2018]. The summary
statistics of the datasets are provided in Table 2. The ho-
mophily ratio is defined following Zhu et al. [2020]. In the
experimental range with simulated conditions, we remove
30% of the total edges to create incomplete graphs.

GNN Models. We perform experiments over three popular
GNN models, including a 3-layer GCN [Kipf and Welling,
2016] with hidden neurons are 128 and 64, respectively, a
3-layer GraphSAGE [Hamilton et al., 2017] with hidden
neurons are 128 and 64, respectively, and an 8 attention
head-GAT [Hamilton et al., 2017] with 2 hidden layers of
size 16 and 8, respectively. To train each model, we use an
Adam optimizer with an initial learning rate of 1 × 10−2

and weight decay of 5 × 10−4. As in the active learning
setup, there should not be enough labeled samples to be
used as a validation set, we train the GNN model with fixed
200 epochs in all the experiments and evaluate over the full
graph.

Competitive methods. We compare active learning methods
that can be applied to the iterative setting, divided into two
categories: 1) general-purpose methods that are agnostic to
the graph structure, namely Random, Density, Uncertainty,
and CoreSet; and 2) methods tailored for graph-structured
data, including Centrality, AGE, FeatProp, GraphPartFar,
ALINFar.

• Random: Randomly chooses nodes without any spe-
cific criteria.

• Density [Cai et al., 2017]: Initially applies clustering
to the hidden representations of nodes. It then selects
nodes with the highest density score, which is roughly
inversely related to the l2-distance between each node
and its respective cluster center.

• Uncertainty [Settles and Craven, 2008]: Selects nodes
with the highest entropy in their predicted class distri-
bution.

• CoreSet [Sener and Savarese, 2018]: Utilizes K-Center
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Theorem 1. Suppose that the label vector Ỹ
(k)

u is sampled independently from the distribution yv ∼ η(v) and the loss
function l

(k)
NC is bounded by [−L,L]. Then under mild assumptions, there exists a probability 1−δ the expected classification

loss of A(k) satisfies

1

n
l
(k)
NC(A

(k)|G̃(k), X, Ỹ
(k)

u ) ≤
n∑

i=1

C∑
c=1

[
λ

n
(M∗)j,c min

j∈Q(k)
b

|(A(k))i,c − (A(k))j,c|+
L

n
((M∗)i,c − (M∗)j,c)

]
+

√
L log(1/δ)

2n

(4)

Dataset #Nodes #Edges #Features #Classes (C) Homophily
Cora 2,708 5,278 1,433 7 0.810
Citeseer 3,327 4,552 3,703 6 0.736
Pubmed 19,717 44,324 500 3 0.802
Coauthor-CS 18,333 81,894 6,805 6 0.808

Table 2: Summary statistics of datasets.

clustering on the hidden representations of nodes.
Given the scalability issues of the MIP optimized
version, a time-efficient greedy approximation, as de-
scribed in the original work, is used.

• Centrality: Chooses nodes with the highest values in
graph centrality metrics. Notably, this approach only
considers the graph structure and does not take into
account node features. Empirical evidence from [Cai
et al., 2017] suggests that Degree centrality and PageR-
ank centrality tend to outperform other metrics and
thus we employ Degree and PageRank as two base-
lines for comparison.

• AGE [Cai et al., 2017]: Quantifies the informativeness
of nodes by linearly combining three metrics: centrality,
density, and uncertainty. It then selects nodes with the
highest combined scores.

• FeatProp [Wu et al., 2019]: First conducts K-Means
clustering on the aggregated node features and sub-
sequently selects nodes that are closest to the cluster
centers.

• GraphPart and GraphPartFar [Ma et al., 2022]:
First obtains a K-partition of a graph using the
Clauset-Newman-Moore greedy modularity maximiza-
tion method [Clauset et al., 2004]. In each part, cluster
on the aggregated node features and then choose the
nodes closest to the cluster centers.

Following Wu et al. [2019], we evaluate each baseline with a
series of label budgets and report the Macro-F1 performance
for node classification over the full graph. We note that
the results are the average of repeated experiments with 3
random seeds

5.2 EXPERIMENT RESULTS ON GCN

The performance comparison between all competitive meth-
ods is presented in Table 3. Note-worthy findings are sum-
marized as follows:

• Our proposed ALIN and ALINFar, substantially out-
perform baseline methods across various budget con-
straints. Notably, these improvements persist until per-
formance plateaus.

• On smaller datasets like Cora and Citeseer, where the
number of nodes and edges is relatively modest, our
proposed framework exhibits remarkable superiority,
surpassing baseline methods by a notable margin, typi-
cally around 1-1.5%. This enhanced performance can
be attributed to the framework’s adept utilization of
feedback from the training process.

• For datasets with more extensive node and edge counts,
such as Pubmed and Coauthor-CS, ALIN demonstrates
clear advantages over baseline methods, particularly
outperforming GraphPart, the state-of-the-art method.
Notably, on larger datasets like Pubmed and Coauthor-
CS, ALIN proves most effective with smaller budgets,
typically around 200-230. However, with a more sub-
stantial budget (260), AGE edges slightly ahead of
ALIN by approximately 0.2-0.5%, as larger budgets
tend to lead to performance saturation.

• GraphPartFar exhibits commendable performance on
Cora, trailing ALINFar by a mere 1-2%. However, as
datasets expand in size, the loss of numerous edges
affects partitioning significantly. Consequently, on
Pubmed and Coauthor-CS, GraphPartFar lags behind
ALINFar by approximately 4-5%.

• In the context of the second-best performing methods,
both ALINFar and Uncertainty shine on Cora and Cite-
seer. However, on Pubmed and Coauthor-CS, Uncer-
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Baselines Cora Citeseer
Buget 200 230 260 200 230 260
Random 76.6 ± 0.8 78.6 ± 2.2 79.4 ± 0.5 61.8 ± 0.3 61.0 ± 0.4 63.1 ± 1.4
Density 73.1 ± 1.1 74.5 ± 1.6 76.4 ± 1.9 61.6 ± 0.6 60.4 ± 1.3 58.4 ± 1.4
Uncertainty 78.7 ± 0.7 80.6 ± 0.9 80.5 ± 1.2 63.3 ± 1.1 64.2 ± 1.3 64.5 ± 0.7
CoreSet 77.9 ± 1.8 79.1 ± 0.8 79.9 ± 0.2 61.2 ± 0.2 61.7 ± 1.4 65.8 ± 0.6
Degree 72.2 ± 0.4 73.5 ± 0.8 75.7 ± 1.2 53.9 ± 1.8 54.9 ± 1.1 56.4 ± 1.7
Pagerank 77.8 ± 0.5 78.5 ± 0.1 79.5 ± 0.6 63.1 ± 0.2 63.6 ± 0.1 64.1 ± 0.2
AGE 77.6 ± 0.9 77.7 ± 1.2 79.6 ± 0.2 63.2 ± 0.2 64.1 ± 0.9 66.0 ± 1.5
FeatProp 72.1 ± 1.9 73.1 ± 0.8 74.5 ± 0.6 50.6 ± 1.3 55.8 ± 0.5 57.2 ± 2.2
GraphPart 72.8 ± 1.8 73.7 ± 1.2 75.1 ± 0.6 54.1 ± 0.4 54.8 ± 1.1 57.2 ± 1.7
GraphPartFar 77.8 ± 0.3 78.4 ± 0.5 78.4 ± 0.6 60.9 ± 2.0 61.4 ± 2.1 62.3 ± 1.7
ALIN 79.8 ± 1.3 80.4 ± 0.6 81.6 ± 1.0 63.4 ± 1.1 63.9 ± 1.2 66.1 ± 0.9
ALINFar 78.9 ± 1.2 81.2 ± 1.1 81.4 ± 1.7 64.4 ± 1.3 64.7 ± 1.1 66.4 ± 0.6
Baselines Pubmed Coauthor-CS
Buget 200 230 260 200 230 260
Random 77.1 ± 0.5 77.5 ± 1.3 78.8 ± 1.0 77.8 ± 0.4 82.6 ± 2.6 81.3 ± 3.1
Density 77.2 ± 0.4 76.9 ± 1.2 77.6 ± 0.9 79.3 ± 1.5 75.0 ± 0.8 79.3 ± 4.0
Uncertainty 77.3 ± 0.4 78.5 ± 1.5 79.0 ± 0.3 84.3 ± 1.0 85.4 ± 1.5 85.6 ± 0.4
CoreSet 76.4 ± 0.9 77.3 ± 0.8 77.1 ± 0.7 57.2 ± 3.1 62.7 ± 5.2 64.1 ± 3.8
Degree 76.1 ± 1.2 75.7 ± 0.5 75.7 ± 0.5 60.0 ± 0.2 59.9 ± 0.1 60.2 ± 0.5
Pagerank 75.8 ± 0.8 76.2 ± 0.2 77.5 ± 0.4 84.4 ± 0.7 84.0 ± 1.6 84.3 ± 1.0
AGE 78.3 ± 1.0 79.0 ± 0.2 79.6 ± 0.6 85.1 ± 0.3 85.5 ± 1.1 86.6 ± 0.3
FeatProp 74.0 ± 0.8 73.4 ± 0.7 73.6 ± 1.4 72.7 ± 4.7 77.7 ± 1.8 78.3 ± 1.0
GraphPart 73.8 ± 0.6 74.5 ± 0.8 74.2 ± 0.9 77.0 ± 3.6 79.0 ± 2.6 80.9 ± 2.4
GraphPartFar 75.1 ± 0.5 75.1 ± 0.6 74.8 ± 0.7 80.2 ± 1.7 84.9 ± 1.3 85.0 ± 0.8
ALIN 79.0 ± 0.8 79.3 ± 0.5 80.1 ± 0.6 85.4 ± 1.2 86.1 ± 0.7 85.8 ± 0.5
ALINFar 75.0 ± 1.6 77.7 ± 1.7 78.0 ± 0.9 84.3 ± 1.1 84.8 ± 0.3 85.6 ± 0.5

Table 3: Summary of the performance of GCN on each benchmark. The bold marker denotes the best performance and the
underlined marker denotes the second-best performance.

tainty’s performance is lackluster, with AGE emerging
as the second-best performer. The discrepancy arises
because Uncertainty operates independently of the
graph structure, which becomes problematic for larger
datasets where edge loss entails more significant infor-
mation loss. In contrast, AGE amalgamates centrality,
density, and uncertainty scores, proving advantageous
in scenarios where data lacks edges in extensive graphs.
Consequently, AGE consistently outperforms Uncer-
tainty in these settings.

Overall, our experimental results showcase the robustness
and versatility of the ALIN framework and its extensions,
shedding light on their adaptability across diverse graph
datasets and budget constraints.

6 CONCLUSION AND DISCUSSION

In this work, we embarked on a comprehensive exploration
of the active learning paradigm tailored specifically for
Graph Neural Networks (GNNs) operating on incomplete
graphs. Drawing inspiration from the synergy between node

and edge information, we introduced a novel framework
designed to harness the unique potential inherent in incom-
plete graph structures. Our experiments yielded compelling
evidence of the efficacy of our proposed framework. We
demonstrated that it not only outperforms existing state-of-
the-art baseline active learning methods but does so consis-
tently across a variety of real-world datasets and scenarios.
These findings underscore the pivotal role of our approach
in advancing active learning strategies in the context of
incomplete graph data.

Several avenues for future research may include: 1) Inves-
tigating dynamic edge scoring mechanisms that adapt to
the evolving graph structure could be fruitful and 2) Ex-
ploring the synergy between our active learning framework
and graph generative models could open doors to novel
applications.
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ALIN: An Active Learning Framework for Incomplete Networks
(Supplementary Material)
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A ALIN ALGORITHM

In this section, we describe the ALIN algorithm in detail. ALIN algorithm includes two principal components: the query
phase and the training phase.

• Query Phase: This phase encompasses node selection and subsequent updates, detailed in lines 3–15 of Algorithm 1.
During the initial node selection, we utilize the InitNodes function (line 4). In subsequent iterations, we calculate node
scores (line 8), and edge scores (line 9), and combine them (line 10) to identify the most informative node (line 11). We
then update the selected nodes and the lost edges associated with them (lines 13 –15).

• Training Phase: In this phase, we focus on the core of our methodology: a unified loss function that combines node
classification and link loss prediction, as described in lines 16–19.

B GENERALIZABILITY TO OTHER GNNS

We further present experiment results of all competitive methods on other GNN architectures in Table 4, in which the GCN
backbone is replaced by GAT and GraphSAGE accordingly. Our proposed framework consistently demonstrates its capacity
to enhance the accuracy of node classification tasks, even when transitioning GAT and GraphSAGE. This substantiates the
framework’s robust applicability across diverse GNN models.

Notably, among the benchmark methods including Random, Density, CoreSet, Pagerank, GraphPartFar, and ALINFar,
CoreSet exhibits exceptional performance on GAT, surpassing GraphSAGE by approximately 4%. In contrast, the other
baseline methods exhibit a narrower performance gap of around 1-2% when comparing GAT to GraphSAGE. This superiority
of CoreSet on GAT underscores GAT’s effectiveness in capturing pertinent information from neighboring nodes, even in
scenarios with missing connections, courtesy of its adaptive attention mechanism that judiciously weighs the significance of
various neighbors.

Conversely, GraphSAGE, Uncertainty, Degree, and FeatProp consistently outperform GAT, achieving improvements of
roughly 0.5-1%. Notably, GraphSAGE is favored for its computational efficiency and scalability, making it well-suited for
large graph datasets. Its resilience to the absence of edges between nodes is attributed to its neighbor sampling strategy.

It is noteworthy that both CoreSet and FeatProp rely on K-means clustering based on hidden node representations, which
introduces sensitivity to different runs, particularly when applied to a limited number of labels. Consequently, these two
baseline methods exhibit a considerably higher standard deviation compared to the other baselines.

C HYPERPARAMETER SENSITIVITY

We further the experiment results on tuning hyperparameters, and carry out experiments as follows in Fig. 2, we investigate
the impact of hyperparameters α, which adjusts the balance between two terms for the query node selection at line 10 of

1992



Algorithm 1 ALIN Algorithm

Input: X, Ẽ(0), Ỹ
(0)

= ∅, Hyperparameters (B, α, β), Trainable model parameters θ(0), Training iterations T , iteration
k = 0

Output: G̃(K), θ(K)

1: while k < K do
2: b← [B/K]
3: if k = 0 then ▷ Start Query Phase
4: Q(k)

b ← InitNodes(Ẽ(0),X)
5: else
6: Ỹ

(k) ← Ỹ
(k−1)

u

7: Ẽ(k) ← Ẽ(k−1)
u

8: ϕ
(k)
NS ← calculate Node Score for each node following Eq. (2)

9: ϕ
(k)
ES ← calculate Edge Score for each node following Eq. (3)

10: ϕ
(k)
CS ← α · ϕ(k)

NS + (1− α) · ϕ(k)
ES

11: Q(k)
b ← Top b nodes from ϕ

(k)
CS

12: end if
13: From Q(k)

b update selected nodes and associated edges from the oracle to Ỹ
(k)

q , Ẽ(k)q

14: Ỹ
(k)

u ← Ỹ
(k) ∪ Ỹ

(k)

q

15: Ẽ(k)u ← Ẽ(k) ∪ Ẽ(k)q ▷ End Query Phase
16: for t = 1 to T do ▷ Start Training Phase

17: From θ(k), calculate Ŷ
(k)

and Ê(k)

18: L(k) ← β · lNC(Ỹ
(k)

u , Ŷ
(k)

) + (1− β) · lLP (Ẽ(k)u , Ê(k))
19: Backpropagation to θ(k)

20: end for ▷ End Training Phase
21: k ← k + 1
22: end while
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Baselines GAT GraphSAGE
Buget 200 230 260 200 230 260
Random 78.4 ± 0.6 78.0 ± 1.1 79.5 ± 0.3 76.2 ± 0.5 78.2 ± 0.7 78.7 ± 0.4
Density 77.2 ± 0.9 80.1 ± 0.3 79.9 ± 0.4 77.4 ± 0.4 80.6 ± 1.5 81.7 ± 1.6
Uncertainty 79.8 ± 1.0 81.3 ± 1.4 81.5 ± 1.0 79.4 ± 0.7 80.8 ± 1.3 81.3 ± 0.7
CoreSet 66.5 ± 1.4 65.7 ± 2.7 66.1 ± 3.7 61.0 ± 4.2 62.5 ± 2.4 62.1 ± 3.2
Degree 74.7 ± 1.1 75.3 ± 1.1 76.8 ± 0.4 76.4 ± 0.7 76.7 ± 0.6 79.1 ± 0.6
Pagerank 77.7 ± 0.5 78.9 ± 0.3 80.3 ± 0.6 77.6 ± 0.3 77.9 ± 0.5 80.1 ± 0.7
AGE 78.8 ± 0.1 79.9 ± 0.5 80.7 ± 0.1 77.3 ± 1.6 80.0 ± 0.4 80.8 ± 0.4
FeatProp 72.2 ± 0.7 73.8 ± 0.4 75.9 ± 0.4 73.1 ± 0.6 75.0 ± 0.8 76.1 ± 1.2
GraphPart 72.8 ± 0.9 74.3 ± 0.9 75.1 ± 0.3 74.4 ± 0.7 74.7 ± 1.0 75.0 ± 0.7
GraphPartFar 77.9 ± 0.4 76.9 ± 0.6 78.6 ± 0.8 76.7 ± 0.9 76.8 ± 0.5 77.6 ± 0.1
ALIN 80.5 ± 0.9 81.4 ± 1.2 81.8 ± 0.7 79.0 ± 0.5 79.9 ± 1.8 81.6 ± 1.4
ALINFar 79.7 ± 0.9 82.1 ± 0.2 82.7 ± 0.8 79.9 ± 0.8 81.7 ± 0.3 82.4 ± 0.4

Table 4: Summary of the performance of others GNN on Cora dataset. The bold marker denotes the best performance and
the underlined marker denotes the second-best performance.

the Algorithm 1, on the performance of both ALIN and ALINFar when B = 230 and K = 8 on Cora dataset. In these

Figure 2: The expected influence by ALIN and ALINFar according to different values hyperparameters α

experiments, we only show the results from the GCN model since those from the other GNN models follow a similar trend.
We observe the following:

• The case of α = 0.5 exhibits the best performance almost consistently.

• When α = 1, ALIN and ALINFar only depend on the node score, resulting in low performance.

• Setting α to 0.3 leads to much lower performance as this setting overemphasizes the edge score, detracting from our
ultimate goal of node classification.

These findings emphasize the delicate interplay between node uncertainty, edge information, and the overarching goal of
accurate node classification within the ALIN framework.

D WEIGHT GROWTH OF FUNCTION

In this section, we delve into the intricate dynamics of β and its evolution across epochs, achieved through the utilization of
a growth function. Recall that β is the weight of combined loss at line 18 of Algorithm 1, which plays a pivotal role in
balancing the trade-off between two essential tasks: optimal link prediction and the ultimate goal of node classification.

At the outset of training, during the initial epochs, we set β to a value of 0.05. This choice steers the model’s focus primarily
towards solving the optimal link prediction problem. In contrast, as we approach the final epochs, our objective is to set β to
1, emphasizing the model’s commitment to the ultimate task of node classification.
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Figure 3: Weight growth functions

Achieving this gradual transition in β necessitates the implementation of a suitable growth function. We explored various
weight growth functions to identify the most effective approach, weight growth functions shown in Fig. 3. The results
of these experiments are summarized in Table 5, revealing distinct performance characteristics among different growth
functions.

Notably, the Cosine Annealing, Step, and Exponential growth functions emerge as superior choices when compared to the
Inverse Time growth function. Both the Cosine Annealing and Step growth functions exhibit an advantageous pattern of
gradually increasing the β parameter during the middle epochs. This characteristic aligns seamlessly with the requirements
of the Link Prediction task, which thrives on sustained training over multiple epochs, rather than experiencing a premature
reduction in emphasis. Furthermore, the Exponential growth function proves notable for its ability to swiftly approach a
β value close to 1 during the latter epochs. This rapid convergence to a higher β value positions the Exponential growth
function as a compelling choice, outperforming the Cosine Annealing growth function in terms of accuracy.

In summary, our approach to the weight growth of β involves a thoughtful selection of growth functions, ultimately tailored
to strike the right balance between optimizing link prediction and achieving robust node classification. The choice of growth
function is a critical aspect of our framework, as it ensures that the model evolves and adapts its focus in a manner that
aligns with the evolving requirements of the tasks at hand.

Weight Growth Function Baselines Budget
200 230 260

Step Growth ALIN 79.8 ± 1.3 80.4 ± 0.6 81.6 ± 1.0
ALINFar 78.9 ± 1.2 81.2 ± 1.1 81.4 ± 1.7

Inverse Time Growth ALIN 63.3 ± 1.7 62.3 ± 2.3 65.2 ± 0.6
ALINFar 63.0 ± 2.1 64.3 ± 1.7 65.6 ± 0.4

Exponential Growth ALIN 78.2 ± 0.5 77.6 ± 1.5 79.7 ± 0.6
ALINFar 78.6 ± 1.5 77.7 ± 1.1 80.1 ± 0.5

Cosine Annealing Growth ALIN 76.0 ± 0.6 78.1 ± 0.8 76.8 ± 2.0
ALINFar 74.7 ± 1.8 75.8 ± 0.4 76.7 ± 0.7

Table 5: Summary of the performance of weight growth functions using GNN on Cora dataset. The numerical values
represent the average Macro-F1 score of 3 independent trials. The bold marker denotes the best performance and the
underlined marker denotes the second-best performance.

E PROOF OF THEOREM 1

Our approach shares similarities with the work of Wu et al. [2019]. For simplicity, for any modelM(k) at k-th iteration
let (M(k))i = (M(G̃(k), X))i ∈ RC be the prediction for node i under input G̃(k), X , andM(k)

i,c be the c-th element of
(M(k))i (i.e., the prediction for class c). We also make the following assumptions:
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Assumption 1. We assume that A(k) overfits to the training data. Specifically, we also assume the following two conditions:
i) A(k) attains zero training loss on the set Q(k)

b , and ii) for any unlabeled data pair (xi, xj) where i /∈ Q(k)
b and j ∈ Q(k)

b ,
it holds that (A(k))i,yj

≤ (A(k))j,yj
and (A(k))i,c ≥ (A(k))j,c for all c ̸= yj . The second condition implies that A(k)

achieves low confidence on unseen samples and high confidence on trained samples. Additionally, we assume that the class
probabilities are determined by a ground truth GCN, denoted asM∗, which predicts Pr[yi = c] for the entire training set. In
the literature, this is a common assumption. Both A(k) andM∗ calculate probability outputs.

Assumption 2. We assume that lNC bounded in [−L,L] is Lipschitz with constant λ. The loss function is naturally Lipschitz
for many common loss functions such as mean squared error, hinge loss, and cross-entropy when the model output is
constrained within certain bounds. This assumption finds frequent application in deep learning theory (e.g., [Allen-Zhu
et al., 2017, Du et al., 2019]).

Assumption 3. We assume that ReLU function activates with probability 1/2. This assumption, frequently made in the
analysis of neural network loss surfaces, is also used in [Choromanska et al., 2015, Kawaguchi, 2016, Xu et al., 2018]. It is
consistent with practical observations where, typically, approximately half of the ReLU neurons can activate.

With these assumptions in place, we can prove Theorem 1

Theorem 1 (restated). Suppose Assumptions 1-3 hold, and the label vector Ỹ
(k)

u is sampled independently from the
distribution yv ∼ η(v) for every v ∈ V . Then with probability 1− δ the expected classification loss of A(k) satisfies

1

n
l
(k)
NC(A

(k)|G̃(k), X, Ỹ
(k)

u ) ≤
n∑

i=1

C∑
c=1

[
λ

n
(M∗)j,c min

j∈Q(k)
b

|(A(k))i,c − (A(k))j,c|+
L

n
((M∗)i,c − (M∗)j,c)

]
+

√
L log(1/δ)

2n

(5)

Proof. Consider the following random process: Fix yj for j ∈ Q(k)
b and therefore the resulting model A(k), and suppose the

(hidden) labels yi for i /∈ Q(k)
b is randomly sampled according to η(vi). Let i ∈ V \ Q(k)

b be any node and j ∈ Q(k)
b . We

have

Ey∼η(i)

[
lNC((A(k))i, y)

]
=

C∑
c=1

Pr[yi = c]lNC((A(k))i,c, c)

=

C∑
c=1

Pr[yj = c]lNC((A(k))i,c, c) +

C∑
c=1

(Pr[yi = c]− Pr[yj = c])lNC((A(k))i,c, c).

(6)

For the first term, we have

C∑
c=1

Pr[yj = c]lNC((A(k))i,c, c) =

C∑
c=1

Pr[yj = c]
[
lNC((A(k))i,c, c)− lNC((A(k))j,c, c)

]
+

C∑
c=1

Pr[yj = c]lNC((A(k))j,c, c)

=

C∑
c=1

Pr[yj = c]
[
lNC((A(k))i,c, c)− lNC((A(k))j,c, c)

]
≤ λ

C∑
c=1

Pr[yj = c]|(A(k))i,c − (A(k))j,c|

(7)

The last inequality holds from the Lipschitz continuity of l. Now from Assumption 1, we have (A(k))i,c ≥ (A(k))j,c for
c ̸= yj and (A(k))i,c ≤ (A(k))j,c otherwise.
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Now for the second loss in Eq. (6) we use the property thatM∗ computes the ground truth:

C∑
c=1

(Pr[yi = c]− Pr[yj = c])lNC((A(k))i,c, c) =

C∑
c=1

((M∗)i,c − (M∗)j,c)lNC((A(k))i,c, c)

≤
C∑

c=1

L((M∗)i,c − (M∗)j,c).

(8)

The last inequality follows from l ∈ [−L,L].

Combining the two parts to Eq. (6), we obtain

Ey∼η(i)

[
lNC((A(k))i, y)

]
≤ λ

C∑
c=1

Pr[yj = c]|(A(k))i,c − (A(k))j,c|+
C∑

c=1

L((M∗)i,c − (M∗)j,c)

≤
C∑

c=1

[
λ(M∗)j,c|(A(k))i,c − (A(k))j,c|+ L((M∗)i,c − (M∗)j,c)

] (9)

To minimize the right-hand side (RHS) of Eq. (9), it is necessary that both |(A(k))i,c − (A(k))j,c| and ((M∗)i,c − (M∗)j,c)
are minimized.

• To achieve the minimum of |(A(k))i,c − (A(k))j,c|, consider assumption (A(k))i represents the C-dimensional output
vector of model (A(k)) for node i. Given that (A(k))i indicates uncertainty in V \ Q(k)

b , the elements of the output
vector are relatively similar. Therefore, selecting node j as the central node of all (A(k)) outputs where the output
vector elements are most alike ensures that node j embodies the highest uncertainty.

• For minimizing((M∗)i,c − (M∗)j,c), note that M∗ exhibits certainty with unseen data. As an ideal model, M∗

accurately represents the underlying class probabilities and does not overfit specific training samples. Its calibrated
confidence ensures that its predictions’ confidence levels are consistent with the actual likelihood, for both seen and
unseen data. Consequently, selecting any node j does not impact the value of ((M∗)i,c − (M∗)j,c).

Therefore, by selecting node j with the highest uncertainty in Eq. (9), we obtain:

Ey∼η(i)

[
lNC((A(k))i, y)

]
≤

C∑
c=1

[
λ(M∗)j,c min

j∈Q(k)
b

|(A(k))i,c − (A(k))j,c|+ L((M∗)i,c − (M∗)j,c)

]
(10)

Now notice that

lNC(A(k)|G,X, Y ) =
∑

i∈V \Q(k)
b

lNC((A(k))i, yi) +
∑

j∈Q(k)
b

lNC((A(k))j , yj) =
∑

i∈V \Q(k)
b

lNC((A(k))i, yi). (11)

Consider the following process: we first get G̃(k), X as input, which induces η(i) for i ∈ [n]. Note thatM∗ gives the ground
truth η(i) for every i so distributions η(i) ≡ ηX,G(i). Then the algorithm A(k) chooses the set Q(k)

b to label. After that, we
randomly sample yj ∼ η(j) for j ∈ Q(k)

b and use the labels to train model A(k). At last, we randomly sample yi ∼ η(i) and

obtain loss l(k)NC(A(k)|G̃(k), X, Ỹ
(k)

u ). Note that the sampling of all yi for i ∈ V \ Q(k)
b is after we fix the model A(k), and

knowing exact values of yj for j ∈ Q(k)
b does not give any information of yi (since η(i) is only determined by G̃(k), X).

Now we use Hoeffding’s inequality (Theorem 2) with Zi = lNC(A(k)|G̃(k), X, Ỹ
(k)

u ); we have −L ≤ Zi ≤ L by our
assumption, and recall that |V \ Q(k)

b | = n− b. Let δ be the RHS of Eq. (15), we have that with probability 1− δ,

1

n− b

∑
i∈V \Q(k)

b

lNC((A(k))i, yi)−
1

n− b
Ey∼η(i),σ

[
lNC((A(k))i, y)

]
≤

√
L log(1/δ)

2(n− b)
(12)
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Now plug in Eq. (10), multiply both sides by (n− b) and rearrange. We obtain that

∑
i∈V \Q(k)

b

lNC((A(k))i, yi) ≤
∑

i∈V \Q(k)
b

C∑
c=1

[
λ(M∗)j,c min

j∈Q(k)
b

|(A(k))i,c − (A(k))j,c|+ L((M∗)i,c − (M∗)j,c)

]

+

√
L log(1/δ)(n− b)

2

(13)

Now note that since the random draws of yi are completely irrelevant with the training of A(k), we can also sample yi
together with yj for j ∈ Q(k)

b after receiving G,X and before the training of A(k) (A does not have access to the labels
anyway). So Eq. (13) holds for the random drawings of all y’s. Now divide both sides of Eq. (13) by n and use Eq. (11), we
have

1

n
lNC(A(k)|G,X, Y ) ≤ 1

n

n∑
i=1

C∑
c=1

[
λ(M∗)j,c min

j∈Q(k)
b

|(A(k))i,c − (A(k))j,c|+ L((M∗)i,c − (M∗)j,c)

]
+

√
L log(1/δ)(n− b)

2n2

≤
n∑

i=1

C∑
c=1

[
λ

n
(M∗)j,c min

j∈Q(k)
b

|(A(k))i,c − (A(k))j,c|+
L

n
((M∗)i,c − (M∗)j,c)

]
+

√
L log(1/δ)

2n

(14)

F HOEFFDING’S INEQUALITY

We attach the Hoeffding’s inequality here for the completeness of our paper.

Theorem 2 ([Hoeffding, 1963]). Suppose Z1, . . . , Zn are independent random variables such that ai ≤ Zi ≤ bi almost
surely for 1 ≤ i ≤ n. Then we have

Pr

[
1

n

n∑
i=1

Zi − E

[
1

n

n∑
i=1

Zi

]
> t

]
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
(15)
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