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Abstract

From the classical and influential works of Neal
(1996), it is known that the infinite width scal-
ing limit of a Bayesian neural network with one
hidden layer is a Gaussian process, when the net-
work weights have bounded prior variance. Neal’s
result has been extended to networks with mul-
tiple hidden layers and to convolutional neural
networks, also with Gaussian process scaling lim-
its. The tractable properties of Gaussian processes
then allow straightforward posterior inference and
uncertainty quantification, considerably simplify-
ing the study of the limit process compared to a
network of finite width. Neural network weights
with unbounded variance, however, pose unique
challenges. In this case, the classical central limit
theorem breaks down and it is well known that
the scaling limit is an α-stable process under suit-
able conditions. However, current literature is pri-
marily limited to forward simulations under these
processes and the problem of posterior inference
under such a scaling limit remains largely unad-
dressed, unlike in the Gaussian process case. To
this end, our contribution is an interpretable and
computationally feasible procedure for posterior
inference, using a conditionally Gaussian repre-
sentation, that then allows full use of the Gaussian
process machinery for tractable posterior inference
and uncertainty quantification in the non-Gaussian
regime.

1 INTRODUCTION

Gaussian processes (GPs) have been studied as the infi-
nite width limit of Bayesian neural networks with priors
on network weights that have finite variance (Neal, 1996;
Williams, 1996). This presents some key advantages over

Bayesian neural networks with finite widths that usually
require computation intensive Markov chain Monte Carlo
(MCMC) posterior calculations (Neal, 1996) or variational
approximations (Goodfellow et al., 2016, Chapter 19); in
contrast to straightforward posterior inference and proba-
bilistic uncertainty quantification afforded by the GP ma-
chinery (Williams and Rasmussen, 2006). In this sense, the
work of Neal (1996) is foundational. The technical reason
for this convergence to a GP is due to an application of the
central limit theorem under the bounded second moment
condition. More specifically, given an I dimensional input x
and a one-dimensional output y(x), a K layer feedforward
deep neural network (DNN) with K − 1 hidden layers is
defined by the recursion:
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where z(1) ≡ x, p1 = I, pK = D and g(·) is a nonlinear
activation function. Thus, the network repeatedly applies
a linear transformation to the inputs at each layer, before
passing it through a nonlinear activation function. Some-
times a nonlinear transformation is also applied to the final
hidden layer to the output layer, but in this paper it is as-
sumed the output is a linear function of the last hidden layer.
Neal (1996) considers the case of a Bayesian neural network
with a single hidden layer, i.e., K = 2. So long as the hid-
den to output weights w(2) are independent and identically
distributed Gaussian, or at least, have a common bounded
variance given by c/p2 for some c > 0, and g(·) is bounded,
an application of the classical central limit theorem shows
the network converges to a GP as the number of hidden
nodes p2 → ∞.

1.1 RELATED WORKS

The foundational work of Neal (1996) was followed by an
explicit computation of some of the kernels obtained from

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:2331–2349.

mailto:jorge.loria@aalto.fi


this limiting process (Williams, 1996). Recently, Neal’s re-
sult has been extended to prove fully connected multi-layer
feedforward networks (Lee et al., 2018; de G. Matthews
et al., 2018) and convolutional neural networks (Garriga-
Alonso et al., 2019; Novak et al., 2019) also converge to
GPs. The Tensor Program of Yang (2019) has successfully
extended these results to feedforward and recurrent net-
works of any architecture. This is useful for uncertainty
quantification by designing emulators for deep neural net-
works (DNNs) based on GPs, since the behavior of finite-
dimensional DNNs for direct uncertainty quantification is
much harder to characterize. In contrast, once a convergence
to GP can be ensured, well established tools from the GP
literature (see, e.g., Williams and Rasmussen, 2006) can
be brought to the fore to allow straightforward posterior
inference. The induced covariance function depends on the
choice of the nonlinear activation function g(·), and is in
general anisotropic. However, it can be worked out in ex-
plicit form under a variety of activation functions for both
shallow (Neal, 1996; Williams, 1996; Cho and Saul, 2009)
and deep (Lee et al., 2018; de G. Matthews et al., 2018) feed-
forward neural networks, where for deep networks usually a
recursive formula is available that expresses the covariance
function of a given layer conditional on the previous layer.
The benefit of depth is that it allows a potentially very rich
covariance function at the level of the observed data, even if
the covariances in each layer conditional on the layer below
are simple. Viewing a GP as a prior on the function space,
this allows for a rich class of prior structures. However, the
process is still Gaussian in all these cases and our intention
in this paper is a departure from the Gaussian world.

For finite width neural networks, non-Gaussian weights
have recently been considered by Fortuin et al. (2022) and
Fortuin (2022). Departures from i.i.d. weights have also
recently received attention (Caron et al., 2023; Lee et al.,
2023). Theoretical results with infinite variance were hinted
at by Neal (1996), and first proved by Der and Lee (2005).
Follow-up theoretical results have been obtained in varied
architectures for bounded activation functions (Peluchetti
et al., 2020; Bracale et al., 2022) and with unbounded acti-
vation functions (Bordino et al., 2022). However, posterior
inference still remains challenging in the infinite-width limit,
due to the reasons made clear in the next sub-section.

1.2 CHALLENGES POSED BY NETWORK
WEIGHTS WITH UNBOUNDED PRIOR
VARIANCE

Although the GP literature has been immensely influential
for uncertainty quantification in DNNs, it is obvious that a
DNN does not converge to a GP if the final hidden to output
layer weights are allowed to have unbounded variance, e.g.,
belonging to t or others in the stable family, such that the
scaling limit distribution is non-Gaussian (Gnedenko and

Kolmogorov, 1954). This was already observed by Neal
(1996) who admits: “in contrast to the situation for Gaus-
sian process priors, whose properties are captured by their
covariance functions, I know of no simple way to character-
ize the distributions over functions produced by the priors
based on non-Gaussian stable distributions.” Faced with
this difficulty, Neal (1996) confines himself to forward simu-
lations from DNNs with t weights, and yet, observes that the
network realizations under these weights demonstrate very
different behavior (e.g., large jumps) compared to normal
priors on the weights. This is not surprising, since Gaus-
sian processes, with their almost surely continuous sample
paths, are not necessarily good candidate models for func-
tions containing sharp jumps, perhaps explaining their lack
of popularity in certain application domains, e.g., finance,
where jumps and changepoints need to be modeled (see,
e.g., Chapter 7 of Cont and Tankov, 2004). Another key
benefit of priors with polynomial tails, pointed out by Neal
(1996), is that it allows a few hidden nodes to make a large
contribution to the output, while drowning out the others,
akin to feature selection. In contrast, in the GP limit, the con-
tributions of individual nodes are averaged out. Thus, there
are clear motivations for developing computationally feasi-
ble posterior inference machinery under these non-Gaussian
limits.

Neal (1996) further hints that it may be possible to prove an
analogous result using priors that do not have finite variance.
Specifically, suppose the network weights are given sym-
metric α-stable priors, which have unbounded variance for
all α ∈ (0, 2), and the α = 2 case coincides with a Gaus-
sian random variable. If X is an α-stable random variable,
the density does not in general have a closed form, but the
characteristic function is:

ϕX(t) = exp[itµ− να|t|α{1− iβsign(t)ω(t;α)}],

where ω(t;α) = tan(απ/2), for α ̸= 1 and ω(t;α) =
−(2/π) log|t|, for α = 1. Here µ ∈ R is called the shift
parameter, α ∈ (0, 2] is the index parameter, β ∈ [−1, 1] is
the symmetry parameter, and ν > 0 is the scale parameter
(Samorodnitsky and Taqqu, 1994, p. 5). Throughout, we
use a zero shift (µ = 0) stable variable, and denote it by
X ∼ S(α, ν, β). Here β = 0 corresponds to the symmetric
case, and when β = 1, α < 1, ν = 1, the random variable
is strictly positive, which we denote by S+(α). We refer
the reader to Supplementary Material S.1 for some further
properties of α-stable random variables, as relevant for the
present work. Der and Lee (2005) confirm Neal’s conjecture
by establishing that the scaling limit of a shallow neural
network under α-stable priors on the weights is an α-stable
process. Proceeding further, Peluchetti et al. (2020) show
that the limit process for infinitely wide DNNs with infinite-
variance priors is also an α-stable processes. However, both
Der and Lee (2005) and Peluchetti et al. (2020) only con-
sider the forward process and neither considers posterior
inference. Inference using α-stable densities is not straight-
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forward, and some relevant studies are by Samorodnitsky
and Taqqu (1994), Lemke et al. (2015), and more recently
by Nolan (2020). The main challenge is that a covariance
function is not necessarily defined, precluding posterior in-
ference analogous to the GP case, for example, using the
kriging (Stein, 1999) machinery. To this end, our contri-
bution lies in using a representation of the characteristic
function of symmetric α-stable variables as a normal scale
mixture, that then allows a conditionally Gaussian represen-
tation. This makes it possible to develop posterior inference
and prediction techniques under stable priors on network
weights using a latent Gaussian framework.

1.3 SUMMARY OF MAIN CONTRIBUTIONS

Our main contributions consist of:

1. An explicit characterization of the posterior predictive
density function under infinite width scaling limits for
shallow (one hidden layer) Bayesian neural networks
under stable priors on the network weights, using a
latent Gaussian representation.

2. An MCMC algorithm for posterior inference and pre-
diction, with publicly available code.

3. Numerical experiments in one and two dimensions that
validate our procedure by obtaining better posterior
predictive properties for functions with jumps and dis-
continuities, compared to both Gaussian processes and
Bayesian neural networks of finite width.

4. A real world application on a benchmark real estate
data set from the UCI repository.

2 INFINITE WIDTH LIMITS OF
BAYESIAN NEURAL NETWORKS
UNDER WEIGHTS WITH UNBOUNDED
VARIANCE

Consider the case of a shallow, one hidden layer network,
with the weights of the last layer being independent and
identically distributed with symmetric α-stable priors. Our
results are derived under this setting using the following
proposition of Der and Lee (2005).

Proposition 1. (Der and Lee, 2005). Let the network spec-
ified by Equations (1) and (2), with a single hidden layer
(K = 2), have i.i.d. hidden-to-output weights w

(2)
j dis-

tributed as a symmetric α-stable with scale parameter
(ν/2)1/2p

−1/α
2 . Then y(x) converges in distribution to a

symmetric α-stable process f(x) as p2 → ∞ for random
input-to-hidden weights. The finite dimensional distribution
of f(x), denoted as (f(x1), . . . , f(xn)) for all n, where
xi ∈ RI , is multivariate stable with a characteristic func-
tion:

ϕ(t) = E [exp{i⟨t, f(x)⟩}]

= exp
{
−(ν/2)α/2E[|⟨t,g⟩|α]

}
, (3)

where angle brackets denote the inner product, t =
(t1, . . . , tn) is the argument of the characteristic func-
tion, g = (g(x1), . . . , g(xn)), and g(x) is a random
variable with the common distribution (across j) of
(z

(2)
j (x1), . . . , z

(2)
j (xn)).

Following Neal (1996), assume for the rest of the pa-
per that the activation function g(·) corresponds to the
sign function: sign(ξ) = 1, if ξ > 0; sign(ξ) = −1,
if ξ < 0; and sign(0) = 0. For ξ ∈ RI we define
g(ξ) = sign

(
b0 +

∑I
i=1 wiξi

)
, where b0 and wi are i.i.d.

standard Gaussian variables. The next challenge is to com-
pute the expectation within the exponential in Equation (3).
To resolve this, we break it into simpler cases. Define Λ
as the set of all possible functions τ : {x1, . . . ,xn} →
{−1,+1}. Noting that each xj can be mapped to two pos-
sible options: +1 and −1, indicates that there are 2n el-
ements in Λ. For each ℓ = 1, . . . , 2n, consider τℓ ∈ Λ,
the event Aℓ = {τℓ(xj) = g(xj)}nj=1, and the probabil-
ity qℓ = P(Aℓ). By definition {Aℓ}2

n

ℓ=1 is a set of disjoint
events. Next, using the definition of the expectation of dis-
crete disjoint events we obtain:

E[|⟨t,g⟩|α] =
2n∑
ℓ=1

qℓ

∣∣∣∣∣∣
n∑

j=1

tjτℓ(xj)

∣∣∣∣∣∣
α

, (4)

where the expectation is over input-to-hidden weights. A
naïve enumeration sums over an exponential number of
terms in n, and is impractical. However, details of the com-
putation of qℓ and τℓ are given in Supplementary Section S.2,
where we show how to reduce the enumeration over 2n

terms in Equation (4) to L = O(nI) terms using the algo-
rithm of Goodman and Pollack (1983), by identifying only
those configurations with qℓ > 0. This allows circumventing
the exponential enumeration in n, resulting in a polynomial
complexity algorithm, depending on the input dimension I .
Although this computational complexity still appears rather
high at a first glance, especially for high-dimensional inputs,
for two or three-dimensional problems (e.g., in spatial or
spatio-temporal models), the computation is both manage-
able and practical, and the complexity is similar to the usual
GP regression.

2.1 A CHARACTERIZATION OF THE
POSTERIOR PREDICTIVE DENSITY UNDER
STABLE NETWORK WEIGHTS USING A
CONDITIONALLY GAUSSIAN
REPRESENTATION

While the previous section demonstrated the characteris-
tic function in Equation (3) can be computed, the resulting
density, obtained via its inverse Fourier transform, does not
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necessarily have a closed form, apart from specific values of
α, such as α = 2 (Gaussian), α = 1 (Cauchy) or α = 0.5
(inverse Gaussian). In this section we show that a condi-
tionally Gaussian characterization of the density function is
still possible for the entire domain of α ∈ (0, 2], facilitating
posterior inference. First, note that the result of Der and Lee
(2005) is obtained assuming that there is no intrinsic error in
the observation model, i.e., they assume the observations are
obtained as yi = f(xi), and the only source of randomness
is the network weights. We generalize this to more realistic
scenarios and consider an additive error term. That is, we
consider the observation model yi = f(xi) + εi, where the
error terms εi are independent identically distributed nor-
mal random variables with constant variance σ2. Using the
expression for the expectation in the characteristic function
from Proposition 1, we derive the full probability density
function, as specified in the following theorem, with a proof
in Section 7.

Theorem 1. For real-valued observations y = (y1, . . . , yn)

under the model yi = f(xi) + εi; where εi
i.i.d.∼ N (0, σ2)

and f(·) is as specified in Proposition 1 , denote the matrix
X = [x1, . . . ,xn]

T . The probability density function of
(y | X) is:

p(y | X) =(2π)−n/2

∫
(R+)L

exp

(
−1

2
yTQ−1

s y

)

× det(Qs)
−1/2

L∏
ℓ=1

pS+(sℓ)dsℓ,

where pS+ is the density for a positive α/2-stable ran-
dom variable, and Qs is a positive definite matrix with
probability one that depends on s = {sℓ}Lℓ=1. Specifically,
Qs =

∑L
ℓ=1 sℓq

2/α
ℓ τ ℓτ

T
ℓ + σ2I, denoting by τ ℓ ∈ Rn the

vector with entries (τℓ(x1), . . . , τℓ(xn)).

Theorem 1 is the main machinery we need for posterior
inference. We emphasize that Qs is a matrix with random
entries, conditional on {sℓ}Lℓ=1; and {qℓ}Lℓ=1 and {τℓ}Lℓ=1

are deterministic. Further, the input variables X are also
deterministic. Theorem 1 implies the hierarchical Gaussian
model:

y | X, {sℓ}Lℓ=1 ∼ Nn(0,Qs), sℓ
i.i.d.∼ S+(α/2).

Each of the τs defines a level set for the points that lie in
the +1 side in contraposition to those that lie in the −1 side.
A forward simulation of this model is a weighted sum of
the τs, with corresponding positive weight for those that lie
closer and a negative weight for the points that lie farther.
We further present the following corollaries to interpret the
distribution of Qs.

Corollary 1. The matrix Qs in Theorem 1 is stochastic for
all α ∈ (0, 2) and is deterministic when α = 2.

Proof. Recall, Qs =
∑L

ℓ=1 sℓq
2/α
ℓ τ ℓτ

T
ℓ + σ2I, sℓ

i.i.d.∼
S+(α/2). Thus, sℓ → 1, w.p. 1, as α → 2, since an S+(1)
variable is a degenerate point mass at 1.

Noting the α = 2 case is Gaussian, Corollary 1 indicates Qs

is stochastic in the stable limit, but deterministic in the GP
limit; a key difference. The lack of representation learning
in the GP limit, due to the kernel converging to a degenerate
point mass, is a major criticism of the GP limit framework,
see for example Aitchison et al. (2021); Yang et al. (2023).
A useful implication of Corollary 1 is that the posterior of
Qs | y is non-degenerate in the stable limit. Numerical re-
sults supporting this claim are in Supplementary Section S.4.
Specifically, when α = 2, the limiting process of Propo-
sition 1 is a GP, which has been established to have a de-
terministic covariance kernel (Cho and Saul, 2009). When
α < 2, which is our main interest, Corollary 1 ensures that
the conditional covariance kernel is stochastic, thereby en-
abling learning a degenerate posterior of this quantity given
the data. This is at a contrast to the degenerate posterior in
the Gaussian case, for both shallow and deep infinite-width
limits of BNNs, as discussed by Aitchison et al. (2021). We
further remark here that although the current work only con-
siders shallow networks, this property of a non-degenerate
posterior should still hold for deep networks under α-stable
weights. However, the challenge of relating the conditional
covariance kernel of each layer to the layer below, analo-
gous to the deep GP case (e.g., de G. Matthews et al., 2018),
is beyond the scope of the current work.

Corollary 2. The marginal distribution of the diagonal
entries of the matrix Qs is σ2 + νS+(α/2), where the σ2

acts as a shift parameter, and the marginal distribution of
the entry i, j in the Qs matrix is S(α/2, ν, 2pij − 1), where
pij =

∑
ℓ:τℓ(xi)=τℓ(xj)

qℓ, the probability that xi and xj lie
on the same side of the hyperplane partition. Further, the
entries of Qs are not independent.

Proof. For {Qs}ii − σ2, we apply Property 1.2.1 of
Samorodnitsky and Taqqu (1994), which we refer
as the closure property, to obtain νS+(α/2). Next
for {Qs}ij , we split the summation in two cases:
τℓ(xi) = τℓ(xj), and τℓ(xi) ̸= τℓ(xj). Using the
closure property in the separate splits, we obtain
{Qs}ij ∼ S(α/2, νp

2/α
ij , 1)− S(α/2, ν(1− pij)

2/α, 1).
The result follows by applying the closure property once
more. The entries of Qs are not independent, as they are
obtained from a linear combination of the independent
variables {sℓ}Lℓ=1.

The value of this corollary does not lie in a numerical or
computational speed-up, since the obtained marginals are
not independent, but rather in the interpretability that it
lends to the model. Explicitly, it indicates that when the
points lie closer their conditional covariance is more likely
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to be positive and when they lie farther apart the covariance
is more likely to be negative (see Proposition 1.2.14 of
Samorodnitsky and Taqqu, 1994).

Now that the probability model is clear, we proceed to the
next problem of interest: prediction. To this end, we present
the following proposition, characterizing the posterior pre-
dictive density.

Proposition 2. Consider a vector of n real-valued ob-
servations y = (y1, . . . , yn), each with respective input
variables x1, . . . ,xn ∈ RI , under the model yi = f(xi) +

εi; εi
i.i.d.∼ N (0, σ2), and m new input variable locations:

x∗
1, . . . ,x

∗
m ∈ RI , with future observations at those loca-

tions denoted by y∗ = (y∗
1, . . . ,y

∗
m). Denote the matrices

X = [x1, . . . ,xn]
T and X∗ = [x∗

1, . . . ,x
∗
m]T . The poste-

rior distribution at these new input variables satisfies the
following properties:

1. The conditional posterior of y∗ | y,X,X∗,Qs is an
m-dimensional Gaussian. Specifically:

y∗ | y,X,X∗,Qs ∼ Nm(µ∗,Σ∗), (5)

where µ∗ = Q∗,1:nQ
−1
1:n,1:ny, and Σ∗ =

Q∗,∗ −Q∗,1:nQ
−1
1:n,1:nQ1:n,∗, using Qs as previously

defined for the n+m input variables, and denoting by
‘∗’ the entries (n+ 1) : (n+m).

2. The posterior predictive density at the m new locations
conditional on the observations y, is given by:

p(y∗ | y,X,X∗) =

∫
(R+)L

p(y∗ | y,X,X∗,Qs)

× p(Qs | y,X)dQs, (6)

where p(y∗ | y,X,X∗,Qs) is the conditional poste-
rior density of y∗, Qs is as previously described for
the n+m input variables, and the integral is over the
values determined by {sℓ}Lℓ=1.

Proof. The first is an immediate application of Theorem 1
and the conditional density of a multivariate Gaussian. The
second part follows from a standard application of marginal
probabilities.

3 AN MCMC SAMPLER FOR THE
POSTERIOR PREDICTIVE
DISTRIBUTION

Dealing with α-stable random variables includes the diffi-
culty that the moments of the variables are only finite up to
an α power. Specifically, for α < 2, if X ∼ S(α, ν, β), then
E[|X|r] = ∞ if r ≥ α, and is finite otherwise (Samorod-
nitsky and Taqqu, 1994, Property 1.2.16). To circumvent
dealing with potentially ill-defined moments, we propose

to sample from the full posterior. For fully Bayesian infer-
ence, we assign σ2 a half-Cauchy prior (Gelman, 2006) and
iteratively sample from the posterior predictive distribution
by cycling through (y∗,Q, σ2) in an MCMC scheme, as
described in Algorithm 1, which has computational com-
plexity of the order of O(T [(n + m)In2 + m3]), where
T is the number of MCMC simulations used. The method
of Chambers et al. (1976) is used for simulating the stable
variables. An implementation of our algorithms is freely
available at https://github.com/loriaJ/alphastableNNet.

Algorithm 1 A Metropolis–Hastings sampler for the poste-
rior predictive distribution

Require: Observations y ∈ Rn, with I-dimensional input
variables X ∈ Rn×I , new input variables X∗ ∈ Rm×I ,
and number of MCMC iterations T .

Output: Posterior predictive samples {y∗
k}Tk=1

Obtain Λ for (X,X∗) using Algorithm S.1.
Compute {qℓ}Lℓ=1 as described in Supplementary Sec-
tion S.2.
Initialize Q

(0)
s using independent samples of sℓ from

the prior distributions.
for k = 1, . . . , T do

Simulate Q
(k)
s | y,Q(k−1)

s using Algorithm S.2.
Compute µ∗

k and Σ∗
k using Q

(k)
s in Part 1 of Propo-

sition 2.
Simulate y∗

k | (y,Q(k)
s ) ∼ Nm(µ∗

k,Σ
∗
k).

end for
return {y∗

k}Tk=1.

There are two hyper-parameters in our model: α, ν. We
propose to select them by cross validation on a grid of (α, ν),
and selecting the result with smallest mean absolute error
(MAE). Another possible way to select α is by assigning a
prior. The natural choice for α is a uniform prior on (0, 2),
however the update rule would need to consider the densities
of the L such α/2-stable densities pS+ , which would be
computationally intensive as there is no closed form to this
density apart from specific values of α. A prior for ν could
be included but a potential issue of identifiability emerges,
similar to that identified for the Matérn kernel (Zhang, 2004).
We leave these open for future research.

4 NUMERICAL EXPERIMENTS

We compare our method against the predictions obtained
from three other methods. The first two are methods for
Gaussian processes that correspond to the two main ap-
proaches in GP inference: maximum likelihood with a Gaus-
sian covariance kernel (Dancik and Dorman, 2008), and an
MCMC based Bayesian procedure using the Matérn kernel
(Gramacy and Taddy, 2010); the third method is a two-
layer Bayesian neural network (BNN) using a single hidden
layer of 100 nodes with Gaussian priors, implemented in
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pytorch (Paszke et al., 2019), and fitted via a variational
approach. The choice of a modest number of hidden nodes
is intentional, so that we are away from the infinite width
GP limit, and the finite-dimensional behavior can be visu-
alized. The respective implementations are in the R pack-
ages mlegp, tgp, and the python libraries pytorch
and torchbnn. The estimates used from these methods
are respectively the kriging estimate, posterior median and
posterior mean. We tune our method by cross-validation
over a grid of (α, ν). We use point-wise posterior median
as the estimate, and report the values with smallest mean
absolute error (MAE) and the optimal parameters. Results
on timing and additional simulations are in Supplementary
Section S.4, including the posterior quantiles of Qs | y,
showing the posterior is non-degenerate and stochastic. This
suggests learning a non-degenerate posterior Qs | y is pos-
sible, unlike in the GP limit where the kernel is degenerate
(Aitchison et al., 2021; Yang et al., 2023). We use a data
generating mechanism of the form y = f(x) + ε, where the
f is the true function. The overall summary is that when
f has at least one discontinuity, our method performs bet-
ter at prediction than the competing methods, and when f
is continuous the proposed method performs just as well
as the other methods. This provides empirical support that
the assumption of continuity of the true function cannot
be disregarded in the universal approximation property of
neural networks (Hornik et al., 1989), and the adoption of
infinite variance prior weights might be a crucial missing
ingredient for successful posterior prediction when the truth
is discontinuous.

4.1 EXPERIMENTS IN ONE DIMENSION

We consider a function with three jumps: f(x) = 5 ×
1{x≥1}+5×1{−1≤x<0}, to which we add a Gaussian noise
with σ = 0.5. We consider x ∈ [−2, 2], with 40 equally
spaced points as the training set, and 100 equally spaced
points in the testing set. We display the two-panel Figure 1,
showing the comparisons between the four methods. The
boxplots in the left panel show that the proposed method –
which we term “Stable,” has the smallest prediction error.
The right panel shows that the BNN, the GP based fully
Bayesian, and maximum likelihood methods have much
smoother predictions than the Stable method. This indicates
the inability of these methods to capture sharp jumps as well
as the Stable method, which very clearly captures them. The
Stable method obtains the smallest cross validation error for
this case with α∗ = 1.1 and ν∗ = 1.

Figure 2 displays the uncertainty of the GP Bayes and Sta-
ble methods, for the same setting, using the 90% posterior
predictive intervals. In general, the intervals are narrower
for the stable case.

Figure 1: Left: Boxplots of mean absolute error of out-of-
sample prediction over test points, and Right: predicted
values over 100 points on a regular grid on [−2, 2]. Training
points in black dots.

Figure 2: The point-wise 90% posterior predictive intervals
for GP Bayes and Stable over 100 points on a regular grid
on [−2, 2], training points in black.

4.2 EXPERIMENTS IN TWO DIMENSIONS

We consider the function: f(x1, x2) = 5× 1{x1>0} + 5×
1{x2>0}, with additive Gaussian noise with σ = 0.5, and
observations on an equally-spaced grid of 49 points in the
square [−1, 1]2. In Figure 3 we display the boxplots and
contour plots for all methods for out-of-sample prediction on
an equally spaced grid of 9×9 points in the same square. The
methods that employ Gaussian processes (GP Bayes and GP
MLE) and BNN seem to have smoother transitions between
the different quadrants, whereas the Stable method captures
the sharp jumps better. This is reinforced by the prediction
errors displayed in the left panel. For this example, the
Stable method obtains the smallest cross validation error
with α∗ = 1.1, ν∗ = 1.

Figure 3: Left: Boxplots of mean absolute error (MAE) of
out-of-sample prediction over test points, and Right: pre-
dicted values over a 9× 9 grid on [−1, 1]2.

We present quantiles of the posterior predictive distribution
for GP Bayes and Stable methods in Figure 4. Our results
show sharper jumps using the Stable method, when the true
function has jump discontinuities.
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Figure 4: Posterior predictive quantiles at the 5%, 50%, and
95% levels for GP Bayes (upper) and Stable (lower) over a
9× 9 grid on [−1, 1]2.

5 OUT OF SAMPLE PREDICTION ON
REAL ESTATE VALUATION DATA IN
TAIPEI

Valuation of real estate properties in Taipei, Taiwan were
collected by Yeh and Hsu (2018) in different locations. The
data are available from the UCI repository1, and is a bench-
mark dataset. We apply our method to the spatial locations
of the properties, to predict the valuations of the real es-
tate dataset. We use 276 locations for training and 138 for
testing. We compare the performance of our method to the
three methods mentioned in the previous section through
the mean absolute error. The results are displayed in Table 1,
showing a competitive MAE under the proposed approach.
Figure 5 displays the posterior predictive quantiles on the
validation set, with narrower intervals under the proposed
stable method in most cases.

Table 1: Mean absolute error of predictions by method and
standard errors computed on 10 random training–testing
splits in the real estate data set.

Stable GP MLE GP Bayes Bayes NNet
MAE 0.415 0.483 0.402 0.501
(SE) (0.07) (0.07) (0.05) (0.07)

Supplementary Sections S.5 and S.6 present results on abla-
tion experiments and additional data sets with larger sample
sizes, including recent data on S&P stock index.

6 CONCLUSIONS

We develop a novel method for posterior inference and pre-
diction for infinite width limits of shallow (one hidden layer)
BNNs under weights with infinite prior variance. While the
α-stable forward scaling limit in this case has been known
in the literature (Der and Lee, 2005; Peluchetti et al., 2020),
the lack of a covariance function precludes the inverse prob-
lem of feasible posterior inference and prediction, which
we overcome using a conditionally Gaussian representation.

1https://archive.ics.uci.edu/dataset/477/
real+estate+valuation+data+set

Figure 5: Posterior predictive quantiles at the 5%, 50%, and
95% levels for GP Bayes (upper) and Stable (lower) on
validation.

There is a wealth of literature on the universal approxima-
tion property of both shallow and deep neural networks,
following the pioneering work of Hornik et al. (1989), but
they work under the assumption of a continuous true func-
tion. Our numerical results demonstrate that when the truth
has jump discontinuities, it is possible to obtain much better
results with a BNN using weights with unbounded prior
variance. The fully Bayesian posterior also allows straight-
forward probabilistic uncertainty quantification for the in-
finite width scaling limit under α-stable priors on network
weights.

Several future directions could naturally follow from the
current work. The most immediate is perhaps an extension
to posterior inference for deep networks under stable priors,
where the width of each layer simultaneously approaches
infinity, and we strongly suspect this should be possible. The
role of the non-degenerate posterior of Qs | y on deep gen-
eralizations and representation learning merits a thorough
investigation and suggests crucial differences from a GP
limit (Aitchison et al., 2021; Yang et al., 2023). Developing
analogous results under non-i.i.d. or tied weights to perform
posterior inference under the scaling limits for Bayesian
convolutional neural networks should also be of interest.
Finally, one may of course investigate alternative activation
functions, such as the hyperbolic tangent, which will lead
to a different characteristic function for the scaling limit.

7 PROOF OF THEOREM 1

Our derivations rely on Equation 5.4.6 of Uchaikin
and Zolotarev (1999), which states that for
α0 ∈ (0, 1) and for all positive λ one has:
exp(−λα0) =

∫∞
0

exp(−λt)pS+(t)dt, where pS+ is
the density function of a positive α0-stable random variable.
Using λ = νz2 and α0 = α/2 and the fact that z2 = |z|2,
we obtain for α ∈ (0, 2) that:

exp(−να/2|z|α) =
∫ ∞

0

exp(−νz2t)pS+(t)dt, (7)
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where pS+ is the density function of a positive α/2-stable
random variable and z ∈ R. By Equation (4) of Der and
Lee (2005), and the characteristic function of independent
normally distributed error terms with a common variance
σ2, we have that:

ϕy(t) = exp

(
−

L∑
ℓ=1

2−α/2να/2qℓ

∣∣∣∣∣
n∑

j=1

tjτℓ(xj)

∣∣∣∣∣
α

−1

2

n∑
j=1

σ2t2j

)

=

L∏
ℓ=1

exp

(
−2−α/2να/2qℓ

∣∣∣∣∣
n∑

j=1

tjτℓ(xj)

∣∣∣∣∣
α)

× exp

(
−1

2

n∑
j=1

σ2t2j

)

=

L∏
ℓ=1

{∫ ∞

0

exp

(
−1

2
νsℓq

2/α
ℓ

(
n∑

j=1

tjτℓ(xj)

)2)

× pS+(sℓ)dsℓ

}
× exp

(
−1

2

n∑
j=1

σ2t2j

)

=

L∏
ℓ=1

{∫ ∞

0

exp

(
−1

2
νsℓq

2/α
ℓ tTMℓt

)

× pS+(sℓ)dsℓ

}
× exp

(
−1

2

n∑
j=1

σ2t2j

)
,

where the third equality follows by using Equation (7),
and in the last equality we define Mℓ as the matrix with
ones in the diagonal and with the (i, j)th entry given by
τℓ(xi)τℓ(xj), i ̸= j. Next, using the fact that the densities
are over the independent variables {sℓ}Lℓ=1 we bring the
product inside the integrals and employ the property of the
exponential to obtain:

ϕy(t) =

∫
(R+)L

exp

(
−1

2

n∑
j=1

t2jσ
2 − 1

2
ν

L∑
ℓ=1

sℓq
2/α
ℓ tTMℓt

)

×
L∏

ℓ=1

pS+(sℓ)dsℓ

=

∫
(R+)L

exp

(
−1

2
tTQst

) L∏
ℓ=1

pS+(sℓ)dsℓ,

using on the second line the definition of Qs. The required
density is now obtained by the use of the inverse Fourier
transform on the characteristic function:

p(y | X) =

∫
Rn

ϕy(t) exp(i⟨t,y⟩)
n∏

j=1

dtj

=

∫
Rn

{∫
(R+)L

exp

(
−1

2
tTQst

) L∏
ℓ=1

pS+(sℓ)dsℓ

}

× exp(i⟨t,y⟩)
n∏

j=1

dtj

=

∫
(R+)L

∫
Rn

exp

(
−1

2
tTQst

)

× exp(i⟨t,y⟩)
n∏

j=1

dtj

L∏
ℓ=1

pS+(sℓ)dsℓ,

where the second line follows by the derived expression for
the characteristic function, and the third line follows by Fu-
bini’s theorem since all the integrals are real and finite. We
recognize that the term exp(−(1/2)tTQst) corresponds
to a multivariate Gaussian density with covariance matrix
Q−1

s , though it is lacking the usual determinant term. We ob-
tain the density using the characteristic function of Gaussian
variables to finally obtain the result:

p(y | X) =(2π)−n/2

∫
(R+)L

exp

(
−1

2
yTQ−1

s y

)

× det(Qs)
−1/2

L∏
ℓ=1

pS+(sℓ)dsℓ.

In using Q−1
s freely, we assumed through the previous steps

that Qs is positive-definite. We proceed to prove this fact.
Note that Qs is obtained from the sum of L rank-one ma-
trices and a diagonal matrix, where each of the rank-one
matrices is q2/αℓ sℓντ ℓτ

T
ℓ . Let w ∈ Rn\{0}. Then:

wTQsw = wT

(
σ2I+ ν

L∑
ℓ=1

sℓq
2/α
ℓ τ ℓτ

T
ℓ

)
w

= σ2wTw + ν

L∑
ℓ=1

sℓq
2/α
ℓ wT τ ℓτ

T
ℓ w

= σ2
n∑

j=1

w2
j + ν

L∑
ℓ=1

sℓq
2/α
ℓ

(
n∑

j=1

wjτℓ(xj)

)2

> 0,

implying that Qs is positive-definite with probability 1.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains technical details and
numerical results in pdf. Computer code is freely available
at: https://github.com/loriaJ/alphastableNNet.
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S.1 SOME RELEVANT PROPERTIES OF α-STABLE RANDOM VARIABLES

One of the most important properties of stable random variables is the closure property (Property 1.2.1, Samorodnitsky
and Taqqu, 1994), which states that if Xi ∼ S(α, νi, βi) independently for i = 1, 2, then X1 +X2 ∼ S(α, ξ, γ), where
γ = (β1ν

α
1 + β2ν

α
2 )/(ν

α
1 + να2 ), and ξ = (να1 + να2 )

1/α. This means that the sum of two α-stable variables is again
α-stable. This is a generalization of the well known property of the closure under convolutions of Cauchy (α = 1) and
Gaussian (α = 2) random variables. In terms of moments, Samorodnitsky and Taqqu (1994, Property 1.2.16) indicate that
for X ∼ S(α, β, ν) with α ∈ (0, 2), we have E[|X|r] = ∞ for r ≥ α and E[|X|r] is finite for 0 < r < α. Specifically, this
implies that α-stable random variables have infinite variance, when α < 2.

The property of closure under convolutions is easily generalized to the sum of a sequence of i.i.d. α-stable variables, which
gives rise to a convergence in a non-Gaussian domain, for α < 2. Formally, the generalized central limit theorem (Gnedenko
and Kolmogorov, 1954) proves that for i.i.d. scaled random variables with infinite variance the convergence is no longer to a
Gaussian random variable. Rather the convergence is to an α-stable random variable. A statement of the theorem is below.

Theorem S.1. (Generalized central limit theorem, Uchaikin and Zolotarev, 1999, p. 62) Let X1, . . . , Xn be independent
and identically distributed random variables with cumulative distribution function F (x) satisfying the conditions:

1− F (x) ∼ c|x|−γ , x → ∞,

F (x) ∼ d|x|−γ , x → ∞,

with γ > 0. Then there exists sequences an ∈ R and bn > 0, such that the distribution of the centered and normalized sum:

Zn = b−1
n

(
n∑

i=1

Xn − an

)
,

weakly converges to S(α, 1, β) as n → ∞, where α = min(γ, 2), β = (c − d)/(c + d), and an and bn are as given in
Table S1.

Finally, the Laplace transforms of positive α-stable random variables exist. For α < 1 and X ∼ S(α, 1, 1) the Laplace
transform is given by:

E[exp(−λX)] = exp(−λα),

for λ > 0.

S.2 COMPUTATION OF qℓ AND τℓ

Since the size of Λ is 2n, indicating an exponential complexity of naïve enumeration, we further simplify Equation (4).
When the input points are arranged in a way that τℓ is not possible, then qℓ must be zero. We can identify the elements in Λ
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Table S1: Parameters for the generalized central limit theorem.

γ an bn

γ ∈ (0, 1) 0 [π(c+ d)]1/γ [2Γ(γ) sin(γπ/2)]−1/γn1/γ

γ = 1 β(c+ d)n ln(n) (π/2)(c+ d)n
γ ∈ (1, 2) nE[X] [π(c+ d)]1/γ [2Γ(γ) sin(γπ/2)]−1/γn1/γ

γ = 2 nE[X] (c+ d)1/2[n ln(n)]1/2

γ > 2 nE[X] [(1/2)Var(X)]1/2n1/2

with positive probabilities by considering arbitrary values of b0, w1, . . . , wI . The corresponding τ function is determined by:
τ(xj) = sign(b0 + w1xj1 + · · ·+ wIxjI), for each j. This corresponds to labeling with +1 the points above a hyperplane,
and with −1 the points that lie below the hyperplane. When I = 1, without loss of generality, let x1 < · · · < xn. In this case
Λ corresponds to the possible changes in sign that can occur between the input variables, which is equal to n. Specifically,
the sign change can occur before x1, between x1 and x2, . . . , between xn−1 and xn, and after xn. A similar argument is
made in Example 2.1.1 of Der and Lee (2005), suggesting the possibility of considering more than one dimensions.

For I > 1, Harding (1967) studies the possible partitions of n points in RI by an (I − 1)-dimensional hyperplane—which
corresponds to our problem, and determines that for points in general configuration there are O(nI) partitions. Goodman
and Pollack (1983) give an explicit algorithm for finding the elements of Λ that have non-zero probabilities in any possible
configuration. We summarize their algorithm for I = 2 as Algorithm S.1 in Supplementary Section S.3. This algorithm runs
in a computational time of order nI log(n), which is reasonable for moderate I . For the rest of the article, we denote the
cardinality of elements in Λ that have positive probability by L, with the understanding that L will depend on the input
vectors xi that are used and their dimension. This solves the issue of computing deterministically the values of τℓ that have
positive probability after integrating through input-to-hidden weights.

Next we compute the probability qℓ for the determined τℓ. For I = 1, the qℓs correspond to probabilities obtained from a
Cauchy cumulative density function, which we state explicitly in Supplementary Section S.2.1. For general dimension of the
input I > 1, the value of qℓ is given by P(Z(τℓ) > 0), where the n-dimensional Gaussian vector Z(τℓ) has i-th entry given
by τℓ(xi)(b0 +

∑I
j=1 wjxij). This implies that Z(τℓ) ∼ Nn(0,Σ

(τℓ)), where the (possibly singular) variance matrix is

Σ
(τℓ)
i,j = τℓ(xi)τℓ(xj)(1 +

∑n
k=1 xikxjk). This means we can compute qℓ = P(Z(τℓ) > 0) using for example the R package

mvtnorm, which implements the method of Genz and Bretz (2002) for evaluating multivariate Gaussian probabilities.
Since the qℓs require independent procedures to be computed, this is easily parallelized after obtaining the partitions.

S.2.1 COMPUTATION OF qℓ AND τℓ IN ONE DIMENSION

Assume, since we are in one dimension, that x1 < · · · < xn. In the one-dimensional case Λ consists of the different
locations where the change in sign can be located. This corresponds to:

1. Before the first observation, which corresponds to τ(xk) = 1 for all k, we call this τ0.

2. Between xj and xj+1 for some j = 1, . . . , n − 1, which corresponds to τ(xk) = −1 for k < j and τ(xk) = +1
otherwise, we call this τj .

3. After xn, τ(xk) = −1 for all k, and we call this τn.

Note that the first and last items correspond to linearly dependent vectors as τ0(xk) = −τn(xk), for all k = 1, . . . , n. Now,
we compute the probability for the first and last items:

qτ0 + qτn = P(b0 + w1x1 < 0) + P(b0 + w1xn > 0)

= P(x1 < −b0/w1) + P(xn > −b0/w1)

= P(x1 < −C) + P(xn > −C)

=
1

2
+

1

π
arctan(x1) +

1

2
− 1

π
arctan(−xn)

= 1 +
1

π
(arctan(x1)− arctan(−xn)),
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where C ∼ Cauchy(0, 1) since b0, w1 are independent standard normal variables.

Next, the change in sign occurring between xj and xj+1, yields:

qτj = P(sign(b0 + w1xj) = −1, sign(b0 + w1xj+1) = 1)

= P(b0 + w1xj < 0, b0 + w1xj+1 > 0)

= P(xj < −b0/w1, xj+1 > −b0/w1)

= P(xj < C < xj+1)

=
arctan(xj+1)− arctan(xj)

π
,

which corresponds to the desired probability.

S.3 SUPPORTING ALGORITHMS

Algorithm S.1 is modified from Goodman and Pollack (1983) for I = 2 dimensions, which we employ in Algorithm 1,
and has a computational complexity of O(nI log(n)) for n input points and a general input dimension I . We present
Algorithm S.2 to sample the latent scales {sℓ}Lℓ=1 and error standard deviation σ, which consists of a independent samples
Metropolis–Hastings procedure where we sample from the priors, and iteratively update the matrix Qs. For computation of
the density functions we use the Woodbury formula, and an application of the matrix-determinant lemma, for an efficient
update of Qs and to avoid computationally intensive matrix inversions. Algorithm S.2 has computational complexity of
O(Ln2) = O((n+m)In2).

Algorithm S.2 A Metropolis–Hastings sampler for Q by simulating the latent scales from the prior

Require: Vector y ∈ Rn, previous latent scales {sℓ}Lℓ=1, vectors {τ ℓ}Lℓ=1, partition probabilities {qℓ}Lℓ=1, previous variance
matrix Q = ν

∑L
ℓ=1 sℓq

2/α
ℓ τ ℓτ

T
ℓ + σ2I, and magnitude of errors σ2.

Output: Updated Q matrix.
for k = 1, . . . , L do

Propose s∗k ∼ S+(α/2).
Define Q(prop) = ν

∑
ℓ ̸=k sℓq

2/α
ℓ τ ℓτ

T
ℓ + νs∗kq

2/α
k τ kτ

T
k + σ2I .

Accept s∗k with probability min{p(y | Q(prop)
1:n,1:n)/p(y | Q1:n,1:n), 1}.

If s∗k is accepted, replace sk by s∗k.
end for
Propose σ2

∗ ∼ Cauchy+(0, 1).
Compute Q(prop) = ν

∑L
ℓ=1 q

2/α
ℓ sℓτ ℓτ

T
ℓ + σ2

∗I.
Accept Q(prop) with probability min{p(y | Q(prop)

1:n,1:n)/p(y | Q1:n,1:n), 1}.
return Q(prop) if it was accepted, return Q otherwise.

S.4 ADDITIONAL NUMERICAL RESULTS

We report MCMC convergence diagnostics, run times, and posterior quantiles of Qs | y. We also include simulation results
for a variety of functions in one and two dimensions, where we demonstrate the flexibility of the proposed method.

S.4.1 MCMC DIAGNOSTICS AND COMPUTATION TIMES

S.4.2 POSTERIOR QUANTILES OF Qs | y

We present results showing the posterior Qs | y is non-degenerate under a stable limit. In the case of a vanilla GP limit
the prior on the kernel converges to a point mass, resulting in a degenerate posterior (Aitchison et al., 2021; Yang et al.,
2023). However, as shown by our Corollary 1, Qs is stochastic under a stable limit. Figure S2 displays the posterior 25th,
50th, and 75th quantiles of Qs | y for the examples shown in Sections 4.1 and 4.2, confirming the posterior of Qs | y is
non-degenerate. This is a key feature that distinguishes the current work from prior works on GP limits.
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Algorithm S.1 (Goodman and Pollack, 1983). Multidimensional sorting for I = 2

Require: Matrix X ∈ Rn×2.
Output: partition vectors {τℓ}Lℓ=1.

for i = 1, . . . , n− 1 do
for j = i+ 1, . . . , n do

Let uj = xj,1 − xi,1, and vj = xj,2 − xi,2. If (uj , vj) = (0, 0) call j “good”.
Let un+j = −uj , vn+j = −vj , and let mj = mn+j = vj/uj .

end for
Sort the indices {j : j is good} ∪ {n+ j : j is good} into subsets:

1. for those for which uj > 0, using mj as key
2. for those for which uj = 0 and vj > 0

3. for those for which uj < 0, using mj as key
4. for those for which uj = 0, and vj < 0

From the sorting in Items 1 and 3 we obtain a list of subsets. Say: {J11, . . . , J1p1
, . . . , Jr1, . . . , Jrpr

}, where the
points with indices Jk1, . . . , Jkpk

constitute an entire subset, and denote J (k) as their union, and there are r subsets all
together. Denote by k(j) the number of the subset within which j lies.

For each k = 1, . . . , r, let: nk = #{m : 1 ≤ m,Jkm ≤ n}, the number of points in each ray.
For each good j, consider A(ij)

0 = {i} ∪ (J (k(j)) − {n+ 1, . . . , 2n}) as the points in the same ray as ij.
if k(n+ j) > k(j) then

Define the points in the positive side by: A(ij)
+ = ∪k(n+j)−1

k=k(j)+1J
(k) − {n+ 1, . . . , 2n}, the points in the negative

side by: A(ij)
− = {1, . . . , n} −A

(ij)
+ −A

(ij)
0 .

else if k(n+ j) < k(j) then
Define the points in the positive side by: A(ij)

+ = ∪r
k=k(j)+1J

(k)∪∪k(n+j)−1
k=1 J (k), and the points in the negative

side by: A(ij)
− = {1, . . . , n} −A

(ij)
+ −A

(ij)
0 .

end if
For each j = i+ 1, . . . , n, if A(ij)

0 has Lj ordered items denoted by {am : m = 1, . . . , Lj}. Add 2Lj vectors: τ ℓ

for ℓ = 1, . . . , Lj , with entry k equal to +1 if k ∈ A
(ij)
+ ∪ {am : m = 1, . . . , ℓ}, and −1 otherwise, and the vectors

τ ℓ+Lj for ℓ = 1, . . . , Lj , with entry k equal to +1 if k ∈ A
(ij)
+ ∪ {am : m = ℓ+ 1, . . . , Lj}, and −1 otherwise.

Repeat using A
(ij)
+ as the negative, and A

(ij)
− as the positive.

end for
Discard repeated vectors.
return the collection of vectors {τ ℓ}Lℓ=1

Figure S1: Trace plots for the proposed MCMC sampler (Algorithm 1) for the simulations in Section 4, indicating good
mixing in about 1000 burn-in iterations. Left: one dimensional case, Right: two dimensional case. Numerical results were
obtained using the last 2000 iterations.

2344



Table S2: Total (in seconds) and per iteration (in milliseconds) Computation Times for the Simulations in Section 4, for the
Competing Methods.

Stable GP MLE GP Bayes Bayes NNet

Total time (s) 1-d 24.047 0.067 18.073 6.91
2-d 1339.543 0.178 22.185 7.193

Per iteration time (ms) 1-d 8.016 13.400 0.602 2.303
2-d 446.514 35.600 0.740 2.398

Figure S2: Posterior quantiles (left: 25, center: 50, right: 75) of the kernel Qs, for the 1-d (upper) and 2-d (lower) examples,
clearly showing a non-degenerate posterior for Qs.

S.4.3 ADDITIONAL RESULTS IN ONE DIMENSION

We show, using a variety of one-dimensional functions, that the Stable procedure results in better performance in presence
of discontinuities, while performing similarly to GP-based methods or finite width networks for smooth functions. Posterior
uncertainty quantification results are omitted.

One-dimensional one-jump function. Consider the function with a single jump given by f(x) = 5× 1{x>0}. We use
forty equally-spaced observations between −2 and 2 with a Gaussian noise with standard deviation of 0.5. We display the
obtained results on Figure S3, with optimal hyper-parameters α∗ = 1.1 and ν∗ = 1.

One-dimensional two-jump function. Consider the function with two jumps given by f(x) = 5× 1{−2/3≤x<2/3}. We
use forty equally-spaced observations between −2 and 2 with a Gaussian noise with standard deviation of 0.5. We display
the obtained results on Figure S4, with optimal hyper-parameters α∗ = 1.3 and ν∗ = 1.

One-dimensional piece-wise smooth. Consider the piece-wise smooth function with a single jump, given by

f(x) =

{
−2x2 + 8, x ≥ 0,

−3x+ 2, x < 0.

We use forty equally-spaced observations between −2 and 2 with a Gaussian noise with standard deviation of 0.5, and
display the obtained results in Figure S5, using the optimal hyper-parameters α∗ = 1 and ν∗ = 1.
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Figure S3: Out-of-sample error comparison and predictions with scatter plot of the observations for the four methods for a
function with a single jump.

Figure S4: Out-of-sample error comparison and predictions with scatter plot of the observations for the four methods for a
function with two jumps.

Figure S5: Out-of-sample error comparison and predictions with scatter plot of the observations for the four methods for a
piece-wise smooth function.

One-dimensional smooth function. Finally, consider the smooth function f(x) = −2 cos(x)2 +3 tanh(x)− 2x. We use
forty equally-spaced observations between −2 and 2 with a Gaussian noise with standard deviation of 0.5. The obtained
results are shown in Figure S6. The optimal hyper-parameters are α∗ = 1.9 and ν∗ = 1.
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Figure S6: Out-of-sample error comparison and predictions with scatter plot of the observations for the four methods for a
smooth function.

S.4.4 ADDITIONAL RESULTS IN TWO DIMENSIONS

We show, using a variety of two-dimensional functions, that the Stable procedure results in better performance in presence
of discontinuities, while performing similarly to GP-based methods or finite width networks for smooth functions. Posterior
uncertainty quantification results are available, but omitted.

Two-dimensional one-jump function. Consider the function f(x1, x2) = 5× 1{x1+x2>0}. Using the grid of points on
[−1, 1]2 detailed in Section 4, and additive Gaussian noise with σ = 0.5, we obtain the predictions results as shown in
Figure S7. Optimal hyper-parameters are α∗ = 0.1 and ν∗ = 1.

Figure S7: Out-of-sample error comparison and predictions for the four methods for a jump function in two-dimensions.

Two-dimensional smooth edge. Consider the function f(x1, x2) = 5× 1{x2
1+2x2−0.4>0}. Note that the jump boundary

is determined by a smooth curve. Using the grid of points on [−1, 1]2 detailed in Section 4, and additive Gaussian noise
with σ = 0.5, we obtain the predictions results as shown in Figure S8. Optimal hyper-parameters are α∗ = 1 and ν∗ = 1.
The Stable method is able to capture the smoothness of the jump boundary without losing predictive power.

Two-dimensional smooth function. Consider the smooth function f(x1, x2) = x2
1 + x2

2 − x1x2. We use the grid of
points on [−1, 1]2 detailed in Section 4, and additive Gaussian noise with σ = 0.5. Since this function is continuous, it
would be expected that the Stable method would perform similarly as the competing methods. We obtain the predictions
results as shown in Figure S9. The optimal hyperparameters are α∗ = 1.3 and ν∗ = 1.
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Figure S8: Out-of-sample error comparison and predictions for the four methods for a function with a jump that is
parameterized by a smooth function.

Figure S9: Out-of-sample error comparison and predictions for the four methods for a smooth function in two-dimensions.

S.5 ABLATION STUDY ON α AND ν

We perform an ablation study on the tuning parameters α and ν for the examples we consider in Section 4. Figure S10
displays the mean absolute error for a grid of the tuning parameters in all two examples. The results show that the smaller
MAEs are mostly concentrated close to ν = 1. These results hint that ν = 1, α = 1 are good default choices.

Figure S10: Ablation study for the two numerical examples. Displaying the mean absolute error for varying α and ν
parameters. Left: one dimension. Right: two dimensions.
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S.6 RESULTS ON S&P 500

We provide out of sample prediction results for S&P 500 closing prices1, using 336 and 169 as the training and testing set
sizes respectively, with α∗ = 1.9 and ν∗ = 1. Table S3 displays the improved performance from using the Stable method
compared to the three competing methods, as measured by the mean absolute error.

Table S3: Mean absolute error of predictions and standard errors computed on 10 random training–testing splits in the S&P
500 closing prices by method.

Stable GP MLE GP Bayes Bayes NNet
MAE 0.054 0.071 0.054 0.210
(SE) (0.008) (0.006) (0.005) (0.016)

1Obtained from https://www.nasdaq.com/market-activity/index/spx/historical between July 1, 2019 and
June 30, 2021.
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