
bears Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts

Emanuele Marconato1,2,⋆ Samuele Bortolotti1,⋆ Emile van Krieken3,⋆ Antonio Vergari3 Andrea Passerini1

Stefano Teso1,4

1Department of Information Engineering and Computer Science , University of Trento , Trento, Italy
2Department of Computer Science, University of Pisa, Pisa, Italy

3School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
4CIMeC, University of Trento, Rovereto, Italy

⋆ Equal contribution.

Abstract

Neuro-Symbolic (NeSy) predictors that conform
to symbolic knowledge – encoding, e.g., safety
constraints – can be affected by Reasoning Short-
cuts (RSs): They learn concepts consistent with
the symbolic knowledge by exploiting unintended
semantics. RSs compromise reliability and gen-
eralization and, as we show in this paper, they
are linked to NeSy models being overconfident
about the predicted concepts. Unfortunately, the
only trustworthy mitigation strategy requires col-
lecting costly dense supervision over the concepts.
Rather than attempting to avoid RSs altogether,
we propose to ensure NeSy models are aware of
the semantic ambiguity of the concepts they learn,
thus enabling their users to identify and distrust
low-quality concepts. Starting from three simple
desiderata, we derive bears (BE Aware of Rea-
soning Shortcuts), an ensembling technique that
calibrates the model’s concept-level confidence
without compromising prediction accuracy, thus
encouraging NeSy architectures to be uncertain
about concepts affected by RSs. We show empiri-
cally that bears improves RS-awareness of sev-
eral state-of-the-art NeSy models, and also facili-
tates acquiring informative dense annotations for
mitigation purposes.

1 INTRODUCTION

Research in Neuro-Symbolic (NeSy) AI [4, 5, 6] has re-
cently yielded a wealth of architectures capable of integrat-
ing low-level perception and symbolic reasoning. Crucially,
these architectures encourage [7] or guarantee [8, 9, 10, 11]
that their predictions conform to given prior knowledge en-
coding, e.g., structural or safety constraints, thus offering im-
proved reliability compared to neural baselines [12, 11, 9].

It was recently shown that, however, NeSy architectures can
achieve high prediction accuracy by learning concepts – aka
neural predicates [8] – with unintended semantics [3, 13].
E.g., consider an autonomous driving task like BDD-OIA
[1] in which a model has to predict safe actions based on
the contents of a dashcam image, under the constraint that
whenever it detects pedestrian or red lights the vehicle must
stop. Then, the model can achieve perfect accuracy and
comply with the constraint even when confusing pedestrians
for red lights, precisely because both entail the correct (stop)
action [3]. See Fig. 1 for an illustration.

These so-called reasoning shortcuts (RSs) occur because
the prior knowledge and data may be insufficient to pin-
down the intended semantics of all concepts, and cannot
be avoided by maximizing prediction accuracy alone. They
compromise in-distribution [14] and out-of-distribution gen-
eralization [3, 13], continual learning [15], reliability of
neuro-symbolic verification tools [16], and concept-based
interpretability [17, 18] and debugging [19]. Importantly,
unsupervised mitigation strategies either offer no guaran-
tees or work under restrictive assumptions, while supervised
ones involve acquiring costly side information, e.g., concept
supervision [3].

Rather than attempting to avoid RSs altogether, we sug-
gest NeSy predictors should be aware of their reasoning
shortcuts, that is, they should assign lower confidence to
concepts affected by RSs, thus enabling users to identify
and avoid low-quality predictions, all while retaining high
accuracy. Unfortunately, as we show empirically, state-of-
the-art NeSy architectures are not RS-aware. We address
this issue by introducing bears (BE Aware of Reasoning
Shortcuts), a simple but effective method for making NeSy
predictors RS-aware that does not rely on costly dense super-
vision. bears replaces the concept extraction module with
a diversified ensemble specifically trained to encourage the
concepts’ uncertainty is proportional to how strongly these
are impacted by RSs. Our experiments show that bears
successfully improves RS-awareness of three state-of-the-
art NeSy architectures on four NeSy data sets, including

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:2399–2433.

bears

grn
red

NeSy SotA

red

Figure 1: bears lessens overconfidence due to reasoning shortcuts. Left: In the BDD-OIA autonomous driving task
[1, 2], NeSy predictors can attain high accuracy and comply with the knowledge even when confusing the concepts of
pedestrian (ped) and red light (red) [3]. Middle: State-of-the-art NeSy architectures predict concepts affected by RSs with
high confidence, making it impossible to discriminate between reliable and unreliable concept predictions. Right: bears
encourages them to allocate probability to conflicting concept maps, substantially lessening overconfidence.

a high-stakes autonomous driving task, and enables us to
design a simple but effective active learning strategy for
acquiring concept annotations for mitigation purposes.

Contributions. Summarizing, we:

• Shift focus from RS mitigation to RS awareness and show
that state-of-the-art NeSy predictors are not RS-aware.

• Propose bears, which improves RS-awareness of NeSy
predictors without relying on dense supervision.

• Demonstrate that it outperforms SotA uncertainty calibra-
tion methods on several tasks and architectures.

• Show that it enables intelligent acquisition of concept an-
notations, thus lowering the cost of supervised mitigation.

2 PRELIMINARIES

Notation. We denote scalar constants x in lower-case, ran-
dom variables X in upper case, and ordered sets of constants
x and random variables X in bold typeface. Throughout, we
use the shorthand [n] := {1, . . . , n}.

Neuro-Symbolic Predictors. RSs have been primarily stud-
ied in the context of NeSy predictors [20, 21], which we
briefly overview next. Given an input x ∈ Rn, these mod-
els infer a (multi-)label y ∈ {0, 1}m by leveraging prior
knowledge K encoding, e.g., known structural [12] or safety
[11] constraints. During inference, they first extract a set
of concepts c ∈ {0, 1}k using a (neural) concept extrac-
tor pθ(C | x). Then, they reason over these to obtain a
predictive distribution pθ(y | c;K) that associates lower
[7, 22, 23] or provably zero [8, 10] probability to outputs y
that violate the knowledge K. Taken together, these two dis-
tributions define a NeSy predictor of the form pθ(y | x;K).
The complete pipeline is visualized in Fig. 1 (left).

Example 1. In our running example (Fig. 1), given a dash-
cam image x, we wish to infer what action y ∈ {stop, go}
a vehicle should perform. This task can be modelled using

three binary concepts C1, C2, C3 encoding the presence of
green lights (grn), red lights (red), and pedestrians (ped).
The knowledge specifies that if any of the latter two is de-
tected, the vehicle must stop: K = (ped ∨ red⇒ stop).

Inference amounts to solving a MAP [24] problem
argmaxy pθ(y | x;K), and learning to maximize the log-
likelihood on a training set D = {(xi,yi)}. Architectures
chiefly differ in how they integrate the concept extractor and
the reasoning layer, and in whether inference and learning
are exact or approximate, see Section 5 for an overview.
Despite these differences, RSs are a general phenomenon
that can affect all NeSy predictors [3].

Reasoning Shortcuts. In NeSy, usually only the labels
receive supervision, while the concepts are treated as latent
variables. It was recently shown that, as a result, NeSy
models can fall prey to reasoning shortcuts (RSs), i.e., they
often achieve high label accuracy by learning concepts with
unintended semantics [3, 15, 14, 13].

To properly understand RSs, we need to define how the data
is generated, cf. Fig. 2. Following [3], we assume there ex-
ist k unobserved ground-truth concepts g ∈ {0, 1}k drawn
from a distribution p∗(G), which generate both the observed
inputs x and the label y according to unobserved distribu-
tions p∗(X | G) and p∗(Y | G;K), respectively. We also
assume all observed labels satisfy the prior knowledge K
given g.

In essence, a NeSy predictor is affected by an RS whenever
the label distribution pθ(Y | X;K) behaves well, but the
concept distribution pθ(C | X) does not, that is, given in-
puts x it extracts concepts c that yield the correct label y
but do not match the ground-truth ones g. RSs impact the
reliability of learned concepts and thus the trustworthiness
of NeSy architectures in out-of-distribution [3] scenarios,
continual learning [15] settings, and neuro-symbolic veri-
fication [16]. They also compromise the interpretability of

2400

concept-based explanations of the model’s inference process
[25, 26, 18].

Example 2. In Example 1, we would expect predictors
achieving high label accuracy to accurately classify all
concepts, too. It turns out that, however, predictors misclas-
sifying pedestrians as red lights (as in Fig. 1, middle) can
achieve an equally high label accuracy, precisely because
both concepts entail the (correct) stop action according
to K. To see why this is problematic, consider tasks where
the knowledge allows for ignoring red lights when there is
an emergency. This can lead to dangerous decisions when
there are pedestrians on the road [3].

Causes and Mitigation Strategies. The factors controlling
the occurrence of RSs include [3]: 1) The structure of the
knowledge K, 2) The distribution of the training data, 3) The
learning objective, and 4) The architecture of the concept
extractor. For instance, whenever the knowledge K admits
multiple solutions – that is, the correct label y can be in-
ferred from distinct concept vectors c ̸= c′, as in Example 2
– the NeSy model has no incentive to prefer one over the
other, as they achieve exactly the same likelihood on the
training data, and therefore may end up learning concepts
that do not match the ground-truth ones [15].

All four root causes are natural targets for mitigation. For
instance, one can reduce the set of unintended solutions
admitted by the knowledge via multi-task learning [27],
force the model to distinguish between different concepts
by introducing a reconstruction penalty [28], and reduce
ambiguity by ensuring the concept encoder is disentangled
[29]. It was shown theoretically and empirically that, while
existing unsupervised mitigation strategies can and in fact
do have an impact on the number of RSs affecting NeSy
predictors, especially when used in combination, they are
also insufficient to prevent RSs in all applications [3].

The most direct mitigation strategy is that of supplying
dense annotations for the concepts themselves. Doing so
steers the model towards acquiring good concepts and can,
in fact, prevent RSs [3], yet concept supervision is expensive
to acquire and therefore rarely available in applications.

3 FROM MITIGATION TO AWARENESS

Mitigating RSs is highly non-trivial. Rather than facing
this issue head on, we propose to make NeSy predictors
reasoning shortcut-aware, i.e., uncertain about concepts
with ambiguous or wrong semantics. To see why this is
beneficial, consider the following example:

Example 3. Imagine a NeSy predictor that confuses pedes-
trians with red lights, as in Example 2. If it is always certain
about its concept-level predictions, as in Fig. 1 (middle),
there is no way for users to figure out that some predictions
should not be trusted. A model classifying pedestrians as

YG

X

C

f

βK

Figure 2: Data generating process. The (unobserved)
ground-truth concepts G cause the inputs X which cause
the labels Y (in black). A NeSy predictor learns to map in-
puts X to concepts C (in blue), which ideally should match
the concepts G that caused X. The maps f and βK from
assumptions A1 and A2 in Section 3 are shown in red.

both pedestrians and red lights with equal probability, as
in Fig. 1 (right), is just as confused, but is also calibrated,
in that it is more uncertain about pedestrians and red lights,
which are low quality, compared to green lights, which are
classified correctly. This enables users to distinguish be-
tween high- and low-quality predictions and concepts, and
thus avoid the latter.

We say a NeSy predictor is reasoning shortcut-aware if it
satisfies the following desiderata:

D1. Calibration: For all concepts not affected by RSs, the
system should achieve high accuracy and be highly
confident. Vice versa, for all concepts that are affected
by RSs, the model should have low confidence.

D2. Performance: The predictor pθ(Y | X;K) should
achieve high label accuracy even if RSs are present.

D3. Cost effectiveness: The system should not rely on
expensive mitigation strategies.

Calibration (D1) captures the essence of our proposal: a
model that knows which ones of the learned concepts are
affected by RSs can prevent its users from blindly trusting
and reusing them. Naturally, this should not come at the
cost of prediction accuracy (D2) or expensive concept-level
annotations (D3), so as not to hinder applicability.

3.1 AWARENESS VIA ENTROPY MAXIMIZATION

We start by introducing our basic intuition. Consider an
example (x,y) and let g be the underlying ground-truth
concepts. If g is the only concept vector that entails the
label y according to the prior knowledge K, maximizing the
likelihood steers the concept extractor towards predicting
the correct concept c = g with high confidence. In this
simplified scenario, NeSy predictors would automatically
satisfy D1–D3. In most NeSy tasks, however, there exist
multiple concept vectors c1 ̸= . . . ̸= cu that all entail the
correct label y. In this case, there is no reason for the model
to prefer one to the others: all of them achieve the same
(optimal) likelihood, yet only one of them matches g. The

2401

issue at hand is that existing NeSy predictors tend to predict
only one – likely incorrect – ci, i ∈ [u], and they do so with
high confidence, thus falling short of D1.

We propose an alternative solution. Let Θ∗ be the set of
parameters θ attaining high accuracy (D2), i.e., mapping
inputs to concepts c yielding good predictions y. This set
includes the (correct) predictor mapping x into g as well as
all high-performance predictors mapping it to one or more
unintended concept vectors ci ̸= g. We wish to find one that
is maximally uncertain about which ci’s it should output,
that is:

max
θ∈Θ∗

H(pθ(C | G)) (1)

Here, H(pθ(C | G)) = −Ep∗(g)pθ(c|g)[log pθ(c | g)] is
the conditional Shannon entropy, and:

pθ(C | G) :=

∫
pθ(C | x) p∗(x | G) dx (2)

is the distribution obtained by marginalizing the concept
extractor pθ(C | X) over the inputs x. By construction, this
θ achieves high accuracy (D2) but, despite being affected by
RSs, it is less confident about its concepts c (D1). The issue
is that, by D3, we have access to neither the ground-truth
distribution pθ(C | G) nor to samples drawn from it, so we
cannot optimize Eq. (1) directly.

3.2 MAXIMIZING ENTROPY

Next, we show that one can maximize Eq. (1) by construct-
ing a distribution pθ(C | G) affected by multiple but con-
flicting RSs. Our analysis builds on that of [3], which relies
on two simplifying assumptions:

A1. Invertibility: Each x is generated by a unique g, i.e.,
there exists a function f : x 7→ g such that p∗(G |
X) = 1{G− f(X)}.1

A2. Determinism: The knowledge K is deterministic, i.e.,
there exists a function βK : g 7→ y such that p∗(Y |
G;K) = 1{Y = βK(g)}. This is often the case in
NeSy tasks, e.g., BDD-OIA .

The link between βK, f , and the NeSy predictor is shown
in Fig. 2. In the following, we use α : {0, 1}k → {0, 1}k to
indicate a generic map from g to c, and denote A the set of
all such maps andA∗ ⊆ A that of α’s that yield distributions
pθ(C | G) achieving perfect label accuracy (D2). Each α
encodes a corresponding deterministic distribution pθ(C |
G) = 1{c = α(g)}: if α is the identity, this distribution
encodes the correct semantics. Otherwise, it captures an RS
(cf. Fig. 1). Next, we show that every distribution pθ(C | G)
decomposes as a convex combination of maps α.

1Works on the identifiability of the latent variables in indepen-
dent component analysis [28, 30, 31] and causal representation
learning [29, 32, 33] build on a similar assumption.

Lemma 1. For any p(C | G), there exists at least one
vector ω such that the following holds:

p(C | G) =
∑
α∈A

ωα1{C = α(G)} := pω(C | G) (3)

where ω ≥ 0, ∥ω∥1 = 1. Crucially, under invertibility (A1)
and determinism (A2), if pθ(C | G) is optimal (D2), Eq. (3)
holds even if we replace A with A∗.

All proofs can be found in Appendix B. This means that
most distributions p(C | G) are mixtures of multiple maps
α ∈ A∗, each potentially capturing a different RS. Natu-
rally, if ωα is non-zero only for those α’s that fall in A∗,
pθ(C | G) achieves high performance (D2). The question
is what ω’s achieve calibration (D1). Intuitively, if ω mixes
α’s capturing RSs that disagree on the semantics of some
concepts and agree on others, pθ(C | G) is RS-aware.

Example 4. Consider Fig. 1 and two high-performance
maps in A∗: α1 mapping green lights to grn, and both
pedestrians and red lights to red; α2 also mapping green
lights to grn, but pedestrians and red lights to ped. Clearly,
both maps are affected by RSs and overconfident, yet their
mixture α = 1

2 (α1 + α2) yields a distribution pθ(C | G)
that looks exactly like the one in Fig. 1 (right), which pre-
dicts grn correctly with high confidence, and red and ped

with low confidence, and thus satisfies D1 and D2.

In other words, this allows us to leverage the model’s uncer-
tainty to estimate the extent by which concepts are affected
by RSs without the need for dense annotations (D3). Due to
space considerations, we report our formal analysis of the
connection between uncertainty and RSs in Appendix B.2.
The next result indicates that this intuition is consistent with
our original objective in Eq. (1):

Proposition 2. (Informal.) If pθ is expressive enough, under
invertibility (A1) and determinism (A2), it holds that:

max
θ∈Θ∗

H(pθ(C | G)) = max
ω∗

H(pω∗(C | G)) (4)

This also tells us that we can solve Eq. (1) by finding a com-
bination of maps α’s with maximal entropy over concepts.

3.3 RS-AWARENESS WITH BEARS

Our results suggest that RS-awareness can be achieved by
constructing an ensemble θ = {θi} of (deterministic) high-
performance concept extractors affected by distinct RSs.
Ideally, we could construct such an ensemble by training
multiple concept extractors pθi(C | X) such that each of
them picks up a different RS, and then defining an overall
predictor pθ as a convex combination thereof, that is, pθ(C |
X) =

∑
i λipθi(C | X), where λ ≥ 0 and ∥λ∥1 = 1. We

next show that, if the ensemble is large enough, such a
model does optimize our original objective in Eq. (1).

2402

Proposition 3. (Informal.) Let p(C | X) be a convex combi-
nation of models pθi(C | X) with parameters θ = {θi} and
weights λ = {λi}, such that θi ∈ Θ∗. Under invertibility
and determinism, there exists a K ≤ |A∗| such that for an
ensemble with K members, it holds that:

max
θ,λ

H
(K∑

i=1

λipθi(C | X)
)
= max

ω∗
H(pω∗(C | G)) (5)

Moreover, maximizing H(pθ(C | X)) amounts to solving:

max
θ,λ

∫
p(x)

K∑
i=1

λi[KL(pθi(c | x) ||
K∑
j=1

λjpθj (c | x))

+H(pθi(C | x))]dx
(6)

where KL denotes the Kullback-Lieber divergence.

For the proposition to apply, it may be necessary to col-
lect an enormous number of diverse, deterministic, high-
performance models, potentially as many as |A∗|. Naturally,
constructing such an ensemble is highly impractical. Thank-
fully, doing so is often unnecessary in practice: as long as
the ensemble contains models that disagree on the semantics
of concepts, it will likely achieve high entropy on concepts
affected by RSs and low entropy on the rest, as we show in
our experiments.

bears exploits this observation to turn this into a practical
algorithm. In short, it grows an ensemble θ by optimizing
a joint training objective combining label accuracy and di-
versity of concept distributions. Each model θi is learned in
turn by maximizing the following quantity:

L(x,y;K, θt) + γ1 · KL
(
pθt(C | x) ||

1

t

t∑
j=1

pθj (C | x)
)

+ γ2 ·H(pθt(C | x))
(7)

over a training set D. Here, L(x,y;K, θ) is the log-
likelihood of member θi, while the second term is a KL
divergence – obtained from Eq. (6) by taking a uniform
λ – encouraging θi to differ from θ1, . . . , θi−1 in terms of
concept distribution. Finally, γ1 and γ2 are hyperparame-
ters. Pseudocode and further details on the KL term can be
found in Appendix A. We remark that, despite learning θi’s
that are not necessarily optimal or deterministic, in practice
bears still manages to drastically improve RS-awareness
in our experiments.

3.4 BEARS THROUGH A BAYESIAN LENS

Bayesian inference is a popular strategy for lessening over-
confidence of neural networks [34, 35, 36]. It works by
marginalizing over a (possibly uncountable) family of al-
ternative predictors, each weighted according to a posterior

distribution p(θ | D) ∝ p(D | θ) · p(θ) accounting for both
data fit p(D | θ) and prior information p(θ). Formally, the
label distribution is given by:

p(y | x;D) =
∫
pθ(y | x;K) · p(θ | D) dθ (8)

The expectation is computationally intractable and thus of-
ten approximated in practice. E.g., Monte Carlo approaches
compute an unbiased estimate of Eq. (8) by averaging the
label distribution pθi(y | x;K) of a (small) selection of
parameters {θi}. More advanced Bayesian techniques for
neural networks [36], like the Laplace approximation [37]
and variational inference methods [38], locally approximate
the posterior around the (parameters of the) trained model.
Conceptually simpler techniques like deep ensembles [39]
average over a bag of diverse neural networks trained in par-
allel and have proven to be surprisingly effective in practice.

Recall that, by Eq. (7), bears averages over models
θi ∈ Θ∗ that achieve high likelihood but disagree in terms
of concepts. This can be viewed as a form of Bayesian in-
ference. Specifically, Eq. (8) behaves similarly to bears if
we select the prior and likelihood appropriately. In fact, if
1) the prior p(θ) associates non-zero probability to all θ’s
encoding an RS, and 2) the likelihood p(D | θ) allocates
non-zero probability only to θ’s that match the data (almost)
perfectly, the resulting posterior p(θ | D) associates proba-
bility mass only to models that satisfy D1 and D2, that is,
those in Θ∗.

Compared to stock Bayesian techniques, bears is specifi-
cally designed to handle RSs. First, note that the likelihood
p(D | θ) is highly multimodal, as it peaks on the “optimal”
models in Θ∗, thus Bayesian techniques that focus on neigh-
borhood of trained networks have trouble recovering all
modes [40]. Moreover, the expectation in Eq. (8) runs over
parameters θ, which may be redundant, in the sense that dif-
ferent θi’s can entail similar or identical concept encoders
pθ(C | X). This suggests that covering the space of θ’s, as
done in [41, 42], is sub-optimal compared to averaging over
θi’s that disagree on which concepts they predict. bears is
designed to avoid both issues, as it learns models {θi} that
have both high likelihood and disagree on the semantics of
concepts, so as to capture multiple, different modes of the
likelihood, thus encouraging RS-awareness.

3.5 ACTIVE LEARNING WITH DENSE
ANNOTATIONS

As mentioned in Section 2, a sure-proof way of avoiding RSs
is to leverage concept-level annotations, which are however
expensive to acquire. bears helps to address this issue.
Specifically, we propose to exploit the model’s concept-
level uncertainty – which is higher for the concepts most
affected by RSs – to implement a cost-efficient annotation
acquisition strategy.

2403

We consider the following scenario: given a NeSy predictor
pθ affected by RSs and a pool of examples D = {(xi,yi)},
we seek to mitigate RSs by eliciting concept-level anno-
tations for as few data points as possible. This immedi-
ately suggests leveraging active learning techniques to se-
lect informative data points [43]. Options include selecting
examples (xi,yi) in D with the highest concept entropy
H(p(C | xi)) and requesting dense annotations for the en-
tire concept vector Gi, or requesting supervision only for
specific concepts Gj by maximizing H(p(Cj | xi)) for i
and j. Both entropies are cheap to compute for most neural
networks (as the predicted concepts Cj are conditionally
independent given the input x [44]), making acquisition
both practical and easy to set up.

Crucially, these strategies only work if the model is RS-
aware and, in fact, they fail for state-of-the-art NeSy archi-
tectures unless paired with bears, as shown in Section 4.

3.6 BENEFITS AND LIMITATIONS

The most immediate benefit of bears – and of RS-
awareness in general – is that it enables users to identify and
avoid untrustworthy predictions c or even individual con-
cepts ci, substantially improving the reliability of NeSy
pipelines. Moreover, compared to simpler Bayesian ap-
proaches for uncertainty calibration, it is specifically de-
signed for dealing with the multimodal nature of the RS
landscape and – as shown by our experiments – yields more
calibrated concept uncertainty in practice. Finally, bears
enables leveraging the model’s uncertainty estimates to
guide elicitation of concept supervision.

A downside of bears is that training time grows (linearly)
with the size of the ensemble θ. This extra cost is justified
in tasks where reliability matters, such as high-stakes ap-
plications or when learning concepts for model verification
[16]. Regardless, in our experiments, an ensemble of 5-10
concept extractors is sufficient to dramatically improve RS-
awareness compared to regular NeSy predictors, with a run-
time cost comparable to alternative calibration approaches.
This is not too surprising: in principle, even an ensemble
of two models is sufficient to ensure improved calibration,
provided these capture RSs holding strong contrasting be-
liefs. Finally, bears involves two other hyperparameters:
γ1 and γ2, which can be tuned, e.g., via cross-validation on
a validation split. As for the relative importance of different
members of the ensemble (that is, λ), our experiments sug-
gest that even taking a uniform average already substantially
improves RS-awareness compared to existing approaches.

4 EMPIRICAL ANALYSIS

In this section, we tackle the following research questions:

Q1. Are existing NeSy predictors RS-aware?

Q2. Does bears make NeSy predictors RS-aware?

Q3. Does bears facilitate acquiring informative concept-
level supervision?

To answer them, we evaluate three state-of-the-art NeSy
architectures before and after applying bears and other
well-known uncertainty calibration methods. Our code can
be found at: https://github.com/samuelebortolotti/bears.

NeSy predictors. We consider the following architectures.

DeepProbLog (DPL) [8] instantiates one neural predicate
for each of the binary concepts present in the knowledge,
and implements them using one or more neural networks
feeding on the input. It then predicts a label by combining
the neural predicates via probabilistic logic reasoning [45].
It speeds up this step by compiling inference into a com-
putational circuit using knowledge compilation techniques
[44]. This circuit contains no trainable parameter in our
experiments.

Semantic Loss (SL) [7] is a penalty term used to encour-
age deep neural entworks to output predictions consistent
with given prior knowledge. In our experiments, we use
a setup similar to similar to Concept Bottleneck Models
[46]: we employ a neural network to predict the concepts,
whose logits are connected to an MLP inferring the labels.
The SL is applied to the outputs of the two networks. Like
DPL, the SL also exploits probabilistic-logic reasoning and
knowledge compilation, but differs in that it cannot con-
strain predictions to satisfy the knowledge K at test time.

Logic Tensor Networks (LTN) [47, 48] softens the prior
knowledge K using fuzzy logic to define a differentiable
measure of label consistency and actively maximizes it dur-
ing learning. At inference time [49], labels are predicted by
first predicting the concepts by computing a MAP solution
of pθ(C | x) and then combining it with the logic.

Competitors. We evaluate each architecture in isolation and
in conjunction with bears and the following well-known
calibration methods.

MC Dropout (MCDO) [50] consists in training a network
with a dropout term and then averaging over an ensemble
of concept extractors obtained by randomly deactivating
neurons during inference;

The Laplace approximation (LA) [37] approximates the
Bayesian posterior by placing a normal distribution around
the trained concept extractor, applying a covariance propor-
tional to the inverse of the Hessian matrix computed on the
label loss;

Deep Ensembles (DE) [39], like bears, trains an ensemble
of models (with different hyperparameters, like the random
seed and learning rate, to ensure different optimization be-
tween models) under the same objective and a noise adver-

2404

https://github.com/samuelebortolotti/bears

sarial term, but it does not contain any knowledge-unaware
diversification penalty. After training, the mean concept
extractor is given by the average of the ensemble members.

We also consider a Probabilistic Concept-bottleneck Models
(PCBM) [51] backbone, an interpretable neural network
architecture that outputs a normal distribution for each
concept, implicitly improving uncertainty calibration.
Concept probabilities are predicted by instantiating two
sets of prototypical vectors, one for positive values of
each concept Ci and one for the negative values, similar
to concept embedding models [46]. The sigmoid of the
relative distance of the network embedding to each of these
prototypes then gives the concept probability pθ(C | x).
Hyperparameters and further implementation details are
reported in Appendix A.

For both labels and concepts, we report – averaged over 5
seeds – both prediction quality and calibration, measured
in terms of F1 score (or accuracy) and Expected Calibration
Error (ECE), respectively. A higher ECE (reported explic-
itly in Eq. (11)) indicates that a model is overconfident in
giving wrong predictions, which we expect to be the case for
methods not modeling uncertainty explicitly. The subscript
Y (resp. C) indicates we are measuring label (resp. concept)
calibration error. See Appendix A.2 for definitions. We also
report a runtime comparison in Appendix A.8.

Data sets. We consider two variants of MNIST addition
[8], which requires predicting the sum of two MNIST [52]
digits, except that only selected pairs of digits are observed
during training. MNIST-Half includes only sums of dig-
its 0 through 4 chosen so that only the semantics of the
digit 0 can be unequivocally determined from data. The
combinations include:{

+ = 0

+ = 1

{
+ = 5

+ = 6
(9)

MNIST-Even-Odd is similar, except that it covers all dig-
its; all in-distribution combinations are reported explicitly
in Appendix A.4. It was introduced in [3] to evaluate the
impact of RSs in DPL, SL, and LTN

Kandinsky is a variant of the Kandinsky Patterns task
[53], where given three images containing three simple col-
ored shapes each (e.g., two red squares and a blue triangle)
and a logical combination of rules like “the three objects
have different shapes” or “they have the same color”, the
goal is to predict whether the third image satisfies the same
rules as the first two. The example in Fig. 3 provides an
idea of this task.

BDD-OIA [1, 2] is a real-world multi-label prediction
task in which the goal is to predict what actions, out of
{forward, stop, right, left}, are safe based on objects
(like pedestrians and red lights) that are visible in a given
dashcam image and prior knowledge akin to that in Exam-
ple 1. The data set comprises 21 concepts, indicating the

Figure 3: An example of a test sample for the Kandinsky
task. At inference time, the NeSy model has to choose ac-
cording to the previous two images the third that completes
the pattern. The model computes a series of predicates for
each image, like same_colors, same_shapes. In the
running example, the first two images have different colors,
so the model should pick the first option.

Table 1: bears dramatically improves RS-awareness
across the board. All tested architectures achieve substan-
tially better concept-level ECE and out-of-distribution label-
level ECE, with comparable in-distribution label-level ECE.
Results for MNIST-Half are shown. MNIST-Even-Odd
shows a similar trend (see Table 11 in the Appendix).

METHOD ECEY ECEC ECEY ood ECECood

DPL 0.02 ± 0.01 0.69 ± 0.01 0.92 ± 0.01 0.87 ± 0.01
+ MCDO 0.02 ± 0.01 0.69 ± 0.01 0.91 ± 0.01 0.86 ± 0.01
+ LA 0.06 ± 0.01 0.65 ± 0.01 0.87 ± 0.01 0.82 ± 0.01
+ PCBM 0.07 ± 0.08 0.64 ± 0.08 0.86 ± 0.08 0.80 ± 0.08
+ DE 0.01 ± 0.01 0.64 ± 0.01 0.83 ± 0.13 0.77 ± 0.13
+ bears 0.09 ± 0.02 0.37 ± 0.01 0.39 ± 0.03 0.38 ± 0.02

SL 0.01 ± 0.01 0.71 ± 0.01 0.95 ± 0.01 0.88 ± 0.01
+ MCDO 0.01 ± 0.01 0.70 ± 0.01 0.92 ± 0.01 0.88 ± 0.01
+ LA 0.06 ± 0.01 0.59 ± 0.02 0.75 ± 0.01 0.75 ± 0.02
+ PCBM 0.01 ± 0.01 0.70 ± 0.01 0.91 ± 0.01 0.88 ± 0.01
+ DE 0.01 ± 0.01 0.64 ± 0.08 0.87 ± 0.05 0.78 ± 0.13
+ bears 0.01 ± 0.01 0.38 ± 0.01 0.75 ± 0.01 0.37 ± 0.03

LTN 0.02 ± 0.01 0.70 ± 0.01 0.94 ± 0.01 0.87 ± 0.01
+ MCDO 0.01 ± 0.01 0.69 ± 0.01 0.93 ± 0.01 0.87 ± 0.01
+ LA 0.14 ± 0.02 0.55 ± 0.02 0.79 ± 0.02 0.73 ± 0.02
+ PCBM 0.01 ± 0.01 0.69 ± 0.01 0.94 ± 0.01 0.86 ± 0.01
+ DE 0.01 ± 0.01 0.69 ± 0.01 0.94 ± 0.01 0.87 ± 0.01
+ bears 0.06 ± 0.01 0.36 ± 0.01 0.36 ± 0.01 0.32 ± 0.01

presence of pedestrians, red and green traffic lights, and
other kinds of objects common in road traffic. The rules
prevent the model from predicting actions whenever these
are unsafe due to, e.g., presence of obstacles in the corre-
sponding direction. The forward and stop actions do
share concepts, e.g.,{

red_light ∨ stop_sign ∨ obstacle⇒ stop

stop⇒ ¬move_forward

See Appendix A.4 for a longer description of all data sets.

Q1: RSs make NeSy predictors overconfident. Table 1
lists the label and concept ECE of all competitors on
MNIST-Half, measured both in-distribution (sums in the
training set) and out-of-distribution (all other sums). The
label and concept accuracy are reported in the appendix
(Table 10) due to space constraints. Overall, all NeSy pre-

2405

Table 2: bears dramatically improves RS-awareness
in the real-world. Results on BDD-OIA with DPL show
substantial ECE improvements both jointly (mECEC) and
for different classes of concepts (F=forward, S=stop,
R=turn right, L=turn left).

mECEC ECEC(F, S) ECEC(R) ECEC(L)

DPL 0.84 ± 0.01 0.75 ± 0.17 0.79 ± 0.05 0.59 ± 0.32
+ MCDO 0.83 ± 0.01 0.72 ± 0.19 0.76 ± 0.08 0.55 ± 0.33
+ LA 0.85 ± 0.01 0.84 ± 0.10 0.87 ± 0.04 0.67 ± 0.19
+ PCBM 0.68 ± 0.01 0.26 ± 0.01 0.26 ± 0.02 0.11 ± 0.02
+ DE 0.79 ± 0.01 0.62 ± 0.03 0.71 ± 0.10 0.37 ± 0.12
+ bears 0.58 ± 0.01 0.14 ± 0.01 0.10 ± 0.01 0.02 ± 0.01

dictors achieve high label accuracy (≥ 90%) but fare poorly
in terms of concept accuracy (approx. 43% for DPL and SL,
and LTN), meaning they are affected by RSs, as expected.
Our results also show that they are not RS-aware, as they
are very confident about their concept predictions (ECEC

of approx. 69% for DPL, 71% for SL, and 70% fort LTN).
Moreover, the label predictions are well calibrated (ECEY

is approx. 2% for DPL and LTN, 1% for SL), meaning that
label uncertainty is not a useful indicator of RSs. In general,
models performance worsens out-of-distribution in terms
of label accuracy (barely above 0 for all models) and label
and concept calibration (ECE around 90%), despite concept
accuracy remaining roughly stable (about 40%). The results
for MNIST-Even-Odd follow a similar trend, cf. Table 11
in the appendix.

As for BDD-OIA , we only evaluate DPL as it is the only
model that guarantees predictions comply with the safety
constraints out of the ones we consider. The results in Ta-
ble 2 and Table 12 show that DPL achieves good label ac-
curacy (72% macro F1) in this challenging task by lever-
aging poor concepts (34% macro F1) with high confidence
(mECEC ≈ 84%). This supports our claim that NeSy ar-
chitectures are not RS-aware.

Q2: Combining NeSy predictors with bears dramati-
cally improves RS-awareness in all data sets while re-
taining the same prediction accuracy. For MNIST-Half
(Table 1, Table 10), bears shrinks the concept ECE from
69% to 37% for DPL, from 71% to 38% for SL, and
from 70% to 36% for LTN in-distribution. The out-of-
distribution improvement even more substantial, as bears
improves both concept calibration (DPL: 87%→ 38%, SL:
88% → 37%, LTN: 87% → 32%) and label calibration
(DPL: 92%→ 39%, SL: 95%→ 75%, LTN: 94%→ 36%).
No competitor comes close. The runner-up, LA, improves
concept calibration on average by 10.5% and at best by 15%
(for LTN in-distribution), while bears averages 42.3% and
up to 55% (for LTN out-of-distribution). Fig. 4 shows that
bears correctly assigns high uncertainty to all digits but
the zero, which is the only one not affected by RSs, while
all competitors are largely overconfident on these digits.

In BDD-OIA the trend is largely the same: bears im-

Figure 4: Per-concept entropy shows bears is more un-
certain about concepts affected by RS on MNIST-Half
compared to regular DPL and alternative uncertainty cal-
ibration methods. SL and LTN show similar trends, see
Appendix C. Importantly, these improvements do not re-
quire concept annotations.

0 10 20 30 40 50 60 70
number of queries

40

50

60

70

80

90

100

Ac
c C

DPL
DPL + random
DPL + bears

Figure 5: bears allows selecting informative concept an-
notations faster. A substantial improvement in concept ac-
curacy is achieved by performing active learning guided by
RS-aware concept uncertainty (DPL +bears) with respect
to plain concept uncertainty (DPL) and random selection.

proves the test set concept ECE for all concepts jointly
(mECEC) from 84% to 58% (−26%). The improvement
becomes even clearer if we group the various concepts based
on what actions they entail: concepts for forward/stop
improve by −61%, those for right by −69%, and those
for left by−57%. Here, LA performs quite poorly (in fact,
it yields worsen calibration), and the runner-up PCBM, which
fares well (−16%mECEC), is also substantially worse than
bears. Finally, we note that, despite their similarities, DE
underperforms overall, showcasing the importance of our
knowledge-aware ensemble diversification strategy.

Q3: bears allows for selecting better concept annota-
tions. Fig. 5 reports the results in terms of concept accuracy
on the Kandinsky dataset when using an active learning
strategy to acquire concept supervision. Results are obtained
by pre-training DPL with 10 examples of red squares, and
selecting additional objects for supervision based on their
concept uncertainty. Results show that standard DPL has
the same behaviour as a random sampling strategy, likely
because of its poor estimation of concept uncertainty. On
the other hand, DPL with bears manages to substantially
outperform both alternatives in improving concept accu-

2406

racy, achieving an accuracy of more than 90% with just 50
queries, while the other strategies level off at around 75%
accuracy. Note that because of the presence of reasoning
shortcuts, all models achieve high label-level accuracy re-
gardless of their concept-level accuracy. See Appendix A.7
for the details.

5 RELATED WORK

Neuro-Symbolic Integration. NeSy AI [20, 21] spans
a broad family of models and tasks – both discrimina-
tive and generative – involving perception and reasoning
[5, 6, 12, 54, 55]. Given discrete reasoning is not differ-
entiable, NeSy architectures support end-to-end training
either by imbuing the prior knowledge with probabilistic
[56, 8, 57, 58, 59, 10, 23, 60] or fuzzy [61, 62, 47] se-
mantics, by implementing reasoning in embedding space
[63], or through a combination thereof [64]. Another dif-
ference is whether they encourage [7, 65, 64] vs. guarantee
[8, 9, 10, 11, 66] predictions to be consistent with the knowl-
edge. Despite their differences, all NeSy approaches can
be prone to RSs, which occur whenever prior knowledge –
including label supervision – is insufficient to pin down the
correct concept semantics.

Dealing with Reasoning Shortcuts. Existing works on RSs
focus on unsupervised mitigation, often by discouraging
learned concepts from collapsing onto each other. Examples
include using a batch-wise entropy loss [67], a reconstruc-
tion loss [3], a bottleneck maximization approach [68], and
encouraging constraint satisfaction via non-trivial assign-
ments [13]. Our work builds on the insights from Marconato
et al. [3], who recently showed that unsupervised mitigation
only works in specific cases, and that only expensive strate-
gies – like multi-task learning and dense annotations [15] –
can provably avoid RSs in all cases. Other works based on
abductive learning [69, 70] constitute promising avenues
for lessening the impact of RSs.

Our key contribution is that of switching focus from mitiga-
tion to awareness, which – as we show – can be achieved in
an unsupervised manner. In this sense, bears is closely re-
lated to unsupervised mitigation heuristics [67, 68, 13], but
differs in the goal (awareness vs. mitigation). bears specif-
ically averages over neural networks that capture conflicting
RSs to achieve knowledge-dependent uncertainty calibra-
tion. It is also related to the neuro-symbolic entropy of [22],
which, however, minimizes instead of maximizing the en-
tropy of the NeSy predictor, and as such it can exacerbate
the negative effects of RSs. In our analysis, we characterize
awareness of RSs in the limit case of infinite data, and future
work can provide statistical guarantees about the uncertainty
of concepts and final task performance, for example adapt-
ing results from [70, 71].

Uncertainty calibration in deep learning. Overconfidence

of deep learning models is a well-known issue [72]. Many
strategies for reducing overconfidence of label predictions
exist [73, 74, 75, 76, 77], many of which based on Bayesian
techniques [50, 37, 39]. Our experiments show that applying
them to NeSy predictors fails to produce RS-aware models,
whereas bears succeeds. Techniques from concept-based
models for imbuing concepts with probabilistic semantics
[51, 78] also can improve calibration, but underperform in
our experiments compared to bears.

6 CONCLUSION

NeSy models tend to be unaware of RSs affecting them, hin-
dering reliability. We address this by introducing bears,
which encourages NeSy models to be more uncertain about
concepts affected by RSs, enabling users to identify and dis-
trust bad concepts. bears vastly improves RS-awareness
compared to NeSy baselines and state-of-the-art calibration
methods while retaining high prediction accuracy, and low-
ers the cost of supervised mitigation via uncertainty-based
active learning of dense annotations. In future work, we
will explore richer knowledge acquisition strategies to en-
courage RS-awareness and reduce their impact, and look
into leveraging causal representation learning [29, 32, 79] to
define provably effective mitigation strategies. Furthermore,
concurrent work proves that the NeSy predictors studied in
this paper are fundamentally limited in expressing uncer-
tainty, and that this can be overcome by increasing model
expressivity using ensembling [80]. We will explore this
relation with bears.

Author Contributions

E.v.K. conceived the idea of tackling RSs using uncertainty.
All authors contributed to the conceptualization and the writ-
ing. E.M. and S.B. implemented the code and carried out the
empirical evaluation. E.M. and E.v.K. analyzed the theoreti-
cal backing of our approach. S.T., A.V., and A.P. supervised
the work. A.V. and A.P. managed fund acquisition.

Acknowledgements

The authors are grateful to Zhe Zeng for useful discussion.
Funded by the European Union. The views and opinions
expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the Euro-
pean Health and Digital Executive Agency (HaDEA). Nei-
ther the European Union nor the granting authority can be
held responsible for them. Grant Agreement no. 101120763
- TANGO. AV is supported by the "UNREAL: Unified Rea-
soning Layer for Trustworthy ML" project (EP/Y023838/1)
selected by the ERC and funded by UKRI EPSRC. Emile
van Krieken was funded by ELIAI (The Edinburgh Labora-
tory for Integrated Artificial Intelligence), EPSRC (grant no.

2407

EP/W002876/1).

References

[1] Yiran Xu, Xiaoyin Yang, Lihang Gong, Hsuan-Chu
Lin, Tz-Ying Wu, Yunsheng Li, and Nuno Vasconce-
los. Explainable object-induced action decision for
autonomous vehicles. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
June 2020.

[2] Yoshihide Sawada and Keigo Nakamura. Concept bot-
tleneck model with additional unsupervised concepts.
IEEE Access, 10:41758–41765, 2022.

[3] Emanuele Marconato, Stefano Teso, Antonio Vergari,
and Andrea Passerini. Not all neuro-symbolic concepts
are created equal: Analysis and mitigation of reasoning
shortcuts. In NeurIPS, 2023.

[4] A Garcez, M Gori, LC Lamb, L Serafini, M Spranger,
and SN Tran. Neural-symbolic computing: An effec-
tive methodology for principled integration of machine
learning and reasoning. Journal of Applied Logics,
6(4):611–632, 2019.

[5] Luc De Raedt, Sebastijan Dumančić, Robin Manhaeve,
and Giuseppe Marra. From statistical relational to
neural-symbolic artificial intelligence. In Proceedings
of the Twenty-Ninth International Conference on Inter-
national Joint Conferences on Artificial Intelligence,
pages 4943–4950, 2021.

[6] Artur d’Avila Garcez, Sebastian Bader, Howard Bow-
man, Luis C Lamb, Leo de Penning, BV Illuminoo,
Hoifung Poon, and COPPE Gerson Zaverucha. Neural-
symbolic learning and reasoning: A survey and inter-
pretation. Neuro-Symbolic Artificial Intelligence: The
State of the Art, 342:1, 2022.

[7] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang,
and Guy Broeck. A semantic loss function for deep
learning with symbolic knowledge. In ICML, 2018.

[8] Robin Manhaeve, Sebastijan Dumancic, Angelika
Kimmig, Thomas Demeester, and Luc De Raedt. Deep-
ProbLog: Neural Probabilistic Logic Programming.
NeurIPS, 2018.

[9] Eleonora Giunchiglia and Thomas Lukasiewicz. Co-
herent hierarchical multi-label classification networks.
NeurIPS, 2020.

[10] Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy
Van den Broeck, and Antonio Vergari. Semantic Prob-
abilistic Layers for Neuro-Symbolic Learning. In
NeurIPS, 2022.

[11] Nick Hoernle, Rafael Michael Karampatsis, Vaishak
Belle, and Kobi Gal. Multiplexnet: Towards fully
satisfied logical constraints in neural networks. In
AAAI, 2022.

[12] Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi,
Paolo Morettin, Stefano Teso, and Andrea Passerini.
Efficient generation of structured objects with con-
strained adversarial networks. Advances in neural in-
formation processing systems, 33:14663–14674, 2020.

[13] Zenan Li, Zehua Liu, Yuan Yao, Jingwei Xu, Taolue
Chen, Xiaoxing Ma, L Jian, et al. Learning with logical
constraints but without shortcut satisfaction. In ICLR,
2023.

[14] Kaifu Wang, Efi Tsamoura, and Dan Roth. On learning
latent models with multi-instance weak supervision.
In NeurIPS, 2023.

[15] Emanuele Marconato, Gianpaolo Bontempo, Elisa Fi-
carra, Simone Calderara, Andrea Passerini, and Ste-
fano Teso. Neuro symbolic continual learning: Knowl-
edge, reasoning shortcuts and concept rehearsal. In
ICML, 2023.

[16] Xuan Xie, Kristian Kersting, and Daniel Neider.
Neuro-symbolic verification of deep neural networks.
In IJCAI, 2022.

[17] Pang Wei Koh, Thao Nguyen, Yew Siang Tang,
Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In Interna-
tional Conference on Machine Learning, pages 5338–
5348. PMLR, 2020.

[18] Emanuele Marconato, Andrea Passerini, and Stefano
Teso. Interpretability is in the mind of the beholder: A
causal framework for human-interpretable representa-
tion learning. Entropy, 25(12):1574, 2023.

[19] Stefano Teso, Öznur Alkan, Wolfang Stammer, and
Elizabeth Daly. Leveraging explanations in interactive
machine learning: An overview. Frontiers in Artificial
Intelligence, 2023.

[20] Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, and
Ashwin Srinivasan. A review of some techniques for
inclusion of domain-knowledge into deep neural net-
works. Scientific Reports, 12(1):1–15, 2022.

[21] Eleonora Giunchiglia, Mihaela Catalina Stoian, and
Thomas Lukasiewicz. Deep learning with logical con-
straints. arXiv preprint arXiv:2205.00523, 2022.

[22] Kareem Ahmed, Eric Wang, Kai-Wei Chang, and Guy
Van den Broeck. Neuro-symbolic entropy regulariza-
tion. In UAI, 2022.

2408

[23] Emile van Krieken, Thiviyan Thanapalasingam,
Jakub M Tomczak, Frank van Harmelen, and An-
nette ten Teije. A-nesi: A scalable approximate method
for probabilistic neurosymbolic inference. arXiv
preprint arXiv:2212.12393, 2022.

[24] Daphne Koller and Nir Friedman. Probabilistic graph-
ical models: principles and techniques. MIT press,
2009.

[25] Cynthia Rudin. Stop explaining black box machine
learning models for high stakes decisions and use inter-
pretable models instead. Nature Machine Intelligence,
1(5):206–215, 2019.

[26] Subbarao Kambhampati, Sarath Sreedharan, Mudit
Verma, Yantian Zha, and Lin Guan. Symbols as a
Lingua Franca for Bridging Human-AI Chasm for Ex-
plainable and Advisable AI Systems. In Proceedings
of Thirty-Sixth AAAI Conference on Artificial Intelli-
gence (AAAI), 2022.

[27] Rich Caruana. Multitask learning. Machine learning,
28:41–75, 1997.

[28] Ilyes Khemakhem, Diederik Kingma, Ricardo Monti,
and Aapo Hyvarinen. Variational autoencoders and
nonlinear ICA: A unifying framework. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 2207–2217. PMLR, 2020.

[29] Bernhard Schölkopf, Francesco Locatello, Stefan
Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh
Goyal, and Yoshua Bengio. Toward causal representa-
tion learning. Proceedings of the IEEE, 2021.

[30] Luigi Gresele, Julius Von Kügelgen, Vincent Stimper,
Bernhard Schölkopf, and Michel Besserve. Indepen-
dent mechanism analysis, a new concept? Advances
in neural information processing systems, 34:28233–
28248, 2021.

[31] Sébastien Lachapelle, Pau Rodríguez López, Yash
Sharma, Katie Everett, Rémi Le Priol, Alexandre La-
coste, and Simon Lacoste-Julien. Nonparametric par-
tial disentanglement via mechanism sparsity: Sparse
actions, interventions and sparse temporal dependen-
cies. arXiv preprint arXiv:2401.04890, 2024.

[32] Wendong Liang, Armin Kekić, Julius von Kügelgen,
Simon Buchholz, Michel Besserve, Luigi Gresele,
and Bernhard Schölkopf. Causal component analy-
sis. arXiv preprint arXiv:2305.17225, 2023.

[33] Simon Buchholz, Goutham Rajendran, Elan Rosen-
feld, Bryon Aragam, Bernhard Schölkopf, and Pradeep
Ravikumar. Learning linear causal representations
from interventions under general nonlinear mixing.
arXiv preprint arXiv:2306.02235, 2023.

[34] Radford M Neal. Bayesian learning for neural net-
works, volume 118. Springer Science & Business
Media, 2012.

[35] Alex Kendall and Yarin Gal. What uncertainties do we
need in bayesian deep learning for computer vision?
Advances in neural information processing systems,
30, 2017.

[36] Hao Wang and Dit-Yan Yeung. A survey on bayesian
deep learning. ACM computing surveys (csur), 53(5):1–
37, 2020.

[37] Erik Daxberger, Agustinus Kristiadi, Alexander Im-
mer, Runa Eschenhagen, Matthias Bauer, and Philipp
Hennig. Laplace redux-effortless bayesian deep learn-
ing. Advances in Neural Information Processing Sys-
tems, 34:20089–20103, 2021.

[38] Kazuki Osawa, Siddharth Swaroop, Mohammad
Emtiyaz E Khan, Anirudh Jain, Runa Eschenhagen,
Richard E Turner, and Rio Yokota. Practical deep
learning with bayesian principles. Advances in neural
information processing systems, 32, 2019.

[39] Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[40] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid,
Wray Buntine, and Mohammed Bennamoun. Hands-
on bayesian neural networks—a tutorial for deep learn-
ing users. IEEE Computational Intelligence Magazine,
17(2):29–48, 2022.

[41] Francesco D’Angelo and Vincent Fortuin. Repulsive
deep ensembles are bayesian. Advances in Neural
Information Processing Systems, 34:3451–3465, 2021.

[42] Veit David Wild, Sahra Ghalebikesabi, Dino Sejdi-
novic, and Jeremias Knoblauch. A rigorous link be-
tween deep ensembles and (variational) bayesian meth-
ods. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

[43] B. Settles. Active Learning. Synthesis lectures on
artificial intelligence and machine learning. Morgan &
Claypool, 2012.

[44] Antonio Vergari, YooJung Choi, Anji Liu, Stefano
Teso, and Guy Van den Broeck. A compositional
atlas of tractable circuit operations for probabilistic
inference. Advances in Neural Information Processing
Systems, 34, 2021.

2409

[45] Luc De Raedt and Angelika Kimmig. Probabilistic
(logic) programming concepts. Machine Learning,
2015.

[46] Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele
Ciravegna, Giuseppe Marra, Francesco Giannini,
Michelangelo Diligenti, Zohreh Shams, Frederic Pre-
cioso, Stefano Melacci, Adrian Weller, et al. Concept
embedding models. arXiv preprint arXiv:2209.09056,
2022.

[47] Ivan Donadello, Luciano Serafini, and Artur D’Avila
Garcez. Logic tensor networks for semantic image
interpretation. In IJCAI, 2017.

[48] Samy Badreddine, Artur d’Avila Garcez, Luciano Ser-
afini, and Michael Spranger. Logic tensor networks.
Artificial Intelligence, 303:103649, 2022.

[49] Tommaso Carraro. LTNtorch: PyTorch implementa-
tion of Logic Tensor Networks, mar 2022.

[50] Yarin Gal and Zoubin Ghahramani. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on
machine learning, pages 1050–1059. PMLR, 2016.

[51] Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim,
and Sungroh Yoon. Probabilistic concept bottleneck
models. arXiv preprint arXiv:2306.01574, 2023.

[52] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

[53] Heimo Müller and Andreas Holzinger. Kandinsky pat-
terns. Artificial Intelligence, 300:103546, November
2021.

[54] Eleonora Misino, Giuseppe Marra, and Emanuele San-
sone. VAEL: Bridging Variational Autoencoders and
Probabilistic Logic Programming. NeurIPS, 2022.

[55] Kareem Ahmed, Kai-Wei Chang, and Guy Van den
Broeck. A pseudo-semantic loss for deep generative
models with logical constraints. In Knowledge and
Logical Reasoning in the Era of Data-driven Learning
Workshop, July 2023.

[56] Marco Lippi and Paolo Frasconi. Prediction of protein
β-residue contacts by markov logic networks with
grounding-specific weights. Bioinformatics, 2009.

[57] Zhun Yang, Adam Ishay, and Joohyung Lee. NeurASP:
Embracing neural networks into answer set program-
ming. In IJCAI, 2020.

[58] Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel,
Mayur Naik, Le Song, and Xujie Si. Scallop: From
probabilistic deductive databases to scalable differen-
tiable reasoning. NeurIPS, 2021.

[59] Giuseppe Marra and Ondřej Kuželka. Neural markov
logic networks. In Uncertainty in Artificial Intelli-
gence, 2021.

[60] Arseny Skryagin, Wolfgang Stammer, Daniel Ochs,
Devendra Singh Dhami, and Kristian Kersting. Neural-
probabilistic answer set programming. In Proceed-
ings of the International Conference on Principles of
Knowledge Representation and Reasoning, volume 19,
pages 463–473, 2022.

[61] Michelangelo Diligenti, Marco Gori, and Claudio
Sacca. Semantic-based regularization for learning and
inference. Artificial Intelligence, 2017.

[62] Emile van Krieken, Erman Acar, and Frank van Harme-
len. Analyzing differentiable fuzzy logic operators.
Artificial Intelligence, 2022.

[63] Tim Rocktäschel and Sebastian Riedel. Learning
knowledge base inference with neural theorem provers.
In Proceedings of the 5th workshop on automated
knowledge base construction, pages 45–50, 2016.

[64] Connor Pryor, Charles Dickens, Eriq Augustine, Alon
Albalak, William Wang, and Lise Getoor. Ne-
upsl: Neural probabilistic soft logic. arXiv preprint
arXiv:2205.14268, 2022.

[65] Marc Fischer, Mislav Balunovic, Dana Drachsler-
Cohen, Timon Gehr, Ce Zhang, and Martin Vechev.
Dl2: Training and querying neural networks with logic.
In International Conference on Machine Learning,
pages 1931–1941. PMLR, 2019.

[66] Eleonora Giunchiglia, Alex Tatomir, Mihaela Cătălina
Stoian, and Thomas Lukasiewicz. Ccn+: A neuro-
symbolic framework for deep learning with require-
ments. International Journal of Approximate Reason-
ing, page 109124, 2024.

[67] Robin Manhaeve, Sebastijan Dumančić, Angelika
Kimmig, Thomas Demeester, and Luc De Raedt. Neu-
ral probabilistic logic programming in deepproblog.
Artificial Intelligence, 298:103504, 2021.

[68] Emanuele Sansone and Robin Manhaeve. Learn-
ing symbolic representations through joint generative
and discriminative training. In International Joint
Conference on Artificial Intelligence 2023 Workshop
on Knowledge-Based Compositional Generalization,
2023.

[69] Wang-Zhou Dai and Stephen H Muggleton. Abductive
knowledge induction from raw data. arXiv preprint
arXiv:2010.03514, 2020.

[70] Lue Tao, Yu-Xuan Huang, Wang-Zhou Dai, and Yuan
Jiang. Deciphering raw data in neuro-symbolic learn-
ing with provable guarantees. Proceedings of the AAAI

2410

Conference on Artificial Intelligence, 38(14):15310–
15318, Mar. 2024.

[71] Zifan Wang, Saranya Vijayakumar, Kaiji Lu, Vijay
Ganesh, Somesh Jha, and Matt Fredrikson. Grounding
neural inference with satisfiability modulo theories.
In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[72] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain,
Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh,
Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Ra-
jendra Acharya, et al. A review of uncertainty quantifi-
cation in deep learning: Techniques, applications and
challenges. Information fusion, 76:243–297, 2021.

[73] Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. When does label smoothing help? Advances in
neural information processing systems, 32, 2019.

[74] Qing Li, Siyuan Huang, Yining Hong, Yixin Chen,
Ying Nian Wu, and Song-Chun Zhu. Closed loop
neural-symbolic learning via integrating neural per-
ception, grammar parsing, and symbolic reasoning. In
International Conference on Machine Learning, pages
5884–5894. PMLR, 2020.

[75] Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng,
Bo An, and Yixuan Li. Mitigating neural network
overconfidence with logit normalization. In Interna-
tional Conference on Machine Learning, pages 23631–
23644. PMLR, 2022.

[76] Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal,
Stuart Golodetz, Philip Torr, and Puneet Dokania. Cal-
ibrating deep neural networks using focal loss. Ad-
vances in Neural Information Processing Systems,
33:15288–15299, 2020.

[77] Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton,
and Jean-Philippe Vert. On mixup regularization. The
Journal of Machine Learning Research, 23(1):14632–
14662, 2022.

[78] Emanuele Marconato, Andrea Passerini, and Stefano
Teso. Glancenets: Interpretabile, leak-proof concept-
based models. NeurIPS, 2022.

[79] Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M
Asano, Taco Cohen, and Efstratios Gavves. Biscuit:
Causal representation learning from binary interac-
tions. In Uncertainty in Artificial Intelligence, pages
1263–1273. PMLR, 2023.

[80] Emile van Krieken, Pasquale Minervini, Edoardo
M. Ponti, and Antonio Vergari. On the independence
assumption in neurosymbolic learning. In Interna-
tional Conference on Machine Learning. PMLR, 2024.

[81] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[82] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc., 2015.

2411

A IMPLEMENTATION DETAILS

In this Section, we provide additional details about all metrics, datasets and models useful for reproducibility.

A.1 IMPLEMENTATION

All the experiments are implemented using Python 3.8 and Pytorch 1.13 and run on one A100 GPU. The implementations
of DPL, SL, and LTN were taken verbatim from [3]. We implemented MCDO and DE by adapting the code to capture the
original algorithms [50, 39]. For PCBM, we followed the original paper [51]. For LA, we adapted the original library from
laplace-torch [37]. In our experiments, we computed the Laplace approximation on the second last layer, mapping the
embeddings to the concept layer. The images for Kandinsky patterns were synthetically originated from the resource
provided in [53].

A.2 METRICS

For all datasets, we evaluate the predictions on the labels by measuring the accuracy and the F1-score with macro average.
We assess calibration using the Expected Calibration Error (ECE), which measures how accurately the model-predicted
probabilities align with actual data likelihood. Specifically, for a given label yi ∈ N, the ECEY (i) for each label error is
evaluated as:

ECEY (i) =

M∑
ℓ=1

|Bℓ|
n
|AccY (Bℓ)− ConfY (Bℓ)|, ∀i ∈ [m] (10)

where M is the number of bins, Bm represent the m-th bin and ConfY denotes the predicted probability. Essentially, the
predicted probabilities are categorized into intervals, denoted as bins. Each data point is assigned to a bin based on its
predicted probability. Within each bin, the average predicted probability and accuracy are computed. Ultimately, the ECE
value is obtained by summing the averages of absolute differences between predicted probabilities and accuracies. Similarly,
we evaluate ECEC (j) as:

ECEC(j) =

M∑
ℓ=1

|Bℓ|
n
|AccC(Bℓ)− ConfC(Bℓ)|, ∀j ∈ [k] (11)

In MNIST-Half and MNIST-Even-Odd we use the very same network to extract the first and second digits, and similarly
in Kandinsky for extracting the color and shape of each object. For this reason, ECEC was evaluated by stacking the
concepts predicted by the architecture for each object. ECEY was evaluated on the final predictions.

In contrast, BDD-OIA images involve multiple concepts and multiple labels. In this case, we adopted a softer approach,
specifically we averaged over the performances on each separate component:

mECEY =
1

m

m∑
i=1

ECEY (i) (12)

mECEC =
1

k

k∑
i=1

ECEC(i) (13)

where l and k are the numbers of labels and concepts, respectively.

In MNIST-Addition and its variations, we evaluate all metrics both in-distribution and out-of-distribution. In
Kandinsky, labels and concepts are both balanced, so we report accuracy for both. In BDD-OIA the data is not as
balanced, so we report the mean-F1, score as in [2, 3], that is, we first compute the F1-score for each action and then average
them:

mF1(Y) =
F1(forward) + F1(stop) + F1(left) + F1(right)

4
(14)

For all datasets, to measure uncertainty concept-wise for a specific model pθ, we rely on the one-vs-all entropy. We evaluate
the average entropy of pθ(C = c | x) as:

2412

HOV A(pθ(C = c|X)) = − 1

|D|
∑
x∈D

[
pθ(C = c|x) log(pθ(C = c|x)) + (1− pθ(C = c|x)) log(1− pθ(C = c|x))

]
(15)

A.3 BEARS IMPLEMENTATION

Implementation-wise, bears is an extension of DE with a new concept-level repulsive term. In short, bears works as
follows. For each new model θt to be added to the ensemble, we compute the following loss by considering all other
members in θ = {θj}t−1

j=1:

max
θt

1

|D|
∑

(x,y)∈D

[
log pθt(y | x;K) + γ1KL

(
pθt(C | x) ||

1

t

t∑
j=1

pθj (C | x)
)
+ γ2H(pθt(C | x))

]
(16)

We can analyze further the expression of the KL divergence to express it differently:

KL
(
pθt(C | x) ||

1

t

t∑
j=1

pθj (C | x)
)
=

∑
c∈{0,1}k

pθt(c | x) log
pθt(c | x)

1
t

∑t−1
j=1 pθj (c | x) +

1
t pθt(c | x)

(17)

= −
∑

c∈{0,1}k

pθt(c | x) log
1

t
·
∑t−1

j=1 pθj (c | x) + pθt(c | x)
pθt(c | x)

(18)

=
∑

c∈{0,1}k

pθt(c | x) log t− log

1 + (t− 1) ·
t−1∑
j=1

1

t− 1

pθj (c | x)
pθt(c | x)

 (19)

= log t−
∑

c∈{0,1}k

pθt(c | x) log
[
1 + (t− 1) · prest(c | x)

pθt(c | x)

]
(20)

where in the second line we introduced a minus sign to flip the term in the logarithm, in the third line we have taken out
pθt(c | x) from the numerator and multiplied and divided the remaining terms for (t− 1), and in the last line we denoted
with prest(c | x) the average on the members of the ensemble up to t− 1.

In general, the KL divergence is unbounded from above but since the same distribution pθt(C | x) appears from both sides
this gives an upper-bound. Notice that, since the KL is always greater or equal than zero we have that:

0 ≤ KL
(
pθt(C | x) ||

1

t

t∑
j=1

pθj (C | x)
)
≤ log t (21)

Following, we consider the composite expression with the term proportional to the entropy on the concepts pθ(C | x),
without accounting for the log t term. In our implementation, we minimize the term:

min
θ

1

|D|
∑

(x,y)∈D

pθ(y | x;K) +
γ1
log t

∑
c∈{0,1}k

pθt(c | x) log
[
1 + (t− 1) · prest(c | x)

pθ(c | x)

]

+ γ2

(
1− H(pθt(C | x))

k log 2

) (22)

for each new member of the ensemble, where we divided the KL term by log t to ensure its normalization, and we normalized
the entropy for the maximal value k log 2. The pseudo-code of bears is shown in Algorithm 1.

A.4 DATASETS DETAILS

In our experiments, when possible, we processed different digits and objects with the same neural network. This happens in
both MNIST-Addition tasks and Kandinsky, whereas for BDD-OIA this choice is not available.

2413

Algorithm 1 bears
1: procedure BEARS(n,seeds, γ1, γ2,epochs,train_loader)
2: Initialize empty ensemble
3: for i = 1 . . .n do
4: seed← seeds[i] # Set seed using seeds[i]
5: model = get_neq_model(seed) # Create a new ANN model from the seed
6: for e = 1, . . . ,epochs do
7: for data (x, y) in train_loader do
8: ŷ, pcx = model(x) # Compute ŷ and p(c | x)
9: loss = C(y, ŷ) # Calculate the loss in classification for the NeSy model

10: if i > 0 then
11: pcx = mean(pcx) # Compute the ensemble average p(c|x)
12: loss = loss+ γ1 KL(pcx || pcx)+ γ2 H(pcx) # Update loss with the KL term and entropy penalty
13: loss.backprop() # Backpropagate the loss and update model parameters
14: ensemble[i]← model # Add model to ensemble
15: return ensemble

A.4.1 MNIST-Even-Odd

As done in [3], we considered the MNIST-Even-Odd dataset, initially introduced in [15]. This variant of
MNIST-Addition has only a few specific combinations of digits, containing either only even or only odd digits:

+ = 6

+ = 10

+ = 10

+ = 12

∧

+ = 6

+ = 10

+ = 10

+ = 12

(23)

MNIST-Even-Odd consists of a total of 6720 fully annotated samples in the training set, 1920 samples in the validation
set, and 960 samples in the in-distribution test set. Additionally, there are 5040 samples in the out-of-distribution test dataset
comprising all other sums that are not observed during training.

Reasoning Shortcuts: As described in [3], the number of deterministic RSs can be calculated by finding the integer
values for the digits , . . . , that solve the above linear system. In total, it was shown that the number of deterministic RSs
amounts to 49.

A.4.2 MNIST-Half

This dataset constitutes a biased version of MNIST-Addition, including only half of the digits, specifically, those ranging
from 0 to 4. Moreover, we selected the following combinations of digits:

+ = 0

+ = 1

+ = 5

+ = 6

(24)

This allows introducing several RSs for the system. Unlike MNIST-Even-Odd, two digits are not affected by reasoning
shortcuts: namely 0 and 1. The remaining, 2, 3, and 4 can be predicted differently, as shown below.

In total, MNIST-Half comprises 2940 fully annotated samples in the training set, 840 samples in the validation set, 420
samples in the test set, and an additional 1080 samples in the out-of-distribution test dataset. These only comprise the
remaining sums with these digits, like + = 4.

2414

Reasoning shortcuts: We identify all the possible RSs empirically, since the system of observed sums can be written
as a linear system from Eq. (24). There are in total three possible optimal solutions, of which two are reasoning shortcuts.
Explicitly:

7→ 0, 7→ 1, 7→ 2, 7→ 3, 7→ 4

∨
7→ 0, 7→ 1, 7→ 3, 7→ 2, 7→ 3,

∨
7→ 0, 7→ 1, 7→ 4, 7→ 1, 7→ 2,

(25)

A.4.3 Kandinsky

This dataset, introduced in [53], consists of visual patterns inspired by the artistic works of Wassily Kandinsky. These
patterns are made of geometric figures, with several features. In our experiment, we propose a variant of Kandinsky where
each image has a fixed number of figures, and the associated concepts are shape and color. In total, each object can take one
among three possible colors (red, blue, yellow) and one among three possible shapes (square, circle, triangle).

We propose our Kandinsky variant for an active learning setup resembling an IQ test for machines. The task is to predict
the pattern of a third image given two images sharing a common pattern.

Formally, let x be an object in the figure, S(x) the shape of x, and C(x) its color. Let the image be denoted as Figure. In
total, each figure contains three objects with possibly different colors and shapes. To enhance the clarity and conciseness of
our logical expressions, we introduce the following shorthand predicates:

diff_s(Figure) ≡ ∀x, y ∈ Figure : (x ̸= y → ¬ (S(x) = S(y)))

diff_c(Figure) ≡ ∀x, y ∈ Figure : (x ̸= y → ¬ (C(x) = C(y)))

same_s(Figure) ≡ ∀x, y ∈ Figure : (S(x) = S(y))

same_c(Figure) ≡ ∀x, y ∈ Figure : (C(x) = C(y))

pair_c(Figure) ≡ ¬same_c(Figure) ∧ ¬diff_c(Figure)

pair_s(Figure) ≡ ¬same_s(Figure) ∧ ¬diff_s(Figure)

(26)

Let Sample represent a training sample consisting of two figures for the sake of simplicity; the extension to more figures is
trivial. The final logic statement, that determines the model output, is:

shared_pattern⇒ ∀f1, f2 ∈ Sample :

(same_c(f1) ∧ same_c(f2)) ∨ (pair_c(f1) ∧ pair_c(f2)) ∨ (diff_c(f1) ∧ diff_c(f2))
∨

(same_s(f1) ∧ same_s(f2)) ∨ (pair_s(f1) ∧ pair_s(f2)) ∨ (diff_s(f1) ∧ diff_s(f2))

(27)

Our Kandinsky dataset version comprises 4k examples in training, 1k in validation, and 1k in test.

We create our dataset to include a balanced number of positive and negative examples. Positive examples consist of three
images sharing the same pattern, while in negative examples the third image does not match the pattern which is shared
by the first two images. The order of examples does not introduce bias into the neural network learning procedure, as the
network treats each figure independently.

Preprocessing: When processing an entire figure at once, we empirically observed that the model faces challenges in
achieving satisfactory accuracy. Consequently, we opted to process one object at a time. Therefore, we employed a simplified
version of the dataset that comprises of rescaled objects manually extracted via bounding boxes. Thus, each example of the
dataset consists of 9 objects, namely 3 objects for each figure, ordered based on their distance from the origin of the figure.

Reasoning shortcuts: The knowledge we build for Kandinsky admits many RSs. As there are no constraints on specific
colors or shapes, in principle, each permutation of colors and shapes can achieve perfect accuracy. Furthermore, the logic is
symmetrical; hence, the concepts of colors and shapes could be swapped. Working on this dataset, we have observed various
RSs. An example is illustrated below:

2415

(S
qu

ar
e,

 R
ed

)

(S
qu

ar
e,

 Ye
llo

w)

(S
qu

ar
e,

 B
lu

e)

(C
irc

le
, R

ed
)

(C
irc

le
, Y

el
lo

w)

(C
irc

le
, B

lu
e)

(T
ria

ng
le

, R
ed

)

(T
ria

ng
le

, Y
el

lo
w)

(T
ria

ng
le

, B
lu

e)

(Square, Red)

(Square, Yellow)

(Square, Blue)

(Circle, Red)

(Circle, Yellow)

(Circle, Blue)

(Triangle, Red)

(Triangle, Yellow)

(Triangle, Blue)

Figure 6: This plot shows an example of a RS in the Kandinsky task. The model achieves perfect accuracy by predicting
shapes based on their colors. In this scenario, all red objects are correctly identified as squares, blue ones as circles, and
yellow ones as triangles.

A.4.4 BDD-OIA

This dataset is made of frames retrieved from driving scene videos for autonomous driving predictions [1]. Each frame is
labeled with four binary actions (move_forward, stop, turn_left, turn_right). Scenes are annotated with 21
binary concepts, providing explanations for the chosen actions. The training set includes 16k fully labeled frames, while the
validation and test sets have 2k and 4.5k annotated data, respectively.

The prior knowledge employed is the same as in [3]. We report it here for the sake of completeness. For the move_forward
and stop move, the rules are:

red_light⇒ ¬green_light
obstacle = car ∨ person ∨ rider ∨ other_obstacle
road_clear⇐⇒ ¬obstacle
green_light ∨ follow ∨ clear⇒ move_forward

red_light ∨ stop_sign ∨ obstacle⇒ stop

stop⇒ ¬move_forward

(28)

While for the turn_left and the turn_right action, the rules are:

can_turn = left_lane ∨ left_green_lane ∨ left_follow
cannot_turn = no_left_lane ∨ left_obstacle ∨ left_solid_line
can_turn ∧ ¬cannot_turn⇒ turn_left

(29)

Moreover, for convenience in metric computations, we decided to group the actions into three classes of concepts. Specifically,
we define F − S, which groups concepts concerning the move_forward and stop actions, L, which groups concepts
concerning the turn_left action, and the R group, which denotes the actions concerning the turn_right action. The
classes are shown in Table 3.

A.5 HYPERPARAMETERS AND MODEL SELECTION

In our work, we opted for the widely used Adam optimizer [81]. For MNIST-Half and MNIST-Even-Odd, the learning
rate follows an exponential decay with γ = 0.95. Regarding BDD-OIA , the weight decay is ω = 1 · 10−3 for all DPL

2416

Concept Class Concepts

F − S

green_light
follow
road_clear
red_light
traffic_sign
car
person
rider
other_obstacle

L

left_lane
left_green_light
left_follow
no_left_lane
left_obstacle
letf_solid_line

R

right_lane
right_green_light
right_follow
no_right_lane
right_obstacle
right_solid_line

Table 3: Concept classes in BDD-OIA

variants, except for PCBM where we set it to 0.01. For the learning rate γ, it is set to 0.2 for DPL and its variants. However,
we observed that a γ = 1 works best for PCBM since this model does not converge very early. In the active learning
experiment on Kandinsky, we applied exponential decay with γ = 0.9.

To choose the hyperparameters, we conducted a grid search over a predefined set of values, and selected the best values
based on both qualitative and quantitative results from a validation set. The learning rate for all experiments was fine-tuned
within the range of 10−4 to 10−2. Specifically, for MNIST-Half, we set the learning rate to 5 · 10−4 for DPL, and 1 · 10−3

for SL, LTN, and PCBM. For Kandinsky, the learning rate was set to 1 · 10−3. In the case of BDD-OIA , we explored a
learning rate range between 10−4 and 10−2 and selected 10−3 for all the models.

Regarding batch sizes, we observed that 64 worked well for MNIST-Even-Odd and MNIST-Half, and 512 for BDD-OIA
. For Kandinsky, a smaller batch size of 16 was chosen, as more frequent updates helped with model convergence.

Empirically, for bears, we discovered that optimizing γ1 and γ2 significantly influenced ensemble diversity, leading
to different outcomes. Specifically, when these hyperparameters are much lower compared to the classification loss, the
ensemble models tend to converge toward a single reasoning shortcut, reducing the impact of bears. Conversely, if these
hyperparameters are bigger, the ensemble may consist of entirely different solutions, but potentially sub-optimal ones.
These hyperparameters should be carefully tuned to strike a balance. We performed a grid search for both parameters over
η = {0.1, 0.8, 0.5, 1, 2, 5, 10} and selected the best values based on minimizing the classification objective and maximizing
ensemble diversity.

For MNIST-Half and MNIST-Even-Odd, we observed that the impact of entropy is negligible. Consequently, we set
γ2 = 0 for all experiments. In contrast, relying solely on the KL term in BDD-OIA and Kandinsky does not effectively
explore a consistent space of reasoning shortcuts. Thus, for bears, we set γ1 = 0.1 for LTN and γ1 = 5 for SL. For DPL,
we set γ1 = 0.8 for MNIST-Half and MNIST-Even-Odd, γ1 = 0.1 and γ2 = 1 for BDD-OIA , and γ1 = 0.01 for
Kandinsky.

Concerning the number of ensembles, a shared hyperparameter for DE and bears, we chose 5 for MNIST-Half,
MNIST-Even-Odd, and Kandinsky, and 20 for BDD-OIA , considering the larger number of reasoning shortcuts in the
latter. In BDD-OIA there 721 · 57114 · 280280, compared to the 49 present in MNIST-Even-Odd [3].

Additionally, we observed that LTN behavior is quite unstable, resulting in sub-optimal models regardless of hyperparameter

2417

Table 4: Encoder architecture for MNIST-Half, MNIST-Even-Odd.

INPUT LAYER TYPE PARAMETER ACTIVATION

(28, 56, 1) Convolution depth=32, kernel=4, stride=2, padding=1 ReLU
(32, 14, 28) Dropout p = 0.5
(32, 14, 28) Convolution depth=64, kernel=4, stride=2, padding=1 ReLU
(64, 7, 14) Dropout p = 0.5
(64, 7, 14) Convolution depth=128, kernel=4, stride=2, padding=1 ReLU
(128, 3, 7) Flatten
(2688) Linear dim=20, bias = True

Table 5: Encoder architecture for Kandinsky

INPUT LAYER TYPE PARAMETER ACTIVATION

(28, 28, 3) Flatten
(2352) Linear dim=256, bias=True ReLU
(256) Dropout p = 0.5
(256) Linear dim=128, bias=True ReLU
(128) Dropout p = 0.5
(128) Linear dim=8, bias = True

choices. To address this, we introduced an entropy penalization of 0.3 to aid model convergence. The same approach was
applied to DPL on Kandinsky, where this value was set to 0.2.

Regarding the number of LA sampling and MCDO, we observed no big difference, thus we selected 30 for our experiments.

Specifically for LA, we applied the Laplace approximation to the concept layer of the pre-trained frequentist model. For
MNIST-Half and MNIST-Even-Odd, we used the Kronecker approximation of the Hessian matrix, but we could not
use it for BDD-OIA due to excessive time and memory requirements. For BDD-OIA , we switched to the diagonal
approximation.

For PCBM, the optimization involves the sum of two losses: a cross-entropy loss and a concept loss. The concept loss,
denoted as Lconcept, is defined as Lconcept = LBCE+λKLLKL [51]. Here, LBCE represents the standard binary cross-entropy,
and LKL serves as a regularization term for the Gaussian distribution, defined as LKL = KL(N(µc, diag(σc))||N(0, I)).
Since we lack concept supervision during training, the weight associated with the binary cross-entropy is set to 0. The
regularization term λkl is maintained at 0.001 for both examples, as setting it too high led to sub-optimal models in our
specific context.

Finally, concerning the active learning example on Kandinsky, we found that to achieve optimal convergence while still
learning concepts, effective parameters for the concept supervision loss are 25 for DPL and 10 for DPL + bears.

A.6 ARCHITECTURES AND MODEL DETAILS

MNIST-Addition: The architectures employed for MNIST-Even-Odd and MNIST-Half are essentially the one
implemented in [3], outlined in Table 4. The only difference among the two datasets is the size of the bottleneck, which
depends on the number of concepts. For MNIST-Half, the last layer dimension is 10, while for MNIST-Even-Odd is 20.
For PCBM, the architecture is shown in Table 6. Additionally, for SL only, we introduced an MLP with a hidden size of 50
neurons. This MLP takes the logits of both concepts as input and processes them to produce the final label.

BDD-OIA : Likewise for [3], BDD-OIA images have been preprocessed, as detailed in [2], employing a Faster-RCNN [82]
pre-trained on MS-COCO and fine-tuned on BDD-100k, for initial preprocessing. Subsequently, we employ a pre-trained
convolutional layer from [2] to extract linear features with a dimensionality of 2048. These linear features serve as inputs for
the NeSy model, implemented with a fully-connected classifier network as outlined in Table 7 for DPL, and in Table 8 for
PCBM.

2418

Table 6: Encoder architecture for PCBM

INPUT LAYER TYPE PARAMETER ACTIVATION NOTE

(28, 56, 1) Convolution depth=32, kernel=4, stride=2, padding=1 ReLU
(32, 14, 28) Dropout p = 0.5
(32, 14, 28) Convolution depth=64, kernel=4, stride=2, padding=1 ReLU
(64, 7, 14) Dropout p = 0.5
(64, 7, 14) Convolution depth=128, kernel=4, stride=2, padding=1 ReLU
(128, 3, 7) Flatten
(2688) Linear dim=160, bias = True Head for µ
(2688) Linear dim=160, bias = True Head for σ

Table 7: DPL architecture for BDD-OIA

INPUT LAYER TYPE PARAMETER ACTIVATION NOTE

(2048, 1) Linear dim=512, bias=True ReLU
(512) Dropout
(512) Linear dim=21, bias=True Head for move_forward action
(512) Linear dim=12, bias=True Head for stop action
(512) Linear dim=12, bias=True Head for turn_left action
(512) Linear dim=12, bias=True Head for turn_right action

Table 8: PCBM architecture for BDD-OIA

INPUT LAYER TYPE PARAMETER ACTIVATION NOTE

(2048, 1) Linear dim=336, bias=True Head for µ
(2048, 1) Linear dim=336, bias=True Head for σ

Kandinsky: For Kandinsky, we chose to use an MLP-based encoder, as depicted in Table 5.

A.7 ACTIVE LEARNING SETUP

The active learning setup proposed is based on Kandinsky. The examples consist of three figures, each composed of
three objects. Each object is characterized by shape and color properties. In this setup, the model processes each object
independently, producing a 6-dimensional vector that includes the one-hot encoding of shapes and colors, with each
dimension representing one of the three shapes or colors. Overall, for each figure the model produces an 18-dimensional
vector. The supervision is provided for a single object and consists of its shape and color.

To configure the experiment, we masked all the concepts in the training set, revealing them only when the object is chosen
for supervision. Therefore, the active learning setup does not involve adding new examples to the training set but rather
unveiling concepts in the existing ones.

The model was initialized by providing supervision on 10 red-squares, that was sufficient to allow it to achieve optimal
accuracy (by learning a reasoning shortcut). Notice that without any initial concept-level supervision, the model was
incapable of achieving decent accuracy results because of the complexity of the knowledge.

At each step of the active learning setup, both DPL and bears compute the Shannon entropy on an object, defined as:

H(s, c|x) = −
∑
i,j

pθ(si, cj |x) log pθ(si, cj |x) (30)

where pθ(si, cj |x) is the probability of shape si and color cj for object x. Plain DPL computes the probability of a certain
configuration of concepts for an object x as:

pθ(si, cj |x) = pθ(si|x)pθ(cj |x) (31)

2419

while bears computes it as:

pθ(si, cj |x) =
1

|θ|
∑
θ′∈θ

pθ′(si|x)pθ′(cj |x) (32)

Where θ is the learned ensemble. The top 10 elements with largest entropy are then selected to acquire concept-level
supervision. The baseline method DPL + random ignores concept uncertainty altogether and simply chooses 10 random
elements from the training set.

A.8 RUNTIME COMPARISON

Table 9: Wall-clock time for a single batch in MNIST-Half

METHOD TRAIN - BATCH INFERENCE - BATCH PRE-PROCESS

DPL 0.011 0.001
DPL + MCDO 0.026
DPL + LA 0.019 32.249
DPL + PCBM 0.043 0.043
DPL + DE 0.017 0.027
DPL + bears 0.073 0.018

SL 0.010 0.001
SL + MCDO 0.017
SL + LA 0.013 21.990
SL + PCBM 0.043 0.054
SL + DE 0.033 0.020
SL + bears 0.085 0.014

LTN 0.010 0.001
LTN + MCDO 0.018
LTN + LA 0.014 26.434
LTN + PCBM 0.035 0.045
LTN + DE 0.031 0.017
LTN + bears 0.072 0.011

To estimate the order of magnitude of bears, we measured the wall-clock time of a run on MNIST-Half. Specifically, we
computed the wall-clock time of the model inference on a single batch (all batches have the same dimension, i.e. 64). For
both DE and bears, we evaluated only a single model of the ensemble, namely the last model out of 5. In this way, we
isolate the time from the number of ensembles. We do not report the training time for MCDO and LA as they are applied on
pre-trained models. Additionally, we account for the pre-processing time of LA, which is needed to compute the Hessian
matrix for the Laplace approximation. However, it is important to note that this step is done only once.

As shown in Table 9, the inference time of bears is comparable to all the competitors, as long as the ensemble is not too
big. In terms of training, although we take more time due to the overhead associated with the retrieval of the p(C|x) for
ensemble members and the computation of the loss function, we are comparable with DE.

B THEORETICAL MATERIAL

In this section, we include the proofs and the theoretical material needed for the main text. Before moving to the proofs of
the main text claims, we report the statement of Lemma 1, Theorem 2, and Proposition 3 from [3] for ease of comparison.
These rely on two assumptions, cf. Section 3:

A1. Invertibility: Each x is generated by a unique g, i.e., there exists a function f : x 7→ g such that p∗(G | X) =
1{G− f(X)}.

A2. Determinism: The knowledge K is deterministic, i.e., there exists a function βK : g 7→ y such that p∗(Y | G;K) =
1{Y = βK(g)}.

We begin by reporting three useful results from [3] that will be used in our proofs. First of all, we will indicate with supp(G)
the support of the probability distribution given by p∗(G).

2420

Lemma 4. It holds that: (ii) Under A1, there exists a bijection between the deterministic concept distributions pθ(C | X)
that are constant over the support of p(X | g), for each g ∈ supp(G), and the deterministic distributions of the form
pθ(C | G).

Theorem 5. Let A be the set of mappings α : g 7→ c induced by all possible deterministic distributions pθ(C | G), i.e.,
each pθ(C | G) = 1{C = α(G)} for exactly one α ∈ A. Under A1 and A2, the number of deterministic optima pθ(C | G)
is: ∑

α∈A 1

{∧
g∈supp(G)(βK ◦ α)(g) = βK(g)

}
(33)

In particular, the set of optimal maps A∗ is given by:

A∗ =
{
α ∈ A :

∧
g∈supp(G)(βK ◦ α)(g) = βK(g)

}
(34)

Proposition 6. For probabilistic logic approaches (including DPL and SL): (i) All convex combinations of two or more
deterministic optima pθ(C | X) of the likelihood are also (non-deterministic) optima. However, not all convex combinations
can be expressed in DPL and SL. (ii) Under A1 and A2, all optima of the likelihood can be expressed as a convex combination
of deterministic optima. (iii) If A2 does not hold, there may exist non-deterministic optima that are not convex combinations
of deterministic ones. These may be the only optima.

B.1 PROOF OF LEMMA 1

Lemma. Take any input-concept distribution p(C | X) and let p(C | G) be the concept-concept distribution entailed by it.
Then there exists (at least one) vector ω such that p is a convex combination of maps α ∈ A, that is:

p(C | G) =
∑
α∈A

ωα1{C = α(G)} := pω(C | G)

parameterized by ω ≥ 0, ∥ω∥1 = 1. Moreover, under invertibility (A1) and determinism (A2), the set of all mapsA restricts
to the set of optimal maps A∗.

Proof. By definition, p(C | G) is given by:

p(C | G) := Ep(x|g)p(C | x) (35)

For each g ∈ {0, 1}k, p(C | g) can be written as a convex combination of the maps α ∈ A:

p(C | g) =
∑
c

p(c | g)1{C = c}

=
∑
c

[∑
α∈A

ωα1{α(g) = c}

]
1{C = c}

=
∑
α∈A

ωα1{C = α(g)}

(36)

where in the last line we swapped the summation and used the condition that α(g) = c. Altogether, this yields for the single
g that the following must hold: ∑

α∈A:α(g)=c

ωα = p(c | g) (37)

Combining all the cases this gives a system of 2k · 2k equations, one for each g and for each c, for a total of (2k)2
k

variables
ω: ∑

α∈A:α(g)=c

ωα = p(c | g), ∀g ∈ {0, 1}k, ∀c ∈ {0, 1}k (38)

This shows that the linear system can always be solved, proving that A spans the space of p(C | G).

Next, under A1 and A2 we have that to have an optimal model we only need to consider the optimal elements α ∈ A∗,
where the set A∗ is defined from Theorem 5:

A∗ =
{
α ∈ A :

∧
g∈supp(G)(βK ◦ α)(g) = βK(g)

}
(39)

2421

We proceed by contradiction. Suppose there exists one α′ ̸∈ A∗ such that:

p(C | G) = ω(α′)1{C = α′(g)}+
∑
α∈A∗

ωα1{C = α(g)} (40)

is still optimal. Notice that there exists at least one g such that α′(g) ̸= α(g), ∀α ∈ A∗. This means that for those values g
we have (βK ◦ α′)(g) ̸= βK(g). Therefore, the NeSy predictor will result in a suboptimal model, since it does not place the
mass on concepts attaining the same label. This proves the contradiction, yielding the claim.

B.2 ENTROPY ON CONCEPT VECTORS AND REASONING SHORTCUTS

Under invertibility (A1) and determinism (A2), it is possible to describe entirely the set of optimal maps α : G 7→ C through
Theorem 5, which we denote with A∗. Before moving on to prove the main results in the main text, it is useful to introduce
here the notion of “equivalence set” of a concept vector g given the optimal maps α ∈ A∗:

E(g;K) = {α(g) : ∀α ∈ A∗} (41)

that contains all the concepts c ∈ {0, 1}k that are predicted by the maps α ∈ A∗. With this, we can formally define when a
ground-truth concept g is mispredicted by RSs:

Definition 1. We say that a concept vector g ∈ {0, 1}k is “mispredicted” by RSs when |E(g;K)| > 1, i.e., there exist at
least two different αi, αj ∈ A∗, such that αi(g) ̸= αj(g). Conversely, a concept vector is “correctly predicted” if α(g) = g,
∀α ∈ A∗.

Following, we can use the decomposition in terms of the map α’s to inspect what combinations with optimal weights
ω∗ = (ω1, . . . , ωN), where N = |A∗| and ∥ω∗∥1 = 1, give high entropy on single concepts g ∈ {0, 1}k:

Proposition 7. Suppose that pω(C | G) admits a decomposition as a weighted sum of at least two distinct α ∈ A, with
weights ω. Then,

(i) for any g ∈ {0, 1}k it holds that H(pω(C | g)) = 0, when ∀αi, αj ∈ A such that ωαi
> 0 and ωαj

> 0, it holds
αi(g) = αj(g).

Assuming that A1 and A2 hold:

(ii) If a concept g ∈ {0, 1}k is not mispredicted by RSs, then all combinations ω∗ of α ∈ A∗ will give zero entropy
H(pω∗(C | g))

(iii) Vice versa, if g is mispredicted by RSs, there is always at least one combination ω∗ such that the entropy H(pω∗(C | g))
attains a maximal value of:

H(pω∗(C | g)) = log |E(g;K)| (42)

Proof. (i) We start by considering a pω(C | G) given by a fixed convex combination of maps α ∈ A, with a vector ω.
We proceed to show that for any g ∈ {0, 1}k, the entropy is zero holds if and only if ∀αi, αj ∈ A with ω(αi) > 0 and
ω(αj) > 0, we have that αi(g) = αj(g).

We consider a vanishing conditional entropy H(p(C | g)) that is given only when p(C | g) = 1{C = c}, for c ∈ {0, 1}k.
This occurs only if (1) p(C | g) = 1{C = α(g)}, for α ∈ A, or if (2) p(C | g) =

∑
α∈A ωα1{C = α(g)}, with ωα > 0

only if α(g) is the same. Since we are considering probabilities p(C | g) with at least two α’s, only (2) holds, proving the
result.

(ii) Next, under A1 and A2, we consider the case where we have optimal maps α ∈ A∗. For those g’s that are correctly
predicted even by RSs, by definition E(g;A∗) = 1, and in particular α(g) = g for all α ∈ A∗. This means that whatever
combination of weights ω∗ is chosen, there will be only one element for p(C | g) with all the probability mass. Therefore:

pω∗(C | G) =
∑
α∈A∗

ω∗
α1{C = α(g)} = 1{C = g}

∑
α∈A∗

ω∗
α (43)

that leads to a vanishing entropy.

2422

(iii) For any optimal solution, it holds that:

supp(p(C | g)) ⊆ E(g;A∗), ∀g ∈ {0, 1}k (44)

since all concept vectors having non-zero mass in p(C | g) must be optimal. We now consider a concept vector g that is
affected by RSs, in that there exists αi, αj ∈ A∗ such that αi(g) ̸= αj(g). We then rewrite it as follows:

pω∗(C | g) =
∑
α∈A∗

ω∗
α1{C = α(g)}

=
∑

c∈E(g;A∗)

[∑
α∈A∗:α(g)=c

ω∗
α

]
1{C = c}

=
∑

c∈E(g;A∗)

λc1{C = c}

(45)

where we denoted λc =
∑

α∈A∗:α(g)=c ω
∗(α) the weight associated to 1{C = c}. When plugging this into the entropy we

have that:
H(p(C | g)) = −

∑
c∈{0,1}k

p(c | g) log p(c | g)

= −
∑

c∈{0,1}k

∑
c′∈E(g;A∗)

λc′1{c′ = c} log
∑

c′∈E(g;A∗)

λc′1{c′ = c}

= −
∑

c∈E(g;A∗)

λc log λc

≤ −
∑

c∈E(g;A∗)

1

|E(g;A∗)|
log

1

|E(g;A∗)|

= log |E(g;A∗)|

(46)

where the equality holds if and only if λc = 1
|E(g;A∗)| for all c in p(c | g). We can therefore choose ω∗ such that:∑

α∈A∗:α(g)=c

ω∗(α) = |E(g;A∗)|−1, ∀c ∈ E(g;A∗) (47)

which fixes |E(g;A∗)| equations for at least |E(g;A∗)| variables ω∗. In fact, the number of maps α ∈ A∗ is equal to
|E(g;A∗)| only when all maps αi(g) ̸= αj(g), ∀αi, αj ∈ A∗, i.e., there are not two different maps that predict the same
concept for g. This shows that by choosing the coefficients ωα correctly, it is possible to obtain a maximally entropic
distribution p(C | g). This concludes the proof.

Point (ii) of Proposition 7 essentially captures the intuition that concept vectors that are “correctly predicted” even by RSs
will not contribute to increasing the entropy of the distribution p(C | G). Conversely, when a concept is “mispredicted”
by RSs, there is always a combination attaining maximal entropy from point (iii). Achieving maximal entropy for one
ground-truth concept, however, is not enough to guarantee the others will also display maximal entropy. This can happen
because a combination ω∗ may increase the entropy of one gi while decreasing that of another gj .

B.3 PROOF OF PROPOSITION 2

Before proceeding, it is useful to pin down what we mean precisely with the set of parameters. Based on the generative
process with p∗(Y | G;K), we define as “optimal” those parameters θ that meet the following criterion:

pθ(Y | G;K) :=

∫
pθ(Y | x;K)p(x | G)dx = p∗(Y | G;K) (48)

and denote the whole set with Θ∗.

Proposition. Consider only optimal parameters θ ∈ Θ∗ for pθ(C | G). Assuming that pθ is expressive enough to capture
every possible combination pω, i.e., for each ω there exists θ s.t. pθ(C | G) = pω(C | G), under invertibility (A1) and
determinism (A2), it holds that:

max
θ∈Θ∗

H(pθ(C | G)) = max
ω∗

H(pω∗(C | G))

2423

Proof. We start from the fact that by Lemma 1 we can always express pθ(C | G) as a convex combination of maps α ∈ A∗

for some weights ω∗(θ). Vice versa, since pθ is flexible enough to capture any combination ω∗ for pω∗(C | G), there will
exists some weights θ(ω∗) associated to any vector ω∗. Notice that, in general, neither ω∗(θ) nor θ(ω∗) are unique. This,
nonetheless, allows us to convert a problem formulated in terms θ ∈ Θ∗ to one in terms of ω∗:

max
θ∈Θ∗

H(pθ(C | G)) = max
θ∈Θ∗

−
∑

g∈{0,1}2k

p∗(g)
∑

c∈{0,1}k

pθ(c | g) log pθ(c | g)

= max
θ∈Θ∗

−
∑

g∈{0,1}2k

p∗(g)
∑

c∈{0,1}k

[∑
α∈A∗

ω∗
α(θ)1{c = α(g)} log

∑
α′∈A∗

ω∗
α′(θ)1{c = α′(g)}

]

= max
ω∗, ||ω∗||1=1

−
∑

g∈{0,1}2k

p∗(g)
∑

c∈{0,1}k

[∑
α∈A∗

ω∗(α)1{c = α(g)} log
∑
α∈A∗

ω∗(α)1{c = α(g)}

]

= max
ω∗, ||ω∗||1=1

−
∑

g∈{0,1}2k

p∗(g)
∑

c∈{0,1}k

pω∗(c | g) log pω∗(c | g)

= max
ω∗, ||ω∗||1=1

H(pω∗(C | G))

(49)
where in the third line we converted the maximization problem on the parameters θ ∈ Θ∗ to the weights ω∗. This concludes
the proof.

B.4 PROOF OF PROPOSITION 3

Proposition. Let p(C | X) be given by a convex combination of models pθi(C | X), for i ∈ [K], where K denotes the total
number of components of θ = {θi}, and each θi ∈ Θ∗. Let also λ = {λi} contain all the weights λi associated to each
component θi. Under invertibility (A1) and determinism (A2), there exists K ≤ |A∗| such that maximizing the entropy of
pω∗(C | G) can be solved by maximizing H(pθ(C | X)) on θ and λ, that is:

max
θ,λ

H
(K∑

i=1

λipθi(C | X)
)
= max

ω∗
H(pω∗(C | G))

Furthermore, we can write the maximization of H(pθ(C | X)) as:

max
θ,λ

∫
p(x)

K∑
i=1

λi[KL(pθi(c | x) ||
K∑
j=1

λjpθj (c | x)) +H(pθi(C | x))]dx

where KL denotes the Kullback-Lieber divergence.

Proof. We start with p(C | X) =
∑

i λipθi(C | X) given by a convex combination of optimal models with parameters θi,
each entailing a deterministic distribution pθi(C | G) = 1{C = αi(G)}.

Recall that, by invertibility (A1), there exists f : x 7→ g, entailing the inverse of p∗(G | X). We know that by Lemma 4
(ii), if pθi entails a deterministic distributions pθi(C | G) = 1{C = αi(G)}, then it is in one-to-one correspondence with
pθi(C | X). Formally, the latter is:

pθi(C | x′) = 1{C = αi(g)} , ∀x′ ∈ supp(p∗(X | g), where g = f(x) (50)

2424

Now, from the above equation, we can rewrite H(pθ(C | X)) as follows:

H(pθ(C | X)) = −Ep∗(x)

[∑
c∈{0,1}k

pθ(c | x) log pθ(c | x)
]

= −
∑

g∈{0,1}k

p∗(g)Ep∗(x|g)

[∑
c∈{0,1}k

K∑
i=1

λipθi(c | x) log
K∑
j=1

λjpθj (c | x)
]

= −
∑

g∈{0,1}k

p∗(g)
∑

c∈{0,1}k

Ep∗(x|g)

[K∑
i=1

λipθi(c | x) log
K∑
j=1

λjpθj (c | x)
]

= −
∑

g∈{0,1}k

p∗(g)
∑

c∈{0,1}k

Ep∗(x|g)

[K∑
i=1

λi1{c = αi(g)} log
K∑
j=1

λj1{c = αj(g)}
]

= −
∑

g∈{0,1}k

p∗(g)
∑

c∈{0,1}k

K∑
i=1

λi1{c = αi(g)} log
K∑
j=1

λj1{c = αj(g)}

= −
∑

g∈{0,1}k

p∗(g)
∑

c∈{0,1}k

pθ(c | g) log pθ(c | g)

= H(pθ(C | G))

(51)

where the second line follows from the fact that the expectation on the input variables can be written as Ep∗(g)[p
∗(x | g)],

and pθ(C | G) is the distribution with convex weights λ, where each λi is associated to the reasoning shortcut αi, entailed
by θi. This means that maximizing H(pθ(C | X)) directly maximizes H(pθ(C | G)).

Next, suppose that θ is fixed and contains a number K = |A∗| of members, such that each deterministic RS α ∈ A∗ is
captured by exactly one member θi ∈ θ. This means that each θi captures pθi(C | G) = 1{C = αi(G)}, and it holds that
if θi ̸= θj , then αi(g) ̸= αj(g) for at least one g ∈ {0, 1}k.

We prove that maximizing λ when θ is fixed and contains all possible deterministic RSs amounts to maximizing the
combination of RSs. The proof follows a similar derivation to Proposition 2:

max
λ,||λ||1=1

H(pθ(C | G)) = max
λ,||λ||1=1

−
∑

g∈{0,1}k

p∗(g)
∑

c∈{0,1}k

pθ(c | g) log pθ(c | g)

= max
λ,||λ||1=1

−
∑

g∈{0,1}k

p∗(g)
∑

c∈{0,1}k

 K∑
i=1

λi1{c = αi(g)} log
K∑
j=1

λj1{c = αj(g)}

= max

ω∗, ||ω∗||1=1
−

∑
g∈{0,1}k

p∗(g)
∑

c∈{0,1}k

[∑
α∈A∗

ω∗
α1{c = α(g)} log

∑
α′∈A∗

ω∗
α′1{c = α′(g)}

]

= max
ω∗, ||ω∗||1=1

−
∑

g∈{0,1}k

p∗(g)
∑

c∈{0,1}k

pω∗(c | g) log pω∗(c | g)

= max
ω∗, ||ω∗||1=1

H(pω∗(C | G))

(52)
where in the third line we substituted λi with ω∗

α and the summation over the ordered components with the summation over
α ∈ A∗. Notice that this also means that an ensemble containing all different deterministic RSs with parameters θi can
express arbitrary combinations of them via λ.

Now, consider the case where a few elements of A∗ contribute to achieving maximum entropy for pω∗(C | G). Therefore,
there exists at least one ω∗

α′ = 0, while the remaining lead to the maximum entropy for pω∗(C | G). It holds that, similarly,
the maximum of H(pθ(C | G)) can be obtained by considering a smaller number of components θ since the weight
associated with a specific θj capturing α′ must be 0. This also means that the ensemble dimension K can be strictly smaller
than |A∗|, while still achieving maximal entropy.

We now maximize the entropy on θ and λ together:

max
θ,λ

H(pθ(C | G)) (53)

2425

Since the number of components K is upper-bounded by |A∗|, we can always find a solution by getting all different θi, each
capturing different deterministic distributions αi. On the other hand, when a fewer number of α’s are required, it suffices to
find those K components θi that are combined with a non-zero weight λi. In this case, K < |A∗|. This means, altogether,
that:

max
θ,λ

H(pθ(C | X)) = max
θ,λ

H(pθ(C | G)) = max
ω

H(pω(C | G)) (54)

proving our first point.

We proceed by analyzing the conditional entropy H(C | X), which can be written as:

H(C | X) = −
∫

p(x)
∑

c∈{0,1}k

p(c | x) log p(c | x)dx

= −
∫

p(x)
∑

c∈{0,1}k

∑
i

λipθi(c | x) log
∑
j

λjpθj (c | x)dx

=

∫
p(x)

∑
c∈{0,1}k

∑
i

λipθi(c | x)

[
log

pθi(c | x)∑
j λjpθj (c | x)

− log pθi(c | x)

]
dx

=

∫
p(x)

∑
i

λi

[
KL(pθi(c | x) ||

∑
j

λjpθj (c | x)) +H(pθi(c | x))
]
dx

(55)

where in the third line we multiplied and divided for the members of the ensemble pθi(c | x), and in the last line we grouped
the expressions of the KL divergence and of the conditional entropy. Therefore, for the maximization on θ and λ:

max
λ,θ

H(C | X) = max
λ,θ

∫
p(x)

∑
i

λi

[
KL(pθi(c | x) ||

∑
j

λjpθj (c | x)) +H(pθi(C | X))
]
dx (56)

as claimed. This concludes the proof.

2426

C ADDITIONAL RESULTS

C.1 MNIST-ADDITION

We report here additional results for the experiments shown in Section 4. Along with ECEY and ECEC , we show also the
performances of bears compared to other competitors in terms of the label accuracy (AccY) and concept accuracy (AccC),
both in-distribution and out-of-distribution.

Table 10: Complete evaluation on MNIST-Half. The values on AccY in-distribution shows that bears and all competitors
achieve optimal predictions on labels. The values of AccC in-distribution, on the other hand, show that all methods pick up
a RS. This holds for DPL, SL, and LTN. The pattern completely change out-of-distribution, where all methods struggle in
terms of label accuracy AccY ood.

MNIST-Half

METHOD AccY AccC ECEY ECEC AccY ood AccCood ECEY ood ECECood

DPL 0.98 ± 0.01 0.43 ± 0.01 0.02 ± 0.01 0.69 ± 0.01 0.06 ± 0.01 0.39 ± 0.01 0.92 ± 0.01 0.87 ± 0.01
DPL + MCDO 0.98 ± 0.01 0.43 ± 0.01 0.02 ± 0.01 0.69 ± 0.01 0.06 ± 0.01 0.39 ± 0.01 0.91 ± 0.01 0.86 ± 0.01
DPL + LA 0.98 ± 0.01 0.43 ± 0.01 0.06 ± 0.01 0.65 ± 0.01 0.06 ± 0.01 0.39 ± 0.01 0.87 ± 0.01 0.82 ± 0.01
DPL + PCBM 0.98 ± 0.01 0.43 ± 0.01 0.07 ± 0.08 0.64 ± 0.08 0.06 ± 0.01 0.39 ± 0.01 0.86 ± 0.08 0.80 ± 0.08
DPL + DE 0.99 ± 0.01 0.43 ± 0.01 0.01 ± 0.01 0.64 ± 0.01 0.06 ± 0.01 0.39 ± 0.01 0.83 ± 0.13 0.77 ± 0.13
DPL + bears 0.99 ± 0.01 0.43 ± 0.01 0.09 ± 0.02 0.37 ± 0.01 0.06 ± 0.01 0.39 ± 0.01 0.39 ± 0.03 0.38 ± 0.02

SL 0.99 ± 0.01 0.43 ± 0.01 0.01 ± 0.01 0.71 ± 0.01 0.01 ± 0.01 0.39 ± 0.01 0.95 ± 0.01 0.88 ± 0.01
SL + MCDO 0.99 ± 0.01 0.43 ± 0.01 0.01 ± 0.01 0.70 ± 0.01 0.01 ± 0.01 0.39 ± 0.01 0.92 ± 0.01 0.88 ± 0.01
SL + LA 0.98 ± 0.01 0.43 ± 0.01 0.06 ± 0.01 0.59 ± 0.02 0.01 ± 0.01 0.39 ± 0.01 0.75 ± 0.01 0.75 ± 0.02
SL + PCBM 0.99 ± 0.01 0.43 ± 0.01 0.01 ± 0.01 0.70 ± 0.01 0.01 ± 0.01 0.39 ± 0.01 0.91 ± 0.01 0.88 ± 0.01
SL + DE 0.99 ± 0.01 0.43 ± 0.01 0.01 ± 0.01 0.64 ± 0.08 0.01 ± 0.01 0.39 ± 0.01 0.87 ± 0.05 0.78 ± 0.13
SL + bears 0.99 ± 0.01 0.43 ± 0.01 0.01 ± 0.01 0.38 ± 0.01 0.01 ± 0.01 0.39 ± 0.01 0.75 ± 0.01 0.37 ± 0.03

LTN 0.98 ± 0.01 0.42 ± 0.01 0.02 ± 0.01 0.70 ± 0.01 0.06 ± 0.01 0.39 ± 0.01 0.94 ± 0.01 0.87 ± 0.01
LTN + MCDO 0.98 ± 0.01 0.42 ± 0.01 0.01 ± 0.01 0.69 ± 0.01 0.06 ± 0.01 0.39 ± 0.01 0.93 ± 0.01 0.87 ± 0.01
LTN + LA 0.98 ± 0.01 0.43 ± 0.01 0.14 ± 0.02 0.55 ± 0.02 0.06 ± 0.01 0.39 ± 0.01 0.79 ± 0.02 0.73 ± 0.02
LTN + PCBM 0.98 ± 0.01 0.43 ± 0.01 0.01 ± 0.01 0.69 ± 0.01 0.06 ± 0.01 0.39 ± 0.01 0.94 ± 0.01 0.86 ± 0.01
LTN + DE 0.99 ± 0.01 0.42 ± 0.01 0.01 ± 0.01 0.69 ± 0.01 0.06 ± 0.11 0.39 ± 0.01 0.94 ± 0.01 0.87 ± 0.01
LTN + bears 0.99 ± 0.01 0.43 ± 0.01 0.06 ± 0.01 0.36 ± 0.01 0.08 ± 0.01 0.39 ± 0.01 0.36 ± 0.01 0.32 ± 0.01

We include next the results on the MNIST-Even-Odd. Likewise, bears when paired to all NeSy models shows drastic
improvements in terms of ECEY and ECEC , both in and out-of-distribution.

Table 11: Complete evaluation on MNIST-Even-Odd. All competitors struggle in terms of AccY in-distribution when not
paired to SL, while bears shows sensible improvements when paired on both DPL and LTN. The accuracy on concepts
AccC in-distribution shows that all methods pick up a RS, despite being generally suboptimal. In the out-of-distribution we
observe a drastic degradation on both AccY ood and AccCood.

MNIST-Even-Odd

METHOD AccY AccC ECEY ECEC AccY ood AccCood ECEY ood ECECood

DPL 0.71 ± 0.01 0.01 ± 0.01 0.11 ± 0.01 0.81 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.78 ± 0.01 0.85 ± 0.01
DPL + MCDO 0.72 ± 0.01 0.01 ± 0.01 0.09 ± 0.01 0.80 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.77 ± 0.01 0.84 ± 0.01
DPL + LA 0.71 ± 0.01 0.01 ± 0.01 0.09 ± 0.01 0.78 ± 0.01 0.07 ± 0.01 0.01 ± 0.01 0.76 ± 0.01 0.83 ± 0.01
DPL + PCBM 0.78 ± 0.08 0.11 ± 0.11 0.15 ± 0.13 0.65 ± 0.08 0.05 ± 0.03 0.09 ± 0.01 0.71 ± 0.15 0.72 ± 0.13
DPL + DE 0.76 ± 0.01 0.01 ± 0.01 0.13 ± 0.02 0.69 ± 0.06 0.07 ± 0.01 0.05 ± 0.01 0.64 ± 0.06 0.70 ± 0.07
DPL + bears 0.93 ± 0.03 0.05 ± 0.09 0.21 ± 0.03 0.25 ± 0.07 0.03 ± 0.03 0.12 ± 0.05 0.46 ± 0.03 0.25 ± 0.05

SL 0.97 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.82 ± 0.01 0.01 ± 0.01 0.07 ± 0.01 0.97 ± 0.01 0.87 ± 0.01
SL + MCDO 0.98 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.80 ± 0.01 0.01 ± 0.01 0.05 ± 0.01 0.94 ± 0.01 0.85 ± 0.01
SL + LA 0.98 ± 0.01 0.01 ± 0.01 0.04 ± 0.01 0.73 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.89 ± 0.01 0.78 ± 0.01
SL + PCBM 0.98 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.83 ± 0.01 0.01 ± 0.01 0.07 ± 0.01 0.97 ± 0.01 0.88 ± 0.01
SL + DE 0.99 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.77 ± 0.07 0.01 ± 0.01 0.05 ± 0.01 0.93 ± 0.02 0.81 ± 0.08
SL + bears 0.99 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.34 ± 0.02 0.01 ± 0.01 0.07 ± 0.02 0.85 ± 0.01 0.33 ± 0.03

LTN 0.70 ± 0.01 0.28 ± 0.05 0.29 ± 0.01 0.64 ± 0.05 0.10 ± 0.01 0.09 ± 0.01 0.90 ± 0.01 0.79 ± 0.01
LTN + MCDO 0.72 ± 0.01 0.28 ± 0.05 0.21 ± 0.02 0.62 ± 0.04 0.11 ± 0.01 0.14 ± 0.01 0.85 ± 0.01 0.77 ± 0.01
LTN + LA 0.72 ± 0.01 0.24 ± 0.14 0.13 ± 0.05 0.61 ± 0.12 0.10 ± 0.04 0.26 ± 0.09 0.79 ± 0.01 0.74 ± 0.03
LTN + PCBM 0.73 ± 0.01 0.01 ± 0.01 0.27 ± 0.01 0.85 ± 0.02 0.01 ± 0.01 0.09 ± 0.01 0.99 ± 0.01 0.89 ± 0.01
LTN + DE 0.77 ± 0.05 0.23 ± 0.07 0.13 ± 0.05 0.32 ± 0.05 0.06 ± 0.04 0.08 ± 0.04 0.61 ± 0.07 0.43 ± 0.10
LTN + bears 0.89 ± 0.06 0.22 ± 0.08 0.11 ± 0.02 0.11 ± 0.07 0.13 ± 0.02 0.08 ± 0.02 0.22 ± 0.03 0.13 ± 0.02

2427

C.2 BDD-OIA

We report here the complete evaluation on BDD-OIA . The values on mF1(Y) show that bears does not worsen sensibly
the scores w.r.t. DPL and DPL paired with DE, despite being trained with an extra term (conflicting in principle with the
optimization on label accuracy). LA and PCBM, on the other hand, perform worse compared to other methods. In terms of
mF1(C), both PCBM and bears improve the scores compared to DPL alone.

Table 12: Full results on BDD-OIA .

BDD-OIA

METHOD mF1(Y) mF1(C) mECEY mECEC ECEC(F, S) ECEC(R) ECEC(L)

DPL 0.72 ± 0.01 0.34 ± 0.01 0.08 ± 0.01 0.84 ± 0.01 0.75 ± 0.17 0.79 ± 0.05 0.59 ± 0.32
DPL + MCDO 0.72 ± 0.01 0.34 ± 0.01 0.07 ± 0.01 0.83 ± 0.01 0.72 ± 0.19 0.76 ± 0.08 0.55 ± 0.33
DPL + LA 0.67 ± 0.03 0.34 ± 0.01 0.12 ± 0.03 0.85 ± 0.01 0.84 ± 0.10 0.87 ± 0.04 0.67 ± 0.19
DPL + PCBM 0.68 ± 0.01 0.42 ± 0.01 0.12 ± 0.01 0.68 ± 0.01 0.26 ± 0.01 0.26 ± 0.02 0.11 ± 0.02
DPL + DE 0.72 ± 0.01 0.35 ± 0.01 0.10 ± 0.01 0.79 ± 0.01 0.62 ± 0.03 0.71 ± 0.10 0.37 ± 0.12
DPL + bears 0.70 ± 0.01 0.42 ± 0.01 0.06 ± 0.01 0.58 ± 0.01 0.14 ± 0.01 0.10 ± 0.01 0.02 ± 0.01

C.3 KANDINSKY

We include here the evaluation curves for the active experiment on both the AccY and AccC for DPL paired with the entropy
strategy (in yellow), with the random baseline (in blue), and with bears (in red).

0 10 20 30 40 50 60 70
number of queries

80

90

100

Ac
c Y

DPL
DPL + random
DPL + bears

0 10 20 30 40 50 60 70
number of queries

40

50

60

70

80

90

100

Ac
c C

DPL
DPL + random
DPL + bears

Figure 7: bears allows selecting informative concept annotations faster. (left) label accuracy. (right) concept accuracy.

2428

C.4 CONCEPT-WISE ENTROPY SCORES FOR MNIST-HALF

We report the entropy scores for each concept for all NeSy models we tested. bears performs as desired, whereas the
runner-up, LA, struggles to put low-entropy on 0, especially when paired with SL and LTN.

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5 DPL
DPL + MCDO
DPL + LA
DPL + DE
DPL + PCBM
DPL + bears

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5 DPL
DPL + MCDO
DPL + LA
DPL + DE
DPL + PCBM
DPL + bears

Figure 8: DPL + bears shows high entropy for concepts affected by RSs while it does not for others in out-of-
distribution settings. (left) In distribution. (right) Out-of-distribution

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5 SL
SL + MCDO
SL + LA
SL + DE
SL + PCBM
SL + bears

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5
SL
SL + MCDO
SL + LA
SL + DE
SL + PCBM
SL + bears

Figure 9: SL + bears shows high entropy for concepts affected by RSs while it does not for others. (left): in-distribution.
(right): out-of-distribution.

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5
LTN
LTN + MCDO
LTN + LA
LTN + DE
LTN + PCBM
LTN + bears

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5
LTN
LTN + MCDO
LTN + LA
LTN + DE
LTN + PCBM
LTN + bears

Figure 10: LTN + bears shows high entropy for concepts affected by RSs while it does not for others. (left): in-
distribution. (right): out-of-distribution.

2429

C.5 CONFUSION MATRICES KANDINSKY

We report the confusion matrices (CMs) for the active learning experiment on Kandinsky dataset. At the beginning,
DPL picks a RS showing that only few concept vectors c can be used to solve the classification task. At the last iteration,
corresponding to collecting a total of 70 objects with concept annotation, DPL and DPL + bears show very different CMs.
Both show that colors have learned correctly, although the concept annotation collected with bears make DPL align more
to the diagonal, corresponding to the intended solution.

(S
qu

ar
e,

 R
ed

)

(S
qu

ar
e,

 Ye
llo

w)

(S
qu

ar
e,

 B
lu

e)

(C
irc

le
, R

ed
)

(C
irc

le
, Y

el
lo

w)

(C
irc

le
, B

lu
e)

(T
ria

ng
le

, R
ed

)

(T
ria

ng
le

, Y
el

lo
w)

(T
ria

ng
le

, B
lu

e)

(Square, Red)

(Square, Yellow)

(Square, Blue)

(Circle, Red)

(Circle, Yellow)

(Circle, Blue)

(Triangle, Red)

(Triangle, Yellow)

(Triangle, Blue)

Figure 11: DPL at iteration 0 in active learning settings on Kandinsky

(S
qu

ar
e,

 R
ed

)

(S
qu

ar
e,

 Ye
llo

w)

(S
qu

ar
e,

 B
lu

e)

(C
irc

le
, R

ed
)

(C
irc

le
, Y

el
lo

w)

(C
irc

le
, B

lu
e)

(T
ria

ng
le

, R
ed

)

(T
ria

ng
le

, Y
el

lo
w)

(T
ria

ng
le

, B
lu

e)

(Square, Red)

(Square, Yellow)

(Square, Blue)

(Circle, Red)

(Circle, Yellow)

(Circle, Blue)

(Triangle, Red)

(Triangle, Yellow)

(Triangle, Blue)

(S
qu

ar
e,

 R
ed

)

(S
qu

ar
e,

 Ye
llo

w)

(S
qu

ar
e,

 B
lu

e)

(C
irc

le
, R

ed
)

(C
irc

le
, Y

el
lo

w)

(C
irc

le
, B

lu
e)

(T
ria

ng
le

, R
ed

)

(T
ria

ng
le

, Y
el

lo
w)

(T
ria

ng
le

, B
lu

e)

(Square, Red)

(Square, Yellow)

(Square, Blue)

(Circle, Red)

(Circle, Yellow)

(Circle, Blue)

(Triangle, Red)

(Triangle, Yellow)

(Triangle, Blue)

Figure 12: Iteration 70 in active learning settings on Kandinsky. Right: DPL Left: DPL + bears

2430

C.6 CONFUSION MATRICES ON BDD-OIA

Forward Stop Left Right

Figure 13: DPL confusion matrices per concept classes on BDD-OIA

0 1

0

1

Tr
ue

 la
be

l

1.00 0.00

1.00 0.00

green_light

0 1

0

1

0.09 0.91

0.00 1.00

follow_traffic

0 1

0

1

1.00 0.00

1.00 0.00

clear_road

0 1

0

1

1.00 0.00

0.99 0.01

traffic_light

0 1

0

1

0.76 0.24

0.32 0.68

traffic_sign

0 1

0

1

0.96 0.04

0.86 0.14

obstacle_car

0 1

0

1

0.98 0.02

0.98 0.02

obstacle_person

0 1

0

1

Tr
ue

 la
be

l

1.00 0.00

0.90 0.10

obstacle_rider

0 1

0

1

0.79 0.21

0.89 0.11

obstacle_others

0 1

0

1

0.98 0.02

0.99 0.01

no_left_lane

0 1

0

1

1.00 0.00

1.00 0.00

obstacle_on_left

0 1

0

1

0.97 0.03

0.99 0.01

solid_line_on_left

0 1

0

1

0.00 1.00

0.00 1.00

on_left_turn_lane

0 1

0

1

0.00 1.00

0.00 1.00

traffic_light_allow_left

0 1
Predicted label

0

1

Tr
ue

 la
be

l

0.00 1.00

0.00 1.00

front_car_turning_left

0 1
Predicted label

0

1

0.01 0.99

0.02 0.98

no_lane_on_right

0 1
Predicted label

0

1

0.01 0.99

0.00 1.00

obstacle_on_right

0 1
Predicted label

0

1

0.03 0.97

0.01 0.99

solid_line_on_right

0 1
Predicted label

0

1

0.58 0.42

0.26 0.74

on_right_turn_lane

0 1
Predicted label

0

1

0.58 0.42

0.50 0.50

traffic_light_allows

0 1
Predicted label

0

1

0.54 0.46

0.47 0.53

front_car_turning_right

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

Figure 14: DPL multilabel confusion matrix on BDD-OIA

2431

Forward Stop Left Right

Figure 15: DPL + bears confusion matrices per concept classes on BDD-OIA

0 1

0

1

Tr
ue

 la
be

l

0.48 0.52

0.06 0.94

green_light

0 1

0

1

0.34 0.66

0.08 0.92

follow_traffic

0 1

0

1

0.54 0.46

0.37 0.63

clear_road

0 1

0

1

1.00 0.00

1.00 0.00

traffic_light

0 1

0

1

0.62 0.38

0.10 0.90

traffic_sign

0 1

0

1

1.00 0.00

1.00 0.00

obstacle_car

0 1

0

1

1.00 0.00

1.00 0.00

obstacle_person

0 1

0

1

Tr
ue

 la
be

l

1.00 0.00

1.00 0.00

obstacle_rider

0 1

0

1

1.00 0.00

1.00 0.00

obstacle_others

0 1

0

1

0.97 0.03

0.97 0.03

no_left_lane

0 1

0

1

0.97 0.03

0.95 0.05

obstacle_on_left

0 1

0

1

0.97 0.03

0.94 0.06

solid_line_on_left

0 1

0

1

0.05 0.95

0.08 0.92

on_left_turn_lane

0 1

0

1

0.08 0.92

0.11 0.89

traffic_light_allow_left

0 1
Predicted label

0

1

Tr
ue

 la
be

l

0.05 0.95

0.02 0.98

front_car_turning_left

0 1
Predicted label

0

1

0.38 0.62

0.46 0.54

no_lane_on_right

0 1
Predicted label

0

1

0.43 0.57

0.37 0.63

obstacle_on_right

0 1
Predicted label

0

1

0.34 0.66

0.37 0.63

solid_line_on_right

0 1
Predicted label

0

1

0.73 0.27

0.48 0.52

on_right_turn_lane

0 1
Predicted label

0

1

0.68 0.32

0.62 0.38

traffic_light_allows

0 1
Predicted label

0

1

0.67 0.33

0.62 0.38

front_car_turning_right

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Figure 16: DPL + bears multilabel confusion matrix on BDD-OIA

2432

C.7 CONFUSION MATRICES ON MNIST-HALF

00 01 10 12 14 20 21 23 24 32 41 42 44

Predicted label

01

10

12

14

20

21

23

24

32

41

42

44

Tr
ue

 la
be

l

RSs Confusion Matrix on Combined Concepts

0.0

0.2

0.4

0.6

0.8

1.0

00

POLLO

00 01 10 14 02 20 23 24 32 33 41 42 44

Predicted label

00

01

10

14

02

20

23

24

32

33

41

42

44

Tr
ue

 la
be

l

RSs Confusion Matrix on Combined Concepts

0.0

0.2

0.4

0.6

0.8

1.0

Figure 17: (left) DPL and (right) DPL + bears concepts confusion matrix on MNIST-Half

2433

	Introduction
	Preliminaries
	From Mitigation to Awareness
	Awareness Via Entropy Maximization
	Maximizing Entropy
	RS-Awareness with bears
	bears through a Bayesian Lens
	Active Learning with Dense Annotations
	Benefits and Limitations

	Empirical Analysis
	Related Work
	Conclusion
	Implementation Details
	Implementation
	Metrics
	bears implementation
	Datasets details
	MNIST-Even-Odd
	MNIST-Half
	Kandinsky
	BDD-OIA

	Hyperparameters and Model selection
	Architectures and Model Details
	Active Learning Setup
	Runtime Comparison

	Theoretical Material
	Proof of Lemma 1
	Entropy on concept vectors and Reasoning Shortcuts
	Proof of Proposition 2
	Proof of Proposition 3

	Additional Results
	MNIST-Addition
	BDD-OIA
	Kandinsky
	Concept-wise Entropy scores for MNIST-Half
	Confusion Matrices Kandinsky
	Confusion Matrices on BDD-OIA
	Confusion Matrices on MNIST-Half

