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Abstract

We analyze a sparse PCA algorithm for incom-
plete and noisy data without any specific model
assumption on the data missing scheme. We utilize
a graphical approach to characterize general miss-
ing patterns, which enables us to analyze the ef-
fect of structural properties of missing patterns on
the solvability of sparse PCA problem. The sparse
PCA method we focus on is a semidefinite relax-
ation of the ℓ1-regularized PCA problem. We pro-
vide theoretical justification that the support of the
sparse leading eigenvector can be recovered with
high probability using the algorithm, under certain
conditions. The conditions involve the spectral gap
between the largest and second-largest eigenval-
ues of the true data matrix, the magnitude of the
noise, and the structural properties of the missing
pattern. The concepts of algebraic connectivity and
irregularity are used to describe the properties in
a graphical way. We empirically justify our theo-
rem with synthetic data analysis. We show that the
SDP algorithm outperforms other sparse PCA ap-
proaches especially when the observation pattern
has good structural properties. As a by-product of
our analysis, we provide two theorems to handle
general missing schemes, which can be applied to
other problems related to incomplete data matrices.

1 INTRODUCTION

When principal components possess a certain sparsity struc-
ture, standard principal component analysis (PCA) is not
preferred due to poor interpretability and the inconsistency
of solutions under high-dimensional settings [Paul, 2007,
Nadler, 2008, Johnstone and Lu, 2009]. To solve these is-
sues, sparse PCA has been proposed, which enforces spar-
sity in the PCA solution so that dimension reduction and

variable selection can be simultaneously performed. The-
oretical and algorithmic research on sparse PCA has been
actively conducted over the past few years [Zou et al., 2006,
Amini and Wainwright, 2008, Journée et al., 2010, Berk and
Bertsimas, 2019, Richtárik et al., 2021].

In this paper, we focus on the case that the data to which
sparse PCA is applied are not completely observed, but
partially missing. Missing data frequently occurs in a wide
range of machine learning problems, and sparse PCA is no
exception. This has led to several works that offer reliable
solutions to sparse PCA on missing data [Lounici, 2013,
Kundu et al., 2015, Park and Zhao, 2019, Lee et al., 2022].
However, these methods make a restrictive assumption that
the entries are observed according to a specific probabilistic
(uniform) model.

Assuming a certain probabilistic model on the missing
schemes can pose several problems. Firstly, in real-world
scenarios, it is unfeasible to verify such assumptions beyond
controlled experiments. Moreover, even though verification
were feasible, the theorems under the assumptions could be
lack of universality; they are only applicable in restrictive
situations where the model assumption aligns. Furthermore,
there is a risk of overlooking crucial factors that affect the
problem’s solvability but are hard to be captured within
a specific model assumption on the missing scheme (e.g.,
certain structural properties of the missing pattern.)

Therefore, we aim to analyze incomplete data without any
specific model assumptions on the missing patterns. The
strategy we use is a graphical approach. Figure 1 demon-
strates how to construct a graph when incomplete data is
given. We first create a binary matrix corresponding to the
missing pattern, where observed entries are denoted as 1,
while missing entries are marked as 0. This binary matrix
can be thought of as an adjacency matrix of a graph (we
call this an observation graph.) Then we can mathematically
characterize the missing pattern by using its graph prop-
erties and use them to analyze the impact of the missing
pattern on the solvability of the problem.
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Figure 1: Example of incomplete matrix alongside its corre-
sponding observation graph.

This approach has multiple advantages. First, we can di-
rectly analyze given instances of missing patterns without
presupposing any particular model for the missing scheme.
Accordingly, there is no need to verify any model assump-
tion, and our results can be universally applied. Additionally,
we can use various graph properties to analyze structural
properties of missing patterns that can impact the solvability
of the problem. This is particularly important in sparse PCA,
and the reason for this can be examined through a simple
example.

Imagine that the leading eigenvector uuu of a symmetric ma-
trixMMM∗ is sparse and denote its support by J . In Figure 2, J
consists of the first four indices: 1, 2, 3, and 4, and the corre-
sponding entries in uuu are highlighted in yellow. The goal of
our sparse PCA problem is to exactly recover the support J
from an incomplete data matrixMMM . Note that non-zero val-
ues in uuu only impact the entries in the |J | × |J | sub-matrix
ofMMM∗, which is colored yellow in Figure 2 and comprises
rows and columns indexed by J . Therefore, to recover the
support J , we need to observe a sufficient number of entries
in this sub-matrix. In fact, if we do not observe any entry in
a specific row of the sub-matrix (e.g., the third row/column
inMMM of the figure), we can never identify the corresponding
index as an element of the support, and thus exact recovery
fails. This implies that we need to observe the entries in the
|J | × |J | sub-matrix abundantly and evenly; in other words,
if we think of an observation graph, its sub-graph consisting
of the nodes indexed by J needs to be well-connected and
have similar node degrees. These structural properties can
be mathematically expressed by using graph properties that
we will introduce later.

The sparse PCA algorithm we focus on is a semidefinite
relaxation of the l1-regularized PCA (we call this the SDP
algorithm). This algorithm has been analyzed on complete
data and has been shown to have theoretically good proper-
ties [d’Aspremont et al., 2004, Lei and Vu, 2015]. It has also
been shown to work well for incomplete data, when the ob-
servation rate is sufficiently large under the uniform random
sampling scheme [Lee et al., 2022]. In fact, the SDP algo-
rithm works well under general missing schemes as well,
especially when the missing pattern has good structural
properties. In such cases, the SDP algorithm outperforms
other sparse PCA methods. We will show this in a later
section of the paper.

Figure 2: uuu1 represents a sparse leading eigenvector of the
true complete matrix, MMM∗, and MMM is the observed incom-
plete matrix. uuu1 contains non-zero entries in the yellow-
colored portion. These non-zero entries only affect the en-
tries in the yellow portion ofMMM∗. When this portion is not
observed sufficiently evenly, we may fail to recover J . In
this example, we may fail to identify index 3 as part of J .

Our main contribution is as follows: we provide theoret-
ical justification (i.e., Theorem 1) that when incomplete
and noisy observations are given, the true support J can be
exactly recovered with high probability by using the SDP
algorithm. Our theorem does not rely on any model assump-
tion of the missing schemes. The sufficient condition we
derive involves the spectral gap between the largest and
second-largest eigenvalues of the true matrix, the magnitude
of noise, and especially, structural properties of the observa-
tion graph. Two interpretable graph properties are involved:
algebraic connectivity and irregularity (see Definitions 1
and 2). Through these graph properties, we demonstrate that
the algorithm works well if the sub-graph consisting of the
nodes indexed by J is well-connected and has similar node
degrees. It is important to note that the graph properties ap-
ply to any type of undirected graph. That is, our theorem is
applicable to any given instances of missing pattern. To the
best of our knowledge, this is the first work on sparse PCA
with incomplete data without any specific model assumption
on the missingness.

We empirically validate our theorem with synthetic data
analysis in Section 5. Our simulation results show that the
performance of the SDP algorithm is solely determined by
the properties we derive in our theorem, which is a strong
justification of our theory. We also show that the SDP al-
gorithm outperforms several other sparse PCA approaches,
and only the SDP algorithm benefits from the good structure
of the observation graph.

As by-products of our analysis, we provide two theorems to
handle the general missing schemes: the tail bound for the
spectral norm of a random matrix having independent sub-
Gaussian values over a fixed subset of entries, and the bound
of the spectral norm of the difference between complete
and incomplete matrices under general missingness (see
Section 4.1). These theorems are important to prove our
main theorem. Furthermore, they can be applied to other
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problems related to incomplete data as well.

Notation. Matrices are bold capital (e.g.,AAA), vectors are
bold lowercase (e.g., aaa), and scalars or entries are not bold.
Ai,j and ai represent the (i, j)-th and i-th entries ofAAA and
aaa, respectively. For any index sets I and J , AAAI,J and aaaI
denote the |I| × |J |-dimensional sub-matrix ofAAA consisting
of rows in I and columns in J , and the |I|-dimensional
sub-vector of aaa consisting of the entries in I , respectively.
For any positive integer n, we denote [n] := {1, . . . , n}.
∥aaa∥1 and ∥aaa∥2 represent the l1 and l2 norms of aaa. ∥AAA∥2
and ∥AAA∥∗ indicate the spectral and nuclear norms ofAAA. We
let ∥AAA∥1,1 =

∑
i

∑
j |Ai,j | and ∥AAA∥max = maxi,j |Ai,j |.

λi(AAA) represents the i-th largest eigenvalue ofAAA. The trace
of AAA is denoted by tr(AAA), and the matrix inner product
of AAA and BBB is denoted by ⟨AAA,BBB⟩. AAA ◦ BBB represents the
Hadamard product of AAA and BBB. f(x) = O(g(x)) means
that there exists a positive constant C such that f(x) ≤
Cg(x) asymptotically. f(x) = Ω(g(x)) is equivalent to
g(x) = O(f(x)). f(x) = Õ(g(x)) is shorthand for f(x) =
O(g(x) logk x) for some k > 0.

2 PROBLEM DEFINITION

Sparse Principal Component. LetMMM∗ ∈ Rd×d be an un-
known symmetric matrix andMMM∗ =

∑
k∈[d] λk(MMM

∗)uuukuuu
⊤
k

be the spectral decomposition of MMM∗, where λ1(MMM∗) >
λ2(MMM

∗) ≥ · · · ≥ λd(MMM
∗) are its eigenvalues and

uuu1, . . . ,uuud ∈ Rd are the corresponding eigenvectors. For
identifiability of the leading eigenvector, we consider that
λ1(MMM

∗) is strictly greater than λ2(MMM∗). In this paper, we
assume strict sparsity in the leading eigenvector uuu1 ofMMM∗,
as in previous studies [Amini and Wainwright, 2008, Vu
et al., 2013, Gu et al., 2014, Wang et al., 2014, Lei and Vu,
2015, Deshp et al., 2016, Gataric et al., 2020, Agterberg and
Sulam, 2022]. That is, we suppose that for some index set
J ∈ [d], {

u1,i ̸= 0 if i ∈ J,

u1,i = 0 otherwise.

With a notation supp(aaa) := {i ∈ [d] : ai ̸= 0} for any
vector aaa ∈ Rd, we can write J = supp(uuu1). Also, we
denote the size of J by s. That is, s = |J |.

Incomplete and Noisy Observation. Suppose that we
have only noisy observations of the entries of MMM∗ over a
fixed sampling set Ω ⊆ [d]× [d]. Specifically, we observe a
symmetric matrixMMM ∈ Rd×d such that

Mi,j =

{
M∗
i,j +Ni,j if (i, j) ∈ Ω,

0 otherwise

for i, j ∈ [d], where Ni,j is the noise at location (i, j). We
assume that Ni,j’s are symmetric about zero and follow

a sub-Gaussian distribution independently, i.e., EeθNi,j ≤
e

σ2θ2

2 for any θ ≥ 0 and some σ ≥ 0.

Goal. In this paper, we aim to exactly recover the true
support J of the leading eigenvector uuu1 of MMM∗ from the
incomplete and noisy observationMMM .

3 METHODS

In this section, we introduce the algorithm used to solve the
sparse PCA problem, and define several graph properties
which will be utilized in our main theorem.

SDP Algorithm. For the support recovery of the leading
eigenvector, an intuitive approach is imposing a regulariza-
tion term on the PCA quadratic loss. When using the l1
regularizer, the optimization problem can be written as:

x̂xx = argmax
∥xxx∥2=1

xxx⊤MMMxxx− ρ∥xxx∥21.

Here, the true support J is estimated with supp(x̂xx). How-
ever, the objective is non-convex and difficult to solve.
Therefore, the following semidefinite relaxation is consid-
ered as an alternative:

X̂XX = argmax
XXX⪰0 and tr(XXX)=1

⟨MMM,XXX⟩ − ρ∥XXX∥1,1. (1)

In this paper, we call this the SDP algorithm. By lettingXXX =
xxxxxx⊤, the equivalence of the above two objective functions
can be easily justified. Since supp(xxx) = supp(diag(xxxxxx⊤xxxxxx⊤xxxxxx⊤)),
J can be estimated by Ĵ = supp(diag(X̂XX)). Efficient scal-
able SDP solvers exist [Yurtsever et al., 2021], so the SDP
algorithm is computationally friendly. This approach has
been shown to have good theoretical properties and work
well in practice for both of complete and uniformly random
missing data [d’Aspremont et al., 2004, Lei and Vu, 2015,
Lee et al., 2022].

Remark 1. We note that in the implementation of the SDP
algorithm, we use the matrixMMM where zero is imputed in
the missing entries, without applying any matrix completion
or imputation methods. Given that SDP’s objective function
is linear, imputing zeros for missing entries implies the uti-
lization of information solely from observed entries during
the optimization process. We note that matrix completion
can introduce unwanted bias under inappropriate conditions.
It is well-known that most of the matrix completion methods
can be successful only under the low-rank assumption. In
this paper, we allow the true matrix MMM∗ to be not neces-
sarily low-rank. In Section 5.2, we provide experimental
evidence showing that the SDP algorithm with zero-imputed
MMM performs well when the observation has a good structural
property, while the result yielded from matrix completion
does not achieve good performance overall. Imputing zeros
is also beneficial in certain application fields. For example,
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in the single-cell RNA sequence (scRNA-seq) data analysis,
missing occurs due to the so-called dropout events, and it
is hard to differentiate between true zeros, where the genes
are not expressed at all, and the dropout zeros. We do not
need to differentiate them when we impute zeros for missing
entries.

Graph Properties. Before presenting our main theorem
in the next section, we define several graph terminologies
and properties which are involved in the theorem.

We first introduce the observation graph G = (V, E), which
is an undirected graph associated with the given sampling
set Ω, that is, V = [d] and (i, j) ∈ E if and only if (i, j) ∈ Ω.
Note that G is allowed to contain loops. We denote the adja-
cency matrix corresponding to G byAAAG . With this notation,
we can writeMMM = AAAG ◦ (MMM∗ +NNN) whereNNN is the noise
matrix whose (i, j)-th entry is Ni,j .

Below are several convenient notations about graphs.

• GJ,J , GJ,Jc , GJc,Jc : For the observation graph G, we de-
note by GJ,J , GJ,Jc and GJc,Jc the sub-graphs of G which
consist of only the edges inside J×J , J×Jc, and Jc×Jc,
respectively. GJ,J and GJc,Jc are undirected graphs with
vertex sets J and Jc, respectively. GJ,Jc is a bipartite
graph with independent vertex sets J and Jc.

• G: For any graph G, G denotes it complement graph, i.e.,
G has the same vertex set as G but its edge set is the
complement of that of G.

• ∆max(G), ∆min(G): For any graph G, ∆max(G) and
∆min(G) denote the maximum and minimum node de-
grees of G, respectively.

Now, we define two important structural graph properties,
algebraic connectivity and irregularity. Both properties are
crucial to explain the effect of the structure of the observa-
tion graph on the solvability of our support recovery prob-
lem.

Algebraic connectivity, the well-known concept to measure
the graph connectivity, is defined as follows:

Definition 1 (Algebraic Connectivity). The algebraic con-
nectivity of a graph G, denoted by ϕ(G), is the second-
smallest eigenvalue of the Laplacian matrix of G. The mag-
nitude of ϕ(G) reflects how well connected the overall
graph is.

Next, we introduce a new graphical property that we name
‘irregularity’, which proves crucial in presenting our results.

Definition 2 (Irregularity). For any undirected graph G
such that ∆max(G) ≥ ϕ(G) and ∆max(G) ≥ ϕ(G), the
irregularity of G is defined as

ψ(G) := max
{
∆max(G)− ϕ(G),∆max(G)− ϕ(G)

}
.

The magnitude of ψ(G) reflects how different the node
degrees of G are.

To better interpret the concept of irregularity, we derive
some lower and upper bound results as below:

max
∥xxx∥2=1,xxx⊥111

xxx⊤AAAGxxx ≤ ∆max(G)− ϕ(G)

≤ max
∥xxx∥2=1,xxx⊥111

xxx⊤AAAGxxx+∆max(G)−∆min(G)

where 111 = (1, 1, . . . , 1)⊤.

• max
∥xxx∥2=1,xxx⊥111

xxx⊤AAAGxxx: Among different AAAG’s having the

same largest and second-largest eigenvalues, we can see
that the one corresponding to a regular graph (a graph is
regular when each node has the same degree) has the
smallest magnitude of max

∥xxx∥2=1,xxx⊥111
xxx⊤AAAGxxx. This is be-

cause a regular graph has a normalized vector of 111 as
its leading eigenvector.

• ∆max(G)−∆min(G): This quantity decreases as nodes
of G have similar degrees.

Hence, we can say that as G becomes closer to a regular
graph, the value of ∆max(G) − ϕ(G) decreases. Also, as
G approaches a regular graph, G also tends to be closer
to a regular graph, resulting in a decrease in the value
of ∆max(G) − ϕ(G). Consequently, as G approaches a
regular graph, the value of ψ(G) = max

{
∆max(G) −

ϕ(G),∆max(G)− ϕ(G)
}

decreases. This is the reason why
we name this concept the ‘irregularity’.

Remark 2. Note that ∆max(G) ≥ ϕ(G) and ∆max(G) ≥
ϕ(G), i.e., ψ(G) ≥ 0 holds except for the case that G or G is
a complete graph without loops.

4 MAIN RESULTS

Now, we introduce our main theorem, which shows the suf-
ficient condition for the SDP algorithm to exactly recover
the true support J . Because the sufficient condition involves
multiple interrelated factors, parsing the effects of each com-
ponent might be difficult. Hence, following the presentation
of the main theorem, we will break down the sufficient con-
dition into several segments for better understanding of the
impact of each factor.

Theorem 1. Under the problem definition in Section 2,
assume that with some constant c > 0,

∥MMM∗
J,J∥2 · ψ(GJ,J) + σ

√
∆max(GJ,J) log(s log d)

+ s∥MMM∗
Jc,J∥2 +

1√
s
∥MMM∗

Jc,Jc∥2

+ σs
√

max
{
∆max(GJ,Jc),∆max(GJc,Jc)

}
log d

≤ cϕ(GJ,J)λ̄(MMM∗) ·mini∈J |u1,i|
s

(2)
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where λ̄(MMM∗) := λ1(MMM
∗) − λ2(MMM

∗) and ψ(GJ,J) ≥
0. Then, the optimal solution X̂XX to the optimization
problem (1) is unique and satisfies supp(diag(X̂XX)) =
J with probability at least 1 − O(s−1), where

ρ = 2σ
√
max

{
∆max(GJ,Jc),∆max(GJc,Jc)

}
log d +

∥MMM∗
Jc,J∥max.

In a nutshell, Theorem 1 asserts that the SDP algorithm pro-
duces a reliable solution under certain conditions imposed
on the spectral gap λ̄(MMM∗), the noise intensity parameter σ,
the matrix norms, and the graph properties of the sub-graphs
GJ,J , GJ,Jc and GJc,Jc .

To better understand the condition (2), we consider the
setting that ∥MMM∗

J,J∥2 = O(λ̄(MMM∗)) and mini∈J |u1,i| =
Ω(s−

1
2 ), for instance. We note that the first inequality holds

as long as ∥MMM∗
J,J∥2 = λ1(MMM

∗
J,J) and λ2(MMM

∗)
λ1(MMM∗) ≤ c for some

c < 1, and the second inequality holds when all the non-
zero entries of the sparse leading eigenvector are of the
same level of magnitude. In this case, we can rewrite (2) as
follows:

ψ(GJ,J)
ϕ(GJ,J)

= O
( 1

s
√
s

)
,

σ = Õ
( ϕ(GJ,J)√

max{∆max(GJ,Jc),∆max(GJc,Jc)}
· λ̄(M

MM∗)

s2
√
s

)
,

∥MMM∗
Jc,J∥2 = O

(ϕ(GJ,J)λ̄(MMM∗)

s2
√
s

)
,

∥MMM∗
Jc,Jc∥2 = O

(ϕ(GJ,J)λ̄(MMM∗)

s

)
.

The first condition about the structural graph properties of
GJ,J states that for the algorithm to be successful, the sub-
graph GJ,J is desired to have sufficiently large connectivity
ϕ(GJ,J) and small irregularityψ(GJ,J). This implies that the
sub-graph GJ,J needs to be well-connected and have similar
node degrees, i.e., we need to observe the entries in the
corresponding sub-matrix of the true matrix abundantly and
evenly. This result fits well with our first intuition discussed
in the introduction.

The other conditions mean that the noise and the norms
of MMM∗

Jc,J and MMM∗
Jc,Jc need to be well-controlled for the

success of the algorithm. This is in accordance with our
common sense, since large σ orMMM∗ values outside J × J
matrix will mask the true information. These conditions are
alleviated when the connectivity of GJ,J is large (especially
in the second condition, larger than the number of observed
entries outside J × J) and when the spectral gap λ̄(MMM∗) is
large.

We note that a sufficiently large spectral gap requirement is
to ensure the uniqueness and identifiability of the projection
matrix with respect to the principal subspace.

Remark 3. It is worth mentioning that the SDP method

offers more than just support recovery; under the suffi-
cient condition in Theorem 1, the optimal solution X̂XX can

be represented as X̂XX =

(
x̂xxx̂xx⊤ 0
0 0

)
, where x̂xx satisfies∥∥∥∥uuu1 − (x̂xx000

)∥∥∥∥
2

or
∥∥∥∥uuu1 + (x̂xx000

)∥∥∥∥
2

≤ minj∈J |u1,j |. Given

that minj∈J |u1,j | = O(s−
1
2 ), the ℓ2 estimation error bound

of the leading eigenvector uuu1 has a rate of O(s−
1
2 ).

Remark 4. When the target matrixMMM∗ is a covariance ma-
trix, and the algorithm (1) is applied to an incomplete sample
covariance matrix, we can derive a result similar to Theo-
rem 1, with σ replaced by a function of the sample size.
Suppose that ZZZ1, . . . ,ZZZn are drawn from the multivariate
normal distribution N(000,MMM∗), and consider an incomplete
sample covariance matrixMMM = AAAG ◦ ( 1n

∑
i∈[n]ZZZiZZZ

⊤
i ). If

n > d, we have the same result as in Theorem 1 where σ is
replaced by ∥MMM∗∥2 ·

√
d log d logn√

n
. This result can be derived

by applying Lemma 6 instead of Lemma 5 in the proof.

Remark 5. Our work primarily focuses on the theoretical
understanding of the problem and the algorithm, but we
briefly discuss a practical use of our results here. Our results
present that as we observe the entries well in the sub-matrix
MMM∗

J,J , we can recover the support J . Unfortunately, we
do not know the true support J in practice, so we cannot
check if the observation structure satisfies the sufficient
condition. One alternative is to check if any sub-graphs
of the observation graph have good algebraic connectivity
and irregularity. If there is a sub-graph with connectivity
or irregularity that is extremely low or high, then we could
conservatively suspect that the result from the algorithm
cannot be fully trusted. Here, prior knowledge about the
size of the support will be needed.

Challenge in the Proof of Theorem 1 Detailed proof of
Theorem 1 is given in Section 7. At a high level, we use the
KKT conditions under the primal-dual witness framework,
which is standard in support recovery problems. However,
simply applying this framework to the problem does not
yield meaningful results. The main challenge lies in han-
dling missingness without any model assumption on it. To
circumvent this challenge, we employ observation graphs
and graphical concepts. More importantly, we obtain and
utilize two theorems: one is for the tail bound of the matrix
whose entries in a fixed subset are random. This is to obtain
a bound for sub-Gaussian noise only existing on the fixed
sampling set of entries, Ω. Also, the other is for bounding the
difference between complete and incomplete matrices under
a fixed sampling scheme. These two results can be widely
used in other matrix-related problems with general missing
data. We introduce these two theorems as by-products of
our analysis in the next section.
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4.1 BY-PRODUCTS

Below is a tail bound for the spectral norm of a random
matrix with independent sub-Gaussian values in its fixed
subset of entries.

Theorem 2 (Tail Bound for Random Matrix with Indepen-
dent Sub-Gaussian Values in a Fixed Subset of Entries).
Consider a random matrix ZZZ ∈ Rm×n whose entries in
a fixed subset independently follow a sub-Gaussian distri-
bution which is symmetric about zero and has parameter
σ > 0, while the other entries are fixed as zero. That is,
there exists an index set S ⊆ {(i, j) | i ∈ [m], j ∈ [n]} such
that for i ∈ [m] and j ∈ [n],

Zi,j =

{
Ni,j if (i, j) ∈ S,

0 otherwise,

where each Ni,j is symmetric about zero and satisfies

EeθNi,j ≤ e
σ2θ2

2 for any θ > 0. Then,

∥ZZZ∥2 ≤ 2σ
√
∆max(GS) log(m+ n)

with probability at least 1 − 2(m + n)−1, where GS is a
bipartite graph whose vertex sets are [m] and [n], and edge
set is S.

We defer the proof to Section 8. In the derivation of Theorem
1, we use the above theorem to obtain the tail bounds of
∥(AAAG)J,J ◦NNNJ,J∥2, ∥(AAAG)J,Jc ◦NNNJ,Jc∥2 and ∥(AAAG)Jc,Jc ◦
NNNJc,Jc∥2, whereNNN is the noise matrix whose entries follow
a sub-Gaussian distribution independently.

Remark 6. WhenNi,j’s follow independent normal distribu-
tions with mean 0 and variance σ2, one can obtain a tighter
concentration inequality by using Corollary 3.11 in Ban-
deira and Van Handel [2016]. For some positive constant
c,

∥ZZZ∥2 ≤ cσ
{√

∆max(GS) +
√

log(min{m,n})
}

holds with probability at least 1−min{m,n}−1.

Next is the bound of the spectral norm of the difference be-
tween complete and incomplete matrices under fixed miss-
ingness. We note that this is an extended result of Theorem
4.1 in Bhojanapalli and Jain [2014]. While the theorem of
Bhojanapalli and Jain [2014] is limited to the case that the
observation graph is regular, our theorem applies to any
general undirected observation graph, so our result general-
izes the result of Bhojanapalli and Jain [2014]. For regular
graphs, our bound coincides with that of Bhojanapalli and
Jain [2014].

Theorem 3. Consider a symmetric matrix YYY with dimen-
sion n. Let YYY =

∑
k∈[r] λk(YYY )vvvkvvv

⊤
k be the spectral de-

composition of YYY , where r is rank of YYY . Define τ :=
maxi∈[n]

∑
k∈[r] v

2
k,i.

Also, consider an undirected graph G with n nodes and
denote its adjacency matrix byAAAG . Then,

∥YYY − n

ϕ(G)
AAAG ◦ YYY ∥2 ≤ nτψ(G)

ϕ(G)
· ∥YYY ∥2.

The proof is given in Section 9. The main challenge in the
proof is to find and use proper graph properties to make the
bound of the difference small enough. We use the above
theorem to bound ∥MMM∗

J,J− s
ϕ(GJ,J )

(AAAG)J,J ◦MMM∗
J,J∥2 in the

proof of Theorem 1.

4.2 CHOICE OF THE TUNING PARAMETER

The theoretical choice of ρ in Theorem 1 is useless in prac-
tice since it relies on unknown quantities. Therefore, certain
tuning procedure over ρ is necessary for the implementation
of the SDP algorithm (1). Our suggestion is to find ρ to
maximize the following AIC type criterion (see also Qi et al.
[2013]):

Cρ = (1− a)
⟨MMM,X̂XXρ⟩
⟨MMM,X̂XX0⟩

+ a
(
1− |supp(diag(X̂XXρ))|

d

)
.

Here, X̂XXρ and X̂XX0 refer to the solutions of the SDP algo-
rithm where the tuning parameters are set to be ρ and 0,
respectively. ⟨MMM,X̂XXρ⟩ and ⟨MMM,X̂XX0⟩ represent the explained
variances of MMM by the solutions. The first term of the cri-
terion is a measure for the quality of the estimate, and the
second term penalizes for the complexity of the solution.
a ∈ (0, 1) is the weight to be chosen by practitioners. As
one needs a sparse principal component, a relatively large
value of a is suggested. In the experiments, we find that
0.4 ≤ a ≤ 0.6 generally work well.

5 EXPERIMENTS

5.1 SYNTHETIC DATA ANALYSIS

The goal of this synthetic data analysis is to demonstrate
the effects of the structural properties of the observation
graph, the spectral gap between the largest and second-
largest eigenvalues of the true matrix, and the magnitude of
the noise, on the success of the support recovery by the SDP
algorithm.

In particular, we check whether the performance of the
SDP algorithm (1) is solely determined by the properties
we derive in Theorem 1. We utilize the following rescaled
parameter for this:

Rescaled =
LHS of (2)

RHS of (2) without constant c
. (3)

If the performance of the algorithm versus this rescaled pa-
rameter is the same across different settings, then we can
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empirically justify that the performance is solely determined
by the factors in the rescaled parameter. This kind of ap-
proach has been used in Wainwright [2009] for sparse linear
regression.

Setting. We use synthetic data generated in the following
manner. The orthonormal eigenvectors ofMMM∗ are randomly
selected, while the leading eigenvector uuu1 is made to be
sparse and have s non-zero entries with the values of 1√

s
.

λ2(MMM
∗), . . . , λd(MMM

∗) are randomly selected from a nor-
mal distribution with mean 0 and standard deviation 1, and
λ1(MMM

∗) is set to λ2(MMM∗) plus the spectral gap. We set the
matrix dimension d to be 50 and the support size s to be 10.

We generate the observation graph G to have 1250 edges
out of 2500. We set the values of ψ(GJ,J )

ϕ(GJ,J )
to be included in

one of the ranges 0 to 2, 2 to 4, ..., or 16 to 18. Recall that
ϕ(GJ,J) measures how well connected the sub-graph GJ,J
is, and ψ(GJ,J) measures how different the node degrees
of GJ,J are. Therefore, as ψ(GJ,J )

ϕ(GJ,J )
decreases, GJ,J is well-

connected and has similar node degrees, that is, the entries
of the corresponding |J |×|J | sub-matrix are observed more
abundantly and evenly.

The entry-wise noise is randomly selected from a normal
distribution with mean 0 and standard deviation σ. In each
setting, we run the algorithm (1) and examine if the solution
exactly recovers the true support J . The tuning parameter
ρ ∈ {0.025, 0.5, . . . , 1} is selected by the method in Section
4.2 with a = 0.5. We repeat each experiment 100 times
with different random seeds, and calculate the rate of exact
recovery in each setting.

Results. In Figure 3, plots (a) and (b) show the experimen-
tal results where we fix the noise parameter σ as 0 (noise-
less) and try different spectral gaps λ̄(MMM∗) ∈ {1, 2, 5, 10}
to check the effect of the spectral gap. Plots (c) and (d) show
the results where we fix the spectral gap λ̄(MMM∗) as 20 and
try different noise parameters σ ∈ {0.1, 0.3, 0.5, 0.7} to
check the effect of the magnitude of noise. From (a), we can
observe that the exact recovery rate increases as the spec-
tral gap increases, which is consistent with our theoretical
finding. From (c), we can check that the exact recovery rate
increases as the standard deviation of the noise decreases,
which also supports our theorem. In (a) and (c), it is shown
that as the value of ψ(GJ,J )

ϕ(GJ,J )
decreases - indicating that the

entries of |J |×|J | sub-matrix are observed more abundantly
and evenly - the exact recovery rate increases. This aligns
with our initial intuition.

Lastly, in (b) and (d), we can see that the curves of the exact
recovery rate versus the rescaled parameter share almost
the same pattern under different settings of λ̄(MMM∗) and σ.
This provides empirical justification of our theorem in the
sense that the performance of the SDP algorithm is solely
determined by the properties we derive in Theorem 1.

Figure 3: (a) Rate of exact recovery of J versus ψ(GJ,J )
ϕ(GJ,J )

for
different λ̄(MMM∗) where σ = 0. (b) Same simulation results
as in (a) with exact recovery rate plotted versus rescaled pa-
rameter (3). (c) Rate of exact recovery of J versus ψ(GJ,J )

ϕ(GJ,J )

for different σ where λ̄(MMM∗) = 20. (d) Same simulation re-
sults as in (c) with exact recovery rate plotted versus rescaled
parameter (3).

We provide additional simulation results for cases where the
density of the observation graph varies in Appendix 11, for
interested readers.

5.2 SEMI-SYNTHETIC DATA ANALYSIS

The pitprops data [Jeffers, 1967], which stores 180 obser-
vations of 13 variables, has been a standard benchmark to
evaluate algorithms for sparse PCA (see, e.g., Zou et al.
[2006], Shen and Huang [2008], Journée et al. [2010], Qi
et al. [2013]). It has been revealed that on the complete
pitprops data, a sparse solution with 6 nonzero entries (with
respect to the variables ‘topdiam’, ‘length’, ‘ringbut’, ‘bow-
max’, ‘bowdist’, ‘whorls’) has a comparable explained vari-
ance with that of the dense solution from original PCA. By
generating observation graphs synthetically, we construct
semi-synthetic incomplete matrices of the pitprops data and
aim to recover the 6 nonzero entries with incomplete data.

The primary goal of this experimental study is to check if
the SDP method performs well compared to other sparse
PCA methods on incomplete data. By demonstrating the
superior performance of the SDP method over others, we
further support our proposal of applying the SDP method to
incomplete data. We will also validate the selection criterion
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of the tuning parameter ρ in Section 4.2.

Setting. We impose missingness and noise on the com-
plete covariance matrix in the following manner. We gener-
ate the observation graph G to have 100 edges out of 169.
The value of ψ(GJ,J )

ϕ(GJ,J )
is set to be included in one of the

ranges 0 to 0.2, 0.2 to 0.4, ..., or 2 to 2.2. The entry-wise
noise is randomly selected from a normal distribution with
mean 0 and standard deviation σ = 0.1. On average, the
ratio of the spectral norm of the generated noise matrix to
the spectral norm of the noiseless matrix is about 0.153.

We compare the SDP algorithm with seven different meth-
ods. First, we consider two well-known sparse PCA algo-
rithms and one recently-proposed method: the generalized
power method (GPM) by Journée et al. [2010], the iterative
thresholding sparse PCA (ITSPCA) by Ma [2013] and the
alternating manifold proximal gradient method (A-ManPG)
by Chen et al. [2020]. All methods have theoretically good
properties on complete data, and we checked that they suc-
ceed in support recovery on the complete pitprops data with
proper hyper-parameter choices. We implement these meth-
ods on incomplete data with zero imputation for missing
cells. Second, we consider the combination of matrix com-
pletion and each of the SDP, GPM, ITSPCA and A-ManPG
algorithms. We estimate the missing entries of the incom-
plete matrixMMM by using the following matrix completion
method based on the nuclear norm minimization:

M̃MM = argmin
YYY=YYY ⊤, AAAG◦YYY=AAAG◦MMM

∥YYY ∥∗.

Then we implemented the SDP, GPM, ITSPCA and A-
ManPG algorithms with the completed matrix M̃MM .

We run each algorithm 100 times with different random
seeds in each setting, and calculate the rate of exact re-
covery of J . In the SDP algorithm, the tuning parame-
ter ρ ∈ {0.025, 0.5, . . . , 1} is selected by the method in
Section 4.2 with a = 0.4. For the tuning parameter of
the GPM algortihm, we consider γ ∈ {0.2, 0.4, . . . , 2} ∪
{maxi∈[d] ∥MMM i,:∥2} as suggested by Journée et al. [2010].
For the ITSPCA and A-ManPG algorithms, there are no
well-known methods to choose tuning parameters, so we try
multiple values of tuning parameters and choose ones with
the largest exact recovery rates.

Results. In Figure 4, we can see that our method of se-
lecting ρ works well. Here, we compare the result from
our tuning method with those in the settings where the tun-
ing parameter ρ is fixed as a value among {0.1, 0.2, . . . , 1}
through all the repetitions. We can see that the exact recov-
ery rate from our tuning method is larger than most of the
results where ρ is fixed as one value.

Figure 5 shows that the SDP method outperforms the other
sparse PCA methods when the observation graph has a good
structural property. First, we observe that all of the GPM,

Figure 4: Rate of exact recovery of J versus ψ(GJ,J )
ϕ(GJ,J )

for
SDP algorithm with different values of ρ. Thick blue line
indicates result of ρ which is selected by criterion Cρ.

ITSPCA and A-ManPG algorithms perform worse than the
SDP algorithm, especially in scenarios with favorable ob-
servation graph properties, characterized by small values of
ψ(GJ,J )
ϕ(GJ,J )

. Unlike the SDP method, these algorithms cannot
benefit from good structure of the observation graph. In addi-
tion, the SDP method with matrix completion has the exact
recovery rate of around 0.4 overall, while the SDP algo-
rithm with zero-imputation produces the exact recovery rate
greater than 0.6 when the value of ψ(GJ,J )

ϕ(GJ,J )
is small enough.

Also, the GPM, ITSPCA and A-ManPG algorithms with
matrix completion exhibit similar or worse performance
compared to the SDP algorithm with matrix completion.
That is, any methods with matrix completion do not perform
better than the SDP algorithm with zero-imputation.

About the failure of the matrix completion approach, we con-
jecture the following rationale: while the matrix completion
algorithm can be successful under the low-rank assumption,
the pitprops data is full-rank with eigenvalues ranging from
0.039 to 4.219, which yields an unsuccessful matrix comple-
tion result. The average of relative error ∥M̃MM−MMM∗∥F

∥MMM∗∥F
for the

matrix completion solution M̃MM was 0.504, with no instance
showing an error smaller than 0.2. Accordingly, the imputed
cells introduce more noise into the inference and the result
of sparse PCA becomes even worse than that of simply us-
ing zero for the missing entries. We note that unlike matrix
completion, the SDP algorithm with zero-imputation does
not require the low-rank assumption to be successful ac-
cording to our theorem. Therefore, the algorithm has good
performance under a general condition on the true matrix.

6 CONCLUDING REMARKS

This paper examines the support recovery problem in sparse
PCA with incomplete and noisy data, under a general sam-
pling scheme. We consider a practical algorithm based on a
semidefinite relaxation of the ℓ1-regularized PCA problem,
and provide sufficient conditions where the algorithm can
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Figure 5: Rate of exact recovery of J versus ψ(GJ,J )
ϕ(GJ,J )

for
eight different sparse PCA algorithms.

exactly recover the true support with high probability. The
conditions involve the spectral gap, the noise parameter, the
matrix norms, and the structural properties of the observa-
tion graph. We show that the algorithm works well if we
observe the entries in the sub-matrixMMM∗

J,J abundantly and
evenly. We empirically justify our theorem with synthetic
data analysis, and show that the SDP algorithm outperforms
several other sparse PCA approaches especially when the
observation graph has a good structural property.

For clarity of exposition, this paper has focused on the case
where only the leading eigenvector of MMM∗ is sparse. We
briefly discuss how to extend the framework to the case
where multiple leading eigenvectors ofMMM∗ are sparse. Let
us assume that r leading eigenvectors of MMM∗ are sparse.
In this case, the constraint tr(XXX) = 1 in (1) should be
replaced with a constraint tr(XXX) = r. To derive the suffi-
cient conditions to exactly recover the true (joint) support
J for several leading eigenvectors, we could make use of
the primal-dual witness framework in a similar way as done
in Theorem 1 for one leading eigenvector. We leave this for
future research.

References

Joshua Agterberg and Jeremias Sulam. Entrywise recovery
guarantees for sparse pca via sparsistent algorithms. In
International Conference on Artificial Intelligence and
Statistics, pages 6591–6629. PMLR, 2022.

Arash A Amini and Martin J Wainwright. High-dimensional
analysis of semidefinite relaxations for sparse principal
components. In 2008 IEEE international symposium on
information theory, pages 2454–2458. IEEE, 2008.

Afonso S Bandeira and Ramon Van Handel. Sharp
nonasymptotic bounds on the norm of random matrices
with independent entries. 2016.

Lauren Berk and Dimitris Bertsimas. Certifiably optimal

sparse principal component analysis. Mathematical Pro-
gramming Computation, 11(3):381–420, 2019.

Srinadh Bhojanapalli and Prateek Jain. Universal matrix
completion. In International Conference on Machine
Learning, pages 1881–1889. PMLR, 2014.

Richard Y Chen, Alex Gittens, and Joel A Tropp. The
masked sample covariance estimator: an analysis using
matrix concentration inequalities. Information and Infer-
ence: A Journal of the IMA, 1(1):2–20, 2012.

Shixiang Chen, Shiqian Ma, Lingzhou Xue, and Hui Zou.
An alternating manifold proximal gradient method for
sparse principal component analysis and sparse canonical
correlation analysis. INFORMS Journal on Optimization,
2(3):192–208, 2020.

Alexandre d’Aspremont, Laurent Ghaoui, Michael Jordan,
and Gert Lanckriet. A direct formulation for sparse pca
using semidefinite programming. Advances in neural
information processing systems, 17, 2004.

Yash Deshp, Andrea Montanari, et al. Sparse pca via co-
variance thresholding. Journal of Machine Learning Re-
search, 17(141):1–41, 2016.

Milana Gataric, Tengyao Wang, and Richard J Samworth.
Sparse principal component analysis via axis-aligned ran-
dom projections. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 82(2):329–359, 2020.

Quanquan Gu, Zhaoran Wang, and Han Liu. Sparse pca
with oracle property. Advances in neural information
processing systems, 27, 2014.

John NR Jeffers. Two case studies in the application of prin-
cipal component analysis. Journal of the Royal Statisti-
cal Society: Series C (Applied Statistics), 16(3):225–236,
1967.

Iain M Johnstone and Arthur Yu Lu. On consistency and
sparsity for principal components analysis in high dimen-
sions. Journal of the American Statistical Association,
104(486):682–693, 2009.

Michel Journée, Yurii Nesterov, Peter Richtárik, and
Rodolphe Sepulchre. Generalized power method for
sparse principal component analysis. Journal of Machine
Learning Research, 11(2), 2010.

Abhisek Kundu, Petros Drineas, and Malik Magdon-Ismail.
Approximating sparse pca from incomplete data. Ad-
vances in Neural Information Processing Systems, 28,
2015.

Hanbyul Lee, Qifan Song, and Jean Honorio. Support re-
covery in sparse PCA with incomplete data. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing
Systems, 2022.

2171



Jing Lei and Vincent Q Vu. Sparsistency and agnostic
inference in sparse pca. The Annals of Statistics, 43(1):
299–322, 2015.

Karim Lounici. Sparse principal component analysis with
missing observations. In High dimensional probability
VI, pages 327–356. Springer, 2013.

Zongming Ma. Sparse principal component analysis and
iterative thresholding. The Annals of Statistics, 41(2):
772–801, 2013.

Boaz Nadler. Finite sample approximation results for princi-
pal component analysis: A matrix perturbation approach.
The Annals of Statistics, 36(6):2791–2817, 2008.

Seyoung Park and Hongyu Zhao. Sparse principal compo-
nent analysis with missing observations. The Annals of
Applied Statistics, 13(2):1016–1042, 2019.

Debashis Paul. Asymptotics of sample eigenstructure for
a large dimensional spiked covariance model. Statistica
Sinica, pages 1617–1642, 2007.

Xin Qi, Ruiyan Luo, and Hongyu Zhao. Sparse principal
component analysis by choice of norm. Journal of multi-
variate analysis, 114:127–160, 2013.

Peter Richtárik, Majid Jahani, Selin Damla Ahipaşaoğlu,
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7 PROOF OF THEOREM 1

Step 1: Deriving Sufficient Conditions From KKT Conditions (Primal-dual Witness Approach)

With the primal variableXXX ∈ Rd×d and the dual variablesZZZ ∈ Rd×d, ΛΛΛ ∈ Rd×d and µ ∈ R, the Lagrangian of the problem
(1) is written as

L(XXX,ZZZ,ΛΛΛ, µ) = −⟨MMM,XXX⟩+ ρ⟨XXX,ZZZ⟩ − ⟨ΛΛΛ,XXX⟩+ µ · (tr(XXX)− 1)

where Zij ∈ ∂|Xij | for each i, j ∈ [d]. According to the standard KKT condition, we can derive that (X̂XX,ẐZZ, Λ̂ΛΛ, µ̂) is optimal
if and only if the followings hold:

• Primal feasibility: X̂XX ⪰ 0, tr(X̂XX) = 1

• Dual feasibility: Λ̂ΛΛ ⪰ 0, Ẑij ∈ ∂|X̂ij | for each i, j ∈ [d]

• Complementary slackness: ⟨Λ̂ΛΛ, X̂XX⟩ = 0 (⇔ Λ̂ΛΛX̂XX = 0 if X̂XX ⪰ 0 and Λ̂ΛΛ ⪰ 0)

• Stationarity: Λ̂ΛΛ = −MMM + ρẐZZ + µ̂ · III .

By substituting Λ̂ΛΛ with −MMM + ρẐZZ + µ̂ · III , it can be shown that the above conditions are equivalent to

X̂XX ⪰ 0, tr(X̂XX) = 1

MMM − ρẐZZ ⪯ µ̂III

Ẑij ∈ ∂|X̂ij | for each i, j ∈ [d]

(MMM − ρẐZZ)X̂XX = µ̂ · X̂XX.

To use the primal-dual witness construction, we now consider the following restricted problem:

max
XXX⪰0,tr(XXX)=1 and supp(XXX)⊆J×J

⟨MMM,XXX⟩ − ρ∥XXX∥1,1. (4)

Similarly to the above, we can derive that X̂XX =

(
X̂XXJ,J 0
0 0

)
1is optimal to the problem (4) if and only if

X̂XXJ,J ⪰ 0, tr(X̂XXJ,J) = 1

MMMJ,J − ρẐZZJ,J ⪯ µ̂III

Ẑij ∈ ∂|X̂ij | for each i, j ∈ J

(MMMJ,J − ρẐZZJ,J)X̂XXJ,J = µ̂ · X̂XXJ,J .
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Now, we want for the above solution X̂XX =

(
X̂XXJ,J 0
0 0

)
to satisfy the optimality conditions of the original problem (1).

Furthermore, by assuming the strict dual feasibility, we want to guarantee supp(diag(X̂XX)) ⊆ J . We can easily derive the
sufficient conditions listed below:

X̂XXJ,J ⪰ 0, tr(X̂XXJ,J) = 1

MMMJ,J − ρẐZZJ,J ⪯ µ̂III

MMM − ρẐZZ ⪯ µ̂III

Ẑij ∈ ∂|X̂ij | for each (i, j) ∈ J × J

Ẑij ∈ (−1, 1) for each (i, j) /∈ J × J

(MMMJ,J − ρẐZZJ,J)X̂XXJ,J = µ̂ · X̂XXJ,J

(MMMJc,J − ρẐZZJc,J)X̂XXJ,J = 0.

If the above conditions hold, then X̂XX =

(
X̂XXJ,J 0
0 0

)
is optimal to the problem (1) and satisfies supp(diag(X̂XX)) ⊆ J .

Now, consider x̂xx, ẑzz ∈ Rs such that

ẑi = sign(u1,i) for all i ∈ J,

x̂xx is the leading eigenvector ofMMMJ,J − ρẑzzẑzz⊤. (5)

Let X̂XXJ,J = x̂xxx̂xx⊤ and ẐZZJ,J = ẑzzẑzz⊤. Then if the following conditions hold:

sign(u1,i) = sign(x̂i) for all i ∈ J or sign(u1,i) = −sign(x̂i) for all i ∈ J (6)

(MMMJc,J − ρẐZZJc,J)x̂xx = 0 and ∥ẐZZJc,J∥max < 1 (7)

λ1(MMMJ,J − ρẑzzẑzz⊤) = λ1(MMM − ρẐZZ) and ∥ẐZZJc,Jc∥max < 1, (8)

the above sufficient conditions are satisfied, that is, X̂XX :=

(
x̂xxx̂xx⊤ 0
0 0

)
is optimal to the problem (1). Also, supp(diag(X̂XX)) =

J holds since sign(u1,i) = sign(x̂i or − x̂i) ̸= 0 for all i ∈ J .

For the uniqueness, we need an additional condition presented in the following lemma.

Lemma 1. For X̂XX and ẐZZ constructed above, if the following condition holds:

λ1(MMMJ,J − ρẑzzẑzz⊤) > λ2(MMMJ,J − ρẑzzẑzz⊤) (9)

then the solution X̂XX is a unique optimal solution to the problem (1).

Proof. According to the standard primal-dual witness construction, we only need to show that under the condition,
X̂XXJ,J = x̂xxx̂xx⊤ is a unique optimal solution to the restricted problem (4).

Assume that there exists another optimal solution to the problem (4), say X̃XXJ,J . Also, denote its dual optimal solution by
Z̃ZZJ,J . Then, we can write

⟨MMMJ,J , X̂XXJ,J⟩ − ρ∥X̂XXJ,J∥1,1 = ⟨MMMJ,J − ρẑzzẑzz⊤, x̂xxx̂xx⊤⟩ = x̂xx⊤(MMMJ,J − ρẑzzẑzz⊤)x̂xx

= ⟨MMMJ,J , X̃XXJ,J⟩ − ρ∥X̃XXJ,J∥1,1 = ⟨MMMJ,J − ρZ̃ZZJ,J , X̃XXJ,J⟩.

Recall that x̂xx is the leading eigenvector ofMMMJ,J − ρẑzzẑzz⊤, that is, x̂xx⊤(MMMJ,J − ρẑzzẑzz⊤)x̂xx = λ1(MMMJ,J − ρẑzzẑzz⊤). Now, we will
show that ⟨MMMJ,J − ρẑzzẑzz⊤, X̃XXJ,J⟩ < λ1(MMMJ,J − ρẑzzẑzz⊤) for any matrix X̃XXJ,J ̸= x̂xxx̂xx⊤ such that X̃XXJ,J ⪰ 0 and tr(X̃XXJ,J) = 1.

1For clarity of exposition, our abuse of notation seemingly assumes J = [s] when we join vectors and matrices. It should be clear that
for J ̸= [s], one will need to properly interleave vector entries or matrix rows/columns.
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Let X̃XXJ,J =
∑
i∈J θivvvivvv

⊤
i , which is the spectral decomposition of X̃XXJ,J . We can derive that

⟨MMMJ,J − ρẑzzẑzz⊤, X̃XXJ,J⟩ = ⟨MMMJ,J − ρẑzzẑzz⊤,
∑
i∈J

θivvvivvv
⊤
i ⟩ =

∑
i∈J

θivvv
⊤
i (MMMJ,J − ρẑzzẑzz⊤)vvvi ≤ λ1(MMMJ,J − ρẑzzẑzz⊤)

where the last inequality holds since
∑
i∈J θi = tr(X̃XXJ,J) = 1 and vvv⊤i (MMMJ,J − ρẑzzẑzz⊤)vvvi ≤ λ1(MMMJ,J − ρẑzzẑzz⊤). Here, the

equality holds only if θ1 = 1, θi = 0 for i ̸= 1 and vvv1 = x̂xx, that is, X̃XXJ,J = x̂xxx̂xx⊤. Therefore, ⟨MMMJ,J − ρẑzzẑzz⊤, X̃XXJ,J⟩ <
λ1(MMMJ,J − ρẑzzẑzz⊤) for any matrix X̃XXJ,J ̸= x̂xxx̂xx⊤ such that X̃XXJ,J ⪰ 0 and tr(X̃XXJ,J) = 1.

With this fact, we can derive that

⟨MMMJ,J , X̂XXJ,J⟩ − ρ∥X̂XXJ,J∥1,1 = x̂xx⊤(MMMJ,J − ρẑzzẑzz⊤)x̂xx = λ1(MMMJ,J − ρẑzzẑzz⊤)

> ⟨MMMJ,J − ρẑzzẑzz⊤, X̃XXJ,J⟩ = ⟨MMMJ,J − ρZ̃ZZJ,J , X̃XXJ,J⟩+ ρ⟨Z̃ZZJ,J − ẑzzẑzz⊤, X̃XXJ,J⟩

= ⟨MMMJ,J , X̃XXJ,J⟩ − ρ∥X̃XXJ,J∥1,1 + ρ⟨Z̃ZZJ,J − ẑzzẑzz⊤, X̃XXJ,J⟩.

Since ⟨MMMJ,J , X̂XXJ,J⟩ − ρ∥X̂XXJ,J∥1,1 = ⟨MMMJ,J , X̃XXJ,J⟩ − ρ∥X̃XXJ,J∥1,1 by the assumption, the above inequality implies
⟨Z̃ZZJ,J − ẑzzẑzz⊤, X̃XXJ,J⟩ < 0, that is, ⟨Z̃ZZJ,J , X̃XXJ,J⟩ < ⟨ẑzzẑzz⊤, X̃XXJ,J⟩. This contradicts the fact that ⟨Z̃ZZJ,J , X̃XXJ,J⟩ =

sup∥ZZZJ,J∥max≤1⟨ZZZJ,J , X̃XXJ,J⟩, and thus the desired result holds.

Step 2: Deriving Sufficient Conditions for (6)-(9)

Lemma 2 (Sufficient Condition for (6)). If the following inequality holds:

∥MMM∗
J,J∥2 · ψ(GJ,J) + 2σ

√
∆max(GJ,J) log s+ sρ ≤

ϕ(GJ,J)λ̄(MMM∗
J,J) ·mini∈J |u1,i|
2
√
2s

,

then the condition (6) holds, that is, sign(u1,i) = sign(x̂i) for all i ∈ J or sign(u1,i) = −sign(x̂i) for all i ∈ J , with
probability at least 1− 2s−1.

Proof. By applying the Davis-Kahan sinΘ theorem, we obtain

∥uuu1 − x̂xx∥2 or ∥uuu1 + x̂xx∥2 ≤ 2
√
2

λ̄(MMM∗
J,J)

· ∥MMM∗
J,J − s

ϕ(GJ,J)
(MMMJ,J − ρẑzzẑzz⊤)∥2.

By the triangle inequality, Lemma 5 and Theorem 3, we can upper bound

∥MMM∗
J,J − s

ϕ(GJ,J)
(MMMJ,J − ρẑzzẑzz⊤)∥2 ≤ ∥MMM∗

J,J − s

ϕ(GJ,J)
E[MMMJ,J ]∥2 +

s

ϕ(GJ,J)
∥E[MMMJ,J ]−MMMJ,J∥2 +

s2ρ

ϕ(GJ,J)

≤ ∥MMM∗
J,J − s

ϕ(GJ,J)
(AAAG)J,J ◦MMM∗

J,J∥2 +
s

ϕ(GJ,J)
· 2σ

√
∆max(GJ,J) log s+

s2ρ

ϕ(GJ,J)

≤ sψ(GJ,J)
ϕ(GJ,J)

· ∥MMM∗
J,J∥2 +

s

ϕ(GJ,J)
· 2σ

√
∆max(GJ,J) log s+

s2ρ

ϕ(GJ,J)

with probability at least 1− 2s−1.

Now, we have that

∥uuu1 − x̂xx∥2 or ∥uuu1 + x̂xx∥2 ≤ 2
√
2

λ̄(MMM∗
J,J)

·
{
sψ(GJ,J)
ϕ(GJ,J)

· ∥MMM∗
J,J∥2 +

s

ϕ(GJ,J)
· 2σ

√
∆max(GJ,J) log s+

s2ρ

ϕ(GJ,J)

}
.

By Lemma 7, if

2
√
2

λ̄(MMM∗
J,J)

·
{
sψ(GJ,J)
ϕ(GJ,J)

· ∥MMM∗
J,J∥2 +

s

ϕ(GJ,J)
· 2σ

√
∆max(GJ,J) log s+

s2ρ

ϕ(GJ,J)

}
≤ min

i∈J
|u1,i|,
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that is,

∥MMM∗
J,J∥2 · ψ(GJ,J) + 2σ

√
∆max(GJ,J) log s+ sρ ≤

ϕ(GJ,J)λ̄(MMM∗
J,J) ·mini∈J |u1,i|
2
√
2s

,

then sign(u1,i) = sign(x̂i) for all i ∈ J or sign(u1,i) = −sign(x̂i) for all i ∈ J with probability at least 1− 2s−1.

Lemma 3 (Sufficient Condition for (7)). Let ẐZZJc,J = 1
ρ∥x̂xx∥1

MMMJc,Jx̂xxẑzz
⊤. Then it satisfies (MMMJc,J − ρẐZZJc,J)x̂xx = 0. Also, if

the following inequality holds:

2σ
√
∆max(GJ,Jc) log d+ ∥MMM∗

Jc,J∥max < ρ,

then ∥ẐZZJc,J∥max < 1 with probability at least 1− 2d−1.

Proof. First, we can derive the upper bound of ∥ẐZZJc,J∥max as follows:

∥ẐZZJc,J∥max =
1

ρ∥x̂xx∥1
∥MMMJc,Jx̂xxẑzz

⊤∥max =
1

ρ∥x̂xx∥1
·max
i∈Jc

∣∣∣∣∑
j∈J

Mi,j x̂j

∣∣∣∣
≤ 1

ρ∥x̂xx∥1
·
(
max
i∈Jc

max
j∈J

|Mi,j |
)
·
∑
j∈J

|x̂j | =
1

ρ
· ∥MMMJc,J∥max

=
1

ρ
· ∥MMMJc,J − E[MMMJc,J ] + E[MMMJc,J ]∥max

≤ 1

ρ
· ∥MMMJc,J − E[MMMJc,J ]∥max +

1

ρ
· ∥E[MMMJc,J ]∥max

≤ 1

ρ
· 2σ

√
∆max(GJ,Jc) log d+

1

ρ
· ∥MMM∗

Jc,J∥max

where the last inequality holds with probability at least 1− 2d−1, by Lemma 5. Hence, if the following inequality holds:

2σ
√
∆max(GJ,Jc) log d+ ∥MMM∗

Jc,J∥max < ρ,

then ∥ẐZZJc,J∥max < 1 with probability at least 1− 2d−1.

Lemma 4 (Sufficient Condition for (8),(9)). Let ẐZZJc,Jc = 1
ρ

(
MMMJc,Jc − E[MMMJc,Jc ]

)
. If the condition in Lemma 2 holds

and the following inequalities hold:

(1 + ξ) ·
(
2σ
√

∆max(GJ,Jc) log d+ ∥MMM∗
Jc,J∥2

)
· (1 +

√
s) ≤ ϕ(GJ,J)

2s
· λ̄(MMM∗

J,J) ·
(
1− 1√

2
min
i∈J

|u1,i|
)
,

(1 + ξ) · ∥MMM∗
Jc,Jc∥2 ≤ ϕ(GJ,J)

2s
· λ̄(MMM∗

J,J) ·
(
1− 1

2
√
2
min
i∈J

|u1,i|
)
,

2σ
√
∆max(GJc,Jc) log d < ρ,

then λ1(MMMJ,J − ρẑzzẑzz⊤) = λ1(MMM − ρẐZZ), λ1(MMMJ,J − ρẑzzẑzz⊤) > λ2(MMMJ,J − ρẑzzẑzz⊤) and ∥ZZZJc,Jc∥max < 1 with probability
at least 1 − 2s−1 − 4d−1. Here, ξ ≥ 0 is a constant satisfying ∥(AAAG)Jc,J ◦MMM∗

Jc,J∥2 ≤ (1 + ξ) · ∥MMM∗
Jc,J∥2 and

∥(AAAG)Jc,Jc ◦MMM∗
Jc,Jc∥2 ≤ (1 + ξ) · ∥MMM∗

Jc,Jc∥2.

Proof. Lemma 8 shows that if the following inequality holds:

∥MMMJc,J − ρẐZZJc,J∥22︸ ︷︷ ︸
=:a1

≤
{
λ1(MMMJ,J − ρẑzzẑzz⊤)− λ2(MMMJ,J − ρẑzzẑzz⊤)

}︸ ︷︷ ︸
=:a2

·
{
λ1(MMMJ,J − ρẑzzẑzz⊤)− λ1(MMMJc,Jc − ρẐZZJc,Jc)

}︸ ︷︷ ︸
=:a3

,

then λ1(MMMJ,J − ρẑzzẑzz⊤) = λ1(MMM − ρẐZZ).
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Upper Bound of a1:

∥MMMJc,J − ρẐZZJc,J∥2 =

∥∥∥∥MMMJc,J − ρ · 1

ρ∥x̂xx∥1
MMMJc,Jx̂xxẑzz

⊤
∥∥∥∥
2

=

∥∥∥∥MMMJc,J ·
(
I − x̂xxẑzz⊤

∥x̂xx∥1

)∥∥∥∥
2

≤ ∥MMMJc,J∥2 ·
∥∥∥∥I − x̂xxẑzz⊤

∥x̂xx∥1

∥∥∥∥
2

≤ ∥MMMJc,J∥2 ·
(
1 +

∥x̂xx∥2∥ẑzz∥2
∥x̂xx∥1

)
≤ ∥MMMJc,J∥2 · (1 +

√
s)

= ∥MMMJc,J − E[MMMJc,J ] + E[MMMJc,J ]∥2 · (1 +
√
s)

≤
(
∥MMMJc,J − E[MMMJc,J ]∥2 + ∥(AAAG)Jc,J ◦MMM∗

Jc,J∥2
)
· (1 +

√
s)

≤
(
2σ
√
∆max(GJ,Jc) log d+ (1 + ξ) · ∥MMM∗

Jc,J∥2
)
· (1 +

√
s)

≤ (1 + ξ) ·
(
2σ
√
∆max(GJ,Jc) log d+ ∥MMM∗

Jc,J∥2
)
· (1 +

√
s)

where the penultimate inequality holds with probability at least 1− 2d−1, by Lemma 5.

Lower Bound of a2: By Weyl’s inequality,

λ1(MMMJ,J − ρẑzzẑzz⊤)− λ2(MMMJ,J − ρẑzzẑzz⊤)

≥ ϕ(GJ,J)
s

· λ1(MMM∗
J,J)−

ϕ(GJ,J)
s

· λ2(MMM∗
J,J)− 2 · ∥ϕ(GJ,J)

s
MMM∗

J,J −MMMJ,J + ρẑzzẑzz⊤∥2

≥ ϕ(GJ,J)
s

· λ̄(MMM∗
J,J)−

2ϕ(GJ,J)λ̄(MMM∗
J,J) ·mini∈J |u1,i|
2
√
2s

=
ϕ(GJ,J)

s
· λ̄(MMM∗

J,J) ·
(
1− 1√

2
min
i∈J

|u1,i|
)

where the second inequality holds with probability at least 1− 2s−1, by Lemma 2.

Lower Bound of a3: Finally, in a similar way to the above, we have that

λ1(MMMJ,J − ρẑzzẑzz⊤) ≥ ϕ(GJ,J)
s

· λ1(MMM∗
J,J)− ∥ϕ(GJ,J)

s
MMM∗

J,J −MMMJ,J + ρẑzzẑzz⊤∥2

≥ ϕ(GJ,J)
s

· λ̄(MMM∗
J,J)−

ϕ(GJ,J)λ̄(MMM∗
J,J) ·mini∈J |u1,i|
2
√
2s

=
ϕ(GJ,J)

s
· λ̄(MMM∗

J,J) ·
(
1− 1

2
√
2
min
i∈J

|u1,i|
)

with probability at least 1− 2s−1. Also, since ẐZZJc,Jc = 1
ρ

(
MMMJc,Jc − E[MMMJc,Jc ]

)
,

λ1(MMMJc,Jc − ρẐZZJc,Jc) = λ1(E[MMMJc,Jc ]) = λ1((AAAG)Jc,Jc ◦MMM∗
Jc,Jc) ≤ (1 + ξ) · ∥MMM∗

Jc,Jc∥2.

Hence, a3 is lower-bounded by ϕ(GJ,J )
s · λ̄(MMM∗

J,J) ·
(
1− 1

2
√
2
mini∈J |u1,i|

)
− (1 + ξ) · ∥MMM∗

Jc,Jc∥2.

By using the bounds of a1, a2 and a3, we can derive that if the following inequalities hold:

(1 + ξ) · (2σ
√
∆max(GJ,Jc) log d+ ∥MMM∗

Jc,J∥2) · (1 +
√
s) ≤ ϕ(GJ,J)

2s
· λ̄(MMM∗

J,J) ·
(
1− 1√

2
min
i∈J

|u1,i|
)
,

(1 + ξ) · ∥MMM∗
Jc,Jc∥2 ≤ ϕ(GJ,J)

2s
· λ̄(MMM∗

J,J) ·
(
1− 1

2
√
2
min
i∈J

|u1,i|
)
,

then λ1(MMMJ,J − ρẑzzẑzz⊤) = λ1(MMM − ρẐZZ) with probability at least 1− 2s−1 − 2d−1.
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Lastly, by using the lower bound of a2, we can derive that if λ̄(MMM∗
J,J) > 0, then λ1(MMMJ,J − ρẑzzẑzz⊤) > λ2(MMMJ,J − ρẑzzẑzz⊤)

holds with probability at least 1− 2s−1. Note that λ̄(MMM∗
J,J) > 0 holds because λ̄(MMM∗

J,J) ≥ λ̄(MMM∗) > 0 by our problem
definition. Also, by using Lemma 5, we can see that if 2σ

√
∆max(GJc,Jc) log d < ρ, then ∥ZZZJc,Jc∥max = 1

ρ∥MMMJc,Jc −
E[MMMJc,Jc ]∥max ≤ 2σ

ρ

√
∆max(GJc,Jc) log d < 1 holds with probability at least 1− 2d−1.

Step 3: Final Result

By above lemmas, we can show the following theorem, which is the formal version of Theorem 1 in the main text.

Theorem 4. Under the problem definition in Section 2, assume that the following inequalities hold:

∥MMM∗
J,J∥2 · ψ(GJ,J) + 2σ

√
∆max(GJ,J) log s+ sρ ≤

ϕ(GJ,J)λ̄(MMM∗
J,J) ·mini∈J |u1,i|
2
√
2s

,

2σ
√
∆max(GJ,Jc) log d+ ∥MMM∗

Jc,J∥max < ρ,

(1 + ξ) ·
(
2σ
√

∆max(GJ,Jc) log d+ ∥MMM∗
Jc,J∥2

)
· (1 +

√
s) ≤ ϕ(GJ,J)

2s
· λ̄(MMM∗

J,J) ·
(
1− 1√

2
min
i∈J

|u1,i|
)
,

(1 + ξ) · ∥MMM∗
Jc,Jc∥2 ≤ ϕ(GJ,J)

2s
· λ̄(MMM∗

J,J) ·
(
1− 1

2
√
2
min
i∈J

|u1,i|
)
,

2σ
√
∆max(GJc,Jc) log d < ρ,

where ξ ≥ 0 is a constant satisfying ∥(AAAG)Jc,J ◦MMM∗
Jc,J∥2 ≤ (1 + ξ) · ∥MMM∗

Jc,J∥2 and ∥(AAAG)Jc,Jc ◦MMM∗
Jc,Jc∥2 ≤

(1 + ξ) · ∥MMM∗
Jc,Jc∥2. Then X̂XX :=

(
x̂xxx̂xx⊤ 0
0 0

)
with x̂xx defined in (5) is a unique optimal solution to the problem (1), and it

satisfies supp(diag(X̂XX)) = J , with probability at least 1− 2s−1 − 4d−1.

Consider the following choice of the tuning parameter ρ:

ρ = 2σ
√

max
{
∆max(GJ,Jc),∆max(GJc,Jc)

}
log d+ ∥MMM∗

Jc,J∥max. (10)

Then it suffices to satisfy

∥MMM∗
J,J∥2 · ψ(GJ,J) + 2σ

√
∆max(GJ,J) log s+ 2σs

√
max

{
∆max(GJ,Jc),∆max(GJc,Jc)

}
log d+ s∥MMM∗

Jc,J∥max

≤
ϕ(GJ,J)λ̄(MMM∗

J,J) ·mini∈J |u1,i|
2
√
2s

,

(1 + ξ) ·
(
2σ
√
∆max(GJ,Jc) log d+ ∥MMM∗

Jc,J∥2
)
· (1 +

√
s) ≤ ϕ(GJ,J)

2s
· λ̄(MMM∗

J,J) ·
(
1− 1√

2
min
i∈J

|u1,i|
)
,

(1 + ξ) · ∥MMM∗
Jc,Jc∥2 ≤ ϕ(GJ,J)

2s
· λ̄(MMM∗

J,J) ·
(
1− 1

2
√
2
min
i∈J

|u1,i|
)
.

Note that mini∈J |u1,i| ≤ 1√
s
. Hence, the second and third inequalities are satisfied when

2σ
√
∆max(GJ,Jc) log d+ ∥MMM∗

Jc,J∥2 ≤
c1ϕ(GJ,J)λ̄(MMM∗

J,J)mini∈J |u1,i|
s

,

1√
s
· ∥MMM∗

Jc,Jc∥2 ≤
c2ϕ(GJ,J)λ̄(MMM∗

J,J)mini∈J |u1,i|
s

for some constants c1, c2 > 0. Therefore, the sufficient conditions hold if

∥MMM∗
J,J∥2 · ψ(GJ,J) + σ

√
∆max(GJ,J) log s+ σs

√
max

{
∆max(GJ,Jc),∆max(GJc,Jc)

}
log d

+ s∥MMM∗
Jc,J∥2 +

1√
s
∥MMM∗

Jc,Jc∥2 ≤
cϕ(GJ,J)λ̄(MMM∗

J,J) ·mini∈J |u1,i|
s

,

with some constant c > 0. Since λ̄(MMM∗
J,J) ≥ λ̄(MMM∗), we can replace λ̄(MMM∗

J,J) by λ̄(MMM∗).
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8 PROOF OF THEOREM 2

We make use of the following theorem to prove Theorem 2.

Theorem 5 (Master Tail Bound for Independent Sums (Theorem 3.6 in Tropp [2012])). Consider a finite sequence {ZZZl}ml=1

of independent, random, symmetric matrices. For all t ∈ R,

P
[
λ1

( m∑
l=1

ZZZl

)
≥ t

]
≤ inf
θ>0

{
e−θt · trexp

( m∑
l=1

logEeθZZZl

)}
.

If ZZZl and −ZZZl have the same distribution for all l, then for any t ≥ 0,

P
[∥∥∥ m∑

l=1

ZZZl

∥∥∥
2
≥ t

]
≤ 2 · inf

θ>0

{
e−θt · trexp

( m∑
l=1

logEeθZZZl

)}
.

The following theorem is a comprehensive version of Theorem 2, which includes the result of the symmetric random matrix
case.

Theorem 6 (Tail Bound for Partial Random Matrix with Independent Sub-Gaussian Entries). Consider a m× n random
matrix ZZZ whose subset of entries independently follow sub-Gaussian distributions which are symmetric about zero and have
parameter σ > 0, while the other entries are zero. That is, there exists an index set S ⊆ {(i, j) | i ∈ [m], j ∈ [n]} such that
for i ∈ [m] and j ∈ [n],

Zi,j =

{
Ni,j if (i, j) ∈ S

0 if (i, j) /∈ S

where each Ni,j is symmetric about zero and satisfies EeθNi,j ≤ e
σ2θ2

2 for any θ > 0. Then for any t ≥ 0,

P[∥ZZZ∥2 ≥ t] ≤ 2(m+ n) · exp
(
− t2

2σ2∆max(GS)

)
,

where GS is a bipartite graph whose vertex and edge sets are [m]× [n] and S, respectively. This inequality implies that

∥ZZZ∥2 ≤ 2σ
√
∆max(GS) log(m+ n)

with probability at least 1− 2(m+ n)−1.

If ZZZ is a symmetric matrix with dimension n, then for any t ≥ 0,

P[∥ZZZ∥2 ≥ t] ≤ 2n · exp
(
− t2

2σ2∆max(GS)

)
,

where GS is an undirected graph whose vertex and edge sets are [n] and S, respectively. This implies that

∥ZZZ∥2 ≤ 2σ
√
∆max(GS) log n

with probability at least 1− 2n−1.

Proof. We first consider the case that ZZZ is a symmetric matrix with dimension n. We can write ZZZ as follows:

ZZZ =
∑

i,j∈[n]:(i,j)∈S

Ni,jeeeieee
⊤
j

=
∑

i,j∈[n],i<j:
(i,j)∈S

Ni,j(eeeieee
⊤
j + eeejeee

⊤
i )︸ ︷︷ ︸

=:WWW i,j

+
∑
i∈[n]:
(i,j)∈S

Ni,ieeeieee
⊤
i︸ ︷︷ ︸

=:WWW i,i

,
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which can be viewed as a sum of independent, symmetric matrices {WWW i,j}i≤j,(i,j)∈S . We first note that for any θ > 0 and
i, j ∈ [n] such that i < j,

eθWWW i,j = III +

∞∑
k=1

(θWWW i,j)
k

k!

= III +

∞∑
k=1

(θNi,j)
2k

(2k)!
(eeeieee

⊤
j + eeejeee

⊤
i )

2k +

∞∑
k=1

(θNi,j)
2k−1

(2k − 1)!
(eeeieee

⊤
j + eeejeee

⊤
i )

2k−1

= III +

∞∑
k=1

(θNi,j)
2k

(2k)!
(eeeieee

⊤
i + eeejeee

⊤
j ) +

∞∑
k=1

(θNi,j)
2k−1

(2k − 1)!
(eeeieee

⊤
j + eeejeee

⊤
i )

= III +

(
eθNi,j + e−θNi,j

2
− 1

)
· (eeeieee⊤i + eeejeee

⊤
j ) +

(
eθNi,j − e−θNi,j

2

)
· (eeeieee⊤j + eeejeee

⊤
i ),

and for i ∈ [n],

eθWWW i,i = III +

∞∑
k=1

(θWWW i,i)
k

k!
= III +

∞∑
k=1

(θNi,i)
k

k!
(eeeieee

⊤
i )

k

= III +

∞∑
k=1

(θNi,i)
k

k!
eeeieee

⊤
i = III +

(
eθNi,i − 1

)
· eeeieee⊤i .

These quantities have the expectations as follows:

EeθWWW i,j = III + (EeθNi,j − 1) · (eeeieee⊤i + eeejeee
⊤
j )

EeθWWW i,i = III + (EeθNi,i − 1) · eeeieee⊤i

where the fact that EeθNi,j = Ee−θNi,j is used, which is because each Ni,j is symmetric about zero. Note that each EeθWWW i,j

(EeθWWW i,i , resp.) is a diagonal matrix whose i-th and j-th (i-th, resp.) diagonal entries are EeθNi,j (EeθNi,i , resp.) while the
other diagonal entries are 1. Now we can write the summation of the logarithms of the expectations as follows:

∑
i,j∈[n],i<j:

(i,j)∈S

logEeθWWW i,j +
∑
i∈[n]:
(i,j)∈S

logEeθWWW i,i = log

( ∏
i,j∈[n],i<j:

(i,j)∈S

EeθWWW i,j ·
∏
i∈[n]:
(i,j)∈S

EeθWWW i,i

)

= log

(∑
i∈[n]

( ∏
j∈[n],(i,j)∈S

EeθNi,j

)
· eeeieee⊤i

)

where the first equality holds because EeθWWW i,j ’s and EeθWWW i,i ’s are positive definite and commute. Hence,

trexp
( ∑
i,j∈[n],i<j:

(i,j)∈S

logEeθWWW i,j +
∑
i∈[n]:
(i,j)∈S

logEeθWWW i,i

)
= trexp log

(∑
i∈[n]

( ∏
j∈[n],(i,j)∈S

EeθNi,j

)
· eeeieee⊤i

)

= tr

(∑
i∈[n]

( ∏
j∈[n],(i,j)∈S

EeθNi,j

)
· eeeieee⊤i

)
=
∑
i∈[n]

( ∏
j∈[n],(i,j)∈S

EeθNi,j

)
.

Therefore, we have that

inf
θ>0

{
e−θt · trexp

( ∑
i,j∈[n],i<j:

(i,j)∈S

logEeθWWW i,j +
∑
i∈[n]:
(i,j)∈S

logEeθWWW i,i

)}
= inf
θ>0

{
e−θt ·

∑
i∈[n]

( ∏
j∈[n],(i,j)∈S

EeθNi,j

)}
.
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Since EeθNi,j ≤ e
σ2θ2

2 for any θ > 0 and i, j ∈ [n], we can derive that

inf
θ>0

{
e−θt ·

∑
i∈[n]

( ∏
j∈[n],(i,j)∈S

EeθNi,j

)}
≤ inf
θ>0

{
e−θt ·

∑
i∈[n]

exp
(σ2θ2#{j ∈ [n] ; (i, j) ∈ S}

2

)}

≤ inf
θ>0

{
e−θt · n · exp

(σ2θ2 maxi∈[n] #{j ∈ [n] ; (i, j) ∈ S}
2

)}
= inf
θ>0

{
n · exp

(σ2θ2∆max(GS)
2

− θt
)}

= n · exp
(
− t2

2σ2∆max(GS)

)
.

Therefore, by Theorem 5,

P
[
∥ZZZ∥2 ≥ t

]
≤ 2n · exp

(
− t2

2σ2∆max(GS)

)
.

Next, when ZZZ is m× n matrix, we use the fact that ∥ZZZ∥2 =

∥∥∥∥( OOO ZZZ
ZZZ⊤ OOO

)∥∥∥∥
2

. We can write that

(
OOO ZZZ
ZZZ⊤ OOO

)
=

∑
i∈[m],j∈[n]:

(i,j)∈S

Ni,j(eeeieee
⊤
j + eeejeee

⊤
i )︸ ︷︷ ︸

=:WWW i,j

which can be viewed as a sum of independent, symmetric matrices {WWW i,j}i∈[m],j∈[n],(i,j)∈S . As we have shown before,
EeθWWW i,j = III + (EeθNi,j − 1) · (eeeieee⊤i + eeejeee

⊤
j ), and we can derive that

∑
i∈[m],j∈[n]:

(i,j)∈S

logEeθWWW i,j = log

( ∏
i∈[m],j∈[n]:

(i,j)∈S

EeθWWW i,j

)

= log

( ∑
i∈[m]

[ ∏
j∈[n],(i,j)∈S

EeθNi,j

]
· eeeieee⊤i +

∑
i∈[n]

[ ∏
j∈[m],(i,j)∈S

EeθNi,j

]
· eeeieee⊤i

)
.

Hence,

trexp
( ∑
i∈[m],j∈[n]:

(i,j)∈S

logEeθWWW i,j

)
= tr

( ∑
i∈[m]

[ ∏
j∈[n],(i,j)∈S

EeθNi,j

]
· eeeieee⊤i +

∑
i∈[n]

[ ∏
j∈[m],(i,j)∈S

EeθNi,j

]
· eeeieee⊤i

)

=
∑
i∈[m]

[ ∏
j∈[n],(i,j)∈S

EeθNi,j

]
+
∑
i∈[n]

[ ∏
j∈[m],(i,j)∈S

EeθNi,j

]
,

and we have that

inf
θ>0

{
e−θt · trexp

( ∑
i∈[m],j∈[n]:

(i,j)∈S

logEeθWWW i,j

)}

= inf
θ>0

{
e−θt ·

( ∑
i∈[m]

[ ∏
j∈[n],(i,j)∈S

EeθNi,j

]
+
∑
i∈[n]

[ ∏
j∈[m],(i,j)∈S

EeθNi,j

])}
.
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Since EeθNi,j ≤ e
σ2θ2

2 for any θ > 0 and i, j, we can derive that

inf
θ>0

{
e−θt ·

( ∑
i∈[m]

[ ∏
j∈[n],(i,j)∈S

EeθNi,j

]
+
∑
i∈[n]

[ ∏
j∈[m],(i,j)∈S

EeθNi,j

])}

≤ inf
θ>0

{
e−θt ·

[
m · exp

(σ2θ2 maxi∈[m] #{j ∈ [n] ; (i, j) ∈ S}
2

)
+ n · exp

(σ2θ2 maxi∈[n] #{j ∈ [m] ; (i, j) ∈ S}
2

)]}
≤ inf
θ>0

{
e−θt · (m+ n) · exp

(σ2θ2∆max(GS)
2

)}
= (m+ n) · exp

(
− t2

2σ2∆max(GS)

)
.

Therefore, by Theorem 5,

P
[
∥ZZZ∥2 ≥ t

]
≤ 2(m+ n) · exp

(
− t2

2σ2∆max(GS)

)
.

Lemma 5. When each Ni,j is symmetric about zero and satisfies EeθNi,j ≤ e
σ2θ2

2 for any θ > 0,

∥E[MMMJ,J ]−MMMJ,J∥2 = ∥(AAAG)J,J ◦NNNJ,J∥2 ≤ 2σ
√

∆max(GJ,J) log s with probability at least 1− 2s−1,

∥E[MMMJc,J ]−MMMJc,J∥2 = ∥(AAAG)Jc,J ◦NNNJc,J∥2 ≤ 2σ
√

∆max(GJ,Jc) log d with probability at least 1− 2d−1,

∥E[MMMJc,Jc ]−MMMJc,Jc∥2 = ∥(AAAG)Jc,Jc ◦NNNJc,Jc∥2 ≤ 2σ
√

∆max(GJc,Jc) log d with probability at least 1− 2d−1.

Proof. Straightforwardly, the inequalities are obtained by invoking Theorem 6.

Lemma 6. Suppose that the matrixMMM∗ is a covariance matrix, andXXX1, . . . ,XXXn are drawn from the multivariate normal
distribution, Nd(000,MMM∗). Assume that n > d. Consider that we observe an incomplete sample covariance matrix, MMM =
AAAG ◦ ( 1n

∑
i∈[n]XXXiXXX

⊤
i ). DefineNNN =MMM∗ − 1

n

∑
i∈[n]XXXiXXX

⊤
i . Then, we have

∥E[MMMJ,J ]−MMMJ,J∥2 = ∥(AAAG)J,J ◦NNNJ,J∥2 ≤ 2σ̃
√
∆max(GJ,J) log s with probability at least 1−O(s−1),

∥E[MMMJc,J ]−MMMJc,J∥2 = ∥(AAAG)Jc,J ◦NNNJc,J∥2 ≤ 2σ̃
√
∆max(GJ,Jc) log d with probability at least 1−O(d−1),

∥E[MMMJc,Jc ]−MMMJc,Jc∥2 = ∥(AAAG)Jc,Jc ◦NNNJc,Jc∥2 ≤ 2σ̃
√
∆max(GJc,Jc) log d with probability at least 1−O(d−1),

where σ̃ = ∥MMM∗∥2 ·
√
d log d logn√

n
.

Proof. By using Theorem 1.1 in Chen et al. [2012] and Markov’s inequality, we can derive that for any t > 0,

P
[
∥(AAAG)J,J ◦NNNJ,J∥22 ≥ t2

]
≤ C

t2
·
{√

∥MMM∗∥max

∥MMM∗∥2
· ∆max(GJ,J) log s

n
+

∥MMM∗∥max

∥MMM∗∥2
· ∆max(GJ,J) log s log(ns)

n

}2

· ∥MMM∗∥22

for some positive constant C. Let t = 1
2

{√
∥MMM∗∥max

∥MMM∗∥2
· ∆max(GJ,J ) log s

n + ∥MMM∗∥max

∥MMM∗∥2
· ∆max(GJ,J ) log s log(ns)

n

}
· ∥MMM∗∥2 ·

√
s.
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Then, with probability at least 1−O(s−1),

∥(AAAG)J,J ◦NNNJ,J∥2 ≤ 1

2

{√
∥MMM∗∥max

∥MMM∗∥2
· ∆max(GJ,J) log s

n
+

∥MMM∗∥max

∥MMM∗∥2
· ∆max(GJ,J) log s log(ns)

n

}
· ∥MMM∗∥2 ·

√
s

=
√

∆max(GJ,J) log s · ∥MMM∗∥2 ·
1

2

{√
∥MMM∗∥max

∥MMM∗∥2
· s
n
+

∥MMM∗∥max

∥MMM∗∥2
·
√
s∆max(GJ,J) log s log(ns)

n

}

≤
√
∆max(GJ,J) log s · ∥MMM∗∥2 ·

√
s

n
· 1
2

{
1 +

√
∆max(GJ,J)

n
·
√

log s log(ns)

}
≤
√
∆max(GJ,J) log s · ∥MMM∗∥2 ·

√
s

n
· 1
2

{
1 + 2

√
log s log n

}
≤ 2
√
∆max(GJ,J) log s · ∥MMM∗∥2 ·

√
s log s log n√

n
.

In a similar way, we can derive that with probability at least 1−O(d−1),

∥(AAAG)Jc,J ◦NNNJc,J∥2 ≤ 2
√

∆max(GJ,Jc) log d · ∥MMM∗∥2 ·
√
d log d log n√

n

and

∥(AAAG)Jc,Jc ◦NNNJc,Jc∥2 ≤ 2
√

∆max(GJc,Jc) log d · ∥MMM∗∥2 ·
√
d log d log n√

n
.

9 PROOF OF THEOREM 3

For simplicity, let ϕ = ϕ(G) and ψ = ψ(G) in this proof. First, note that

∥YYY − n

ϕ
·AAAG ◦ YYY ∥2 = max

∥yyy∥2=1

∣∣∣∣yyy⊤{ ∑
k∈[r]

λk(YYY )vvvkvvv
⊤
k − n

ϕ

∑
k∈[r]

λk(YYY )(vvvkvvv
⊤
k ◦AAAG)

}
yyy

∣∣∣∣
≤ max

∥yyy∥2=1

∑
k∈[r]

|λk(YYY )| ·
∣∣∣yyy⊤{vvvkvvv⊤k − n

ϕ
(vvvkvvv

⊤
k ◦AAAG)

}
yyy
∣∣∣

= max
∥yyy∥2=1

∑
k∈[r]

|λk(YYY )| ·
∣∣∣(yyy⊤vvvk)2 − n

ϕ
(yyy ◦ vvvk)⊤AAAG(yyy ◦ vvvk)

∣∣∣. (11)

Now, we will find the upper and lower bounds of (yyy⊤vvvk)2 − n
ϕ (yyy ◦ vvvk)

⊤AAAG(yyy ◦ vvvk). Note that we can write yyy ◦ vvvk =

yyy⊤vvvk
n · 111 +

√
(yyy ◦ vvvk)⊤(yyy ◦ vvvk)− (yyy⊤vvvk)2

n · 111⊥ with 111 = (1, 1, . . . , 1)⊤ ∈ Rn and 111⊥ ∈ Rn where 111⊥ is some unit vector
orthogonal to 111. First, we derive the lower bound of (yyy⊤vvvk)2 − n

ϕ (yyy ◦ vvvk)
⊤AAAG(yyy ◦ vvvk) as follows:

(yyy⊤vvvk)
2 − n

ϕ
(yyy ◦ vvvk)⊤AAAG(yyy ◦ vvvk) = (yyy⊤vvvk)

2 − n

ϕ
(yyy ◦ vvvk)⊤(AAAG −DDDG +DDDG)(yyy ◦ vvvk)

= (yyy⊤vvvk)
2 +

n

ϕ
(yyy ◦ vvvk)⊤(DDDG −AAAG)(yyy ◦ vvvk)−

n

ϕ
(yyy ◦ vvvk)⊤DDDG(yyy ◦ vvvk)

= (yyy⊤vvvk)
2 +

n

ϕ
·
{
(yyy ◦ vvvk)⊤(yyy ◦ vvvk)−

(yyy⊤vvvk)
2

n

}
111⊤⊥(DDDG −AAAG)111⊥ − n

ϕ
(yyy ◦ vvvk)⊤DDDG(yyy ◦ vvvk)

≥ (yyy⊤vvvk)
2 +

n

ϕ
·
{
(yyy ◦ vvvk)⊤(yyy ◦ vvvk)−

(yyy⊤vvvk)
2

n

}
ϕ− n

ϕ
(yyy ◦ vvvk)⊤(yyy ◦ vvvk)∆max

=
n(ϕ−∆max)

ϕ
· (yyy ◦ vvvk)⊤(yyy ◦ vvvk) (12)
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where ∆max = ∆max(G) andDDDG is a diagonal matrix whose diagonal entries are the node degrees ofAAAG . Similarly, we can
derive the upper bound as follows:

(yyy⊤vvvk)
2 − n

ϕ
(yyy ◦ vvvk)⊤AAAG(yyy ◦ vvvk)

= (yyy⊤vvvk)
2 − n

ϕ
(yyy ◦ vvvk)⊤(AAAG − 111111⊤ +111111⊤ + nIII −DDDG − nIII +DDDG)(yyy ◦ vvvk)

= (yyy⊤vvvk)
2 − n

ϕ
(yyy ◦ vvvk)⊤111111⊤(yyy ◦ vvvk)−

n

ϕ
(yyy ◦ vvvk)⊤(AAAG − 111111⊤ + nIII −DDDG)(yyy ◦ vvvk)

+
n

ϕ
(yyy ◦ vvvk)⊤(nIII −DDDG)(yyy ◦ vvvk)

=
ϕ− n

ϕ
(yyy⊤vvvk)

2 − n

ϕ
·
{
(yyy ◦ vvvk)⊤(yyy ◦ vvvk)−

(yyy⊤vvvk)
2

n

}
111⊤⊥(AAAG − 111111⊤ + nIII −DDDG)111⊥

+
n

ϕ
(yyy ◦ vvvk)⊤(nIII −DDDG)(yyy ◦ vvvk)

≤ ϕ− n

ϕ
(yyy⊤vvvk)

2 − n

ϕ
·
{
(yyy ◦ vvvk)⊤(yyy ◦ vvvk)−

(yyy⊤vvvk)
2

n

}
ϕ(G) + n

ϕ
(yyy ◦ vvvk)⊤(yyy ◦ vvvk)(n−∆min)

=
ϕ− (n− ϕ(G))

ϕ
(yyy⊤vvvk)

2 +
n(∆max(G)− ϕ(G))

ϕ
(yyy ◦ vvvk)⊤(yyy ◦ vvvk) (13)

where III ∈ Rn×n is an identity matrix and 111 = (1, 1, . . . , 1)⊤ ∈ Rn.

We can use (12) and (13) to derive the upper bound of (11). Note that∑
k∈[r]

|λk(YYY )| ·
∣∣∣(yyy⊤vvvk)2 − n

ϕ
(yyy ◦ vvvk)⊤AAAG(yyy ◦ vvvk)

∣∣∣
≤
∑
k∈[r]

|λk(YYY )| ·max

{∣∣∣n(ϕ−∆max)

ϕ
· (yyy ◦ vvvk)⊤(yyy ◦ vvvk)

∣∣∣, ∣∣∣ϕ− (n− ϕ(G))
ϕ

(yyy⊤vvvk)
2 +

n(∆max(G)− ϕ(G))
ϕ

(yyy ◦ vvvk)⊤(yyy ◦ vvvk)
∣∣∣}.

First, by using (12), we have∑
k∈[r]

|λk(YYY )| ·
∣∣∣n(ϕ−∆max)

ϕ
· (yyy ◦ vvvk)⊤(yyy ◦ vvvk)

∣∣∣ = n(∆max − ϕ)

ϕ
·
∑
k∈[r]

|λk(YYY )| · (yyy ◦ vvvk)⊤(yyy ◦ vvvk)

≤ n(∆max − ϕ)

ϕ
· ∥YYY ∥2 ·

∑
k∈[r]

∑
i∈[n]

y2i v
2
k,i =

n(∆max − ϕ)

ϕ
· ∥YYY ∥2 ·

∑
i∈[n]

y2i
∑
k∈[r]

v2k,i

≤ n(∆max − ϕ)

ϕ
· ∥YYY ∥2 · τ.

Also, with (13), we can derive that∑
k∈[r]

|λk(YYY )| ·
∣∣∣ϕ− (n− ϕ(G))

ϕ
(yyy⊤vvvk)

2 +
n(∆max(G)− ϕ(G))

ϕ
(yyy ◦ vvvk)⊤(yyy ◦ vvvk)

∣∣∣
=
∑
k∈[r]

|λk(YYY )| ·
∣∣∣∣(yyy ◦ vvvk)⊤{ϕ− (n− ϕ(G))

ϕ
111111⊤ +

n(∆max(G)− ϕ(G))
ϕ

III

}
(yyy ◦ vvvk)

∣∣∣∣
≤
∑
k∈[r]

|λk(YYY )| · (yyy ◦ vvvk)⊤(yyy ◦ vvvk) ·
∥∥∥∥ϕ− (n− ϕ(G))

ϕ
111111⊤ +

n(∆max(G)− ϕ(G))
ϕ

III

∥∥∥∥
2

≤ ∥YYY ∥2 · τ ·max

{∣∣∣∣ϕ− (n− ϕ(G))
ϕ

+
n(∆max(G)− ϕ(G))

ϕ

∣∣∣∣, n(∆max(G)− ϕ(G))
ϕ

}
= ∥YYY ∥2 · τ ·

n(∆max(G)− ϕ(G))
ϕ

where the last equality is due to the fact that ϕ ≤ n−ϕ(G) always. Therefore, we have the upper bound of ∥YYY − n
ϕ ·AAAG ◦YYY ∥2,

which is
∥YYY − n

ϕ
·AAAG ◦ YYY ∥2 ≤ n

ϕ
· τ∥YYY ∥2 ·max{∆max − ϕ, ∆max(G)− ϕ(G)} =

nτψ

ϕ
· ∥YYY ∥2.
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10 AUXILIARY LEMMAS

Lemma 7. For any unit vectors xxx ∈ Rd and yyy ∈ Rd such that yi ̸= 0 for ∀i ∈ [d], if ∥xxx − yyy∥2 ≤ mini∈[d] |yi|, then
sign(xi) = sign(yi) for ∀i ∈ [d].

Proof. If xxx = yyy, then it is trivial that sign(xi) = sign(yi) for ∀i ∈ [d]. If xxx ̸= yyy, then for any i ∈ [d],

|xi − yi| < ∥xxx− yyy∥2 ≤ min
i∈[d]

|yi| ≤ |yi|,

where the first inequality is strict since both xxx and yyy are unit vectors. The above inequality implies that

yi − |yi| < xi < yi + |yi|,

that is, 0 < xi < 2yi if yi > 0, and 2yi < xi < 0 if yi < 0. Therefore, sign(xi) = sign(yi) holds for any i ∈ [d].

Lemma 8. If the following inequality holds:

∥MMMJc,J − ρẐZZJc,J∥22 ≤
{
λ1(MMMJ,J − ρẑzzẑzz⊤)− λ2(MMMJ,J − ρẑzzẑzz⊤)

}
·
{
λ1(MMMJ,J − ρẑzzẑzz⊤)− ∥MMMJc,Jc − ρẐZZJc,Jc∥2

}
,

then λ1(MMMJ,J − ρẑzzẑzz⊤) = λ1(MMM − ρẐZZ) where ẐZZ =

(
ẑzzẑzz⊤ ẐZZ

⊤
Jc,J

ẐZZJc,J ẐZZJc,Jc

)
.

Proof. First, we can show that λ1(MMMJ,J − ρẑzzẑzz⊤) is an eigenvalue of MMM − ρẐZZ where its corresponding eigenvector is
(x̂xx⊤, 0⊤)⊤ ∈ Rd. This is because

(MMM − ρẐZZ)

(
x̂xx
0

)
=

(
(MMMJ,J − ρẑzzẑzz⊤)x̂xx

(MMMJc,J − ρẐZZJc,J)x̂xx

)
= λ1(MMMJ,J − ρẑzzẑzz⊤) ·

(
x̂xx
0

)
where the last equality holds since x̂xx is the leading eigenvector ofMMMJ,J − ρẑzzẑzz⊤ and

(MMMJc,J − ρẐZZJc,J)x̂xx =MMMJc,Jx̂xx− ρ · 1

ρ∥x̂xx∥1
MMMJc,Jx̂xx · ∥x̂xx∥1 = 0.

Now, it is sufficient to show that for all yyy = (yyy⊤1 , yyy
⊤
2 )

⊤ such that yyy1 ∈ Rs, yyy2 ∈ Rd−s, ∥yyy1∥22 + ∥yyy2∥22 = 1 and x̂xx⊤y1y1y1 = 0,

yyy⊤(MMM − ρẐZZ)yyy ≤ λ1(MMMJ,J − ρẑzzẑzz⊤),

which implies that λ1(MMMJ,J − ρẑzzẑzz⊤) is the largest eigenvalue ofMMM − ρẐZZ. Note that

yyy⊤(MMM − ρẐZZ)yyy = yyy⊤1 (MMMJ,J − ρẑzzẑzz⊤)yyy1 + 2yyy⊤2 (MMMJc,J − ρẐZZJc,J)yyy1 + yyy⊤2 (MMMJc,Jc − ρẐZZJc,Jc)yyy2

≤ λ2(MMMJ,J − ρẑzzẑzz⊤) · ∥yyy1∥22 + 2∥MMMJc,J − ρẐZZJc,J∥2 · ∥yyy1∥2 · ∥yyy2∥2 + λ1(MMMJc,Jc − ρẐZZJc,Jc) · ∥yyy2∥22

= λ2(MMMJ,J − ρẑzzẑzz⊤) · (1− ∥yyy2∥22) + 2∥MMMJc,J − ρẐZZJc,J∥2 ·
√
1− ∥yyy2∥22 · ∥yyy2∥2 + λ1(MMMJc,Jc − ρẐZZJc,Jc) · ∥yyy2∥22

= λ2(MMMJ,J − ρẑzzẑzz⊤) + (λ1(MMMJc,Jc − ρẐZZJc,Jc)− λ2(MMMJ,J − ρẑzzẑzz⊤)) · ∥yyy2∥22

+ 2∥MMMJc,J − ρẐZZJc,J∥2 ·
√
∥yyy2∥22 · (1− ∥yyy2∥22)

= λ2(MMMJ,J − ρẑzzẑzz⊤) + (λ1(MMMJc,Jc − ρẐZZJc,Jc)− λ2(MMMJ,J − ρẑzzẑzz⊤)) · t+ 2∥MMMJc,J − ρẐZZJc,J∥2 ·
√
t · (1− t)

where 0 ≤ t := ∥yyy2∥22 ≤ 1. The first inequality holds since yyy1/∥yyy1∥2 is orthogonal to x̂xx, the leading eigenvector of
MMMJ,J − ρẑzzẑzz⊤. The above upper bound of yyy⊤(MMM − ρẐZZ)yyy implies that if the following inequality holds for any t ∈ [0, 1]:

λ2(MMMJ,J − ρẑzzẑzz⊤) + (λ1(MMMJc,Jc − ρẐZZJc,Jc)− λ2(MMMJ,J − ρẑzzẑzz⊤)) · t+ 2∥MMMJc,J − ρẐZZJc,J∥2 ·
√
t · (1− t)

≤ λ1(MMMJ,J − ρẑzzẑzz⊤),

then λ1(MMMJ,J − ρẑzzẑzz⊤) is the largest eigenvalue ofMMM − ρẐZZ. From Lemma 9, we have that if the following inequality holds:

∥MMMJc,J − ρẐZZJc,J∥22 ≤
{
λ1(MMMJ,J − ρẑzzẑzz⊤)− λ2(MMMJ,J − ρẑzzẑzz⊤)

}
·
{
λ1(MMMJ,J − ρẑzzẑzz⊤)− λ1(MMMJc,Jc − ρẐZZJc,Jc)

}
,

then λ1(MMMJ,J − ρẑzzẑzz⊤) = λ1(MMM − ρẐZZ).
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Figure 6: Rate of exact recovery of J versus ψ(GJ,J )
ϕ(GJ,J )

. Two plots on the left present results for different λ̄(MMM∗) where σ = 0.
Two plots on the right present results for different σ where λ̄(MMM∗) = 20.

Lemma 9. Assume a ̸= 0. If a2 ≤ c(b+ c) holds, then 2a
√
t(1− t) ≤ bt+ c for all t ∈ [0, 1].

Proof.

2a
√
t(1− t) ≤ bt+ c for all t ∈ [0, 1]

⇐ 4a2t(1− t) ≤ (bt+ c)2, bt+ c ≥ 0 for all t ∈ [0, 1]

⇔ (4a2 + b2)

(
t− 2a2 − bc

4a2 + b2

)2

+ c2 − (2a2 − bc)2

4a2 + b2
≥ 0, bt+ c ≥ 0 for all t ∈ [0, 1]

⇐ c2 − (2a2 − bc)2

4a2 + b2
≥ 0, c ≥ 0, b+ c ≥ 0

⇔ a2 ≤ c(b+ c).

11 ADDITIONAL SIMULATION RESULTS

Here, we present simulation results for cases where the density of the observation graph varies. Except for the density of the
observation graph, we use the same setting as in Section 5.1.

First, we compare two cases where the number of observed entries is either 625 or 1250 (i.e., the observation rate is
25% or 50%.) Figure 6 shows the results where we fix the noise parameter σ as 0 (noiseless) and try different spectral
gaps λ̄(MMM∗) ∈ {1, 2, 5, 10}, and the results where we fix the spectral gap λ̄(MMM∗) as 20 and try different noise parameters
σ ∈ {0.1, 0.3, 0.5, 0.7}. We can see that when the values of ψ(GJ,J )

ϕ(GJ,J )
are similar, the performance is worse in the case that

more entries are observed. This shows that observing more entries outside the relevant sub-matrix negatively affects the
performance of the algorithm.

However, when the observation graph is dense enough on the relevant sub-matrix and there is no noise, observing the entries
completely outside the relevant sub-matrix is helpful. The first and second plots in Figure 7 show the results where we fix
the noise parameter σ as 0 (noiseless) and try different spectral gaps λ̄(MMM∗) ∈ {1, 2, 5, 10}. The first plot is of the case that
the overall observation rate is 50%, and the second plot is of the case that the observation rate on the relevant sub-matrix is
50% and the entries outside the relevant sub-matrix are completely observed. We can check that when ψ(GJ,J )

ϕ(GJ,J )
is sufficiently

small, the performance is better in the second case.

On the other hand, when there is noise in the data, the opposite observation happens. The third plot in Figure 7 presents the
results where σ is set to be 0.1. We can see that the performance is worse in this case unless the spectral gap is sufficiently
large and ψ(GJ,J )

ϕ(GJ,J )
is sufficiently small. That is, when data is noisy, observing the entries outside the relevant sub-matrix can

negatively affect the performance of the algorithm.
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Figure 7: Rate of exact recovery of J versus ψ(GJ,J )
ϕ(GJ,J )

. First two plots present results for different λ̄(MMM∗) where σ = 0. Last
plot presents results for different λ̄(MMM∗) where σ = 0.1.
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