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Abstract

Accurate detection of outliers is crucial for the
success of numerous data analysis tasks. In this
context, we propose the Probabilistic Robust Au-
toEncoder (PRAE) that can simultaneously remove
outliers during training (transductive) and learn
a mapping that can be used to detect outliers in
new data (inductive). We first present the Robust
AutoEncoder (RAE) objective that excludes out-
liers while including a subset of samples (inliers)
that can be effectively reconstructed using an Au-
toEncoder (AE). RAE minimizes the autoencoder’s
reconstruction error while incorporating as many
samples as possible. This could be formulated via
regularization by subtracting an ℓ0 norm, counting
the number of selected samples from the recon-
struction term. As this leads to an intractable com-
binatorial problem, we propose two probabilistic
relaxations of RAE, which are differentiable and
alleviate the need for a combinatorial search. We
prove that the solution to the PRAE problem is
equivalent to the solution of RAE. We then use
synthetic data to demonstrate that PRAE can ac-
curately remove outliers in various contamination
levels. Finally, we show that using PRAE for out-
lier detection leads to state-of-the-art results for
inductive and transductive outlier detection.

1 INTRODUCTION

Unsupervised outlier detection is a critical problem in data
mining and machine learning. It involves finding unusual
measurements in datasets that have no labeling. Detecting
anomalous samples is essential for empirical science in vari-
ous fields, including biology [Lenning et al., 2018], geo-
physics [Bregman et al., 2021], engineering, and cyber-
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security [Chawla et al., 2019]. Outliers, also known as
anomalies, are samples that deviate significantly from the
majority of observations. However, defining what is nor-
mal and abnormal remains a challenging task in machine
learning. Our focus is on unsupervised outlier detection
to identify anomalies in two settings: (1) inductive learn-
ing, where we want to identify outliers from newly arrived
samples without additional training, and (2) transductive
learning, aiming to identify and remove outliers from an
existing dataset.

One effective way to detect anomalies is by analyzing the
density of data. This can be done by estimating the data
density followed by detection of anomalies as samples that
reside in the low probability density regions [Bishop, 1994].
Density-based models include HBOS [Goldstein and Den-
gel, 2012], Local Outlier Factor (LOF) [Breunig et al., 2000],
or some of its variants [Jin et al., 2001, Tang et al., 2002b, Jin
et al., 2006]. More recent probabilistic approaches include
[Kriegel et al., 2009b, Constantinou, 2018, Rozner et al.,
2024]. Other schemes [Aizenbud et al., 2015, Ramaswamy
et al., 2000, Angiulli and Pizzuti, 2002, Ghoting et al., 2008]
rely on distances between samples to identify anomalies.
The fundamental assumption of these approaches is that
normal points have dense neighborhoods, whereas outliers
are far from their neighbors. An alternative paradigm for
anomaly detection is one-class classification [Chen et al.,
2001, Ruff et al., 2018, Perera et al., 2021, Deng and Li,
2022]. In this method, anomalies are identified as samples
that significantly deviate from the bulk part of the data, also
known as the "one-class".

High-dimensional measurements can often be represented
by a low-dimensional subspace or manifold [Aizenbud and
Sober, 2021, Roweis and Saul, 2000, Peterfreund et al.,
2020]. By assuming that normal samples lie close to a low-
dimensional latent manifold, while outliers are diverse and
do not conform to the same manifold structure, anomalies
can be detected using dimensionality reduction methods like
Principal Component Analysis (PCA) [Pearson, 1901] or
deep Autoencoders (AE) [Rumelhart et al., 1985, Japkowicz
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et al., 1995, LeCun et al., 1989]. Robust PCA schemes
[Lerman and Maunu, 2018b] search for a low-dimensional
linear subspace that best fits the inliers. These models can
simultaneously identify anomalies and learn a reduced
subspace, but they are limited to linear transformations. To
overcome this limitation, several authors have proposed
using AEs [Chen et al., 2017, Zhou and Paffenroth, 2017]
to learn a valuable nonlinear mapping for detecting outliers.

Generative models have emerged as powerful tools for
learning data distribution, making them useful for identi-
fying anomalies [Zong et al., 2018, Liu et al., 2019, Du and
Mordatch, 2019, Eduardo et al., 2020]. In semi-supervised
settings, deep neural networks have been utilized by several
authors [Hendrycks et al., 2018, Wang et al., 2019, Goyal
et al., 2020, Reiss et al., 2021, Hojjati and Armanfard, 2021]
to model the normal part of the data and identify outlier
samples that differ significantly from normal ones. Recently,
self-supervision [Hendrycks et al., 2019, Bergman and
Hoshen, 2020] and transfer learning [Deecke et al., 2021]
have gained interest in anomaly detection in vision to detect
semantic anomalies.

This work focuses on unsupervised anomaly detection
for general data (not necessarily images) and proposes a
novel Probabilistic Robust autoencoder (PRAE). PRAE
can remove outliers during training (transductive) and
be used to detect outliers in unseen data (inductive). Our
contributions are four folds: (1) We formulate the robust
autoencoding (robust-AE) problem by incorporating an ℓ0
term penalizing the number of observations included in the
AE’s reconstruction loss. (2) We propose two probabilistic
relaxations for robust AE and demonstrate that they could
be effectively trained using standard optimization tools
such as stochastic gradient descent (SGD). (3) We show
theoretically that the solution of the probabilistic relaxation
is equivalent to the solution to the robust-AE problem. (4)
We propose two unsupervised schemes to tune the regular-
ization parameter controlling the robustness of the PRAE.
(5) We demonstrate, using synthetic and real data with up
to 32k variables and 1M samples, that PRAE outperforms
leading anomaly detection methods in multiple settings.

Notation: Throughout the paper, we treat anomalies and
outliers similarly since we only assume that they deviate
from the “normal” samples. Furthermore, we denote vectors
using bold lowercase letters such as x. Scalars are denoted
by lowercase letters such as y. The nth vector-valued obser-
vation is denoted as xn while x[d] represents the dth feature
(or entry) of the vector x. Matrices are denoted by bold
uppercase lettersX . The ℓp norm of x is denoted by ∥x∥p.

2 METHOD

2.1 ROBUST AUTOENCODER

We observe a set of data samples represented by X =
{x1, . . . ,xN}, where each sample xi is a vector of real
numbers in RD. To model the data, we divide X into two
subsets: Xin containing the inliers and Xout containing
the outliers. We assume that the inliers can be approximated
by some low-dimensional structure. We are interested in the
fully unsupervised setting, where we never have access to
clean samples. Our goal is to identify the inliers and outliers
based on the observed samples (inductive learning) and to
detect newly arriving outliers (transductive learning).

We propose a regularized AE that can simultaneously learn
a low-dimensional data representation and identify the out-
liers. Our goal is to attenuate the influence of outliers during
the training of the AE, which will result in a more reliable
AE mapping. To achieve this goal, we define an indicator
vector b ∈ {0, 1}N whose value i indicates if the sample
xi is an inlier (b[i] = 1) or an outlier (b[i] = 0). To learn
the parameters of the encoder-decoder pair (ρ() and ψ())
while simultaneously identifying the inliers and outliers, we
propose the following robust AE loss

Ld(ψ,ρ, b) =
∑
i

b[i]
∥∥∥xi − x̂i

∥∥∥2
2
− λ∥b∥0, (1)

where x̂i = ψ(ρ(xi)). In equation (1), the main term is a
standard AE reconstruction term computed only for samples
with a value of 1 for the variable b[i]. The ℓ0 norm is used to
count the number of samples included in the reconstruction
error, referred to as "inliers". By balancing the error of the
reconstruction and the ℓ0 penalty, the hyper-parameter λ
is used to control the cost associated with the number of
samples used by the AE.

When the value of λ is large, the model includes more
samples. Conversely, a smaller λ results in a sparser solution
with fewer samples included by the model. If Xin lies
near a low-dimensional manifold, the encoder-decoder pair
can give a good approximation of the inliers, i.e., x̂i ≈
xi for xi ∈ Xin. However, if outliers are not near the
low dimensional manifold, ∥xi − x̂i∥22 is expected to be
significant. Unfortunately, the ℓ0 norm in Eq. (1) makes the
problem intractable even with a small number of samples. To
overcome this limitation, we propose, following [Yamada
et al., 2020, Lindenbaum et al., 2021a,b], to replace the
deterministic search over the values of the indicator vector
b with a probabilistic counterpart.

2.2 PROBABILISTIC ROBUST AUTOENCODER

We are now ready to present our probabilistic formulation
for a sparse AE. Towards this goal, we multiply the samples
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Figure 1: A schematic of the Probabilistic Robust AutoEncoder (PRAE) framework. On the left, input samples denoted by
xis are multiplied by continuously relaxed Bernoulli gates. The model has an encoder, decoder, and µ, all represented in
blue. The network computes a reconstruction loss (in the middle) for any choice of these components. The model learns
the parameters of the Bernoulli variable to select samples that are "easier" to reconstruct (as per Eq. (3)). We optimize the
"blue" variables (encoder, decoder, and µ) to achieve the best results. During training, outliers can be excluded, and the
model learns useful mappings for detecting outliers.

by stochastic gates that relax the binary nature of the indica-
tor vector b. The gates are differentiable and are designed to
select a subset of samples on which the AE reconstruction
error is minimized. We parameterize a stochastic gate (STG)
using mean-shifted truncated Gaussian distribution. Specif-
ically, we denote the STG random vector as z ∈ [0, 1]N ,
parametrized by µ ∈ RN . Each vector entry is defined as

z[i] = max(0,min(1, µ[i] + ϵ[i])), (2)

where ϵ[i] is drawn from N (0, σ2), σ is fixed throughout
training, and µ[i] is a trainable parameter which controls the
distribution of the random variable z[i].

We can now incorporate the STGs into our proposed prob-
abilistic AE loss. Formally, using a reconstruction loss, a
probabilistic AE loss can be described using one of the
following terms

Lp0
(ψ,ρ,µ) = E

(∑
i

z[i]
∥∥∥xi − x̂i

∥∥∥2
2
− λ∥z∥0

)
, (3)

Lp1
(ψ,ρ,µ) = E

(∑
i

z[i]
∥∥∥xi − x̂i

∥∥∥2
2
− λ∥z∥1

)
, (4)

where λ is a regularization parameter that controls the cost
associated with the number of samples included by the
AE. We propose the following strategy to minimize the
new loss functions (3) or (4). Given some initial guess for
the encoder, and decoder, parameterized via the weights of
ψ and ρ, we draw realizations for the random vector z and
compute the loss value. We note that the regularization terms
E(∥z∥0) =

∑
P (z[i] > 0), and E(∥z∥1) =

∑
E(z[i]) are

parametric, and the expected value of the left term of Eqs.
(3) and (4) is approximated using Monte Carlo sampling.

Then, we differentiate the loss using SGD to update the
weights in ψ and ρ, and the vector µ. Figure 1 presents a
schematic illustration of this procedure. For inductive learn-
ing, we use the values of the trainable vector µ as anomaly
scores for each data point. A smaller value indicates that
the sample should be excluded from the reconstruction loss
and therefore is more anomalous. In Section 5.2, we pro-
pose two unsupervised schemes for tuning the regularization
parameter λ.

3 RELATED WORK

Anomaly detection has been previously addressed using
AEs. A straightforward approach involves using the recon-
struction error of each sample to quantify if it is normal or
anomalous [Sakurada and Yairi, 2014]. Since this approach
does not induce regularization, the AE may overfit the out-
liers and learn a mapping that does not correctly characterize
the normal samples. To solve this limitation, in [Chen et al.,
2017], the authors propose an ensemble of AEs for anomaly
detection. The idea is to train many AEs, each pruned by
randomly subsampling the learned connectivities. Then, an
aggregated prediction of the ensemble is used to identify
the anomalies. One disadvantage of this approach is that it
requires extensive computational and memory costs since
it involves training hundreds of AEs. Furthermore, the pro-
posed scheme outperforms the ensemble of AEs on several
benchmark datasets (see Supplementary Material D).

Perhaps the most related method to our work is [Zhou and
Paffenroth, 2017]. The authors proposed the following reg-
ularized AE objective ∥LD −ψ(ρ(LD))∥2 + λ∥S∥2,1 s.t.
X −LD −S = 0. This model aims to split the dataX into
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two parts, LD and S while minimizing the reconstruction
error on LD. The regularization in the form of an ℓ2,1 norm
is designed to sparsify the rows (samples) or columns (fea-
tures) of S. This way, the data is split into inliers LD and
a sparse set of outliers S. To minimize the objective with
the additional constraint, they use the Alternating Direction
Method of Multipliers (ADMM) [Boyd et al., 2004] with an
element-wise projection approach to enforce the constraint.
This method differs from our approach significantly since
the regularization relies on the ℓ2,1 norm applied to S. The
ℓ2,1 norm leads to shrinkage of values, and therefore S is
not guaranteed to reflect actual samples fromX .

In [Ishii et al., 2020, 2022], the authors follow a similar con-
struction to the algorithm in [Zhou and Paffenroth, 2017] but
using an ℓ0 norm. The main difference between our method
and [Zhou and Paffenroth, 2017, Ishii et al., 2020, 2022],
is that they all rely on an alternating minimization proce-
dure, in which the data is decomposed into low-rank and
sparse parts. This generally leads to element-wise sparsity.
Our approach differs significantly and enables simultaneous
encoder-decoder pair and sample-wise sparsification learn-
ing. Furthermore, since our approach is based on gradient
descent, it is directly amenable to parallel computing (us-
ing small batches). Furthermore, as demonstrated in section
5, leads to more accurate identification of outliers when
applied to real and synthetic data.

4 ANALYSIS

The problem of robust learning with ℓ1 regularization was
studied theoretically in the context of robust regression [Hu-
ber, 1987, Mitra et al., 2010, Yang et al., 2018]. We are
interested in a related problem for unsupervised learning.
Specifically, in this section, we justify the use of our pro-
posed probabilistic AE (see Section 2.2) to solve the robust
auto-encoding problem (see Section 2.1). Since the latter is
not differentiable while the first is, our goal is to show that
both minimization problems lead to the same solution.

First, to avoid divergence of the values ofµ in the theoretical
analysis, we bound the values of µ by

−M ≤ µ[i] ≤ M, (5)

for some large number M . Note that the number M is used
only for the theoretical analysis and has no practical use
when running the algorithm.

For any vector b ∈ {0, 1}N , we defineµb, such thatµb[i] =
−M if b[i] = 0, and µb[i] = M if b[i] = 1 for i = 1 . . . N .
For any µ we define bµ such that bµ[i] = sign(µ[i]).

We now turn our attention to show that the deterministic
optimization problem (1) (which is not differentiable) is
equivalent to our probabilistic optimization (4) in the fol-
lowing sense

Theorem 4.1. For any dataset X , denote by (ψd,ρd, bd)
the minimizer of (1) and by (ψp,ρp,µp) the minimizer of
(4). Assume that the minimizer of (1) is unique and that

min
(ψ,ρ,b) ̸=(ψd,ρd,bd)

Ld(ψ,ρ, b) ≥ Ld(ψd,ρd, bd) + ε0

(6)
for some ε0 > 0. Then for a sufficiently large M > 0
(see (5)), (ψd,ρd) = (ψp,ρp), and for any i = 1, . . . , L,
b[i] = 1 if µ[i] > 0 and b[i] = 0 otherwise.

In other words, if the minimizer of (1) is unique, then the
encoder, decoder that minimize (1) and (4) are equivalent.
Moreover, the samples included by both models (indicated
by b and z) are the same.

Proof. The proof construction is comprised of three argu-
ments. The final argument relies on the first two and con-
cludes the proof.

Argument 1: For any triplet (ψd,ρd, b) the deterministic
loss Ld can be approximated by the probabilistic loss Lp1

.
Namely, for any ε, δ > 0 there is a value of M > 0 such
that

|Ld(ψd,ρd, bd)− Lp1
(ψd,ρd,µb)| ≤ ε,

with probability 1− δ.

To prove this argument, we first compute the expectation
E(z) using definition (2), we get:

E(z) =µ− 1

σ
√
2π

∫ 0

−∞
te−

(t−µ)2

2σ2 dt−

1

σ
√
2π

∫ ∞

1

te−
(t−µ)2

2σ2 dt+
1

σ
√
2π

∫ ∞

1

e−
(t−µ)2

2σ2 dt,

computing the integrals leads to:

E(z) =
1√
2π

(e−
µ2

2σ2 − e−
(1−µ)2

2σ2 )+

(µ− 1) ∗ Φ(1− µ

σ
)− µ ∗ Φ(−µ

σ
) + 1,

where Φ is the CDF of the standard normal distribution.

Since limµ→∞ E(z) = 1, and limµ→−∞ E(z) = 0, then,
for any ε > 0, there is a sufficiently large M , such that∣∣∣∣∣λ∑

i

E(z[i])− λ∥b∥0

∣∣∣∣∣ < ε/2. (7)

From the definition of z we also know that for µ > 1,
P (z ̸= 1) = Φ( 1−µ

σ ), and thus limµ→∞ P (z = 1) = 1.
Similarly limµ→−∞ P (z = 0) = 1. Thus, for any δ there is
M large enough, such that∣∣∣∣∣∑

i

z[i]∥xi − x̂i∥22 −
∑
i

b[i]∥xi − x̂i∥22

∣∣∣∣∣ < ε/2, (8)
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with probability 1− δ.

Combining (7) and (8), we have that for any δ > 0, there is
a value of M such that

|Ld(ψd,ρd, bd)− Lp1
(ψd,ρd,µb)| ≤ ε,

with probability 1 − δ. This concludes the proof of Argu-
ment 1.

Argument 2: For any AE (ψ,ρ), the minimum
minµ Lp1

(ψ,ρ,µ) is achieved when µ[i] equals to either
M or −M for all i.

Assume by contradiction that the minimum of Lp1
is

achieved at a point where for some k, µ[k] is not either
M or −M . If ∥xi − x̂i∥22 ≥ λ, then for µ̂ such that
µ̂[i] = µ[i] for all i ̸= k and µ̂[k] = −M we have that
Lp1(ψ,ρ, µ̂) ≤ Lp1(ψ,ρ,µ), which contradicts the mini-
mality of Lp1

(ψ,ρ,µ). In case ∥xi − x̂i∥22 ≤ λ a similar
argument will lead to a contradiction as well.

Argument 3: Assume by contradiction that the minimizers
of (1) and (4) are not equivalent, i.e.

(ψd,ρd,µbd
) ̸= (ψp,ρp,µp). (9)

From Argument 2 we have that µp[i] = M or −M for all
i. From Argument 1, we have that

∥Ld(ψp,ρp, bµp)− Lp1(ψp,ρp, µp)∥ ≤ ε,

∥Ld(ψd,ρd, bd)− Lp1(ψd,ρd, µbd)∥ ≤ ε.
(10)

Since ψp,ρp,µp is the minimizer of Lp1
, we have from

(10) that

Ld(ψd,ρd, bd) ≥ Ld(ψp,ρp, bµp
)− 2ε. (11)

From Eq. (9) and the assumption of the theorem in Eq. (6),
we have that

∥Ld(ψp,ρp, bµp
)− Ld(ψd,ρd, bd)∥ ≥ ε0. (12)

For 2ε < ε0, Eq. (12) contradicts Eq. (11).

5 EXPERIMENTS

5.1 ROBUST SUBSPACE RECOVERY PROBLEM

First, we test the performance of the proposed algorithms
in the linear setting. While this regime has fewer applica-
tions, it is well-studied and easy to evaluate by comparing
different methods. In the linear regime, the outlier detection
problem is tightly related to the Robust Subspace Recovery
problem (RSR). Thus, we compare our proposed scheme
to baselines designed to solve the RSR problem. The RSR
problem involves finding a low-dimensional (linear) sub-
space in a corrupted, potentially high-dimensional dataset.

Figure 2: Comparing PRAE to several Robust Subspace
Recovery (RSR) algorithms. The y-axis represents the
different algorithms, and the x-axis represents different
percentiles of outliers. Each box is colored according to
the mean over 10 runs of the log() of the angle between
the recovered subspace and the ground truth. Lower val-
ues (darker red) indicate that the subspace recovery is
more accurate. The proposed PRAE can accurately re-
cover the low dimensional subspace even in the presence
of a high percentage of outliers.

For a complete overview of RSR, we refer the reader to
[Lerman and Maunu, 2018b].

Following Lerman and Maunu [2018b], for any chosen per-
centile of outliers r = Nout/N , we generate N = 10000
points in R200 in the following way: first we randomly
generate X low

in , a set of Nin = (1 − r)N random points
in R10. Next we generate a random linear transformation
T ∈ R200×10, and setXhigh

in = TX low
in . Finally, we gener-

ateXout as Nout = rN random points in R200, and define
the dataset X = Xhigh

in ∪Xout. The task is to recover T
and Xin given the data X . The accuracy is measured by
the log of the angle between the recovered T and the cor-
rect T (therefore, smaller values indicate a more accurate
recovery). Each experiment was performed 10 times; the
outcome is the average of the 10 runs. We refer the reader
to Supplementary Material A for complete implementation
details.

The comparison to other algorithms under a high percentile
of outliers (r = Nout/N ) appears in Figure 2. We com-
pared to leading schemes from the evaluation in [Lerman
and Maunu, 2018b], namely: fast median subspace (FMS)
[Lerman and Maunu, 2018a], Tyler’s M-estimator (TYLER)
[Zhang, 2016], REAPER [Lerman et al., 2015], the aug-
mented Lagrange multiplier method (PCP) [Lin et al., 2010],
geodesic gradient descent (GGD) [Maunu et al., 2019], and
principal component analysis (PCA).

While our approach is not explicitly designed for the RSR
problem, it is easy to see that our algorithms perform on
par with state-of-the-art methods for RSR. Even for 99%
outliers, in 7 out of 10 runs, our algorithms found exactly

2275



Figure 3: Phase transition of PRAE. As we increase λ above a certain threshold, PRAE starts to include outliers, resulting
in a lower F1-score (left panel) and larger reconstruction error (MSE) on unseen samples (right panel). The dashed line
indicates our (unsupervised) estimation of the value of λ in which the proposed scheme transitions from removal to the
inclusion of outliers.

all the inliers. Since our approach is not designed for RSR
and is focused on the more general non-linear setting, FMS
recovers a more accurate subspace and requires a shorter
training time. Nonetheless, this experiment highlights that
our model is relatively robust to the number of outliers. We
observe that PRAE can correctly recover inliers in a noisy
setting. Precisely, when we use Xn = X + η, where the
noise η ∼ N(0, 10−2I) and 99% outliers, our model is still
able to correctly identify a subset of inliers that are sufficient
for subspace recovery in 7 out of 10 cases. However, we
omit this noisy RSR experiment since it requires a more
involved method for reconstructing the subspace based on
the (correctly) retrieved noisy inliers.

5.2 UNSUPERVISED SCHEMES FOR TUNING
THE REGULARIZATION PARAMETER

One practical consideration in PRAE is the choice of regu-
larization parameter λ. In this section, we empirically study
the effect of this parameter and propose two unsupervised
schemes for tuning λ. We use synthetic data to demonstrate
that our estimated value of λ leads to the accurate identifica-
tion of inliers and removal of all outliers.

We focus on the linear data model described in Section 5.1,
but with N = 200,X low

in ∈ R150×2, and T ∈ R100×2. We
generate data from this model and run PRAE-ℓ0 and PRAE-
ℓ1 for various values of λ in the range [0.1, 10]. We run
each model 20 time and record the average F1-score, com-
puted based on precision and recall of outlier identification.
Specifically, we define an outlier xi as a sample such that
after training µ[i] < thresh, and an inlier otherwise. Here,
µ[i] is computed based on Eq. (2) but without the injected
Gaussian noise. We set thresh to 0.1, although other values
within (0, 1) yield similar results.

In both proposed loss functions (see (3) and (4)), λ balances

between the number of samples included by the model and
the reconstruction loss. For a very large λ, we expect the
model to include all samples since the regularization term
would be larger than the reconstruction of xi (for inliers and
outliers). On the other hand, if λ = 0, all samples should
be excluded by the model. For small values of λ > 0, we
expect the model to include the inliers (since we can obtain
zero reconstruction loss) and exclude the outliers. Based on
the linear model experiment (described above), we observe
a "phase transition" in the behavior of PRAE as a function
of λ. Namely, as evident in the left panel of Figure 3 for
small values of λ, PRAE accurately removes all outliers and
includes all inliers.

In this example, since all samples have roughly the same
energy (ℓ2 norm), we can propose a simple scheme for
estimating the λ value in which the phase transition occurs.
Specifically, we can compute the mean energy of all samples,
namely ME = 1

N

∑N
i ∥xi∥22. Since we can not reliably

reconstruct the outliers (based on our data model), we expect
the error for reconstructing outliers to be ∼ ME. Therefore,
for any λ > ME, PRAE-ℓ1 should include outliers since
∥xi − x̂i∥22 is compared to λ in loss (see (4)). On the other
hand, if λ < ME, PRAE-ℓ1 should exclude outliers (based
on the same argument). For PRAE-ℓ0, this argument is not
precise; nonetheless, we observe that ME lines well with
the phase transition of both models. This is presented as a
dashed black line in Figure 3.

Another scheme for tuning λ involves finding the value
that minimizes the reconstruction loss of unseen samples (a
validation set). Here, we assume that inliers can be repre-
sented by a low-dimensional space while outliers can not.
By evaluating the model’s reconstruction error on unseen
samples, we check if the model suffered from overfitting
on anomalies or has used only inliers. We repeat the exper-
iment above but evaluate the average reconstruction loss
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σ2
N COPOD kNN ECOD IForest LSCP HBOS NTL GOAD RSR-AE ℓ2,1-AE PRAE-ℓ0 PRAE-ℓ1

0.1 58.15 8.48 41.29 26.08 67.72 60.65 99.50 47.77 93.12 68.47 96.23 97.48
1 56.65 98.79 53.19 55.20 67.99 81.34 68.59 79.68 82.25 46.23 99.97 99.94
10 88.47 99.12 93.32 97.87 99.65 94.34 25.66 67.01 75.13 80.59 99.55 99.42

Table 1: Performance comparison on a synthetic dataset. Each value corresponds to the median AUC of the ROC curve
of a different algorithm (column) under several anomaly variances (row). Blue and bold indicate first and second-ranked
methods, respectively.

Figure 4: Examples of the synthetic narrow Swiss roll (blue) with Gaussian outliers (yellow), generated using different
values of σ2 ∈ 0.1, 1, 10.

on 200 unseen samples generated from the same model. As
evident in the right panel of Figure 3, both models lead to
the smallest reconstruction loss for λ values that coincide
with the perfect F1-score (supporting the validity of the pro-
posed tuning scheme). We observe that PRAE-ℓ0 leads to a
higher reconstruction error for large values of λ. This might
indicate that the inclusion of all samples occurs earlier in
training, leading to stronger overfitting.

6 OUTLIER DETECTION WITH
SYNTHETIC DATA

In the synthetic example described in Section 6.3, we con-
sider a “narrow swiss-roll”, with 1000 points uniformly
sampled from [3π/2, 9π/2] × [0, 0.1], and embedded into
R3 using (t, h) → (t cos(t), h, t sin(t)). Then, we generate
additional 200 “outliers” sampled from N(0, σ2I3), where
I3 ∈ R3×3 is the identity matrix. In Figure 4 we present
examples of Swiss rolls with anomalies generated using dif-
ferent values of σ. In this example, we use a NN with hidden
layers of size 512, 256, 128, 64, 32, and the latent space has
two neurons. Since the energy of the data varies substan-
tially across samples, we used a normalized reconstruction
loss for training all AE-based methods. Specifically, we nor-
malize the reconstruction error of each sample by the ℓ2
norm of the sample.

To illustrate the qualities of our scheme in a nonlinear set-
ting, we use an example suggested by [Lai et al., 2019]. For
the normal samples, we consider a “narrow swiss-roll”, with
103 points uniformly sampled from [3π/2, 9π/2]× [0, 0.1],
and embedded into R3 using (t, h) → (t cos(t), h, t sin(t)).
Then, we generate additional 200 outliers sampled from
N(0, σ2

NI3), where I3 ∈ R3×3 is the identity matrix. We

generate such data with several values of σ2
N (see Figure 4

in Section 6), and following [Chen et al., 2017, Ishii and
Takanashi, 2019], we evaluate the quality of the different
methods using Receiver Operating Characteristic (ROC)
curves. The ROC measures the trade-off between true posi-
tive and false positive rates. The true positive rate is defined
as the ratio between identified anomalies and true anomalies,
while the false positive rate is the portion of normal samples
identified as anomalies. The ROC curves are summarized
by measuring the AUC (area under the curve).

6.1 OUTLIER DETECTION ON REAL DATA

We evaluate the proposed approach on a diverse set of 41
real-world datasets with dimensions up to 32K and sample
sizes up to 620K. All properties appear in the right column
of Table 3 in the Supplementary Material. To evaluate per-
formance, we randomly split each dataset and use one half
for training and transductive learning, and the remaining
hold-out-set is used to assess the accuracy of inductive learn-
ing. The anomaly score for xi is based on the reconstruction
error ∥xi − x̂i∥22.

We compare our method to several strong baselines with
code available at [Zhao et al., 2019b]. Specifically, we use
kNN [Angiulli and Pizzuti, 2002], and IForest [Liu et al.,
2008], which are classic methods that rely on the geometry
of the data. We also use density models such as HBOS
[Goldstein and Dengel, 2012], COPOD [Li et al., 2020],
and ECOD [Li et al., 2022]. Finally, we compare several
NN-based methods, such as ℓ2,1−AE [Zhou and Paffenroth,
2017], RSR-AE [Lai et al., 2019], NTL [Qiu et al., 2021],
and GOAD [Bergman and Hoshen, 2020].

Our model is trained using an encoder-decoder pair con-
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Figure 5: Outlier detection benchmark using 41 real tabular datasets. We present the box plots comparing the median AUC
results of each method when applying 10 random splits of each dataset. Black lines indicate medians while red lines are the
mean. Left panel: results for the inductive learning setting. Right panel: results for the transductive learning setting. The
proposed PRAE outperforms all baselines in both settings. We only present here PRAE-ℓ1 since the ℓ0 led to similar results
(see complete tables in the Supplementary Material).

sisting of five hidden layers, each with a size of 100. The
bottleneck dimension is set to 1, but other values produce
similar results (as shown in Figure 9). We use a single value
of λ equal to 1 in all our experiments, based on the results
of Section 5.2. We also evaluated the dynamic tuning of
λ proposed in Section 5.2, and its results are presented in
Figure 5.2. To ensure the accuracy of our results, we run
all methods ten times on random splits and record the ROC
for each run. In the left panel of Figure 5, we present a box
plot comparing the AUC of the proposed method and all
baselines evaluated for inductive learning (referred to as the
"out-of-sample" setting) on all datasets. The results show
that the proposed approach outperforms leading methods
on many datasets. In the right panel of Figure 5, we present
the AUC results on the same datasets in the transductive
learning setting.

The results obtained from our proposed approach indicate
that it performs well in both settings, suggesting that it can
be used as a practical method for curating datasets and de-
tecting outliers online. We believe that the reason for this
success is the ability of our method to remove outliers during
training. It is noteworthy that we use a single architecture
and one value of λ across all datasets, which indicates that
our model doesn’t require data-specific hyperparameter tun-
ing. On the other hand, GOAD and NTL do not perform
well in our setting as they were designed for training on a
clean set of samples, which is not fully unsupervised. In the
Supplementary Material, we have provided complete details
of these evaluations, including F1 scores, and you can refer
to Table 4 and 3 for more information.

In the Supplementary Material, we provide box plots indicat-
ing the stability of our approach for different initializations
(Sec. B). We also demonstrate that the method is not very
sensitive to hyperparameter choice D and scales well to

large datasets (Sec. E). Specifically, training on the Donor
data (600K samples) requires less than a minute, which
is two orders of magnitude faster than GAOD and NTL.
In terms of inference time, our method is faster than most
baselines and requires less than 0.5 a second for prediction
on the Donor data. Furthermore, we provide reproducibility
required technical details (Sections C and D). Finally, we
present a deeper analysis of our results on MNISTv2 and
Fashion MNIST (Sec. F).

7 SENSITIVITY TO
HYPERPARAMETERS

In the following experiment, we evaluate the method’s sensi-
tivity to hyperparameters. Towards this goal, we run PRAE
on the Musk datasets for various values of λ and differ-
ent learning rates. This dataset was arbitrarily chosen, and
the results for an additional dataset (‘Yeast’) appear in the
Supplementary Material, in Figure 8. For each value of the
parameters, we repeat the experiment ten times and report
the median AUC. In Figure 6, we present heatmaps with
the median AUC values for each set of parameters used
in the evaluation. This figure demonstrates that PRAE is
relatively stable to both of these hyperparameters, and the
overall AUC varies by less than 10% across all evaluated
values of λ and the learning rate. As expected, if the value
of λ is small, the model’s performance deteriorates. This
could happen if the model removes too many inliers from
the objective at an early stage of training, thus "hurting" the
ability to distinguish between inliers and outliers. Another
hint for the stability of the algorithm to the hyperparameter
λ is the fact that we used the same λ for all experiments and
did not choose a different value for each experiment.
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Figure 6: Heatmap presenting the AUC of the proposed
approach on for several values of λ and the learning rate
using the ‘Musk’ data.

8 ABLATION STUDY

In this section, we perform an ablation study to evaluate
the influence of each element of our algorithm. We focus
on the ‘Yeast’ and ‘Musk’ datasets and compare PRAE-ℓ0,
and PRAE-ℓ1, to the following variants: (i) AE- a standard
AE with no regularization, anomalies are identified using
the reconstruction error. (ii) DRAE-ℓ1- a variant of PRAE,
but with deterministic gate values and a standard ℓ1 regu-
larizer. (iii) PRAE (λ = 0)- a variant of PRAE, but with a
regularization term= 0.

As demonstrated in Table 2 the proposed probabilistic regu-
larization leads to improved identification of outliers com-
pared with all variants of the method. These empirical results
suggest that removing outliers throughout training with the
stochastic gates can lead to more reliable identification of
outliers using AEs.

dataset AE DRAE-ℓ1 PRAE (λ = 0) PRAE-ℓ0 PRAE-ℓ1
Yeast 74.05 77.26 77.18 83.37 83.95
Musk 95.61 96.81 88.63 99.17 98.61

Table 2: Ablation study. Comparing the proposed schemes
PRAE-ℓ0, and PRAE-ℓ1, to three other variants. We use
the same architecture and optimizer, and compare to AE,
DRAE-ℓ1 and PRAE (λ = 0) all explained above.

9 STABILITY

To evaluate the stability of the proposed approach, we run
the method with 10 random initialization on each of the
real datasets. In Figure 5, we present box plots indicating
the mean, median, and 25/75 percentiles of PRAE-ℓ0 and
PRAE-ℓ1 (left and right panels). This figure shows that
the proposed approach’s interquartile range (IQR) is rela-
tively small for larger datasets (such as Shuttle, Pen, and
MNISTv1). Next, we evaluate the average precision (AP)

attained by each method (when varying the anomaly score
threshold). Table 6 shows the median of this value across
ten runs.

Figure 7: Box plots are presented that demonstrate the AUC
of the proposed approach on real datasets. The left panel
shows the variability for different random initializations
of the PRAE model, whereas the right panel evaluates the
variability that stems from random data splits. The color
indicates the standard deviation of the AUC values.

10 STRENGTHS AND LIMITATIONS

The proposed method provides several advantages compared
to a standard autoencoder: (1) It removes outliers along the
training process and, therefore, can more accurately iden-
tify a low-dimensional subspace that represents the normal
samples. (2) It provides a reliable metric for curating train-
ing data via inductive anomaly detection. (3) It learns an
encoder-decoder mapping that can be used to filter anoma-
lies from new unseen samples (transductive regime). The
success of our method relies on the assumption that normal
samples lie near a latent low-dimensional manifold while the
outliers are diverse and do not obey such a structure. Indeed,
there are cases where this assumption does not hold, and
our method will not be optimal for identifying the outliers.
While robust PCA assumes inliers samples are low rank,
our method identifies those as samples that can be “easily”

2279



reconstructed by an AE. To prevent the AE from overfitting
to outliers, we limit its capacity using a low-dimensional
bottleneck. Nonetheless, understanding the properties of an
AE from an optimization perspective is an open research
direction. A related problem has been studied in supervised
learning in recent years [Tishby and Zaslavsky, 2015, Ro-
nen et al., 2019]. Another limitation of our method is the
regularization parameter λ. In section 5.2 we presented two
heuristics for tuning λ, nonetheless, a rigorous scheme for
finding the optimal value of λ is an interesting question for
future work. Another promising direction involves incorpo-
rating the proposed probabilistic robust mechanism into an
attention architecture.

11 CONCLUSION

We have developed a framework for identifying outliers,
termed Probabilistic Robust Autoencoder (PRAE). Our ap-
proach uses a regularized autoencoder to eliminate data
points that are far from a low-dimensional manifold. To
achieve this, we multiply each data instance with an ap-
proximately binary random variable and add a penalty term
to the training process, which encourages the model to use
fewer samples. We have shown that our probabilistic method
is equivalent to an intractable ℓ0 regularized autoencoder.
Our experiments demonstrate that PRAE has several advan-
tages, including superior performance on synthetic and real
datasets with varying properties such as size, dimensions,
and features. This is due to the robustness of our method
to contaminated training data, which makes it suitable for
transductive and inductive anomaly detection.
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A ROBUST SUBSPACE RECOVERY EXPERIMENT DETAILS

Here, we describe the technical details of the experiment performed in Section 6.1. We generate N = 10000 points in
R200 in the following way: first we generate Nin points in R200 with distribution N(0, I200) where I200 ∈ R200×200 is the
identity matrix. This set of points is orthogonally projected into a random 10 dimensional space and denoted byXhigh

in . The
orthogonal projection is performed by projecting onto the basis of the column space of a random Gaussian matrix.Xhigh

in

are normalized so that the expectation of the norm is 1. Next, we generateXout as random points in R200 with distribution
N(0, 1/

√
200I200). This is done so that the expected value of the norm of the outliers will be equal to the expected value of

the norm of the inliers. Finally, the dataset is constructed by combiningXout,X
high
in and adding noise ∼ N(0, σ2

N ). For
the results in Table 2 a negligible noise with σ2

N = 10−8 was added. In the second experiment, a noise of σ2
N = 10−2 was

added.

Figure 8: Heatmap presenting the AUC of the proposed approach on for several values of λ and the learning rate using the
‘Yeast’ data.

B ADDITIONAL EXPERIMENTAL DETAILS

C DATASTES

All real-world datasets analyzed in this study are publicly available. Most datasets can be directly downloaded from 1.
MNIST and Fashion-MNIST can be easily obtained using Python from the “Keras” package. The Purified populations

*These authors contributed equally
1http://odds.cs.stonybrook.edu/
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Table 3: Inductive learning: performance comparison with several leading baselines. We present the median AUC over 10
runs. Blue and bold indicate the best and second-best methods, respectively. Additional metrics appear in the Supplementary
Material.

Dataset kNN IForest ECOD HBOS COPOD GOAD NTL RSR-AE ℓ2,1-AE PRAE-ℓ0 PRAE-ℓ1 N D

Hepatitis 79.10 66.71 76.93 77.22 81.02 30.25 99.29 43.65 66.47 69.10 70.56 80 19
Wine 43.55 77.54 58.40 93.49 88.36 19.00 90.13 42.62 64.44 91.08 90.98 128 13
Lympho 100.00 99.12 98.70 99.82 100.00 98.59 55.76 53.99 93.93 100.00 100.00 148 18
WBC 98.56 99.92 68.83 99.07 99.66 79.25 23.51 32.90 52.78 99.06 98.86 222 9
Stamps 84.57 86.42 92.36 90.83 93.43 49.07 43.47 48.36 95.45 84.48 81.66 340 9
Ionos 92.39 82.48 42.55 55.24 77.80 81.37 97.31 44.38 39.01 84.60 85.98 350 32
WDBC 96.42 98.00 99.33 98.93 99.55 79.44 66.71 79.54 98.66 97.70 96.75 366 30
Breastw 97.26 98.14 52.83 98.60 99.47 86.54 62.89 49.08 51.58 97.86 97.83 682 9
Pima 67.47 64.95 65.27 69.04 64.57 63.55 73.93 57.93 74.93 67.02 67.67 768 8
YEast 73.56 76.52 81.57 82.76 84.16 37.47 72.28 49.91 74.37 81.86 83.48 1,364 8
Vowels 95.28 67.72 99.72 70.33 50.89 77.91 54.40 98.43 99.65 87.71 87.97 1,456 12
Letters 86.35 58.92 93.29 57.60 49.79 37.55 63.96 48.44 93.22 72.54 73.15 1,600 32
Cardio 73.86 89.49 47.08 83.73 91.89 91.40 57.00 43.88 48.52 87.48 88.82 1,830 21
Ecoli 89.27 86.41 70.81 96.84 80.93 99.76 85.52 76.39 49.57 90.82 93.36 1831 21
Fault 75.15 55.14 58.15 47.56 46.03 70.62 72.59 37.86 36.69 64.63 63.34 1,940 27
Internet 58.56 66.23 84.70 69.62 68.89 50.80 51.72 7.42 78.40 61.40 61.77 1,966 1,555
Musk 87.80 98.77 60.83 100.00 94.80 90.47 54.22 65.20 72.51 100.00 100.00 3,062 166
Waveform 72.81 64.11 88.86 68.82 72.91 51.71 75.11 70.95 83.18 74.86 77.34 3,442 21
Thyroid 96.15 97.82 63.81 95.31 94.31 86.33 99.80 34.12 75.41 92.77 92.16 3,772 6
MNITSv1 89.49 83.37 79.35 51.36 82.15 87.28 80.77 91.29 90.19 93.54 93.31 5127 784
FMNIST 88.92 92.12 83.75 75.64 88.79 87.98 85.80 68.25 89.77 90.32 89.18 5300 784
PageBlock 88.53 89.49 86.33 77.33 87.94 86.17 88.44 37.37 28.28 92.20 92.44 5,392 10
Satimage 94.53 99.53 49.18 97.75 98.10 75.47 40.93 48.05 52.42 99.23 99.41 5,802 36
PBMC 52.05 83.37 86.12 94.35 89.11 91.33 85.79 91.29 90.19 93.54 93.31 6,300 32738
Satellite 69.21 68.46 63.03 75.79 62.82 50.87 53.48 48.07 29.87 72.25 70.93 6,434 36
Pendigits 74.24 92.11 63.39 92.77 90.26 55.56 90.66 55.09 66.51 87.03 86.42 6,870 16
Annthyroid 79.41 81.96 94.60 62.67 78.32 69.19 61.79 5.96 95.10 65.54 66.73 7,200 6
MNISTv2 85.76 77.18 63.41 57.79 77.44 75.34 50.17 55.58 71.87 85.96 86.56 7,602 78
Mammo. 84.16 85.30 91.86 83.06 90.33 46.73 75.91 18.83 1.28 85.71 85.16 11,182 6
Magic 80.25 72.15 43.73 71.06 68.02 64.97 70.54 51.86 41.16 70.31 70.77 19,020 10
Campaign 73.89 68.98 71.02 76.87 78.48 43.91 62.86 12.23 78.15 72.53 72.60 41,188 62
Shuttle 65.68 99.44 88.81 98.54 99.44 20.28 19.87 54.85 88.77 98.92 98.60 49,096 9
STMP 91.74 90.41 89.21 86.94 90.63 49.96 70.68 83.54 89.46 87.07 88.12 95,156 3
Backdoor 75.48 72.50 97.44 73.72 79.01 89.97 92.66 52.62 57.76 89.59 88.80 95,328 193
CelebA 63.96 66.36 44.05 75.17 75.10 27.81 64.98 53.04 47.23 77.41 74.81 202,598 39
Skin 64.07 65.81 39.76 59.34 47.05 46.37 77.06 27.21 33.12 63.71 75.64 245,056 3
Fraud 95.04 94.69 75.58 94.77 94.98 86.15 94.72 59.23 73.48 94.86 95.16 284,806 29
Cover 78.35 87.51 55.40 71.46 88.41 34.40 99.03 22.37 49.23 95.19 95.28 286,048 10
Census 67.02 60.23 48.96 60.90 67.50 68.37 74.40 50.00 52.35 70.06 69.95 299,284 500
Http 18.02 99.94 60.39 99.43 99.15 51.04 92.85 40.00 44.96 99.59 99.60 567,498 3
Donors 64.25 80.14 95.69 73.96 81.52 58.12 52.00 98.55 99.89 85.52 88.71 619,326 10
Median AUC 79.41 83.37 71.02 77.22 84.16 68.37 72.28 49.91 71.87 87.07 88.12
Median Rank 6 5 7 5 5 8 8 10 8 4 4

of peripheral blood monocytes (PBMCs) is a Single-cell RNA sequencing (scRNA-seq) data. It was collected by [Zheng
et al., 2017] and contains more than 90, 000 cells with 32, 738 genes. We randomly sample 6, 000 CD34 cells as our normal
samples and add 300 cells from the remaining 8 cell types. In scRNA-seq, there is typically some level of false annotations;
therefore, we design this example to evaluate the capabilities of PRAE in curating a set of CD34 from contamination by
other cell types.

D BASELINES AND HYPERPARAMETERS

In the following section, we describe all baselines and hyperparameters used to evaluate anomaly detection using real
and synthetic data. We train our proposed AE with an encoder-decoder pair with five hidden layers of size 100; the latent
dimension (bottleneck layer) is 1. We use the heuristic proposed in Section 6.2 to tune the regularization parameter to
λ = 1 < ME. We evaluate the stability of our approach to the choice of latent dimension, and to the use of variable
regularization parameter (the second tuning scheme presented in the main text). As demonstrated in Figure 9 our model
performs well with different latent dimensions, and also the global regularization works as well as the datasets specific one.
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Table 4: Transductive learning: performance comparison with several leading anomaly detection baselines in the “out-of-
sample” setting. We present the median AUC over 10 runs. Additional metrics appear in the Supplementary Material.

Dataset kNN IForest ECOD HBOS COPOD GOAD NTL RSR-AE ℓ2,1-AE PRAE-ℓ0 PRAE-ℓ1 N D

Hepatitis 78.86 73.38 77.00 72.29 81.11 8.40 99.30 43.22 50.00 67.21 80.08 80 19
Wine 27.19 81.76 60.92 91.94 89.63 8.67 90.94 59.69 57.26 88.23 88.47 128 13
Lympho 98.61 99.82 100.00 99.86 99.82 22.07 57.95 100.00 92.50 100.00 99.71 148 18
WBC 96.79 98.95 82.35 98.65 99.25 56.45 27.08 33.82 47.67 99.04 98.73 222 9
Stamps 88.77 87.63 93.76 91.06 92.30 44.84 39.19 38.21 94.75 86.11 85.78 340 9
Ionos 91.46 82.51 39.82 52.03 78.78 86.71 96.49 51.24 39.43 85.32 82.97 350 32
WDBC 99.33 98.17 99.25 99.11 99.66 43.02 65.82 79.59 98.80 96.76 96.13 366 30
Breastw 98.41 97.87 53.25 98.57 99.41 81.14 27.10 49.78 50.00 98.04 96.98 682 9
Pima 73.53 65.78 66.48 69.43 66.02 60.95 73.75 56.00 74.15 67.17 69.89 768 8
YEast 73.16 79.30 81.57 78.98 83.91 36.13 72.34 79.54 70.58 83.37 83.95 1,364 8
Vowels 97.80 73.74 98.60 66.73 47.40 95.23 52.42 97.87 99.53 87.38 87.89 1,456 12
Letters 87.79 62.27 92.29 58.13 50.50 90.46 62.03 38.98 50.00 71.93 68.83 1,600 32
Cardio 73.72 89.39 46.45 83.12 92.57 37.60 56.50 41.80 47.98 88.31 89.29 1,830 21
Ecoli 90.51 86.41 70.81 81.44 80.97 42.68 71.04 76.80 44.21 88.94 89.09 1831 21
Fault 71.46 57.10 58.64 47.31 45.01 74.50 72.70 37.43 36.46 62.55 63.65 1,940 27
Internet 60.49 65.92 84.53 69.21 66.41 33.38 54.32 6.46 50.00 62.14 59.62 1,966 1,555
Musk 69.12 98.51 57.04 100.00 94.34 93.21 53.91 63.92 70.91 100.00 100.00 3,062 166
Waveform 72.94 62.56 88.81 70.62 74.08 69.62 75.14 71.18 50.00 74.40 75.09 3,442 21
Thyroid 96.13 97.78 71.57 95.54 93.89 72.15 99.89 57.52 68.91 91.28 89.43 3,772 6
MNITSv1 89.49 83.37 79.35 77.09 80.42 79.64 78.32 91.29 90.39 93.54 93.31 5127 784
FMNIST 89.24 91.79 83.75 74.75 88.60 66.49 85.86 82.86 90.69 93.89 93.99 5300 784
PageBlock 85.36 88.83 89.79 76.33 87.27 75.62 77.83 45.98 50.00 92.59 92.96 5,392 10
Satimage 91.57 99.01 46.40 97.36 96.89 81.73 36.18 62.28 49.33 98.94 99.05 5,802 36
PBMC 51.90 88.71 85.65 70.36 88.84 81.76 85.85 51.10 64.26 90.91 91.30 6,300 32,738
Satellite 67.84 68.21 57.93 75.37 63.93 61.72 54.77 39.46 23.96 70.87 73.55 6,434 36
Pendigits 72.46 92.86 64.36 92.33 91.08 56.03 92.85 55.34 50.00 88.46 87.72 6,870 16
Annthyroid 78.60 81.78 95.40 62.31 77.02 67.29 60.61 5.39 50.00 66.47 67.02 7,200 6
MNISTv2 83.13 76.15 66.60 57.93 76.94 65.78 50.04 58.22 65.07 86.16 84.55 7,602 78
Mammo. 85.78 84.83 92.11 83.18 90.82 45.81 76.33 19.10 1.29 85.82 84.83 11,182 6
Magic 80.84 72.00 44.99 71.40 68.30 64.68 70.37 50.83 43.02 70.37 71.58 19,020 10
Campaign 73.87 69.34 73.97 76.65 78.09 43.42 62.20 13.53 81.73 72.31 72.92 41,188 62
Shuttle 65.62 99.41 88.37 98.67 99.52 21.34 17.77 68.11 86.97 98.84 98.83 49,096 9
STMP 93.15 89.92 91.65 77.05 91.52 49.58 70.73 81.88 49.96 90.29 97.59 95,156 3
Backdoor 75.28 72.41 95.33 73.94 78.74 90.99 93.07 51.13 58.54 88.96 87.47 95,328 193
CelebA 62.77 65.75 49.04 74.60 75.04 28.06 66.66 49.37 46.46 77.26 76.75 202,598 39
Skin 61.84 66.15 39.08 59.27 47.12 49.74 83.33 29.52 29.29 63.46 75.79 245,056 3
Fraud 93.07 94.60 75.93 95.49 94.45 90.90 94.55 59.14 50.00 94.81 95.49 284,806 29
Cover 77.06 87.30 59.68 71.18 88.41 66.87 97.98 27.82 51.76 95.23 98.28 286,048 10
Census 67.66 60.44 48.80 60.87 67.31 68.30 80.13 50.00 50.00 70.05 70.34 299,284 500
Http 19.41 99.94 60.35 99.43 99.16 49.40 93.01 30.44 45.75 99.60 99.61 567,498 3
Donors 63.50 80.09 96.89 74.02 81.57 58.58 54.47 99.21 99.78 85.35 88.68 619,326 10
Median AUC 78.60 83.37 75.93 76.33 83.91 61.72 71.04 51.13 50.00 88.23 87.89
Median rank 5 5 7 5 5 8 7 10 8 4 3

We use Adam optimizer with a learning rate of N · 10−6 where N is the number of samples in the dataset. Our batch size is
N/10.
Isolation Forest (IForest) [Liu et al., 2008] seeks the minimum number of splits required to isolate each sample. Then, an
ensemble of trees is used to define an anomaly score.
Histogram-based Outlier Score (HBOS) [Goldstein and Dengel, 2012] is a probabilistic approach that creates histograms
to identify anomalies as samples with low density.
Deep One-Class Classification (Deep-SVDD) [Ruff et al., 2018] extends OC-SVM by introducing a NN to model the
decision boundary of the normal data. Here, we evaluated several DSVDD architectures, but none led to results that are
competitive with the baselines presented in the main text.
Robust deep autoencoders (ℓ2,1 −AE) [Zhou and Paffenroth, 2017] uses an ℓ2,1 to regularize an AE that attempts to
reconstruct the data while removing outliers. The approach is explained in the main text. We use an AE with the same
architecture as the proposed approach in all examples.
Ensemble of Autoencoders (RandNet) [Chen et al., 2017] The method relies on an aggregated ensemble of AEs. Our
method outperforms the results presented by the authors on the datasets reported in our main text.
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Table 5: Transductive learning: performance comparison with several leading baselines. We present the median average
precision (AP) over 10 runs. Blue and bold indicate the best and second-best methods, respectively.

Dataset kNN IForest ECOD HBOS COPOD GOAD NTL RSR-AE ℓ2,1-AE PRAE-ℓ0 PRAE-ℓ1 N D

Hepatitis 38.23 27.69 24.53 35.27 45.29 13.40 22.82 7.33 11.22 28.12 29.08 80 19
Wine 30.37 20.57 10.94 36.38 45.00 5.52 76.86 7.42 3.02 39.81 37.04 128 13
Lympho 95.83 100.00 80.56 90.48 100.00 22.95 13.93 51.49 53.33 100.00 100.00 148 18
WBC 85.14 94.62 29.62 76.68 92.36 2.74 3.19 15.14 11.08 81.48 86.22 222 9
Stamps 28.89 32.54 55.29 33.53 39.77 7.68 17.29 29.13 27.60 31.53 23.76 340 9
Ionos 92.19 77.68 10.44 34.77 66.97 51.33 82.90 11.73 10.96 82.52 82.96 350 32
WDBC 58.20 67.87 86.19 71.19 82.20 1.68 78.94 34.50 8.05 70.01 58.33 366 30
Breastw 93.98 93.34 3.42 95.35 99.07 70.89 26.89 3.02 3.05 94.21 94.11 682 9
Pima 50.13 51.93 43.47 57.76 50.81 32.74 38.32 54.53 61.98 49.65 48.51 768 8
YEast 13.52 19.00 20.22 20.81 39.54 4.58 12.13 7.51 4.99 15.66 16.97 1364 8
Vowels 48.18 11.58 73.14 8.63 3.48 43.67 6.19 95.69 99.45 22.27 23.23 1,456 12
Letters 27.84 8.66 23.85 8.36 7.35 31.48 10.56 2.72 2.10 17.17 16.49 1,600 32
Cardio 38.77 53.30 32.44 47.29 58.44 14.28 5.83 30.60 35.98 43.25 45.26 1,830 21
Ecoli 40.71 55.29 14.47 30.74 25.05 12.10 11.37 21.70 4.76 74.72 71.61 1831 21
Fault 53.66 41.05 52.17 35.98 31.69 50.09 43.33 21.34 23.33 47.02 46.39 1,940 27
Internet 26.87 37.52 7.28 53.28 51.14 15.11 14.77 1.32 2.39 30.05 30.96 1,966 1,555
Musk 36.21 69.30 42.54 99.89 38.00 63.54 13.62 48.99 53.31 100.00 100.00 3,062 166
Waveform 10.30 5.19 10.79 5.23 6.18 6.45 9.68 8.40 5.92 16.39 18.41 3,442 21
Thyroid 35.87 55.70 17.02 52.83 18.33 23.07 18.11 3.44 3.74 33.55 37.06 3,772 6
MNITSv1 26.28 28.58 15.59 31.87 24.67 12.97 15.23 2.83 4.53 28.67 27.61 5127 784
FMNIST 52.08 49.90 38.19 10.66 39.82 18.37 23.18 4.04 5.17 51.84 49.44 5300 784
PageBlock 50.04 45.23 55.39 35.73 36.10 42.12 49.02 0.15 0.03 60.06 59.69 5,392 10
Satimage 40.40 87.91 24.46 76.96 82.24 13.36 85.04 28.05 24.21 93.67 95.58 5,802 36
Satellite 53.79 66.19 4.03 67.97 56.89 42.86 71.50 2.38 3.25 69.03 67.74 6,434 36
Pendigits 9.67 28.97 53.81 24.58 17.96 2.50 16.87 59.15 35.15 11.37 13.13 6,870 16
Annthyroid 22.38 30.80 22.12 23.39 17.15 16.35 13.37 0.09 0.17 19.07 18.40 7,200 6
MNISTv2 39.06 26.67 38.05 10.96 21.32 22.76 24.85 27.97 42.94 40.37 41.42 7,602 78
Mammo. 18.51 17.19 12.29 12.95 40.50 5.40 3.67 0.61 0.48 15.87 17.23 11,182 6
Magic 73.50 62.47 34.75 61.98 59.20 51.35 41.59 34.08 33.73 64.40 64.58 19,020 10
Campaign 27.93 25.49 75.52 35.13 36.58 11.10 31.65 24.20 58.92 27.36 27.84 41,188 62
Shuttle 16.98 94.47 35.49 96.66 96.29 9.96 49.67 6.48 8.24 90.53 91.66 49,096 9
STMP 27.18 0.58 14.83 0.46 0.45 1.02 46.03 5.21 2.41 34.26 30.64 95,156 3
Backdoor 37.11 3.72 66.30 4.96 6.79 57.33 37.61 1.14 1.09 50.45 51.09 95,328 193
CelebA 3.92 4.21 2.67 9.49 9.43 1.55 4.28 1.28 1.45 9.75 9.30 202,598 39
Skin 23.82 24.90 4.07 23.42 17.82 20.69 30.83 4.99 3.42 21.80 21.68 245,056 3
Fraud 7.09 11.99 4.71 24.36 27.43 17.12 23.68 1.78 2.22 15.14 16.66 284,806 29
Cover 3.49 3.81 7.24 2.54 6.62 1.99 8.81 4.47 6.03 14.03 9.70 286,048 10
Census 9.23 7.60 18.15 7.28 8.74 8.46 5.72 74.80 20.83 9.69 9.62 299,284 500
Http 1.19 96.87 2.38 36.68 30.24 0.44 33.00 1.96 2.69 47.95 46.79 567,498 3
Donors 11.56 11.62 50.98 11.93 20.71 6.08 5.87 33.26 89.72 32.49 31.89 619,326 10
Median AP 33.12 31.67 24.16 34.15 36.34 13.84 20.47 7.47 5.98 37.03 37.05
Median Rank 5.4 4.5 7 5 6 8.5 7.5 9 10 4 4

Copula Based Outlier Detector (COPOD) [Li et al., 2020] is a parameter-free method that uses a copula to model the
density of the data.
Empirical Cumulative Distribution-based Outlier Detector (ECOD) [Li et al., 2022] is another density-based method
that uses the per dimension tail probabilities to assign scores for outliers.
Classification-Based Anomaly Detection for General Data (GOAD) [Bergman and Hoshen, 2020] is a NN classification
based method for anomaly detection. We use the kdd architecture as termed by the authors since it was reported to
demonstrate the best accuracy as evaluated by [Shenkar and Wolf, 2022].
Neural Transformation Learning for Deep Anomaly (NTL) [Qiu et al., 2021] another classification-based scheme that
relies on learned transformation of tabular data. We adopt the kdd architecture as detailed by the author to lead to the best
performance.

E RUNNING TIME AND PLATFORM DETAILS

All the experiments were run on a server with an Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz CPU and one GeForce GTX
1080 GPU with 8GB of memory. Our method scales like a standard autoencoder, and every iteration requires O(M +N)
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Table 6: Inductive learning: performance comparison with several leading baselines. We present the median average precision
(AP) over 10 runs. Blue and bold indicate the best and second-best methods, respectively.

Dataset kNN IForest ECOD HBOS COPOD GOAD NTL RSR-AE ℓ2,1-AE PRAE-ℓ0 PRAE-ℓ1 N D

Hepatitis 47.30 32.65 24.53 38.45 39.38 17.11 26.17 7.64 29.76 27.16 28.89 80 19
Wine 25.92 32.96 10.94 31.90 39.65 8.26 70.24 8.23 5.19 32.11 36.48 128 13
Lympho 95.83 95.83 80.56 91.67 95.83 9.13 25.24 16.70 38.69 100.00 95.83 148 18
WBC 73.82 92.87 29.62 82.11 92.54 2.73 21.98 12.15 38.83 89.84 84.06 222 9
Stamps 29.13 40.65 55.29 36.69 39.71 7.66 30.45 22.76 62.49 29.30 34.63 340 9
Ionos 92.06 77.25 10.44 34.58 68.93 50.93 84.40 9.81 9.28 80.08 79.71 350 32
WDBC 43.22 58.10 86.19 86.09 79.28 1.65 82.86 36.45 85.44 51.56 52.76 366 30
Breastw 91.76 96.60 3.42 95.97 98.82 72.83 27.68 3.41 2.99 94.49 94.63 682 9
Pima 54.51 49.54 43.47 55.74 53.48 32.71 36.37 52.80 63.47 46.95 48.49 768 8
YEast 16.70 16.53 20.22 19.90 39.60 6.91 10.38 8.74 5.16 16.86 17.17 1364 8
Vowels 42.61 12.65 73.14 8.60 3.71 14.45 8.15 97.19 99.07 17.51 20.36 1,456 12
Letters 29.18 8.70 23.85 7.74 7.46 5.21 15.05 3.33 14.00 16.00 17.78 1,600 32
Cardio 37.97 48.04 32.44 45.54 57.65 54.27 5.64 25.61 31.07 46.73 48.47 1,830 21
Ecoli 70.83 44.44 14.47 32.86 12.88 18.13 15.04 35.20 9.09 79.95 82.23 1831 21
Fault 51.01 40.10 52.17 38.37 31.35 54.01 42.57 21.04 24.60 44.24 45.81 1,940 27
Internet 24.07 35.64 7.28 50.32 50.94 17.90 16.12 1.32 4.67 28.73 29.21 1,966 1,555
Musk 45.48 67.53 42.54 99.91 31.94 50.60 8.45 45.28 56.00 100.00 100.00 3,062 166
Waveform 13.48 5.01 10.79 4.80 5.71 3.88 8.87 8.39 15.02 20.42 21.27 3,442 21
Thyroid 28.60 53.26 17.02 47.60 17.65 38.83 23.69 2.91 6.88 33.94 32.75 3,772 6
MNITSv1 28.80 29.49 15.59 31.45 21.67 24.91 18.94 2.94 41.24 28.10 29.22 5127 784
FMNIST 52.33 50.03 38.19 10.52 42.31 68.84 27.55 4.08 47.11 50.76 53.09 5300 784
PageBlock 50.02 47.02 55.39 33.40 38.01 55.39 45.64 0.30 0.02 58.97 58.66 5,392 10
Satimage 40.50 90.19 24.46 76.27 76.46 21.50 93.69 42.68 25.01 97.22 96.11 5,802 36
Satellite 54.71 66.06 4.03 67.48 56.97 33.62 72.65 2.07 1.56 67.22 68.59 6,434 36
Pendigits 8.11 28.34 53.81 25.82 18.26 2.66 14.78 57.40 57.11 13.26 14.56 6,870 16
Annthyroid 22.98 32.78 22.12 23.20 17.62 16.07 15.97 0.10 19.97 18.80 18.75 7,200 6
MNISTv2 40.62 28.38 38.05 11.14 21.71 35.96 40.12 22.97 43.01 40.64 40.16 7,602 78
Mammo. 14.62 16.39 12.29 15.38 45.40 4.34 4.42 0.56 0.49 16.30 17.03 11,182 6
Magic 73.36 63.59 34.75 61.93 58.32 52.03 41.35 33.54 30.33 64.05 64.75 19,020 10
Campaign 27.03 26.52 75.52 35.27 37.16 11.21 32.54 21.84 70.81 26.88 27.54 41,188 62
Shuttle 17.90 94.62 35.49 96.57 96.06 9.95 50.95 8.72 16.34 91.62 91.30 49,096 9
STMP 28.33 0.47 14.83 0.46 0.42 0.46 51.51 6.85 20.65 35.82 38.99 95,156 3
Backdoor 41.13 3.76 66.30 5.15 6.86 48.94 39.33 1.52 1.66 50.50 50.39 95,328 193
CelebA 3.92 4.24 2.67 8.82 9.48 1.55 4.72 1.55 2.25 10.04 9.28 202,598 39
Skin 24.63 24.77 4.07 23.46 17.83 20.28 30.67 4.67 3.68 21.95 21.83 245,056 3
Fraud 9.28 13.19 4.71 24.22 23.65 8.53 20.80 1.83 10.90 17.19 16.84 284,806 29
Cover 3.81 4.15 7.24 2.47 6.53 0.62 8.63 5.39 7.05 13.53 9.21 286,048 10
Census 9.21 7.54 18.15 7.17 8.81 8.38 5.75 74.58 20.02 9.65 9.78 299,284 500
Http 1.17 97.44 2.38 35.80 30.13 3.67 33.25 2.36 2.68 47.70 47.04 567,498 3
Donors 12.04 11.56 50.98 11.87 20.87 6.11 5.92 10.88 100.00 32.35 31.91 619,326 10
Median AP 29.15 34.30 24.16 33.13 34.55 15.26 25.70 8.56 19.99 34.88 37.73
Median Rank 6 4.5 7.5 5 6 9 7 10 7.5 4 4

updates, where M is the number of parameters in the network, and N are the additional per sample parameters that serve as
the anomaly score. Since modern NNs are typically overparametrized, we argue that the additional N parameters do not
limit the use of our method since typically M > N . Moreover, our approach can scale to extremely large datasets since
training is typically performed in small batches. Across all examples used in this paper, a single run of our method does not
take more than several minutes for the low-dimensional datasets and hours for the high-dimensional ones.

To further demonstrate the scalability of our approach, we provide, in Table 7, a run time comparison between PRAE and
several baselines on the large datasets. In this experiment, we restrict our evaluation to CPU computing, thus providing a fair
comparison to classical algorithms. As indicated by our results, the training of HBOS is highly effective and requires less
training time than all baselines. On the other hand, our model scales better to larger and high-dimensional data in terms of
inference time.

F MNISTV1 AND FASHION MNIST

This section describes additional experiments performed using MNISTv1 and Fashion MNIST.
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Figure 9: Box plots comparing the performance of PRAE for different latent dimension. In the right box plot we evaluate the
dynamic procedure proposed for tuning λ based on the MSE on unseen samples (see Section 5.2).

Training [sec] Inference [sec]
dataset IForest HBOS NTL GOAD PRAE-ℓ0 PRAE-ℓ0 N/D/ Out %
Campaign 2.3 1.9 712.7 9681.5 5.3 0.03 41188/ 62/ 11.3
Shuttle 1.1 1.9 673.1 5870.5 8.4 0.01 49097/ 9/ 7.1
Backdoor 18.2 2.4 1473.7 6225.8 6.4 0.11 95329/ 196/ 2.3
CelebA 8.8 2.7 3486.2 8741.2 25.4 0.18 202599/ 39/ 2.2
Credit 7.6 2.1 4105.9 6735.5 28.55 0.11 284807/ 16/ 0.2
Census 141.8 5.9 4048.2 20222.8 55.64 0.61 299285/ 500/ 6.2
Donor 17.2 2.5 9213.4 33734.3 34.36 0.19 619326/ 10/ 5.9

Table 7: Run time comparison between different baselines. The left part of thetable indicates training time, and our inference
time is indicated in the right most column.

In this section, we provide an extended comparison with baselines. These include:
Clustering-Based Local Outlier Factor (CBLOF) [He et al., 2003] is a proximity-based method that relies on clustering
to define an anomaly score for each sample.
Angle-Based Outlier Detection (ABOD) [Kriegel et al., 2008] uses vectors defined between pairs of points to identify
outliers by comparing the angles between the different vectors.
Connectivity-Based Outlier Factor(COF) [Tang et al., 2002a] relies on proximity between samples to identify outliers.
Subspace Outlier Detection (SOD) [Kriegel et al., 2009a] identifies anomalies as samples that deviate significantly from
the subspace spanned by a subspace defined based on neighbors of point.
Locally Selective Combination of Parallel Outlier Ensembles (LSCP) [Zhao et al., 2019a] is an ensemble method that
uses multiple local subspaces to identify outliers.
One-Class Support Vector Machines (OC-SVM) [Schölkopf et al., 2001] uses support vectors to identify the margins of
the normal part of the data. Here, we use a Gaussian kernel to capture the non-linearity of this method.
We omitted these methods from our results in the main text since the underperformed on the tabular datasets.

F.1 SMALL MNIST DATASET (MNISTV1)

MNISTv1 was proposed in [Zhou and Paffenroth, 2017] for anomaly detection. To construct MNISTv1, we mix 4859
nominal instances of the digit ’4’ with 265 anomalies randomly sampled from all other digits. Following [Zhou and
Paffenroth, 2017], we use a linear AE with one hidden layer of size 24. Evaluation of the AUC of our method compared to
all baselines appears in Table 3. This example appears to be especially challenging for density/distance-based baselines;
we believe that this is due to the relatively high dimensionality of this data. In Figure 10, we present the 25 most inlaying
images (left panel), and the 25 most outlying images (center panel) as identified PRAE-ℓ0. The identified inliers share a
standard “simple” structure of the digit ’4’. On the other hand, most identified outliers are indeed of different digits, except
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Figure 10: 25 most inlaying/outlying (left/center) MNISTv1 images as identified by PRAE. Right- precision vs. recall curves
for leading baselines on the MNISTv1 data.

for one example, which is somewhat of an unusual instance of the digit ’4’.

To further assess the performance of the different baselines on MNISTv1 we present the 25 most inlaying images and the 25
most outlying images as identified by the different baselines. These results are presented in Figures 11, 12, and 13.

Next, we repeat the MNISTv1 experiment using different classes as the representatives for the normal samples. Specifically,
we mix 4859 nominal instances of the digit C ∈ {0, 1, ..., 9} with 265 anomalies randomly sampled from all other digits.
We compare the AUC of PRAE to two leading baselines across all classes. As indicated in Table 8, the proposed approach
leads to more accurate outlier identification compared to the leading baselines across most of the classes.

Class Iforest OC-SVM PRAE-ℓ0 PRAE-ℓ1
0 92.34 93.34 93.38 93.84
1 99.16 98.2 98.21 98.24
2 69.73 75.72 81.12 81.18
3 78.02 81.27 83.42 83.51
4 86.66 88.21 88.43 88.39
5 73.49 74.79 83.94 83.96
6 87.75 92.17 93.62 93.71
7 90.49 90.79 91.77 91.81
8 82.87 82.47 83.31 83.34
9 86.99 91.46 93.24 93.33
T-shirt/top 90.45 90.62 90.65 90.84
Trouser 97.77 97.83 97.96 97.90
Pullover 86.26 85.27 87.24 86.66
Dress 93.7 94.56 95.28 95.14
Coat 91.95 91.17 92.47 92.15
Sandal 92.12 91.58 91.14 91.15
Shirt 80.48 80.25 80.86 80.88
Sneaker 98.14 98.24 98.23 98.26
Bag 87.14 84.42 84.49 85.58
Ankle boot 97.65 98.16 97.95 97.91
Average 88.15 89.03 90.34 90.39

Table 8: Performance comparison with two leading baselines (IForest and OC-SVM) on the MNISTv1 and Fashion MNIST
datasets. The top ten rows correspond to different classes in MNIST; each row indicates the class label used to define the
normal samples. The bottom ten rows correspond to different classes in Fashion MNIST.

F.2 FASHION MNIST

To evaluate the ability to identify outliers in Fashion MNIST, we mix 5000 nominal instances from the randomly selected
’Coat’ class with 300 anomalies sampled from all other fashion items. Evaluation of the AUC of our method compared to
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all baselines appears in Table 3. Next, we repeat this experiment using other classes as the majority/normal samples. In
Table 8 we present the AUC of PRAE and two leading baselines across all classes. As evident from our result, the proposed
approach outperforms leading baselines across most classes of Fashion MNIST.

SOD-Normal SOD-Anomaly

LSCP-Normal LSCP-Anomaly

ABOD-Normal ABOD-Anomaly

Figure 11: 25 most inlaying/outlying (left/right) MNISTv1 images as identified by different baseline algorithms.
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OC-SVM-Normal OC-SVM-Anomaly

DSVDD-Normal DSVDD-Anomaly

ℓ2,1-AE-Normal ℓ2,1-AE-Anomaly

Figure 12: 25 most inlaying/outlying (left/right) MNISTv1 images as identified by different baselines
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RSR-AE-Normal RSR-AE-Anomaly

IForest-Normal IForest-Anomaly

kNN-Normal kNN-Anomaly

Figure 13: 25 most inlaying/outlying (left/right) MNISTv1 images as identified by different baselines
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