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Abstract

Learning the structures of structural equation mod-
els (SEMs) as directed acyclic graphs (DAGs) from
data is crucial for representing causal relationships
in various scientific domains. Instead of estimating
individual DAG structures, it is often preferable
to directly estimate changes in causal relations be-
tween conditions, such as changes in genetic ex-
pression between healthy and diseased subjects.
This work studies the problem of directly estimat-
ing the difference between two linear SEMs, i.e.
without estimating the individual DAG structures,
given two sets of samples drawn from the individ-
ual SEMs. We consider general classes of linear
SEMs where the noise distributions are allowed to
be Gaussian or non-Gaussian and have different
noise variances across the variables in the individ-
ual SEMs. We rigorously characterize novel con-
ditions related to the topological layering of the
structural difference that lead to the identifiability
of the difference DAG (DDAG). Moreover, we pro-
pose an efficient algorithm to identify the DDAG
via sequential re-estimation of the difference of pre-
cision matrices. A surprising implication of our re-
sults is that causal changes can be identifiable even
between non-identifiable models such as Gaussian
SEMs with unequal noise variances. Synthetic ex-
periments are presented to validate our theoretical
results and to show the scalability of our method.

1 INTRODUCTION

Structural equation models (SEMs) are effective models
to express causal relationships among variables in a sys-
tem (Pearl 2009, Peters et al. 2017). However, both the
parameters and the graphical structure representing causal
relations, typically assumed to be a directed acyclic graph

(DAG), are unknown. In various fields, including computa-
tional biology. (Sachs et al. 2005, Hu et al. 2018, Friedman
et al. 2000), epidemiology (Robins et al. 2000), medicine
(Plis et al. 2010, 2011), and econometrics (Imbens 2020,
Hoover et al. 2009, Demiralp & Hoover 2003), developing
methods to estimate the underlying DAG structure from
available data is of utmost importance. This task is com-
monly known as causal discovery or structure learning, and
numerous algorithms have been proposed for this purpose
in the past few decades.

In this work, we assume causal sufficiency, which means
that there are no unobserved confounders. However, even
under this assumption, it is generally not possible to iden-
tify the underlying DAG structure, and the problem remains
NP-complete in general (Chickering 1996, Chickering et al.
2004). Popular methods like PC (Spirtes et al. 2000) and
GES (Chickering 2003) require an additional assumption
known as faithfulness (Uhler et al. 2013) to consistently es-
timate the Markov equivalent class of the true DAG in large
samples. However, these methods are not consistent in high-
dimensional settings (Ghoshal & Honorio 2017a, 2018)
unless there is an assumption of sparsity or small maximum-
degree of the true DAG (Kalisch & Bühlman 2007, Nandy
et al. 2018, Van de Geer & Bühlmann 2013). As a result,
the presence of hub nodes, which are commonly observed
in many networks (Barabási & Albert 1999, Barabási et al.
2011, Barabasi & Oltvai 2004), adds significant complexity
to the problem of learning the DAG.

However, in many cases, the main objective is to identify
changes in the causal mechanisms between two or more
related SEMs, rather than to estimate the full underlying
DAG structure of each SEM. For instance, in root cause
analysis, an operator may be interested in identifying the
sources that explain the differences between the working
and failure states of a microservices system (Ikram et al.
2022, Paleyes et al. 2023, Li et al. 2022). Recent work by
Assaad et al. (2023) propose an approach to estimate the
difference in causal changes between normal and anomalous
regimes based on a causal graph of the normal regime to
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detect root causes. Our work complements such methods
by providing a framework to directly estimate the differ-
ences between two SEMs without requiring the individual
DAG structures. In the context of biological pathways, genes
have the ability to control different groups of target genes
based on the cellular environment or the presence of spe-
cific disease conditions (Hudson et al. 2009, Pimanda et al.
2007). Although the individual DAGs may be dense, the
number of causal changes could be sparse (Schölkopf et al.
2021, Tanay et al. 2005, Perry et al. 2022). An additional
practical scenario where our problem setting is applicable
includes time-varying models, as discussed by Giannakis
et al. (2018), where data samples are divided into possi-
bly overlapping windows. For linear SEMs, Natali et al.
(2021) describe the model as Xt = BtXt + et. Considering
scenarios where the strength of causal relationships dimin-
ishes over time, such as the waning efficacy of a vaccine
against disease resistance, demonstrates the relevance of our
problem setting in practical environments.

In more detail, we focus on the problem of identifiability of
causal structural changes given samples from two related
linear SEMs. We consider linear SEMs where the noise
variances at each individual SEM are allowed to vary, and,
moreover, these noises can have arbitrary distributions with
finite mean and second moment. Crucially, we do not impose
additional structural assumptions such as sparsity, small
maximum degree, or bounded tree width on the individual
DAGs.

Our contributions. Our work introduces two key innova-
tions to this problem. First, we prove that the difference
DAG (causal changes) are identifiable for general linear
SEMs, including non-identifiable models such as Gaussian
SEMs with unequal noise variances. Second, motivated by
our identifiability conditions, we propose an efficient algo-
rithm that scales to thousands of variables. More specifi-
cally:

1. We present novel sufficient conditions (Assumptions 2
and 3) for identifiability of the difference DAG between
two linear SEMs.

2. We develop a polynomial-time algorithm for directly
estimating the DDAG between two linear SEMs (Al-
gorithm 1) and show that our two conditions, Assump-
tions 2 and 3 are necessary for Algorithm 1 to identify
the DDAG.

3. Since our algorithm is agnostic to the type of estimator
for the difference of precision matrices, we leverage
recent progress in this area and implement an efficient
method that scales to thousands of nodes.

Proofs for all theoretical results are provided in the Supple-
mentary Material.

2 RELATED WORK

Learning individual DAGs. One way to identify causal
changes (albeit inefficient) would be to estimate individual
DAGs for each environment and then to test for structural
differences between the two DAGs. Some classical and
recent methods for learning DAGs from a single dataset in-
clude: Constraint-based algorithms such as PC and FCI
(Spirtes et al. 2000); in score-based methods, we have
greedy approaches such as GES (Chickering et al. 2004),
likelihood-based methods (Peters & Bühlmann 2014, Loh &
Buhlmann 2014, Aragam & Zhou 2015, Aragam et al. 2019,
Hoyer et al. 2008), and continuous-constrained learning
(Zheng et al. 2018, Bello et al. 2022, Deng, Bello, Aragam
& Ravikumar 2023, Deng, Bello, Ravikumar & Aragam
2023). Order-based methods (Teyssier & Koller 2005, Lar-
ranaga et al. 1996, Ghoshal & Honorio 2018, Rolland et al.
2022, Montagna et al. 2023), methods that test for asymme-
tries (Shimizu et al. 2006, Bühlmann et al. 2014), and hybrid
methods (Nandy et al. 2018, Tsamardinos et al. 2006). Addi-
tionally, recent recursive algorithms have been developed for
causal structure learning, such as the method by Mokhtarian
et al. (2021). Finally, note that in order to use these methods,
the individual DAGs must be identifiable, which is not the
case for Gaussian SEMs with unequal noise variances (Pearl
2009). The identifiability of Gaussian noises with equal vari-
ances were proven in Peters & Bühlmann (2014) and Loh
& Buhlmann (2014); while the identifiability of linear non-
Gaussian models is given in Shimizu et al. (2006). In fact, a
key implication of our results is that we can identify causal
changes even when individual DAGs are unidentifiable.

Differences in undirected graphs. The problem of learn-
ing the difference between undirected graphs (or Markov
random fields) has received much more attention than the
directed case. For instance, Zhao et al. (2014), Liu et al.
(2017), Yuan et al. (2017), Fazayeli & Banerjee (2016)
develop algorithms for estimating the difference between
Markov random fields and Ising models with finite sample
guarantees. See Zhao et al. (2022), Varici et al. (2021) for re-
cent developments in this direction. Another closely related
problem is estimating invariances between causal structure
across multiple environments (Peters et al. 2016). However,
this is desirable when the common structure is expected to
be sparse across environments, as opposed to our setting
where the difference is expected to be sparse.

Differences in directed graphs. The problem of estimat-
ing the difference between DAGs has been previously stud-
ied by Wang et al. (2018), Varici et al. (2022), Chen et al.
(2023), Yang et al. (2024). Under the same setting as ours,
Wang et al. (2018) developed a PC-style algorithm (Spirtes
et al. 2000), which they call DCI, for learning the difference
between the two DAGs by testing for invariances between
regression coefficients and noise variances between the two
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Figure 1: From left to right: the two SEMs, the difference
undirected graph (or difference of moral graphs), and the
difference of precision matrices between the two SEMs with
non-zero entries shown in black.

models. However, sample complexity guarantees are hard
to obtain for their method due to the use of many approx-
imate asymptotic distributions of test statistics. Since the
primary motivation behind directly estimating the difference
between two DAGs is sample-efficiency, a lack of finite
sample guarantees is a significant shortcoming. In contrast,
our algorithm works by repeatedly eliminating vertices and
re-estimating the difference of precision matrix over the re-
maining vertices. Thereby, we are able to leverage existing
algorithms for computing the difference of precision matrix
to obtain finite sample guarantees for our method. Further-
more, the DCI algorithm estimates regression coefficients
(and noise variances) in the individual DAGs, while our
method never estimates weights or noise variances of indi-
vidual SEMs. Consider the example given in Figure 1 where
the difference DAG contains only one edge X4 → X2. In
order to prune the edges X1 −X4 and X3 −X4 which are
present in the difference undirected graph but not in the dif-
ference DAG, DCI would compute regression coefficients
θ14|S and θ24|S for all S ⊆ {1, 2, 3}, where θ1j|S (resp. θ2j|S)
denotes regression coefficients obtained by regressing Xj

against XS in the first (resp. second) SEM. For linear SEMs,
estimating regression coefficients is equivalent to estimating
the precision matrix (Lemma 1 from Ghoshal & Honorio
(2017b)). Furthermore, Danaher et al. (2014) have shown
that directly estimating the difference between precision
matrices is more sample efficient than estimating individual
precision matrices and computing the difference.

3 PRELIMINARIES

We use [p] to denote the set of integers {1 . . . p}. For a
matrix A, we will denote its i-th row (resp. i-th column) by
Ai,∗ (resp. A∗,i). Furthermore, we define the support of the
matrix A, denoted as supp(A), as the set of indices (i, j)
for which the entries of A are non-zero, i.e., supp(A) =
{(i, j) | Ai,j ̸= 0, for i, j ∈ [p]}.

Let X = (X1, . . . , Xp) be a p-dimensional random vector.
We will denote a structural equation model (SEM) by the
tuple (B,D) where B is an autoregression matrix and D =
Diag({σ2

i }) is a diagonal matrix of noise variances. Then,
the SEM (B,D) defines the following generative model

over X:

Xi = Bi,∗X + εi, ∀i ∈ [p],

where the noises are mutually independent with E [εi] = 0
and Var [εi] = Di,i = σ2

i < ∞. In this work, the autore-
gression matrix B encodes a directed acyclic graph (DAG)
G = ([p], supp(B)) over [p], where the edge (i, j) denotes
the directed edge i← j.

Remark 1. It is worth noting that distributions with
bounded second moment include a large set of distributions
such as Gaussian, uniform, Gumbel, exponential, Laplace,
etc. This does not include distributions like the Cauchy dis-
tribution, which have infinite variance. Our class of SEMs
covers a significant part of the classical LiNGAM models
while also allowing for Gaussian distributions. Therefore,
the classical linear non-Gaussian acyclic model (LiNGAM)
(Shimizu et al. 2006) is a special case of our class of SEMs,
with the added restriction of bounded variance.

Given two SEMs, (B(1), D) and (B(2), D), our goal is to re-
cover the structure of the difference between the two DAGs,
that is, supp(B(1) − B(2)). Going forward, we use ∆B to
denote B(1) − B(2) and ∆ to denote the difference graph,
([p], supp(∆B)). We assume that the two DAGs, G(1) and
G(2), share a topological ordering, thereby resulting in no
edge reversals between them, which is a reasonable as-
sumption in several practical problems (Zhao et al. 2014,
Belyaeva et al. 2021). Formally, we are interested in the
following problem:

Problem 1. Given two sets of observations X(1) ∈ Rn1×p

and X(2) ∈ Rn2×p, drawn from the unknown SEMs
(B(1), D) and (B(2), D) respectively, estimate ∆.

We will often index the two SEMs by κ ∈ {1, 2}. We will
denote the difference between the precision matrices1 of the
two SEMs by: ∆Ω, and the precision matrix over any subset
of variables S ⊆ [p] by ∆S

Ω. Similarly, Ω(κ,S) denotes the
precision matrix over the subset S in the SEM indexed by κ.
We will denote the set of topological orderings induced by
a DAG G = ([p], E) by T (G) = {(τ1, . . . , τp) ∈ Π([p]) |
∀i, j ∈ [p] if i > j, (τj , τi) /∈ E}, where Π([p]) is the set
of permutations of [p]. The notation i ⪯τ j denotes that
the vertex i comes before j (or i = j) in the topological
order τ . For any τ ∈ T (G), we will consider sequence
of graphs G[m,τ ] = (V[m,τ ], E[m,τ ]), indexed by (m, τ),
where G[m,τ ] is the induced subgraph of G over the first m
vertices in the topological ordering τ , i.e., V[m,τ ] = {τi |
i ≤ m} and E[m,τ ] = {(i, j) ∈ E | i, j ∈ V[m,τ ]}. We use
the term "terminal vertices" to denote the vertices in a DAG
that have no outgoing edges.

1We use the standard definition of a precision matrix, i.e., the
inverse covariance matrix.
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Finally, we will always index precision matrices by vertex
labels, i.e., Ωi,j denotes the precision matrix entry corre-
sponding to the i-th and j-th node of the graph.

4 MAIN RESULTS: NOVEL
IDENTIFIABILITY CONDITION AND
POLY-TIME ALGORITHM

In our analysis, we discuss different strategies for removing
terminal vertices and their implications on the edge require-
ments for the difference graph ∆. We explore two extreme
cases: (i) removing terminals one-by-one, and (ii) removing
terminals all-at-once. We establish the significance of the
minimal topological layering of the difference DAG in this
context and provide an example of how the edge require-
ments can be relaxed by considering the all-at-once removal
strategy. Finally we establish the identifiability conditions
of difference DAGs and present Algorithm 1, a poly-time
algorithm to identify those DAGs.

4.1 TERMINAL VERTICES

Let (B(1), D) , (B(2), D) be two Structural Equation Mod-
els (SEMs) such that they share at least one topological
ordering. The difference precision matrix is defined as

∆Ω = Ω(1) − Ω(2).

Using Proposition 2 from Ghoshal & Honorio (2018), the
diagonal entries of difference precision matrix are given as

∆Ωi,i =
∑
l∈[p]

(B
(1)
l,i +B

(2)
l,i )(B

(1)
l,i −B

(2)
l,i )

σ2
l

. (1)

From Equation 1, we derive the following proposition:

Proposition 1. For any i ∈ [p], if i is a terminal vertex in
∆, then ∆Ωi,i

= 0.

Recall that the two SEMs share a topological ordering,
which is equivalent to saying that union of their DAGs is
also a DAG, i.e. G∪ = G(1)∪G(2) is a DAG. The terminals
of G∪ is given by the intersection of set of terminals of
DAGs of the two SEMs. Since ∆ is a subgraph of G∪, we
have the following proposition:

Proposition 2. For any i ∈ [p], if i is a terminal vertex in
G∪, then i is a terminal vertex in ∆.

It is important to note that the converse of both Proposition
1 and Proposition 2 is not true in general.

The validity of converse of Proposition 1 is contingent upon
certain weight conditions. In contrast, the converse of Propo-
sition 2 hinges on structural constraints of the difference

graph ∆. For the converse of Proposition 2 to hold, for every
non-terminal vertex in G∪, at least one of their outgoing
edge should also be in ∆. So ∆ must have at least p − t
edges, where t is the number of terminals vertices. Hence,
this proposition’s converse does not universally hold but re-
quires specific structural alignment within the graph. Finally
the combined assumption for converse of Proposition 1 and
Proposition 2 to hold, can be stated as follows:

Assumption 1. For any i ∈ [p], if ∆Ωi,i
= 0, then i is a

terminal vertex in G∪.

To find the incoming edges for these terminal vertices, we
can examine the difference precision matrix ∆Ω. By looking
at the non-zero entries in the corresponding row or column
of ∆Ω for each terminal vertex, we can identify the incom-
ing edges for these vertices in the graph ∆. This is given by
the Lemma 1.

Lemma 1. Under Assumption 1, for any i ∈ [p], if ∆Ωi,i
=

0, then ∀j ∈ [p],∆Ωi,j
= −∆Bi,j

σ2
i

.

This lemma allows us to identify the terminal vertices of
∆ and the incoming edges to those terminals through the
difference precision matrix. By iteratively removing these
terminal vertices and repeating the process, we can recover
the entire structure of ∆, under the condition that Assump-
tion 1 holds for the linear SEMs obtained from removing
the terminal vertices. There are multiple ways to remove
these terminal vertices, and in the subsequent sub-sections,
we provide the analysis for two extreme cases: removing ter-
minals one-by-one and removing them all-at-once. Assump-
tion 1 is essentially the unification of the converses of both
Proposition 1 and Proposition 2. Each of these propositions
imposes distinct types of constraints on the SEMs. First,
we will elucidate the structural implications of the converse
of Proposition 2, particularly highlighting the significance
of the minimal topological layering of ∆. Subsequently,
we will integrate this with the converse of Proposition 1 in
Section 4.4.

4.2 ON THE FAILURE OF REMOVING
TERMINALS ONE-BY-ONE

In this approach, we sequentially remove a single terminal
vertex and its incoming edges from the difference graph ∆
and both the SEMs. At each step, we re-estimate the differ-
ence precision matrix and re-apply Lemma 1 to identify the
next terminal vertex and its incoming edges. This process is
repeated until all vertices have been removed, and the entire
structure of ∆ is recovered. For this we need the converse of
Proposition 2 to hold after removal of every terminal vertex.

Removing terminal vertices one-by-one is essentially re-
moving vertices in reverse topological ordering. We can
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formally state this as follows: for all topological ordering τ

of ∆, for all m ∈ [p], τm is a terminal in G
(1)
[m,τ ] and G

(2)
[m,τ ].

This is equivalent to every topological ordering of ∆ be-
ing also a valid topological ordering of G∪. Since ∆ is a
subgraph of G∪, every topological ordering of G∪ is a topo-
logical ordering of ∆. However, the converse is not true in
general. This highlights the importance of understanding the
relationship between the topological orderings of ∆ and G∪

when analyzing the structure of the difference graph. We
further examine the conditions under which this is valid to
gain further insight into the structural constraints necessary
for the recovery of the entire structure of ∆ through the
iterative one-by-one removal of terminal vertices.

We introduce the concept of transitive edges in a DAG and
explore their impact on topological orderings and the struc-
ture of the difference graph ∆.

Definition 1 (Transitive Edge2). Let G be a DAG. An edge
u→ v is called a transitive edge of G if there exist multiple
directed paths from u to v in G.

Removing an edge from a DAG cannot decrease the set
of topological orderings compatible with it; it can either
remain the same or increase. The key property here is that
it remains the same if and only if the removed edge is a
transitive edge of the DAG.

Proposition 3. The converse of Proposition 2 holds while
removing terminals one-by-one if and only if all the edges
of G∪ missing from ∆ are transitive edges of G∪.

Unfortunately, in the worst case, this can require ∆ to be
dense. For instance, consider G∪ to be the complete bipartite
graph Kn,n with the direction of all edges from one partition
of n vertices to the other partition of n vertices. This graph
has no transitive edges, i.e., all n2 edges are non-transitive.
Therefore, to identify ∆ through the one-by-one removal
process of the terminals, ∆ must contain all the n2 edges.
In the next section, we present that removing all terminals
at once will reduce this requirement from n2 edges to just n
edges.

4.3 REMOVING TERMINALS ALL-AT-ONCE

In this alternative approach, we simultaneously remove all
terminal vertices and their incoming edges from the differ-
ence graph ∆ in one step. The difference precision matrix is
then re-estimated and Lemma 1 is applied to identify all new
terminal vertices and their incoming edges. This process is
repeated until all the vertices are removed and the entire
structure of ∆ is recovered.

2Transitive edges have also been employed in (Bello & Hono-
rio 2018) for learning DAGs.

The converse of Proposition 2 states that the set of terminals
of ∆ is the same as the set of terminals G∪. This should
hold even after all these common terminals are removed
simultaneously. We first introduce the concept of topolog-
ical layering of a DAG, which is a generalization of the
well-known concept of topological ordering. Subsequently,
we establish that the iterative necessity of the converse of
Proposition 2 while removing terminals all-at-once is equiv-
alent to minimal topological layering of ∆ being a valid
topological layering of G∪.

Definition 2 (Topological Layering). Let G(V,E) be a
DAG. A topological layering of G is a partitioning of the
vertex set V into a sequence of sets (L0, L1, ..., Lr), such
that if (u, v) ∈ E, u ∈ Li, and v ∈ Lj , then i > j.

Each set of the partition corresponds to a layer. Essen-
tially, a topological layering of G is a function L : V 7→
{0, 1, 2, ..., r}, where r < p and such that for every edge
(u, v) ∈ E,L(u) > L(v), that is, edges are allowed only to
go from the vertices of a higher layer to the vertices of a
lower layer. This concept generalizes topological ordering,
since a topological ordering can be considered a special case
where r = p−1 and the function operates as a bijection. We
then introduce the notion of minimal topological layering in
which every vertex v is assigned to the lowest possible layer
L(v) such that the condition of the topological layering still
holds.

Definition 3 (Minimal Topological Layering). Let G(V,E)
be a DAG. The minimal topological layering of G is a topo-
logical layering L of G such that there does not exist a
topological layering L′ of G with L′(v) < L(v) for some
v ∈ V .

Note that the minimal topological layering of a DAG is
unique. This is the topological layering that one obtains
by recursively removing terminals of a DAG all-at-once as
layers. Similarly, one can obtain a layering by recursively
removing the roots (vertices with no incoming edges) of a
DAG in an all-at-once fashion. This layering obtained by
removing roots is used in many recent works on causal struc-
ture learning (Gao et al. 2020, Zhou et al. 2022, Park 2023).
We observe that this layering of roots is the maximal topo-
logical layering of a DAG, where each vertex is assigned to
the highest possible layer while maintaining the constraints
of a topological layering. We now establish the link between
the converse of Proposition 2 and the topological layering
of ∆.

Lemma 2. The converse of Proposition 2 holds while re-
moving terminals all-at-once if and only if the minimal
topological layering of ∆ is a valid topological layering of
G∪.

Therefore, the iterative requirement of the converse of Propo-
sition 2 can be stated as the following assumption:
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Assumption 2. The minimal topological layering of ∆ is a
valid topological layering of G∪.

Assumption 2 is a significantly less stringent condition com-
pared to requiring all topological orderings of ∆ being topo-
logical orderings of G∪, which is equivalent to needing all
topological layerings of ∆ being topological layerings of
G∪, Assumption 2 only asks for only one special topologi-
cal layering of ∆ to be compatible with G∪. Hence, under
Assumption 2 ∆ may have topological orderings that are
not compatible with G∪.

From the unique minimal topological layering of a DAG,
we define the notion of topological level of a vertex in a
DAG. This concept of topological level will play a pivotal
role in the following section.

Definition 4 (Topological Level). Let G be a DAG and L
be its unique minimal topological layering. The topological
level of a vertex v in G is defined as the value L(v) assigned
to that vertex by L.

Going back to the example of the complete bipartite graph
Kn,n with the direction of all edges from one partition of n
vertices to the other partition of n vertices, the topological
level of all non-terminal vertices is one. For the minimal
topological layering of ∆ to be compatible with G∪, at least
one edge from each non-terminal vertex of G∪ should be
in ∆. Hence, we only require n of these edges to be part
of ∆. This is a significant relaxation compared to the n2

requirement in case of removing terminals one-by-one.

In fact, for every DAG G, the minimal subgraph (in terms
of the number of edges), in which topological levels of all
vertices remain the same as in G, has p − t edges, where
p is the number of vertices and t is the number of terminal
vertices, as for every non-terminal vertex, at least one of
their outgoing edges to the immediate lower topological
level should be part of the minimal subgraph. It is important
to note that this minimal subgraph is not unique, and, in fact,
there can be exponentially many such minimal subgraphs
for a given DAG.

4.4 IDENTIFIABILITY OF DIFFERENCE DAGS

In this section, we investigate the intricacies of the converse
of Proposition 1, combining it with Assumption 2 to produce
the final identifiability condition.

Proposition 1 states that if i is a terminal in ∆, then ∆Ωi,i is
0. The converse being true necessitates that ∆Ωi,i

= 0 only
if i is a terminal in ∆. This condition should hold level-wise
as the condition in Assumption 2. First we introduce the
concept of Diagonal Null levels of the difference precision
matrix ∆Ω, then we establish the relationship to the levels
of the DAG structure. The diagonal entries ∆Ωi,i of the
difference precision matrix represent the difference in the

variances of the variable i in the system. We define the
concept of Diagonal Null (DN) levels as follows:

1. DN Level-0 variables: These are the variables that cor-
respond to the indices i where ∆Ωi,i

= 0 in the original
∆Ω, i.e., the diagonal entry of the difference precision
matrix is zero.

2. DN Level-k variables: For k > 0, these are the vari-
ables that become level-0 only after eliminating all DN
level-0, DN level-1, ..., DN level-(k−1) variables from
the system and recalculating the difference precision
matrix.

Hence, the iterative constraint of the converse of Proposition
1 becomes the following:

Assumption 3. For every vertex, its DN level in ∆Ω is
greater than or equal to its topological level in ∆.

Next, we demonstrate the necessity of the identifiability
assumptions, Assumption 2 and Assumption 3. In other
words, if either Assumption 2 or Assumption 3 is violated,
it is possible to find an exponential number of pairs of SEMs
that exhibit distinct DDAG structures while inducing the
same difference precision matrix.

Theorem 1. There exists an exponentially large set,
S(α, β, σ), of pairs of SEMs, parameterized by α, β, σ ∈
R+, s.t. for every pair of SEMs, (B(1)(α, β), D(σ)) and
(B(2)(α, β), D(σ)), in S(α, β, σ), the identifiability As-
sumption 2 does not hold and produces the same difference
precision matrix but distinct difference DAG.

Theorem 2. There exists an exponentially large set, S(α, σ),
of pairs of SEMs, parameterized by α, σ ∈ R+, s.t. for every
pair of SEMs, (B(1)(α), D(σ)) and (B(2)(α), D(σ)), in
S(α, σ), the identifiability Assumption 3 does not hold and
produces the same difference precision matrix but distinct
difference DAG.

We note that Assumption 3 is not only theoretically signifi-
cant but also holds in many practical scenarios. For instance,
consider a situation where SEM 2 represents the interven-
tional distribution of SEM 1, obtained through hard node
interventions on SEM 1. In such cases, Assumption 3 is
naturally satisfied. Similarly, this assumption is valid in
scenarios where an agent external to the system performs
stochastic do-interventions on any collection of variables.
These instances are common in experimental designs and
causal inference studies.

4.5 POLY-TIME ALGORITHM

With the above results in place, we are now ready to state
our algorithm for directly learning the difference DAG.

We prove the correctness of Algorithm 1 in the popula-
tion setting, i.e., when Σ(κ) is the true covariance matrix
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Algorithm 1: Learning causal changes in linear SEMs
Input: Σ(1) and Σ(2)

Result: ∆
1 V ← [p];
2 while |V | > 1 do
3 Estimate ∆Ω over V ;
4 S ← {i | (∆Ω)i,i = 0};
5 for i ∈ S do
6 Ni ← {j | (∆Ω)i,j ̸= 0};
7 for j ∈ Ni do
8 if (j, i) /∈ ∆ and j /∈ S then
9 Add (i, j) in ∆;

10 end
11 end
12 end
13 V ← V − S;
14 end
15 return ∆;

of the SEM (B(κ), D(κ)) for κ ∈ {1, 2}. In this case ∆Ω

can be computed efficiently by solving the linear system:
Σ(1)(∆Ω)Σ

(2) = Σ(2) − Σ(1) (Zhao et al. 2014). Since Σ(κ)

is positive definite, the above system has a unique solution.

Theorem 3. Let (B(1), D) and (B(2), D) be two SEMs. Let
∆B = B(1) − B(2) denote the difference between the two
SEMs. Given the true covariance matrices Σ(1) and Σ(2),
under Assumption 2 and Assumption 3, Algorithm 1 returns
∆ such that ∆ = ([p], supp(∆B)).

Remark 2. It is known that Gaussian SEMs with unequal
noise variances are known to be unidentifiable (Pearl 2009).
Here we emphasize the surprising fact that we can identify
causal changes even in non-identifiable models such as
Gaussian SEMs with unequal noise variances.

Remark 3 (Computational Complexity). The computa-
tional complexity of Algorithm 1 is primarily influenced
by the repeated estimation of the difference precision matrix,
denoted as ∆Ω, over the set V . Each estimation step is con-
sidered as an oracle call with a time complexity of T (m),
where m represents the current size of the set V . Initially,
the set V contains p elements, and in each iteration of the
while loop, at least one vertex is removed from V , ensur-
ing a maximum of p iterations. Within each iteration, the
for-loops over the sets S and Ni contribute an additional
factor to the complexity, but this factor is bounded by O(p2)
since it involves checking pairwise relationships in the worst
case. Therefore, the overall computational complexity of the
algorithm is O(p · T (m) + p2). We invite the reader to see
Figures 2, 3, and 4 for empirical runtimes of our algorithm.

Figure 2: Performance vs sample size in low dimensions
(up to 100 nodes). See Section 5.1 for details on the data
generation process. We note that our method is capable of
learning the DDAG in seconds and perfectly recovering the
causal changes as the number of samples increases.

4.6 ON DIFFERENCE OF PRECISION MATRICES

The performance of our method depends on the accuracy
with which the difference between the precision matrices
is estimated. The problem of directly estimating the differ-
ence between the precision matrices of two Gaussian SEMs
(or more generally Markov random fields), given samples
drawn from the two individual models, has received signif-
icant attention over the past few years (Zhao et al. 2014,
Belilovsky et al. 2016, Yuan et al. 2017, Liu et al. 2017,
Jiang et al. 2018). Among these, the ADMM method of
Jiang et al. (2018), the KLIEP algorithm of Liu et al. (2017),
and the algorithm of Zhao et al. (2014) come with prov-
able finite sample guarantees. We use the algorithm of Jiang
et al. (2018) in our study, which is particularly effective
when dealing with the sparse differences between two lin-
ear SEMs. This sparsity is also reflected in the differences
between their precision matrices. For the two SEMs, the
sparsity is evident in their precision matrix difference, de-
noted as ∆Ω = Ω(1) − Ω(2). As in (Jiang et al. 2018), we
initially calculate the sample covariance matrices, Σ̂(1) and
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Σ̂(2). Subsequently, a convex optimization problem is solved
using ADMM, formulated as:

∆̂Ω = argmin
∆Ω

{
1

2
Tr

(
∆⊤

ΩΣ̂
(1)∆ΩΣ̂

(2)
)

+ Tr
(
∆Ω(Σ̂

(1) − Σ̂(2))
)
+ λ∥∆Ω∥1

}
,

where λ is a regularization parameter. The approach of Jiang
et al. (2018) is preferred in our work due to its computa-
tional efficiency, offering a complexity of O(p3). We also
tested with other estimators in the literature such as Zhao
et al. (2014) and the results were very similar, but much
slower to obtain. We emphasize that our main contributions
are related to the identifiability of the DDAG, and not to pro-
pose a new estimator of the difference of precision matrices.
For our theory, the ∆Ω estimator is a black box. Thus, by
using any estimator with guarantees, we implicitly borrow
its conditions for correctness. The sample complexity of our
algorithm follows straightforwardly from the sample com-
plexity of the ∆Ω estimator; since we use the estimator by
Jiang et al. (2018), we can make use of their finite-sample
rates, see, for instance, Theorem 1 in Jiang et al. (2018).

In Figure 2, we explore the performance of Algorithm 1 by
using the estimator of Jiang et al. (2018).

5 EXPERIMENTS

In this section, we describe the empirical results from the
execution of our Alg. 1 on finite samples with the goal of
verifying our theoretical results and showing the efficiency
of our method on graphs of size up to p = 1000 nodes.

5.1 SYNTHETIC DATA GENERATION

For the generation of random SEM pairs, our approach starts
with the construction of two random DAGs over p nodes, ad-
hering to the structural identifiability criteria outlined in As-
sumption 2. These random DAGs are designed to be individ-
ually dense, with an expected edge count of O(p1.75), while
ensuring that the difference DAG remains sparse, featuring
an expected O(p) edges. Our evaluation encompasses two
prevalent models of random graphs: Erdős–Rényi graphs
and Scale-Free graphs, where the latter are likely to generate
hub-nodes, a known challenge for causal structure learning
(Kalisch & Bühlman 2007). Importantly, our algorithm does
not presuppose specific exogenous noise distributions. To
this end, we assess performance across Gaussian, Gumbel,
and Uniform noise distributions, with noise variance values
selected uniformly at random from the interval [0.25, 0.5].
Additionally, edge weights are selected randomly from the
combined intervals [−0.25,−0.5]∪ [0.25, 0.5]. If these sam-
pled edge weights fail to satisfy Assumption 3, then we sim-
ply sample them again. After generating the pair of SEMs,

Figure 3: Performance vs number of variables (up to 100
nodes). See Section 5.1 for details on the data generation
process. We note that our method outperforms direct learn-
ing methods such as DCI and indirect methods such as PC
and GES in both recovery and time execution.

we generate ⌊ec log p⌋ number of samples from each SEM
for c ∈ {3, 4, ..., 13}.

5.2 COMPARISON AGAINST BASELINES

For experiments with a finite number of samples, we follow
our generative process above. We generate 30 pairs of SEMs
with p ∈ {10, 20, 50, 100}. We then generate ⌊ec log p⌋
number of samples from each SEM for c ∈ {9, 10}. In
Figure 3, we compare against the algorithms: PC (Spirtes
et al. 2000) and GES (Meek 1997), both of which first learn
each SEM separately and then output the difference of adja-
cency matrices as the difference DAG. For GES and PC, the
undirected edges are oriented according to the true graphs,
this way we provide a slight advantage to these methods for
fair comparison. For PC we used Fisher tests and kernel-
based tests for Gaussian and non-Gaussian noises. Finally,
we also compare against the DCI-C method of Wang et al.
(2018), which, as in our setting, also estimates the difference
of SEMs. We note how traditional state-of-the-art methods
(PC and GES) struggle to learn the difference DAG since
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Figure 4: Performance vs sample size in high dimensions
(up to 1000 nodes). See Section 5.1 for details on the data
generation process. We note that our method is capable of
learning the DDAG in around 15 minutes for p = 1000,
and perfectly recover the causal changes as the number of
samples increases.

each DAG independently is dense. The closest to our results
is the DCI-C method, although, as seen in Figure 3, our
algorithm performs better in both the F1-score and the run-
time. We also compare the performance of our method on
different sample sizes for graphs up to 100 nodes. As shown
in Figure 2, our method learns the perfect difference DAG
in all noise distributions for c ≥ 12, within a few seconds.

5.3 EXPERIMENTS IN HIGH DIMENSIONS

We next present experiments in high dimensions (where the
number of variables p is large, up to 1000 nodes) to evalu-
ate the performance of our algorithm. We do not compare
against baselines in this setting as the baselines are not scal-
able to high dimensions, as can be seen from Figure 3, where
the baselines take 1000s of seconds to run on graphs with
100 nodes, while our algorithm takes only a few seconds.
Similar to the low-dimensional setting, the metrics are av-
eraged over 30 runs. Here p ∈ {200, 400, 600, 800, 1000}.
Our algorithm is able to perfectly recover the difference
DAG, as shown in Figure 4, for c ≥ 12.

6 CONCLUSION

We studied the problem of directly estimating the difference
DAG of two linear SEMs. We presented novel conditions for
the identifiability of causal shifts between linear SEMs lever-
aging the information encoded in the difference of precision
matrices. By analyzing the strategy for removing terminal

vertices, we showed the importance of minimal topologi-
cal layering and its implications on the edge requirements
for the difference DAG ∆. Our findings not only provide
a deeper understanding of the structural constraints neces-
sary to recover the structure of ∆, but also pave the way
for the development of more efficient and accurate algo-
rithms to learn the difference DAG between SEMs, even in
high-dimensional settings.
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SUPPLEMENTARY MATERIAL
Identifying Causal Changes Between Linear Structural Equation Models

A DETAILED PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. Consider a terminal vertex i in ∆. By definition, a terminal vertex in ∆ implies that there are no outgoing edges
from vertex i to any other vertex in the difference graph. This means that for any l ∈ ϕ(1)(i) ∪ ϕ(2)(i), the difference in the
connection strengths, B(1)

l,i −B
(2)
l,i , must be zero, as there is no influence from vertex i to vertex l in the difference graph.

Therefore, for each l ∈ [p], either B(1)
l,i = B

(2)
l,i or both are zero. Consequently, the product (B(1)

l,i + B
(2)
l,i )(B

(1)
l,i − B

(2)
l,i )

becomes zero for all l ∈ [p]. As a result, every term in the sum of Equation 1 is zero, leading to ∆Ωi,i
= 0.

A.2 PROOF OF PROPOSITION 2

Proof. Assume i is a terminal vertex in G∪. Since G∪ = G(1) ∪G(2), being a terminal vertex in G∪ means that vertex i has
no outgoing edges in both G(1) and G(2). Now, consider ∆, which represent the differences in edges between G(1) and
G(2). Hence ∆ is a subgraph of G∪. Since i is a terminal vertex in both G(1) and G(2), there can be no edges originating
from i that would be present in one graph and absent in the other. Therefore, in ∆, vertex i cannot have any outgoing edges,
making it a terminal vertex in ∆ as well.

A.3 PROOF OF LEMMA 1

Proof. Let ∆Ωi,i
= 0 for some i. From Assumption 1, we get i is a terminal of G∪, i.e. i is a terminal in both SEMs. From

Proposition 2 from Ghoshal et al. Ghoshal & Honorio (2018), we know that the non-diagonal entries of the precision matrix
Ω of an SEM (B,D) are given by:

Ωi,j = −
Bi,j

σ2
i

− Bj,i

σ2
j

+
∑
l∈[p]

Bl,iBl,j

σ2
l

.

So, if i is a terminal in the SEM (B,D) i.e. Bl,i = 0,∀l, then Ωi,j = −Bi,j

σ2
i

.

In our case i is a terminal in both SEMs, therefore ∆Ωi,j
= Ω

(1)
i,j − Ω

(2)
i,j =

−B
(1)
i,j +B

(2)
i,j

σ2
i

= −∆Bi,j

σ2
i

A.4 PROOF OF PROPOSITION 3

Proof. Part 1: Iterative Removal and Topological Ordering. Let us begin by establishing that the process of iteratively
removing terminal vertices one-by-one from ∆ is equivalent to removing them in reverse order of any topological ordering
of ∆.

Let θ represent an order of removing terminals of ∆, i.e., ∀i ∈ [p], θi is the terminal removed from the remaining subgraph
of ∆ at ith step. This means that θi doesn’t have any successor in the remaining subgraph of ∆ at ith step, i.e., ∀j > i, ∆
doesn’t have an edge from θi to θj . Hence making reverse of θ a topological order of ∆.

Conversely, consider any topological ordering τ of ∆. If we remove vertices in the reverse order of τ , we always remove a
terminal vertex of the remaining subgraph of ∆ at each step, i.e., ∀m ∈ [p], τm is a terminal in ∆[m,τ ]. This is because in a
topological ordering, all the successors of a vertex come after the vertex itself.

Part 2: Converse of Proposition 2 and Topological Orderings. Assume that the converse of Proposition 2 holds after
every iterative removal of a terminal vertex from ∆. The converse of Proposition 2 states that if a vertex is terminal in
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∆, then it is also terminal in G∪. This implies that the removal sequence prescribed by some topological ordering of ∆
also represents a valid topological ordering for G∪. Since the choice of the topological ordering of ∆ was arbitrary, every
topological ordering of ∆ must be a valid topological ordering of G∪.

Conversely, suppose that every topological ordering of ∆ is a topological ordering of G∪. And since ∆ is a subgraph of G∪,
every topological ordering of G∪ is also a topological ordering of ∆, therefore G∪ and ∆ have the same set of topological
orderings. Then, the iterative removal of terminal vertices from ∆ according to any of its topological orderings does not
introduce a terminal vertex in G∪ that is not terminal in ∆. This ensures the validity of the converse of Proposition 2
throughout the iterative removal process.

Part 3: Transitive Edges and Topological Orderings. Finally, we prove the claim regarding transitive edges. Let G be a
DAG and H be a subgraph of G. The set of topological orderings of H is the same as that of G if and only if all edges of G
missing in H are transitive edges of G.

Let an edge from v to u in G is missing in H . If it is not a transitive edge of G, then absence of this edge in H allows new
topological ordering for H , not valid for G. One such ordering can be formed by first placing all the non-successors of v in
G, excluding v, in their topological order, followed by u, followed by v, last followed by all the successors of v in their
topological order. This is a valid topological ordering of H , but not for G because u comes before v.

Conversely, if all missing edges in H are transitive in G, their removal does not create new topological orderings, as there
are alternative paths preserving the precedence relations. Thus, every topological ordering of G remains valid for H .

A.5 PROOF OF LEMMA 2

Proof. The converse of Proposition 2 implies that the set of terminals of ∆ is same as the set of terminals G∪. The iterative
process of removing terminals all-at-once can be described as:

• Initially, set of terminals of ∆ = set of terminals of G∪. Let L0 be the set of terminals of ∆. Let ∆−L0
be the DAG

obtained after removing L0 from ∆. Similarly we define G∪
−L0

.

• Set of terminals of ∆−L0
= set of terminals of G∪

−L0
. Let L1 be the set of terminals of ∆−L0

. Let ∆−(L0∪L1) be the
DAG obtained after removing L1 from ∆−L0

. Similarly we define G∪
−(L0∪L1)

.
...

• Set of terminals of ∆−(∪k−1
i=0 Li)

= set of terminals of G∪
−(∪k−1

i=0 Li)
. Let Lk be the set of terminals of ∆−(∪k−1

i=0 Li)
and

also equal to the set of all the vertices in ∆−(∪k−1
i=0 Li)

. (Process stops!)

This iterative requirement of converse of Proposition 2 is equivalent to the set of level-wise terminals of ∆ and G∪ being the
same. Here the level of a vertex is r if it was removed as part of the set Lr as described in the process above. Level of a
vertex in a DAG can be defined using the recursive process as shown above or as the maximum length of a path starting
from the vertex in the graph. Hence the iterative assumption of the converse of Proposition 2 for simultaneous removal of
terminal vertices can be stated as: levels of all vertices in ∆ and G∪ are the same, which is equivalent to minimal topological
layerieng of ∆ being a valid topological layering of G∪.

A.6 PROOF OF THEOREM 1

Proof. Consider the following two pairs of SEMs over three nodes:

v1

v2 v3

α

-1

β

(a) B(1)

v1

v2 v3

α

-1

(b) B(2)

v1

v2 v3

β

(c) ∆

Figure 5: First pair of SEMs.
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v1

v2 v3

β

-1

α

(a) B(1)

v1

v2 v3
-1

α

(b) B(2)

v1

v2 v3

β

(c) ∆

Figure 6: Second pair of SEMs.

Here α, β determine the edge weights of the SEMs and σ is the variance of the exogenous noise variables. Then the
difference precision matrix for both pairs of SEMs is

1

σ2

β2 −β −β
−β 0 0
−β 0 0


Both pairs of SEMs don’t satisfy Assumption 2, while they do satisfy Assumption 3. We directly extend this to p vertices,
where p let’s say is a multiple of 3 and every 3 consecutive nodes can correspond to one of the two choices of pairs of SEMs.
This gives us an exponentially large set of 2

p
3 pairs of SEMs each having the same difference precision matrix as shown

below.

1

σ2



β2 −β −β 0 0 0 · · · 0 0 0
−β 0 0 0 0 0 · · · 0 0 0
−β 0 0 0 0 0 · · · 0 0 0
0 0 0 β2 −β −β · · · 0 0 0
0 0 0 −β 0 0 · · · 0 0 0
0 0 0 −β 0 0 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · β2 −β −β
0 0 0 0 0 0 · · · −β 0 0
0 0 0 0 0 0 · · · −β 0 0


We can also make these SEMs connected by introducing an auxiliary vertex 0 which is connected to the topmost most vertex
of all p

3 components. The difference precision matrix remains similar as before, only having one extra row and column of all
zeros.

A.7 PROOF OF THEOREM 2

Proof. Consider the following two pairs of SEMs over two nodes:

v1

v2

α

(a) B(1)

v1

v2

−α

(b) B(2)

v1

v2

2α

(c) ∆

Figure 7: First pair of SEMs.

Here α determine the edge weights of the SEMs and σ is the variance of the exogenous noise variables. Then the difference
precision matrix for both pairs of SEMs is

1

σ2

[
0 −2α
−2α 0

]
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v1

v2

α

(a) B(1)

v1

v2

−α

(b) B(2)

v1

v2

2α

(c) ∆

Figure 8: Second pair of SEMs.

Both pairs of SEMs don’t satisfy Assumption 3, while they do satisfy Assumption 2. We directly extend this to p vertices,
where p let’s say is a multiple of 2 and every 2 consecutive nodes can correspond to one of the two choices of pair of SEMs.
This gives us an exponentially large set of 2

p
2 pairs of SEMs each having the same difference precision matrix as shown

below.

1

σ2



0 −2α 0 0 · · · 0 0
−2α 0 0 0 · · · 0 0
0 0 0 −2α · · · 0 0
0 0 −2α 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −2α
0 0 0 0 · · · −2α 0


We can also make these SEMs connected by introducing an auxiliary vertex 0 which is connected to the topmost most vertex
of all p

2 components. The difference precision matrix remains similar as before, only having one extra row and column of all
zeros.

A.8 PROOF OF THEOREM 3

Proof. We prove Theorem 3 by induction on the number of variables in the system.

Inductive Hypothesis: Assume that Theorem 3 is true for all systems with k or fewer variables, for some k ≥ 0.

Base Case: For k = 0, the system has no variables, and the graphs are empty. Theorem 3 trivially holds in this case.

Inductive Step: Now, consider a system with k + 1 variables. In the first iteration of Algorithm 1, the set S corresponds to
the DN level-0 of ∆. Note that S is non-empty because the two SEMs share a topological ordering, therefore they have at
least one common terminal, which will be in S. According to Assumption 3, for any vertex, its DN level is greater than or
equal to its topological level. Hence, S is the set of terminal vertices of ∆, as the topological level of non-terminals is at
least 1. From Assumption 2 and Lemma 2, these terminals are also terminals of G∪. Therefore, by Lemma 1, Algorithm 1
correctly identifies the incoming edges on this layer 0, as the corresponding non-zero entries in the row/column of the ∆Ω.
Since the variables in S are terminals in both SEMs, removing them doesn’t introduce any hidden confounders into the
system. Thus, both SEMs remain causally sufficient Linear SEMs. Because we remove the variables in S from the system
all-at-once, Assumption 2 and Assumption 3 still hold in the new system. Therefore, we now have a smaller system with
k or fewer variables, under the same conditions. Hence, by induction hypothesis, Theorem 3 holds for this new system,
i.e. Algorithm 1 will correctly identify the ∆ of the remaining system, and we already identified the edges to S. Therefore,
Algorithm 1 correctly learns the ∆ for the system on k + 1 variables.

Therefore, by induction, Theorem 3 holds for any number of variables.
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