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Abstract

Identification of causal effects can be hampered by
confounding, selection bias, and other complica-
tions. Data fusion is one approach to addressing
these difficulties, through the inclusion of auxil-
iary data on the population of interest. Such data
may measure a different set of variables, or be
obtained under different experimental or observa-
tional conditions than the primary dataset. In partic-
ular, selection of experimental units into different
datasets may be systematic; similar difficulties are
encountered in missing data problems. However,
existing methods for combining datasets either do
not consider this issue, or assume simple selection
mechanisms. In this paper, we propose a general
approach, based on graphical causal models, for
causal inference from data on the same popula-
tion that is obtained under different experimental
conditions. Our framework allows both arbitrary
unobserved confounding, and arbitrary selection
processes into different experimental regimes in
our data. We describe how systematic selection
processes may be organized into a hierarchy simi-
lar to censoring processes in missing data: selected
completely at random, selected at random, and se-
lected not at random. Finally, we provide a novel
general identification algorithm for interventional
distributions in this setting.

1 INTRODUCTION

Understanding causality is important for actionable insights.
Traditionally, causality has been inferred through the use of
randomized experiments, where an experimenter randomly
assigns a variable A to values corresponding to treatment or
control, and measures the causal effect of these assignments
on an outcome Y . However, such randomized experiments

can be expensive, ethically fraught, or otherwise not possible
to implement.

Given access to observational data, cause-effect relation-
ships may be quantified via causal effects, which aim to
predict what would have happened had a randomized ex-
periment been (hypothetically) performed. A fundamental
problem in causal inference is to estimate causal effects
given access only to observational data and a causal model.

Causal effects may only be consistently estimated from
observed data if they are identified, that is if they can be
uniquely expressed as a function of observed data distri-
bution under the assumptions encoded by a causal model.
Sound and complete identification algorithms for causal
effects have been developed using the formalism of graph-
ical causal models [Shpitser and Pearl, 2006, Huang and
Valtorta, 2008].

If the causal effect of interest is not identified, more assump-
tions may be imposed on the causal model, or informative
conclusions about the causal effect may be obtained by de-
riving bounds. Alternatively, the primary dataset may be aug-
mented with one or more informative secondary datasets, in
what is termed data fusion. In this approach, an analyst has
access to multiple datasets on the same population. These
datasets may represent observational data on variables of
interest, or represent results of randomized experiments,
potentially ones that randomize treatments other than the
treatments of primary interest. The task is to check if the
desired causal effect can be computed from this collection
of datasets. Sound and complete algorithms have been de-
veloped for this problem under the assumption that the col-
lection of dataset is given [Lee et al., 2022, Kivva et al.,
2022].

However, it is possible (indeed likely) that units are assigned
to different datasets systematically, which is a possibility not
considered by previous approaches. Consider the problem
introduced by Athey et al. [2020], and further explored by
Ghassami et al. [2022], where the goal is to estimate the
effect of class size on student test scores in New York, using
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two datasets. The first dataset is collected from the public
school system, in which class size depends on observed
and unobserved covariates that create confounding for the
relationship between class size and test scores. The second
dataset is from a randomized experiment studying the effect
of class size conducted in a different population at a differ-
ent point in time. As is typical in data fusion, the desired
causal effect is not identified in either of datasets separately,
and indeed the datasets measure differing sets of variables.
However, the authors note that there are significantly differ-
ent covariate distributions between the two. In other words,
there is systematic selection determining which dataset a
particular student ends up in. Therefore, appropriate adjust-
ments are needed before causal conclusions obtained from
the two subpopulation can be compared – or combined into
a single conclusion on the overall population.

Our contributions are as follows. We define a novel graphical
causal model for representing such data fusion problems,
where the selection mechanism is represented as a random
variable that potentially depends on other variables in the
problem in complex ways. We use this representation to
show that systematic selection exhibits a hierarchy similar
to the missing data hierarchy, where selection could occur
complete at random (SCAR), at random (SAR), or not at
random (SNAR). Next, we show that applying a sound and
complete algorithm that corrects for systematic selection
following by a sound and complete algorithm that corrects
for confounding cannot be complete in settings where both
difficulties occur together. Finally, we propose a general
algorithm that aims to correct for systematic selection and
confounding at once.

2 BACKGROUND AND NOTATION

We use upper case Roman letters to denote random variables,
e.g., A and vector notation for sets thereof, e.g., A⃗. Values
are lowercase letters, e.g., a, and sets of values are vectored
lower case letters, e.g., a⃗. For a random variable Z, its
domain is denoted as XZ , and domains of sets Z⃗ as XZ⃗ . We
denote the positive part of the domain (i.e. where p(Z) > 0)
as X+

Z . Given a subset A⃗ ⊆ B⃗ of variables, and values b⃗ of
B⃗, we denote by b⃗A⃗ the subset of values of b⃗ pertaining to
variables in A⃗.

We use the framework of graphical causal modeling in this
paper. Specifically, we will consider acyclic directed mixed
graphs (ADMGs) which contain directed (→) and bidirected
(↔) edges and no directed cycles, and a special case of AD-
MGs – directed acyclic graphs (DAGs) which contain only
directed edges (→). We employ the standard genealogical
definitions for parents, ancestors, descendants, and districts
of a variable X , as: paG(X) = {Y | Y → X}, anG(X) =
{Y | Y → . . .→ X}∪{X}, deG(X) = {Y | X → . . .→
Y }∪{X}, disG(X) = {Y | X ↔ . . .↔ Y }∪{X}. In ad-

dition, we will define ndG(X) as the set of non-descendants
of X , which is all vertices other than those in deG(X).
These definitions apply disjunctively over sets - e.g., for set
Z⃗, paG(Z⃗) = ∪Z∈Z⃗ paG(Z). Strict versions of these defi-
nitions exclude variables in the argument, and are denoted
with prepended s - e.g., for set Z⃗, spaG(Z⃗) = paG(Z⃗) \ Z⃗.
We denote districts of a graph as D(G). Districts form a
partition of vertices in a graph. Given a graph G with vertex
set V⃗ and Z⃗ ⊆ V⃗ , define the induced subgraph GZ⃗ of G
to be the graph containing vertices Z⃗ and edges in G only
among elements in Z⃗.

We will consider structural causal models (SCMs), which
are associated with DAGs. Given a DAG G with vertices V⃗
representing observed variables, we assume each variable
V ∈ V⃗ is determined via an invariant mechanism called a
structural equation: fV : XpaG(V )∪{ϵV } 7→ XV , where ϵV is
an exogenous unobserved random variable associated with
V representing the random noise in the system. We will
assume that all ϵV are mutually independent. Some authors
denote such an SCM as a non-parametric structural equation
model with independent errors (NPSEM-IE) [Richardson
and Robins, 2013b].

A causal model encodes responses to variables to the in-
tervention operation, where structural equations of a set of
variables A⃗ are replaced by constants a⃗. This operation is de-
noted by do(⃗a) in Pearl [2009]. A random variable response
of variable Y to an intervention do(⃗a) may also be written as
a potential outcome Y (⃗a). Potential outcomes encode causal
relationships in the sense that they allow representation of
outcomes in hypothetical randomized controlled trials. For
example, the average causal effect E[Y (a) − Y (a′)] rep-
resents the difference in outcome response, on the mean
difference scale, of two experimental groups, where a treat-
ment A is set to an active (a) or control (a′) value.

Since potential outcomes represent hypothetical changes in
a causal system, responses to hypothetical interventions are
not always available. An important task in causal inference
is identification, ensuring that interventional distributions
p(Y⃗ (⃗a)) = p(Y⃗ |do(⃗a)) are functions of the available distri-
butions (classically, the observed data distribution p(V⃗ )).

It is well known that if all variables V⃗ in an SCM with
independent errors are observed, every interventional distri-
bution p(V⃗ \ A⃗|do(⃗a)) is identified via the truncated DAG
factorization known as the g-formula [Robins, 1986]:

p(V⃗ \ A⃗ | do(⃗a)) =
∏

V ∈V⃗ \A⃗

p(V | paG(V ))|a⃗
paG(V )∩A⃗

.

A simple version of the g-formula is the adjustment formula,
which yields the average causal effect of the treatment A
on the outcome Y if all confounders of A and Y are ob-
served as a vector C⃗: E[E[Y |a, C⃗]− E[Y |a′, C⃗]]. Note that
the g-formula with the empty A⃗ also holds and implies
that the observed data distribution p(V⃗ ) may be written as
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∏
V ∈V⃗ p(V |paG(V )), and thus is Markov with respect to

the DAG G [Pearl, 1988, Lauritzen, 1996].

3 THE ID ALGORITHM

If some variables in the model are unobserved, identification
of interventional distributions becomes considerably more
complicated, with some distributions not being identified
at all, and distributions that are identified being potentially
more complex functionals of the observed data distribution
than the g-formula. General identification algorithms given
the observed marginal distribution p(V⃗ ) derived from a hid-
den variable causal model represented by a DAG G(V⃗ ∪ H⃗),
where H⃗ represent hidden variables have been characterized
via the ID algorithm [Tian and Pearl, 2002, Shpitser and
Pearl, 2006]. The ID algorithm takes as input an ADMG
G(V⃗ ) derived from G(V⃗ ∪ H⃗) via the latent projection op-
eration [Verma and Pearl, 1990], the observed data distribu-
tion p(V⃗ ), and disjoint variable sets A⃗, Y⃗ corresponding to
the interventional distribution p(Y⃗ |do(⃗a)) of interest. The
ID algorithm outputs either the identifying functional for
p(Y⃗ |do(⃗a)) in terms of p(V⃗ ), or the token “not identified.”
It is known that the ID algorithm is both sound (outputs
correct identifying functionals in all cases) and complete
(whenever it outputs “not identified,” the corresponding dis-
tribution is indeed not a function of p(V⃗ ) in the model)
[Huang and Valtorta, 2006, Shpitser and Pearl, 2006].

Just as the g-formula is a one line formula representing
a modified DAG factorization, the ID algorithm may be
formulated as a one line formula representing a modified
nested Markov factorization of a latent projection ADMG
[Richardson et al., 2023]. We now briefly review the ID
algorithm formulated in this way in terms of Markov kernels,
and the fixing operator.

A Markov kernel qV⃗ (V⃗ |W⃗ ) is a nonnegative function that
marginalizes to 1 over V⃗ for values of XW⃗ , and may be
viewed as a generalization of a conditional distribution, but
is not necessarily constructed by applying a conditioning
operation to a joint distribution. For example, the kernel
qY (Y |a) ≡

∑
C⃗ p(Y |a, C⃗)p(C⃗) which appears in the ad-

justment formula is not, in general, equal to p(Y |a).
Given a Markov kernel, additional kernels may be con-
structed by the conditioning and marginalization operators,
which are defined in the natural way:

qV⃗ (B⃗|W⃗ ) ≡
∑
V⃗ \B⃗

qV⃗ (V⃗ |W⃗ ); qV⃗ (V⃗ \ B⃗|B⃗ ∪ W⃗ ) =
qV⃗ (V⃗ |W⃗ )

qV⃗ (B⃗|W⃗ )
.

The fixing operator [Richardson et al., 2023] is an opera-
tor applied to graphs and kernels that “removes” vertices
and random variables by rendering them “fixed”. A relevant
generalization of an ADMG called a conditional ADMG
(CADMG) G(V⃗ , W⃗ ) contains two types of vertices: random

(denoted by V⃗ ), and fixed (denoted by W⃗ ). Fixed vertices
cannot have any edges with an arrowhead into them, and will
be displayed as squares in graphs. Note that an ADMG is a
CADMG where W⃗ is empty. Kernels qV⃗ (V⃗ |W⃗ = w⃗) and
CADMGs G(V⃗ , W⃗ ) will represent interventional distribu-
tions p(V⃗ |do(w⃗)), and their Markov structure, respectively.
Mutilated graphs used in Pearl [2009] to describe inter-
ventional contexts may be viewed as CADMGs, provided
intervened on variables are distinguished from variables that
remain random.

For a CADMG G(V⃗ , W⃗ ), a vertex V ∈ V⃗ is fixable if there
is no other vertex that is both a descendant and in the same
district in G, that is if disG(V ) ∩ deG(V ) = {V }. If V is
fixable we define a new CADMG G(V⃗ \ {V }, W⃗ ∪{V }) ≡
ϕV (G(V⃗ , W⃗ )) by means of a fixing operator ϕV which
renders V a fixed vertex, removes all edges in G(V⃗ , W⃗ )
with an arrowhead into V , and keeps all other vertices and
edges unaltered.

Given a non-empty sequence of vertices π, we define h(π)
to be its first element, and t(π) to be the subsequence of
π containing all elements after the first. A sequence π of
vertices in V⃗ is said to be valid (or fixable) in a CADMG
G(V⃗ , W⃗ ) if either the sequence is empty, or h(π) is fixable
in G and t(π) is fixable in ϕh(π)(G). Any two sequences on
the same set of vertices S⃗ ⊆ V⃗ fixable in G(V⃗ , W⃗ ) yield the
same CADMG, allowing us to write ϕS⃗(G) to mean “obtain
the CADMG after applying the fixing operator to S⃗ via any
valid sequence”. A set R⃗ ⊆ V⃗ is said to be reachable in
an ADMG G with vertices V⃗ if there exists a valid fixing
sequence for V⃗ \ R⃗. Given a set R⃗ ⊆ V⃗ that is not reachable
in G, the unique smallest reachable superset of R⃗ that is
reachable of G is called a reachable closure of R⃗, or simply
closure of R⃗, and denoted by clG(R⃗).

Given a kernel qV⃗ (V⃗ |W⃗ ) associated with a CADMG
G(V⃗ , W⃗ ) where V is fixable, define ϕV (qV⃗ ;G) to be the ker-

nel qV⃗ \{V }(V⃗ \{V } | W⃗∪{V }) ≡
qV⃗ (V⃗ |W⃗ )

qV⃗ (V |ndG(V ),W⃗ )
. Given

a CADMG G(V⃗ , W⃗ ), kernel qV⃗ (V⃗ |W⃗ ) and a sequence π of
vertices in V⃗ fixable in G, we define ϕπ(qV⃗ ,G) as qV⃗ if π is
the empty sequence, and as ϕt(π)(ϕh(π)(qV⃗ ;G);ϕh(π)(G))
otherwise. Given p(V⃗ ) which is a marginal distribution ob-
tained from p(V⃗ ∪ H⃗) which is Markov with respect to a
DAG G(V⃗ ∪H⃗), and corresponding latent projection ADMG
G(V⃗ ) of G(V⃗ ∪H⃗), and any two sequences π1, π2 on S⃗ ⊆ V⃗
valid in G, ϕπ1

(qV⃗ ;G) = ϕπ2
(qV⃗ ;G). We thus denote the

resulting kernel by ϕS⃗(qV⃗ ;G).

The identification of interventional distributions p(Y⃗ |do(⃗a))
for any disjoint subsets A⃗, Y⃗ of V⃗ in a hidden variable
causal model associated with a DAG G(V⃗ ∪ H⃗) with a
latent projection G(V⃗ ) has been characterized as follows.
Let Y⃗ ∗ = anG(V⃗ )V⃗ \A⃗

(Y⃗ ), and define G∗ as G(V⃗ )Y⃗ ∗ Then
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p(Y⃗ |do(⃗a)) is identified if and only if every element in
D(G(V⃗ )Y⃗ ∗) is reachable in G(V⃗ ). If so, the reformulation
of the ID algorithm by Richardson et al. [2023] gives

p(Y⃗ |do(⃗a)) =
∑

Y⃗ ∗\Y⃗

∏
D⃗∈D(G(V⃗ )

Y⃗ ∗ )

p(D⃗|do(spaG(V⃗ )(D⃗))) (1)

=
∑

Y⃗ ∗\Y⃗

∏
D⃗∈D(G(V⃗ )

Y⃗ ∗ )

ϕV⃗ \D⃗(p(V⃗ );G(V⃗ ))|A⃗=a⃗.

4 THE GID ALGORITHM: A REVIEW

Consider an observational study S1 which aimed to assess
antibiotic effectiveness for treating infections. In practice,
patients are prone to non-compliance, where the full course
is not taken as instructed. We represent this causal structure
with antibiotic prescription A, compliance level M , and a
longer term outcome variable Y such as hospital 30-day
readmission. Unobserved common causes U1, U2, U3 create
confounding for several study variables, but a pre-treatment
proxy C of U2, U3 is observed. The ID algorithm demon-
strates that p(Y (a)) is not identified from data on observed
variables in the model shown in Fig. 1a.

Now consider an experimental study S2, in which the in-
vestigator is able to control compliance level based on as-
signed treatment. This results in Fig. 1b, in which the edge
A → M is kept, but the edge U2 → M is removed, rep-
resenting the situation in which compliance status only de-
pends on the prescribed medication (and not, say, the pa-
tient’s mood or appetite). It turns out that if both datasets
are drawn from the same population, the causal effect
p(Y (a)) may be obtained from the combined dataset as∑

c,m,ã E2[Y | m, ã]p1(ã)
∑

c p1(m | a, c)p1(c), where
subscripts indicate distributions computed from datasets
S1 or S2. Lee et al. [2019] provided a sound and com-
plete graphical gID algorithm for the identification of such
queries, in the special case where experimental datasets are
formulated only using the do(.) operator, rather than more
complex policy interventions like in the above example that
may depend on other variables in the problem.

We now reformulate the gID algorithm using the fixing op-
erator ϕ (see also Lee and Bareinboim [2020], Lee and Sh-
pitser [2020]). Given the interventional distribution of inter-
est p(Y⃗ (⃗a)), and a latent projection ADMG G(V⃗ ) represent-
ing a hidden variable causal model, let the available datasets
be denoted {pi(V⃗ | do(Z⃗i))}Ki=1 with corresponding CAD-
MGs {Gi(V⃗ \ Z⃗i, Z⃗i)}Ki=1. Note that these CADMGs need
not have been obtained via the fixing operator. Then, if for
each D⃗ ∈ D(G(V⃗ )Y⃗ ∗) there exists jD⃗ ∈ {1, . . . ,K} such
that D⃗ is reachable in GjD⃗ (V⃗ \ Z⃗jD⃗

, Z⃗jD⃗
), then output

p(D⃗ | do(spaG(V⃗ )(D⃗))) = ϕ(V⃗ \Z⃗j
D⃗

)\D⃗(pj
D⃗
;Gj

D⃗
).

The causal effect is then obtained by the usual district
factorization (1) as in the ID algorithm.

The primary limitation of this and related prior work is that
the selection process is under-specified. In the case of gID,
the selection process is not represented at all, as nothing
is specified about how distributions {pi(V⃗ | do(Z⃗i))}Ki=1}
are related. In other related work such as transportability
[Bareinboim and Pearl, 2012], selection bias [Bareinboim
and Tian, 2015], or as a general representation of interven-
tional and observational domains in causal inference [Dawid,
2021], the selectors enter the model but only as non-random
indicators that index domains.

Since domain selectors are not treated as full random vari-
ables, the resulting models do not yield a single coherent
data likelihood, which is an impediment to statistical infer-
ence. A more serious issue, however, is that by not modeling
the selection process explicitly, it is not possible to represent
systematic selection, which is often how units from a single
superpopulation are assigned to different experimental and
observational settings in practice.

To address these issues, we will represent the selection pro-
cess as a random variable S. In this paper, this variable
indexes intervention status of its children in the graph, but
may also indicate changes in structural equations represent-
ing domain differences. Selectors may potentially share
common (and potentially unobserved) parents with other
variables, creating potential confounding.

5 CAUSAL MODELS FOR SELECTION

In this section, we describe how to augment SCMs with an
additional selector random variable S that governs whether
certain variables that are its children in the causal graph are
intervened on or keep their natural behavior.

Definition 1 (Context Selected SCM). Given an SCM with
independent errors associated with a DAG G(V⃗ ), a context
selected SCM (CS-SCM) associated with a DAG Ḡ(V⃗ ∪{S}),
such that chḠ(S) ̸= ∅ and paḠ(S) is arbitrary, is defined
as follows:

• S ≡ {⟨Se
chḠ(S), S

v
chḠ(S)⟩ | S

e
chḠ(S) ∈ XchḠ(S) ⊆

{0, 1}|chḠ(S)|, Sv
chḠ(S) ∈ XchḠ(S) ≡ ⊗V ∈chḠ(S)XV },

and furthermore X+
chḠ(S) ≡ ⊗chḠ(S)X

+
V .

• Every V ∈ V⃗ \ chḠ(S) maintains its structural equa-
tion fV (paG(V ), ϵV ) from the original SCM.

• For every V ∈ V⃗ ∩ chḠ(S), the structural equation
f̃V for V in the CS-SCM is defined in terms of S and
the structural equation fV (paG(V ), ϵV ) for V in the
original SCM as:

V ← f̃V (paG(V ), S, ϵV )

f̃V (paG(V ), S, ϵV ) ≡

{
fV (paG(V ), ϵV ) if Se

V = 0

Sv
V if Se

V = 1

2191



C

A M Y

U2 U3

U1

(a)

C

A M Y

U2 U3

U1

(b)

C

A M Y

S

U2 U3

U1

(c)

C

A M Y

W S

U2 U3

U1

(d)

C

A M Y

W S

U2 U3

U1

(e)

S A Y

U1 U2
{A

}

{
A
}

(f)

S A Y

U1 U2

(g)

S A a

U1 U2

Y (a)

{A
}{

A
}

(h)

Figure 1: Example graphs illustrating systematic selection. Unobserved variables are denoted with a enclosing circle, while
observed variables are not. The (observed) selection variable S is denoted by a diamond. Half-circles represent the split-node
operation in SWIGs [Richardson and Robins, 2013a].

• For S, its structural equation is specified by a new
equation

S ← fS(paḠ(S), ϵS)

where paḠ(S) is chosen to avoid introducing cycles.

In words, the CS-SCM is an SCM augmented with a selec-
tor variable S consisting of intervention indicators Se

V and
intervention values Sv

V for every child V of S. If Se
V = 1,

the child V of S is intervened on, and Sv
V indicates the value

of the intervention. If V is not intervened on, V acts as a
usual function of its parents other than S via its structural
equation fV from the original SCM. To simplify notation,
when discussing CS-SCMs, we will include S in the set V⃗ ,
and denote values of S as a vector pair ⟨s⃗e, s⃗v⟩.

We note that the relationship of the random selector S and
its children we describe here is similar closely related to
context variables in the joint causal modeling approach in
Mooij et al. [2020]. Our approach is also related to the
decision-theoretic framework in Dawid [2021] and selec-
tion diagrams applied to selection bias and transportability
problems in Bareinboim and Tian [2015], Bareinboim and
Pearl [2012], although these approaches do not treat their
respective selectors as fully random variables in the causal
model.

In subsequent developments we will make use of the fol-
lowing definition. Given a set of variables D⃗ ⊆ V⃗ in a CS-
SCM with associated DAG G, we say a value s = ⟨s⃗e, s⃗v⟩
is laidback for D⃗ if for each V ∈ D⃗, either s⃗eV = 0, or
V ̸∈ chG(S). We say s is serious for D⃗ if it is not laidback
for D⃗. We will also use the abuse of notation s = ∅ to
denote any value set ⟨s⃗e, s⃗v⟩, where s⃗e

V⃗
= 0⃗ for observed

variables V⃗ . Such value sets correspond to the observational
context of an CS-SCM, the context where no interventions
took place.

The CS-SCM exhibits context-specific independencies,
whereby a variable is no longer a function of some others at
particular values of a parent. Pensar et al. [2015] provide a
succinct graphical representation of this information.

Definition 2 (Labelled selection DAG). Let G(V⃗ ) denote
a DAG associated with a CS-SCM with edges E⃗. For each
edge E = (A → B) ∈ E⃗ such that S ∈ paG(B) and
S ̸= A, we attach a label LE = {B}. Then, G[](V⃗ ) with
edge labels L⃗ = ∪ELE denotes a labelled selection DAG
(LS-DAG) associated with the CS-SCM.

Given an LS-DAG G[] and a value s of S, we define the
context selected DAG G[s] to be an edge subgraph of G[]
where any edge with a label {V } is removed if s⃗eV = 1,
and removes all other edge labels. Note that the graph G[∅]
removes all edge labels but no edges. Fig. 1f is an example
of an LS-DAG G[], while Fig. 1g is an example of G[s] for a
value s such that s⃗eA = 1.

While we developed the CS-SCM in this section, we note
that such models are cross-world models due to the inde-
pendence of error terms in the NPSEM-IE. Since we do not
rely on cross-world independencies elsewhere in this paper,
this section can in principle be reformulated using single-
world models such as the finest fully randomized causally
interpretable structured tree graph, or FFRCISTG [Robins,
1986]. The principle difference between these models is
that FFRCISTG assumptions can in theory be empirically
verified under hypothetical randomized experiments where
any subset of variables can be intervened upon, whereas this
is not true in an NPSEM-IE as well as the CS-SCM that we
defined. Shpitser et al. [2021] provide further details on this
distinction.
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5.1 SWIGS AND CONTEXT SELECTED SWIGS

Given a DAG G(V⃗ ) representing an SCM, and a set of val-
ues a⃗ of treatments A⃗, a single world intervention graph
(SWIG) [Richardson and Robins, 2013b] G(V⃗ (⃗a)) = G (⃗a)
is a graph obtained from G by creating a “random” version
A and a “fixed” version a of every A ∈ A⃗ vertex in G, with
every random version A inheriting all edges with arrow-
heads into A in G, and every fixed version a inheriting all
outgoing edges from A in G. In addition every vertex V
in G (⃗a) is relabelled as V (⃗a) to signify that these vertices
represent counterfactual random variables.

A SWIG G (⃗a) represents Markov structure of an interven-
tional distribution p(V⃗ (⃗a)) obtained from an SCM with
a graph G via the d-separation criterion [Richardson and
Robins, 2013b]. Standard genealogic relations generalize
readily to SWIGs.

We consider a special case of SWIGs applicable to our set-
ting. Given a CS-SCM associated with an LS-DAG G[] with
vertices V⃗ , if S ̸∈ A⃗, we represent p(V⃗ (⃗a)) via a labelled
selection SWIG (LS-SWIG) G[](⃗a), which is obtained by
employing the standard SWIG construction while keeping
the labels in Ḡ[].

If S ∈ A⃗, let s be the value of S in a⃗. Then we define
a context-specific SWIG Ḡ[s](⃗a) as follows. Given an LS-
SWIG Ḡ[](⃗a), we remove any random vertex in chḠ(a⃗)(s)
that s is serious for, and all edges adjacent to such vertices.
This operation represents the fact that such a vertex corre-
sponds to a constant.

Despite removal of certain vertices and edges, context-
specific SWIGs correctly represent independences in in-
terventional distributions obtained from CS-SCMs due to
the following result.

Theorem 1. Given a CS-SCM associated with G[](V⃗ ), and
any A⃗ ⊆ V⃗ such that S ∈ A⃗ (including A⃗ = {S}), any
d-separation statement in G[s](⃗a), for s consistent with a⃗,
implies a conditional independence statement in p(V⃗ (⃗a)).

5.2 THE SELECTION HIERARCHY AND
CONTEXT SELECTED G-FORMULA

Treating the selector S as a part of the model allows us to
represent systematic selection via a hierarchy similar to the
missing data hierarchy [Rubin, 1976], with selected com-
pletely at random (SCAR), selected at random (SAR), and
selected not at random (SNAR) models. In particular, we
can recast the earlier antibiotic example as a SCAR model,
by assuming that assignment into the different studies S1,S2
is random and that S has no causes Fig. 1c. One can view
the SCAR model as the generalization “closest in spirit”
to the original gID formulation that admits a coherent ob-
served data likelihood that includes both observational and
interventional contexts.

SCAR models, like MCAR models in missing data, are often
unrealistic, as we expect selection into different domains to
be systematic. In our example, if the selection mechanism
into either the observational group or the experimental study
is influenced by observed characteristics W , such as the
patient’s age, as well as the treatment assignment A, the
result is a SAR model shown in (Fig. 1d). If the patients
are also selected based on unobserved characteristics that
also influence patient outcomes, such as a doctor’s intuition
about a particular case U1, the result is a SNAR model
shown in (Fig. 1e).

Since S is a part of the model, representing situations where
only some interventions are available to the analyst entails
imposing restrictions on support of S. Thus, we allow only
a subset of XS , termed X+

S , to have support. For example,
if S has children A1 and A2, we may allow X{Se

A1
,Se

A2
}

to have support on the set {{0, 0}, {0, 1}, {1, 0}}. In other
words, S allows no variables to be intervened on, or either
only A1 or A2 to be intervened on, but not both A1 and A2.
Prior work represented this by explicitly providing a set of
distributions as inputs to the algorithm [Lee et al., 2019].

Queries corresponding to interventional distributions
p(Y⃗ (⃗a)) in an SCM must be modified in a CS-SCM to
take the special nature of S into account. In particular, the
analogue of the query p(Y⃗ (⃗a)) in the original SCM corre-
sponds to p(Y⃗ (⃗a, S = ∅)), which reads “the distribution of
outcomes Y⃗ , when the context of the CS-SCM is set to the
observational value, and the variable A⃗ is set to a⃗”. Intu-
itively, this excludes contexts where variables such as Y⃗ are
intervened, and whose intervened distributions are not of
scientific interest. Note that this query potentially entails a
positivity violation in the sense that no positive support may
exist in the observed data distribution for the situation where
A⃗ = a⃗ and S = ∅. This occurs, in particular if elements of
A⃗ are among children of S. While this may potentially pre-
vent identification, restrictions on the CS-SCM may allow
identification to be obtained in some cases. A close analog
of this phenomenon arises in the interventionist formula-
tions of mediation analysis [Robins and Richardson, 2010,
Robins et al., 2023].

If all variables in an CS-SCM are observed, we have the
following result for the query p(Y⃗ (⃗a, S = ∅)) that directly
generalizes the g-formula.

Theorem 2 (Context Selected g-formula). Fix a fully ob-
served CS-SCM corresponding to an LS-DAG G[] with a
vertex set V⃗ , and disjoint subsets A⃗, Y⃗ of V⃗ . Let Y⃗ ∗ =

anG[](a⃗,∅)(Y⃗ ) Then p(Y⃗ (⃗a, S = ∅)) is identified if and only
if for every element V ∈ Y⃗ ∗ there exists a value sV ∈ X+

S
laidback for V (i.e. seV = 0). If so, we have:

p(Y⃗ (⃗a, S = ∅)) =
∑

Y⃗ ∗\Y⃗

∏
V ∈Y⃗ ∗

p(V | paG(V ))|a⃗
A⃗∩paG(V )

,Se
V

=0.

(2)
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The above g-formula takes into consideration the require-
ment that S = ∅, which ensures that the causal effect is
computed in the observational context only.

Note that the query may not be identified even under full
observability, if available contexts for S are not laidback
for elements in Y⃗ ∗. Nevertheless, the above result allows
identifiability in situations corresponding to SCAR or SAR.
While incorporating the selection process as an explicit part
of the causal model allows us to explicitly represent complex
types of systematic selection, it also (unsurprisingly) creates
difficulties with identification of causal effects in models
with hidden variables that yield systematic selection more
complicated than SCAR or SAR.

5.3 LATENT PROJECTIONS IN CS-SCMS

In order to formulate a general identification algorithm for
CS-SCMs with hidden variables, we first generalize latent
projections and the fixing operator to CS-SCMs.

A labelled selection acyclic directed mixed multigraph (LS-
ADMMG) is a multigraph with directed and bidirected edges,
no directed cycles, and the property that any pair of edges
of the same type connecting the same vertex pair A,B must
have different labels. Given an LS-DAG G[](V⃗ ∪ H⃗), where
S ∈ V⃗ , and where labels may exist on any edge in this
LS-DAG, define a latent projection G[](V⃗ ) to be an LS-
ADMMG with vertices V⃗ , where for each directed path
from A ∈ V⃗ to B ∈ V⃗ in G[](V⃗ ∪ H⃗) where all intermedi-
ate elements are in H⃗ , a directed edge labeled by a union
of labels for every edge on the path is added to G(V⃗ ). Sim-
ilarly, for each marginally d-connecting path from A to B
in Ḡ[](V⃗ ∪ H⃗), where the first edge is into A and the last
into B and where all intermediate elements are in H⃗ , add
to G(V⃗ ) a bidirected edge labelled by a union of labels for
every edge on this path. Note that the result is a multigraph
since the same pair may be connected by the same edge
type with multiple labels. A similar definition yields a latent
projection G[](V⃗ (⃗a)) of a labelled hidden variable SWIG
G[](V⃗ (⃗a) ∪ H⃗ (⃗a)). An example illustrating why labelled
multigraphs are necessary to represent latent projections of
LS-DAGs in general is found in the Appendix.

Similarly, we define a labelled selection conditional AD-
MMG (LS-CADMMG) as an LS-ADMMG with random
and fixed vertices, such that fixed vertices cannot have edges
with arrowheads into them.

Given an LS-CADMMG G[](V⃗ , W⃗ ) where S ∈ W⃗ , the
context selected graph G[s](V⃗ , W⃗ ) is defined by removing
every edge such that s is serious for any vertex in that edge’s
label, removing labels for all other edges, and removing
every unlabelled duplicate edge of the same type connecting
every pair of vertices. Note that this construction always
yields a CADMG. Note also that if s = ∅, all parents and

siblings of G are preserved in G[s] = G[∅], but the resulting
object is no longer a multigraph.

The fixing operator and genealogic relations generalize in
a straightforward way to multigraphs we consider. In par-
ticular, multiple labelled edges of the same type connecting
vertices A and B are treated as a single edge of that type,
with labels ignored. If a graph index for a genealogic set is
omitted, it is understood to be G[∅].

5.4 TOWARDS IDENTIFICATION UNDER SNAR

A seemingly reasonable approach for obtaining identifica-
tion of interventional distributions p(Y⃗ (⃗a, S = ∅)) given a
hidden variable CS-SCM represented by an LS-ADMMG
G[](V⃗ ) is to first address systematic selection by identifying
qV⃗ (V⃗ ) ≡ p(V⃗ |do(S = ∅)), corresponding to the SWIG
G[∅](∅), and then invoke the ID algorithm on this CADMG,
the distribution p(V⃗ ) and the query p(Y⃗ (⃗a, S = ∅)). This
strategy clearly yields a sound algorithm. In fact, we can
show that despite the extra context-specific independencies
implied by an CS-SCM, we have the following result.

Theorem 3. Given a hidden variable CS-SCM represented
by a LS-ADMMG G[](V⃗ ), the ID algorithm with causal
query p(V⃗ |do(S=∅)), data distribution p(V⃗ ), and ADMG
G[∅] is sound and complete.

Despite this, the above sequential strategy does not yield
a complete algorithm for systematic selection for the more
general causal query p(Y⃗ (⃗a, S = ∅)). To see why, con-
sider the following simple example, illustrated by the hid-
den variable LS-DAG Ḡ[] shown in Fig. 1f, where we are
interested in p(Y (a, s = ∅)). Completeness of the ID al-
gorithm implies that this interventional distribution is not
identified under standard SCM semantics corresponding to
this graph. Theorem 3 above also implies the distribution
p(Y,A | do(S = ∅)) is not identified.

However, identification is obtained in an CS-SCM due to
the following simple derivation:

p(Y (a, S = ∅)) = p(Y (a)) = p(Y (a)|S = (seA = 1, svA = a))

= p(Y (a) | A = a, S = (seA = 1, svA = a))

= p(Y | A = a, S = (seA = 1, svA = a)).

Here the first equality follows by the exclusion restrictions
in this model (or by rule 3 of the potential outcomes calculus
[Malinsky et al., 2019]). The second equality follows since
Y (a) ⊥⊥ S in this model, which may be verified by the
context selected SWIG shown in 1h. The third equality
follows by definition of the CS-SCM, and the final equality
by consistency.

This derivation is explained by noting that S acts as a per-
fect instrument for the effect of A on Y . Specifically S
only influences Y through A, and S is independent of any
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confounders for A and Y . In addition, unlike standard in-
struments, S completely determines the value of A, thereby
eliminating any influence of the confounder U2 on A. In
light of examples like above, we formulate a general iden-
tification algorithm that is able to handle both systematic
selection and unobserved confounding together.

6 AN IDENTIFICATION ALGORITHM
FOR SYSTEMATIC SELECTION

Here, we present a general identification algorithm, shown
as Algorithms 1 and 2, for the query p(Y⃗ (⃗a, S = ∅)) in a
hidden variable CS-SCM represented by a latent projection
multigraph G[](V⃗ ), where S ∈ V⃗ . The algorithm proceeds
from the usual factorization used by both the ID and gID
algorithms:

p(Y⃗ (⃗a, S = ∅)) =
∑

Y⃗ ∗\Y⃗

∏
D⃗∗∈D(G[](a⃗,∅))

Y⃗ ∗

p(D⃗∗|do(spa(D⃗∗)))

Consider the following example, which illustrates how each
term in this factorization is identified by one of three cases:
either directly by the ID algorithm, or the gID algorithm,
or a new case, formalized via Algorithm 2, which obtains
identification via the most general version possible of the
perfect instrument trick described in the previous section.
Failure cases return either the hedge [Shpitser and Pearl,
2006], or the thicket [Lee et al., 2019].

W2

A3

C

S A1

A2 W1

M Y

{A2}

{A1}

{A2} {A2}

Figure 2: An LS-ADMMG illustrating Algorithm 1.

Example 1 (Identifying p(Y (⃗a, S = ∅)) in Fig. 2).
The identifying functional is p(Y (⃗a, S = ∅)) =∑

Y⃗ ∗\Y
∏

D∗
i ∈D(G[](a,∅)Y⃗ ∗ )

qD⃗∗
i
(D⃗∗

i | spa(D⃗∗
i )), which is

equal to∑
M,W1,W2,C

p(C)p(M |a1, sa1)p(W1|W2, a2, sa2)∑
A3

p(Y |M,W2,W1, C, sa1,a2 , A3)p(W2, A3),

where sa⃗ is a shorthand for any value of S which is serious
for A⃗ at values a⃗. See the Appendix for a detailed derivation.

Our results show that our proposed algorithm is sound, and
implies a non-identified query in all but one failure cases.
We illustrate a number of failure cases of the algorithm in
the Appendix. We conjecture this algorithm is also complete.

Algorithm 1: SS-ID (systematic selection ID)

Data: G[], a⃗, Y⃗ , p(V⃗ )

Result: p(Y⃗ (⃗a, S = ∅)) or FAIL
1 Y⃗ ∗ ← anG[](a⃗,∅)(Y⃗ ) ;

2 for D⃗∗ ∈ D(G[]
Y⃗ ∗) do

3 if no s exists that is laidback for D⃗∗ then
4 return FAIL(positivity)
5 if cl(D⃗∗) = D⃗∗ then
6 q(D⃗∗| spa(D⃗∗))← ϕV⃗ \D⃗∗(p,G[])|S=s,

7 s laidback for D⃗∗, consistent with aspa(D⃗∗)

8 else
9 G̃ ← ϕV⃗ \cl(D⃗∗)(G

[]); q̃ ← ϕV⃗ \cl(D⃗∗)(p;G
[]);

10 if S ̸∈ cl(D⃗∗) then
11 if there is s laidback for D⃗∗, consistent

with a⃗spa(D⃗∗), and D⃗∗ reachable in G̃[s]

then
12 q(D⃗∗| spa(D⃗∗))← ϕcl(D⃗∗)\D⃗∗(q̃; G̃[s])
13 else
14 return FAIL(thicket)
15 else
16 q(D⃗∗| spa(D⃗∗))←

Algorithm 2(G̃,⃗a,q̃,D⃗∗,cl(D⃗∗))

17 return
∑

Y⃗ ∗\Y⃗
∏

D⃗∗ q(D⃗∗| spa(D⃗∗))|⃗aA⃗∩spaG(D⃗∗),sD⃗∗ ,

18 with sD⃗∗ laidback for D⃗∗, consistent with a⃗A⃗∩spaG(D⃗∗).

Theorem 4 (Soundness). Algorithm 1 is sound.

Theorem 5 (Non-identification). If Algorithm 1 fails at
Algorithm 1, line 4, Algorithm 1, line 14, or Algorithm 2,
line 3 then the causal effect is not identified.

7 CONCLUSIONS

In this paper, we have considered the problem of identifi-
cation of causal effects in settings with multiple datasets,
corresponding to the observational or interventional contexts
derived from a causal model where units are selected into
different contexts systematically. Unlike prior approaches,
we represent systematic selection by means of an indicator
random variable that is potentially related to other variables
in the model in complicated ways. We show that in the re-
sulting Context Selected Structural Causal Model (CS-SCM)
systematic selection may be arranged into a hierarchy re-
sembling the hierarchy of systematic censoring in missing
data, with possible models including selected completely at
random (SCAR), selected at random (SAR), and selected
not at random (SNAR). We show that in SCAR and SAR
models, identification of interventional distributions may be
obtained by a generalization of the g-formula.
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Algorithm 2: Identification for a confounded selector

Data: G[](C⃗, spa(C⃗)), a, qC⃗(C⃗| spa(C⃗)), D⃗∗, C⃗;
where C⃗ ≡ cl(D⃗∗);
Result: qD⃗∗(D⃗∗ | spa(D⃗∗)) or FAIL

1 ch∗(S)← ch(S) ∩ (cl(D⃗∗) \ D⃗∗);
2 if ch∗(S) = ∅ then
3 return FAIL(hedge⟨D⃗∗, cl(D⃗∗)⟩);
4 else
5 for s̄ ∈ X+

S which are laidback for D⃗∗ but serious
for Z⃗ ⊆ ch∗(S) at z⃗ consistent for aspa(D⃗∗) do

6 Let D⃗′ ∈ D(G[](s̄)), s.t. D⃗∗ ⊆ D⃗′ ;
7 if {D(s̄) : D ∈ D⃗′ ∩ de(S)} ⊥⊥ S | {D(s̄) :

D ∈ D⃗′ ∩ nd(S)} ∪ spa(D⃗′) in G[](s̄) and
D∗ is reachable in G[s](s̄)D⃗′ then

8 qs,z⃗
D⃗′ (D⃗

′| spa(D⃗′))←[ ∏
D∈de(S)∩D⃗′

qcl(D∗)(D|s̄,pre≺(D))

]
|Z⃗=z⃗

×[ ∏
D∈nd(S)∩D⃗′

qcl(D∗)(D|pre≺(D))

]
|Z⃗=z⃗ ,

where pre≺(D) are topological
predecessors of D in D′ ∪ spa(D′).
return ϕD⃗′\D(qs,z⃗

D⃗′ ;G[s](s̄)D⃗′);
9 return FAIL;

In SNAR settings, where systematic selection and unob-
served confounding are present, we provide a general iden-
tification algorithm which generalizes the gID algorithm
[Lee et al., 2022, Kivva et al., 2022], but which applies in
causal models with arbitrarily complex types of systematic
selection, and is able to achieve novel identification results
using context-specific restrictions found in CS-SCMs.
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A PROOFS

Theorem 1. Given a CS-SCM associated with G[](V⃗ ), and any A⃗ ⊆ V⃗ such that S ∈ A⃗ (including A⃗ = {S}), any
d-separation statement in G[s](⃗a), for s consistent with a⃗, implies a conditional independence statement in p(V⃗ (⃗a)).

Proof. This result is established by proof of soundness of the CSI-separation criterion in Boutilier et al. [1996], definition
of CS-ICMs (specifically, definition of seriousness of S with respect to any element of chḠ(S)), and a direct extension of
results in [Richardson and Robins, 2013b].

Theorem 2 (Context Selected g-formula). Fix a fully observed CS-SCM corresponding to an LS-DAG G[] with a vertex
set V⃗ , and disjoint subsets A⃗, Y⃗ of V⃗ . Let Y⃗ ∗ = anG[](a⃗,∅)(Y⃗ ) Then p(Y⃗ (⃗a, S = ∅)) is identified if and only if for every
element V ∈ Y⃗ ∗ there exists a value sV ∈ X+

S laidback for V (i.e. seV = 0). If so, we have:

p(Y⃗ (⃗a, S = ∅)) =
∑

Y⃗ ∗\Y⃗

∏
V ∈Y⃗ ∗

p(V | paG(V ))|a⃗
A⃗∩paG(V )

,Se
V

=0. (2)

Proof. Soundness follows by application of the g-formula to the CS-SCM [Robins, 1986], and the definition of our query.

Completeness holds by the following argument. Assume that S is never laidback for some element of Y⃗ ∗, which we call
Z. Then, it is possible to produce two models which have different distributions on Z when S = ∅. It is then possible to
construct two models which agree on the observed data distribution (which only includes elements in X+

S ), but disagrees on
p(Y⃗ (a, S = ∅)). In particular, fix Y ∈ Y⃗ . Since Z ∈ Y⃗ ∗, there must be a directed path from Z to Y . Consider two elements
of the causal model where the only edges are on the directed path from Z to Y , and all vertices are otherwise mutually
independent. Then it is straightforward to construct two elements of the causal model where the mapping from p(Z) to p(Y )
given by

∑
Z p(Y | Z) is one to one. Since the rest of the vertices of the model as mutually independent, we have that in

the two elements we are considering, p(Y⃗ (a, S = ∅)) =
∏

Ỹ ∈Y⃗ p(Ỹ ). This immediately yields non-identification since we
can construct two elements that agree on p(Ỹ ) for every Ỹ ∈ Y⃗ \ {Y }, and indeed on the observed data distribution, but
disagree on p(Y ).

Theorem 6 (Hedge for S = ∅ interventions). Let G be a graph with vertex set V⃗ , with S ∈ V⃗ representing an CS-SCM.
Let F⃗ ′, F⃗ be bidirected-connected sets in G where F⃗ ⊂ F⃗ ′, and S ∈ F⃗ ′ \ R⃗, and R⃗ is the root set of both F⃗ and F⃗ ′. Then,
p(F⃗ | do(S = ∅)) is not identified.

Proof. We first begin by defining an edge subgraph G′ of G, in which we retain all vertices, all bidirected edges, all directed
edges in anG(S), and all directed edges from S to its children. Define Z⃗ = clG′(D⃗∗) \ anG′(S).

We then consider the districts D⃗′ ∈ D(G′
Z⃗
). These districts are all bidirected connected components that have bidirected

edges to anG′(S), and may or may not have children of S.
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Choose a particular child of S, call it L. We consider D⃗′
L ∈ D(G′Z⃗) which contains L.

Then, L may be connected to S in one of two ways by a bidirected path (which exists solely in D⃗′
L ∪ anG′(S)) - either this

bidirected path enters anG′(S) via S, or via anG′(S) \ {S}.

1. Bidirected path enters anG′(S) via S: In the first case, we can isolate the bidirected path from L to S. Denote the
variables on this path as W1, . . . ,Wk, where some subset of these variables may also be children of S. Then it is
possible to provide a modified hedge construction in which p(L, W⃗ | do(S = ∅)) is not identified.
We first describe a process to augment the graph G′, which we denote as G′′. G′′ inherits all vertices of G′, but only
edges present in the subgraph over G′

W⃗∪{L,S}. We then split S into an separate nodes Se
Ci

for each child Ci, and these
Se
C form a bidirected chain Se

Y ↔ Se
C1
↔ . . . Se

Ck
. The last Se

Ck
inherits the bidirected edge into S. For each child C,

we replace the S → C edge with Se
C → C. For each child C, we create Sv

C that has a single unobserved variable USv
C

as parent, and has directed edge Sv
C → C. Finally, we replace each bidirected edge V ↔W with V ← UV,W →W ,

where UV,W denotes an unobserved variable. G′′ is a subgraph of G′ if you marginalize U⃗ and perform a cartesian
product operation on all S⃗e = {Se

C}C∈chG′ (S), S⃗
v = {Sv

C}C∈chG′ (S).
Given G′′, we now describe a procedure to construct two models respecting Definition 1 which agree on the observed
distribution, but disagree on the causal effect p(F⃗ | do(S = ∅)). Let the cardinality of all variables to 2. In model 1,
the value of each variable is equal to the bit parity of the parents. If Se

C is in the parents, then if Se
C = 0 it takes on the

bit parity of the other parents (noting that this is equivalent to the bit parity of all parents, since 0⊕X = X for any bit
X), and if Se

C = 1 then the variable takes on the value of Sv
C . The same is true in model 2, except W1 does not pay

attention to the bit connecting it and the last Se
C .

In the observational setting, in both models, the structural equations are the same for S⃗e, S⃗v . In model 1, when S⃗e = 0⃗,
L ∪ W⃗ effectively counts the bit parity of each U in G′′ twice, since Se

L is zero only if the U ′ connecting it to W1 is
zero. This forms a distribution where values of L ∪ W⃗ which have even bit parity have equal probability, and there is
no probability mass elsewhere. If any Se

C = 1, then there exists at least one such U which has only one path to L ∪ W⃗

and so the distribution is uniform. In model 2, when S⃗e = 0, L ∪ W⃗ effectively counts the bit parity of each U in
G′′
L∪W⃗

twice, ignoring the U that connects W⃗ to S, resulting in a distribution where values of L ∪ W⃗ which have even
bit parity having equal probability and no mass elsewhere. As with model 1, when any Se

C = 1 then the distribution
becomes uniform. Thus the observed data distributions agree.
Under an intervention S = ∅, this has the effect of ensuring that in model 2, the bit parity of L ∪ W⃗ is always even,
whereas in model 1 it is uniform, because there is the contribution of the U ′. This establishes the non-identification of
p(D⃗′

L | do(S = ∅)).
2. Bidirected path enters anG′(S) via anG′(S) \ {S}: Since S must have at least one child, we select any child at

random; call this child L. We consider the districts of G′
Z⃗

, and define D⃗′
L to be the district containing L. Define R⃗ to be

the root set of F⃗ .
We first begin by providing an augmented graph G′′ constructed from G′. This graph retains all vertices of G′, all
children of S, all directed edges in the ancestors of S. We then split S according to the following procedure: S is
replaced with vertices Se

C , S
v
C for each C ∈ chG′(S). Se

L inherits all incoming arrowheads previously into S. We create
directed edges Se

C → C, Sv
C → C for each child C. For all Sv

C , we add an unobserved variable USv
C
→ Sv

C , and for all
Se
C which is not Se

L, we add USe
C
→ Se

C . We note that G′′ is an edge subgraph of G′ if the U⃗ are latent projected, and
the S⃗e, S⃗v are grouped into a single vertex via the cartesian product operator.
Next, we will now define a CS-SCM, by modifying the construction of Shpitser and Pearl [2006] in such a way to
respect the context-specific restrictions.

In model 1, if V ̸∈ chG′′(S) then V ≡ ⊕paG′′(V ). Otherwise, V ≡

{
⊕paG′′(V ) Se

V = 0

Sv
V Se

V = 1
.

In model 2, the same is true, except for variables in D⃗′
L. For those variables, if V ̸∈ chG′′(S) then they only pay

attention to parents in D⃗′
L, and otherwise V ≡

⊕paG′′
D⃗′

L

(V ) Se
V = 0

Sv
V Se

V = 1
.

In the observational distribution, both models induce the same distribution. First, we point out that for variables outside
of D⃗′

L, the structural equations (and therefore the parts of the distribution associated with those variables) are the
same. Next, we consider variables in D⃗′

L. First we point out that the distributions over S⃗e are the same in both models,
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and are uniform random distributions. When S⃗e = 0, in model 1 variables in D⃗′
L count the bit parity of their parents

twice, whereas in model 2 variables in D⃗′
L count the bit parity of their parents in D⃗′

L twice. Either way this induces a
conditional distribution (of p(D⃗′

L | S⃗e, S⃗v)) with equal probability over even bit parities, and zero probability otherwise.
When there exists a child of S such that S⃗e

C = 1, then in both models the conditional distribution p(D⃗′
L | S⃗e, S⃗v) is

uniform because there exists at least one U which has only one path down to D⃗′
L.

In the interventional distribution where the intervention do(S = ∅) is applied, the distributions in the two models differ.
In model 1, the distribution over D⃗′

L is uniform, because the U variables whcih connect anG′′(S) to D⃗′
L now only have

one path to D⃗′
L. In model 2, the distribution has equal mass assigned to even bit parities for D⃗′

L, and no mass to other
values.
This establishes the non-identification of p(D⃗′

L | do(S = ∅)).

If R⃗ ⊆ D⃗′
L, then we have a witness for the non-identifiability of p(R⃗ | do(S = ∅)), and since R⃗ ⊆ F⃗ this proves the claim.

Otherwise, since the intervention is S = ∅, all edges in the graph Ḡ[] may be used in our construction of counterexamples.
In particular, we can employ the downward extension of Theorem 4 found in Shpitser and Pearl [2006] to both elements of
the causal model we are constructing as counterexamples. This gives

p(R⃗ | do(S = ∅)) =
∑
D⃗′

C

p(R⃗ | D⃗′
C , S = ∅)p(D⃗′

C | do(S = ∅))

where to suffices to choose p(F⃗ | R⃗, S = ∅) that will yield a one to one mapping from p(D⃗′
C | do(S = ∅)) to

p(R⃗ | do(S = ∅)) in the above equation.

Theorem 3. Given a hidden variable CS-SCM represented by a LS-ADMMG G[](V⃗ ), the ID algorithm with causal query
p(V⃗ |do(S=∅)), data distribution p(V⃗ ), and ADMG G[∅] is sound and complete.

Proof. The ID algorithm is sound for queries from models in the CS-SCM. This is because the CS-SCM is a submodel
(contains more restrictions) than the models considered in Shpitser and Pearl [2006], and the ID algorithm was established
to be sound in that same paper.

To see that the ID algorithm is complete for this query, we need to establish that whenever the ID algorithm fails, we
can construct two models which have the same observed data distribution but different counterfactual distributions for
p(V⃗ | do(S = ∅))

As established in Shpitser and Pearl [2006], Richardson et al. [2023], the ID algorithm fails when there is a district
D⃗∗ ∈ D(GV⃗ \{S}) whose closure clG(D⃗∗) is such that D⃗∗ ⊂ clG(D⃗

∗). Furthermore, we can establish that S ∈ clG(D⃗
∗)\D⃗∗,

and that D⃗∗ must not be a district of G, since otherwise D⃗∗ is reachable in G.

When such a D⃗∗ is encountered in the process of running the ID algorithm, we will return a construction from Theorem 6.
The original hedge construction of Shpitser and Pearl [2006] is not suitable because it does not incorporate the special
behavior introduced via the S context variable. This bears witness to the non-identifiability of p(D⃗∗ | do(S = ∅)).

Because D⃗∗ ⊆ V⃗ , it immediately follows that p(V⃗ | do(S = ∅)) is not identified.

Theorem 4 (Soundness). Algorithm 1 is sound.

Proof. The algorithm aims to identify p(Y⃗ | do(⃗a, S = ∅)) in the causal model G, with additional restrictions pertaining to
the semantics of S, and its relationship to its children in G, from the observed data distribution p(V⃗ ). These restrictions do
not affect district factorizations of the observed and interventional distributions which hold due to Shpitser and Pearl [2006],
Richardson et al. [2023].
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Then, for value assignment v ∈ XV⃗ ,

p(Y⃗ = vY⃗ | do(⃗a, S = ∅)) =
∑
Y⃗ ∗\Y⃗

∏
D∈DG

Y⃗ ∗

p(vD | do(vspaG(D))),

where values vspaG(D)) in each term are consistent with a⃗ and S = ∅.

Each term is identified by one of three cases.

The first case is triggered at Algorithm 1, line 7. In this case, we are justified in the choice of using any laid-back value
s for D⃗∗, because either S is independent of D⃗∗ given its Markov blanket, or because the structural equations are all the
same under those values due to mechanism invariance implied by the definition of the CS-SCM (see the restriction on the
structural equation when Se

V = 0 in Definition 1). For that value of s, and kernels evaluated to that value, soundness follows
by the standard soundness argument of the ID algorithm [Shpitser and Pearl, 2006, Richardson et al., 2023], which holds in
any SCM with independent errors, and thus also in an CS-SCM.

The second case is triggered at Algorithm 1, line 11, where D⃗∗ ⊂ clG(D⃗
∗) and S ̸∈ clG(D⃗

∗). This follows from
the soundness of the gID algorithm [Lee et al., 2019]. Specifically, this case shows that the distribution p(clG(D⃗

∗) |
do(spaG(clG(D⃗

∗)))) is identified, and represents the observed data distribution corresponding to a causal model represented
by graph GclG(D⃗∗). Since S ̸∈ clG(D⃗

∗), the available datasets in this model may be reformulated as observational and

interventional distributions on clG(D⃗
∗) indexed by values of S. These are precisely the inputs of the gID algorithm, and

soundness follows by the soundness of that algorithm.

The third case is triggered at Algorithm 1, line 16, where D⃗∗ ⊂ clG(D⃗
∗) and S ∈ clG(D⃗

∗).

Pick an appropriate value s̄. We note that p(D⃗′(s̄, spa(D⃗′))) is identified because of the following derivation:

p(D⃗′(s̄, spa(D⃗′), V⃗ \ clG(D∗))) =
∏

D∈D⃗′

qclG(D∗)(D(s̄) | {W (s̄) : W ∈ pre≺(D)})

=

 ∏
D∈D⃗′∩deG(S)

qclG(D∗)(D(s̄) | {W (s̄) : W ∈ pre≺(D)})

×
×

 ∏
D∈D⃗′∩ndG(S)

qclG(D∗)(D(s̄) | {W (s̄) : W ∈ pre≺(D)})


=

 ∏
D∈D⃗′∩deG(S)

qclG(D∗)(D | S = s̄, {W : W ∈ pre≺(D)})

×
×

 ∏
D∈D⃗′∩ndG(S)

qclG(D∗)(D | {W : W ∈ pre≺(D)})


where pre≺(D) is the subset of D⃗′ ∪ spaG(D⃗

′) earlier than D under some ordering ≺ topological for G. Here the first
equality follows by the top level district factorization of any interventional distribution in an SCM, the second equality
follows by arranging terms, and the third by independence, and rule 3 of the potential outcomes calculus [Malinsky et al.,
2019].

Given this, soundness of the third case follows from soundness of the ID algorithm formulated via the fixing operator.

Theorem 5 (Non-identification). If Algorithm 1 fails at Algorithm 1, line 4, Algorithm 1, line 14, or Algorithm 2, line 3 then
the causal effect is not identified.

Proof. To demonstrate non-identification at each of these failure points, we will provide a construction.
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1. Algorithm 1, line 4: If there is no s laidback for D⃗∗ then identification fails. This follows from the fact that identifying
the joint distribution p(D⃗∗ | do(spaG(D⃗

∗))) is impossible if only marginal distributions of this joint distribution are
available and random variables in D⃗∗ do not exhibit additional factorization structure, since D⃗∗ is a district.
Since joint distributions cannot be recovered from marginal distributions without further assumptions, we fail to identify
qV (D⃗

∗ | spa(D⃗∗)). Recall that S cannot be in D⃗∗ due to the definition of Y⃗ ∗.
This case handles the degenerate identification failure case of the gID algorithm (e.g. Section 3.1 of Lee et al. [2019],
or Section 3 of supplementary of Kivva et al. [2022], both provide details of explicit constructions showing this), where
we may consider a model where S has no parents and siblings to mimic the constructions.

2. Algorithm 1, line 14: A failure at this point involves the district D⃗∗ not containing S, but for each s that is both
consistent with aspa(D⃗∗) and laidback for D⃗∗, D⃗∗ is not reachable in the corresponding G[s]. Then, we may adopt either
the thicket construction of Lee et al. [2022] or corresponding alternative in Kivva et al. [2022], where S is now viewed
simply as an indexing operator for the various distributions that are inputs into gID. Then, the thicket construction
immediately witnesses the non-identifiability of the desired causal effect p(D⃗∗ | do(a, S = ∅)).

3. Algorithm 2, line 3: Since ch∗(S) is empty, there are two possibilities – it is either the case that S also has no children
in D⃗∗, or S has children in D⃗∗.
In the first case the construction is simply given as a regular hedge per Shpitser and Pearl [2006], since S has no
children inside.
In the second case, we will modify the argument of Shpitser and Pearl [2006] slightly in order to respect the constraints
of Definition 1. For variables in cl(D⃗∗) which do not have S as an parent, the structural equations are exactly as they
appear in Shpitser and Pearl [2006] in both models. For other variables V ̸∈ ch(S) ∩ D⃗∗, when S is laidback for V
(meaning Se

V = 0), the variable is equal to the bit parity of its parents as defined in Shpitser and Pearl [2006]. When S
is serious for V (meaning that Se

V = 1) the variable is equal to Sv
V as required by Definition 1.

This construction is a valid witness, and the proof is essentially the argument laid out in the second part of the proof for
Theorem 6.

Given a non-identification structure for p(D⃗∗ | do(a, S = ∅)) in any of the above cases, we now consider an argument for
showing that p(Y⃗ | do(⃗a, S = ∅)) is not identified.

We first note that A⃗ ∩ spa(D⃗∗) is guaranteed to be not empty, as this is the only way cl(D⃗∗) ⊂ D⃗∗.

Let R⃗∗ be the set of variables with no children in graph Gcl(D⃗∗). Let G′ be the edge subgraph used in this construction,

which consists of the edges in Gcl(D⃗∗), and a subset of edges in GY⃗ ∗ that form a forest from the root down to Y⃗ . Let Y⃗ ′ ⊆ Y⃗

be the subset of Y⃗ where the forest connects.

If ch(S) are not in this forest the original construction as detailed in Theorem 4 of Shpitser and Pearl [2006] holds.

Otherwise, without loss of generality, we may assume that there exists a value s′ ∈ XS such that the forest connecting R⃗
to Y⃗ ′ is laid-back. Variables along the forest are equal to the bit parity of their parents if S is laid-back for that variable,
and equal to the suitable bit of S if S is serious for that variable. Then, we employ in that value a suitable one-to-one
construction [Shpitser and Pearl, 2006, Lee et al., 2019] in both models. This gives

p(Y⃗ ′ | do(⃗a, S = ∅)) =
∑
D⃗∗

p(Y⃗ ′ | R⃗,do(S = ∅))p(R⃗ | do(a, S = ∅))

For all other variables in G that do not appear in the forest, we may assume uniform distributions that are identical in both
models. Then, for values s which are laid-back for the forest, p(Y⃗ ′ | R⃗,do(S = ∅))) will disagree between the two models,
and for other values of S, they will agree (at least from the earliest serious variable onwards). However, this still suffices to
prove that p(Y⃗ ′ | do(⃗a, S = ∅)) is not identified. Since this is a margin of p(Y⃗ | do(a, S = ∅)), this proves that the latter is
also not identified.

Finally, we note that if we didn’t have positive support on the value s′, then this would correspond to having less data
available, and the causal target would still not be identified with less data.
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B EXAMPLES

B.1 FULL EXAMPLE

Example 1 (continuing from p. 8). Throughout this example, we will use the shorthand sa⃗ to mean any value of S where
{seA = 1, svA = a⃗A : A ∈ A⃗}.

We first note that Y⃗ ∗ = {Y,M,W1,W2, C}, and D(G[]
Y⃗ ∗)={D⃗∗

1={Y,W2}, D⃗∗
2={M},D⃗∗

3={W1},D⃗∗
4={C}}.

D⃗∗
1 invokes Algorithm 1, line 16. Per Algorithm 2, line 6, the relevant district of G[](s) encapsulating D⃗∗

1 is D⃗′ =
{Y,A3,W2}, for s = sa1,a2

.

D⃗′ triggers Algorithm 2, line 7, since Y (a1, a2)⊥⊥S | M(a1),W1(a2),W2, A3 and D⃗∗
1 is reachable

in G[s](s)D⃗′ . Then, qs̄,z⃗
D⃗′ (D⃗

′| spa(D⃗′)) = p(Y |M,W2,W1, C, sa1,a2
, A3)p(W2, A3), and qD⃗∗

1
(D⃗∗

1 | spa(D⃗∗
1))=

ϕA3
(qs̄,z⃗

D⃗′ (D⃗
′| spa(D⃗′));G[s̄](s̄)D⃗′)

=
∑

A3
p(Y |M,W2,W1, C, sa1,a2

, A3)p(W2, A3).

D⃗∗
2 reaches Algorithm 1, line 11, with q̃ = ϕV⃗ \{M,A1}(p(V⃗ ); G̃[]) = p(M,A1|S), yielding qD⃗∗

2
(D⃗∗

2 | spa(D⃗∗
2)) =

ϕA1(q̃; G̃[sa1
])|a1 = p(M |a1, sa1).

D⃗∗
3 reaches Algorithm 1, line 16 with q̄ = q{W1,A2,S}(W1, A2, S|W2, A3, C) and the corresponding LS-CADMMG. Let

s = sa2
. Per Algorithm 2, line 6, the district of G[](s) encapsulating D⃗∗

3 is D⃗′ = {W1}. D⃗′ triggers Algorithm 2, line 7,
because W1(a2) ⊥⊥ S|W2, A3, C in q̄ and D⃗∗

3 is (trivially) reachable in G[s](s)D⃗′ . Then, qs̄,z⃗
D⃗′ (D⃗

′ | spa(D⃗′)) = p(W1 |
W2, a2, s).

D⃗∗
4 reaches Algorithm 1, line 7, giving qD⃗∗

4
(D⃗∗

4 | spa(D⃗∗
4))= p(C). This is a case our algorithm has in common with the ID

algorithm, as no special structure of the problem involving the selector S needs to be involved.

The identifying functional is p(Y (⃗a, S = ∅)) =
∑

Y⃗ ∗\Y
∏

D∗
i ∈D(GY⃗ ∗ )

qD⃗∗
i
(D⃗∗

i | spa(D⃗∗
i )), which is equal to∑

M,W1,W2,C

p(C)p(M |a1, sa1)p(W1|W2, a2, sa2)∑
A3

p(Y |M,W2,W1, C, sa1,a2 , A3)p(W2, A3)

B.2 ILLUSTRATING THE USE OF MULTIGRAPHS FOR REPRESENTING LATENT PROJECTIONS OF
LS-DAGS

A

SZ1 Z2

W1 W2

B

{Z
1
} {

Z
2 }

{W2}{W1}

(a)

A

S

B

{(Z1 ∨ W1) ∧ (Z2 ∨ W2)}

(b)

A

S

B

{Z2,W2} {Z1,W1}

(c)

Figure 3: An LS-ADMMG illustrating the need for multigraph representations.

In this section we provide some further details on why multigraphs are required, especially under latent projections. Consider
Fig. 3a. In a latent projection of Z1, Z2,W1,W2, only variables A,B, S remain. The directed edge A → B can now
disappear if we consider an intervention where at least one of Z1,W1 is intervened upon, and at least one of Z2,W2 is
intervened upon. This could be represented by a boolean logic label (e.g. {(Z1 ∨W1) ∧ (Z2 ∨W2)}). However, computing
the correct G[s] graph then requires of a boolean expression on each label, which is difficult to interpret visually (see Fig. 3b).
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Instead, we provide an alternative representation of the latent projection of Fig. 3a via a multigraph shown in Fig. 3c. Here,
if given a value of s, the corresponding G[s] graph can be recovered by checking for each edge whether the label intersects
the value of s.

B.3 FAILURE CASES

In this section we illustrate various failure cases that could occur throughout the application of Algorithm 1.

Y

S

(a)

S

A1

A2

Y

(b)

S

A Y

(c)

Figure 4: Examples of Failure Cases in Algorithm 1 and Algorithm 2

In all cases, we are interested in identifying a kernel for a particular district D⃗∗, which is in the graph GY⃗ ∗ , where we remind
the reader that Y⃗ ∗ = anGV⃗ \(A⃗∪{S})

(Y⃗ ).

1. Algorithm 1, line 4: Consider Fig. 4b, where we let XS0
= {{A1}, {A2}}. Then, under each value of S, the district

{Y } is not reachable. A thicket can be constructed according to Lee et al. [2019], Kivva et al. [2022].

2. Algorithm 1, line 14: Consider Fig. 4a, where XS0
= {{Y }}, and we are interested in identifying p(Y | do(S = ∅)).

Then in this case we never observe the true distribution of Y where S is laid-back for Y . Then it is easy to conceive of
two models which have different distributions for p(Y | S = (∅, ∅)), which is not part of observed data. The observed
data in this case is the randomization probabilities on Y that was specified by the experimenter.

3. Algorithm 2, line 3: Consider Fig. 4c, where D⃗∗ = {Y, S}, and let XS0
= {∅, {Y }}. We see that Algorithm 1, line 16

gets triggered because there is an s which is laid-back for D⃗∗ (namely ∅), A is not fixable so cl(D⃗∗) = {Y,A, S} ≠
{Y, S} = D⃗∗, and that S ∈ cl(D⃗∗).
Then, since S is not a parent of A, the possibly modified hedge ⟨{S, Y }, {S, Y,A}⟩ is returned. See Theorem 5 for
details.

C ANALYSIS

C.1 COMPLEXITY OF ALGORITHM 1

As with all identification algorithms in graphical models, we may ask two distinct computational complexity questions.

The first question treats the algorithm as a decision procedure answering a YES/NO question about identification of a given
query in a given model (and potentially giving additional useful information, such as the identifying functional if the answer
is YES). The computational complexity of this version of our algorithm has an upper bound of a low order polynomial in the
number of edges |E| and vertices |V | of the input graph. Specifically, here are the computational complexity calculations of
a number of operations that appear in the algorithm: the computation of the set Y⃗ ∗ is O(|E|+ |V |), for which a depth-first
traversal of the graph can calculate this set. The computation of districts in Y⃗ ∗ is similarly O(|E|+ |V |), via a depth first
traversal. Positivity (“laidbackness”) checks are linear in XS , the size of the state space of S. Finding a fixable vertex is
at most quadratic in |V |, and may be linear with clever use of hashing (since we must intersect descendants and districts).
Iteration of the fixing operation happens at most O(|V |) times. Calculations of reachability of the set entails iterative fixing.
The overall algorithm is thus at most O((|V |+ |E|+ |S|)3), and more efficient implementations are likely possible.

The second computational complexity question is the time it takes to evaluate the identification query itself given, for
example, categorical data. This version of the algorithm is likely intractable for the simple reason that the sum over Y⃗ ∗ \ Y⃗
in front of the algorithm may be difficult to evaluate in general graphs, for much the same reason that variable elimination
and belief propagation algorithms are intractable in dense graphs. While some prior work exists on making this version
of the algorithm tractable using ideas from variable elimination algorithms [Shpitser et al., 2011], this work only applies
to certain types of sparse graphs, and has not yet been generalized to the algorithm we present (although this is a very
interesting area of future work).
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