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Abstract

In this paper, we introduce an algorithm for data
quantization based on the principles of Kashin rep-
resentation. This approach hinges on decomposing
any given vector, matrix, or tensor into two factors.
The first factor maintains a small infinity norm,
while the second exhibits a similarly constrained
norm when multiplied by an orthogonal matrix.
Surprisingly, the entries of factors after decompo-
sition are well-concentrated around several peaks,
which allows us to efficiently replace them with
corresponding centroids for quantization purposes.
We study the theoretical properties of the proposed
approach and rigorously evaluate our compression
algorithm in the context of next-word prediction
tasks and on a set of downstream tasks for text clas-
sification. Our findings demonstrate that Kashin
Quantization achieves competitive or superior qual-
ity in model performance while ensuring data com-
pression, marking a significant advancement in the
field of data quantization.

1 INTRODUCTION

The realm of data processing and machine learning is in-
creasingly confronting challenges linked to the efficient stor-
age and management of large volumes of data. Traditional
methods frequently result in elevated storage costs and com-
putational inefficiencies, particularly when handling modern
Large Language Models (LLMs). The availability of open
source LLMs, such as OPT [Zhang et al., 2022], Llama 1
and 2 [Touvron et al., 2023a,b], Falcon [Almazrouei et al.,
2023] stimulates the need to run them efficiently on local
hardware.

In response, we introduce Kashin Quantization, a novel
approach for data quantization that extends beyond the con-
ventional use of the Kashin representation algorithm. We

studied the algorithm for constructing Kashin representa-
tions [Kashin and Romskii, 2023], proposed a fast matrix
version of the algorithm, and suggested an approach to use
it for the quantization of large models.

The method re-imagines data representation by breaking
down any data structure into two key factors. The first factor
is optimized for a minimal infinity norm, while the second
maintains a small infinity norm when post-multiplied by an
orthogonal matrix. This strategy is not merely theoretical;
its linear convergence makes it both effective and rapid in
practical applications.

Addressing the challenge of working with resource-intensive
orthogonal matrices, Kashin Quantization integrates struc-
tured matrix types, such as Householder, DCT, and Butter-
fly matrices. These matrices enable fast matvec operations,
boosting memory efficiency and accelerating computation,
thereby elevating the overall effectiveness of the algorithm.

A pivotal aspect of Kashin Quantization is its proficiency
in concentrating data values around defined peaks (Figure
6), substantially reducing the need for expansive storage.
By mapping these values to centroids of two-dimensional
distributions (one dimension for each factor), it remarkably
reduces data representation size, compressing traditional
32-bit floats to low-bit values. This technique is notably
advantageous in large-scale machine learning models, where
data size and efficiency are paramount.

Expanding its utility, Kashin Quantization is not only per-
tinent for quantizing Large Neural Networks but also for
compressing exchange information, like gradients in Feder-
ated Learning [Safaryan et al., 2022] and distributed com-
putations. This extension illustrates the versatility of our
approach in diverse machine learning environments.

Furthermore, we enhance Kashin Quantization by incor-
porating a matrix reformulation of the Kashin algorithm,
which substantially accelerates computations. This advance-
ment provides a more efficient methodology for handling
large-scale data and complex computations in neural net-
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works.

To validate our approach’s efficacy, we apply Kashin Quan-
tization to several common benchmarks in natural language
processing. Employing language models like OPT, Bert,
and RoBerta we demonstrate that our method leads to com-
petitive or superior predictive quality on both next token
prediction and text classification tasks while maintaining
the level of quantization. This balance of efficiency and
performance highlights Kashin Quantization’s potential to
transform data quantization practices in machine learning
and allied fields.

This paper makes the following contributions:

1. We introduce the Matrix Decomposition Kashin Al-
gorithm. The vanilla algorithm for building Kashin
representation requires vectorization of input data and
building an orthogonal matrix of possibly huge dimen-
sions. For an m× n matrix to decompose, we need a
matrix of (mn)2 elements. Instead, we propose to use
a Kronecker-factored matrix, which leads to the mem-
ory footprint of m2 + n2. We benchmark the proposed
approach and study its limitations.

2. We explore the theoretical properties of the conver-
gence rate of the algorithm we proposed. We observed,
that the specific choice of basis vectors affects the con-
vergence. We establish the connection between the
convergence rate of the Vector Decomposition Kashin
Algorithm and the Kolmogorov width, corresponding
to the specific choice of basis.

3. We propose the Kashin Quantization algorithm for neu-
ral network weights quantization, that utilizes the prop-
erties of the Kashin representations. We benchmark
the proposed approach empirically on the family of
OPT models on the next token prediction problem and
compare perplexity with the baselines, demonstrating
the validity of the proposed approach. Additionally, we
conduct experiments on the GLUE benchmark, quan-
tizing Bert and RoBerta models finetuned on several
downstream tasks and achieving superior results com-
pared to common quantization methods.

2 METHOD

Representing the vector in overdetermined basis. Sup-
pose we have a vector x ∈ Rn. Its elements may have
different magnitudes (large ’spread’) and that can prohibit
efficient quantization (i.e., low-bit representation) of the ele-
ments. We aim to transform this vector into another vector,
which can be represented with fewer number of bits. First,
we introduce an overdetermined basis of size 2n: instead of
n coefficients, we will represent the vector with m = 2n
coefficients, but with fewer bits per element. This basis will
consist of the original standard basis and the basis given by

the columns of the orthogonal matrix Q. In vector notation,
this is equivalent to representing x as a sum

x ≈ u+Qv, (1)

which admits good low-bit approximation (we will discuss
this in detail in Section 4). Fortunately, based on the results
of Kashin [1977] and Kashin and Romskii [2023] this rep-
resentation can be computed efficiently for an arbitrary Q
except for the set of small measure:

Theorem 1 (Kashin and Romskii [2023]). For ∀x ∈ BN
2 =

{x ∈ RN : ∥x∥2 ≤ 1} a greedy algorithm in k steps builds
vectors uk and vk such that∥∥x− uk − vk

∥∥
2
≤ ηk

∥∥uk

∥∥
∞ ≤

c√
N

,
∥∥Qvk

∥∥
∞ ≤

c√
N

where c > 0 is an absolute constant, Q ∈ O(N), where
O(N) is a set of orthogonal matrices in RN with Haar
measure µH .

Computing the representation using a greedy approach.
Without loss of generality, we assume that the vector x has a
unit Euclidean norm ∥x∥2 = 1 (otherwise it can be scaled).
Given x, we can find the closest vector x̂ with elements
x̂i ∈ {−1, 1} as x̂i = sign(xi), note, that ∥x̂∥2 =

√
n. The

chosen vector serves as the direction for the first vector u in
the relation (1). Which means, that the projection of x onto
x̂ is

πx(x̂) = λx̂ = ∥x∥2
⟨x, x̂⟩
∥x∥2∥x̂∥2

x̂

∥x̂∥2
=
∥x∥1
n

x̂.

Figure 1: We select the vector to project on in a greedy
manner.

and since three vectors x, λx̂ and x− λx̂ will always form
an orthogonal triangle by design the distance is given as

∥x− λx̂∥22 = ∥x∥22 −
∥x∥21
n2
∥x̂∥22 = ∥x∥22 −

∥x∥21
n

. (2)
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Algorithm 1 Vector Decomposition Kashin Algorithm

Input: Vector x ∈ Rn, Orthogonal matrix Q, Tolerance
ε > 0
Output: Vectors u, v̂ ∈ Rn such that x ≈ u+v̂ = u+Qv,
and both u and v have small infinity norm.
Initialize u← 0n, v̂ ← 0n

Define projection πx(y) :=
x⊤y

∥y∥22
· y

while ∥x− u− v̂∥ ≥ ε do
if ∥x∥1 > ∥QTx∥1 then
π ← πx(Sign(x))
u← u+ π

else
π ← πx(QSign(QTx))
v̂ ← v̂ + π

end if
x← x− π

end while
Return: x, u, v̂

The second component Qv from (1) will be formed similarly.
Note, that multiplying the vector v with ±1 components by
matrix Q is equivalent to the rotation of the whole space
with the matrix Q, which is also the same as the backward
rotation of all vectors except v with the matrix QT . Indeed,
from (1) QTx ≈ QTu+ v. Thus, the closest vector to x of
the form Qv with vi ∈ {−1, 1} is given as

x̂ = λQsign(QTx),

and the residual given by the Pythagorean theorem again is

∥x− x̂∥22 = ∥x∥22 −
∥QTx∥21

n
. (3)

In the greedy algorithm we start from x0 = x, then for k =
0, . . . we select a vector of form λx̂k or λQx̂k (where x̂k

has elements±1) that is the closest to the vector xk, subtract
the projection πxk

(sign(xk)) or πxk

(
sign(QTxk)

)
) from

it and repeat the procedure until convergence. Thus, we
decompose the initial vector decreasing the norm of xk each
iteration and increasing the norm of factors uk and v̂k. The
idea is summarized in Algorithm 1.

Convergence of the algorithm The vector algorithm is
guaranteed to converge for arbitrary orthogonal matrix Q
except for a set of small measure [Kashin, 1977]. Our ex-
periments demonstrate, that the convergence speed varies
when choosing from the classes of structured orthogonal
matrices. The demonstration is presented in Figure 2, where
we took 5 different orthogonal matrices Q and generated
23 random vectors of the form x ∈ R1000. Householder
reflection and Givens rotation perform poorly, whereas dct,
random orthogonal and butterfly matrices perform on par.

0 10 20 30 40 50
Iteration, k

10 7

10 5

10 3

10 1

x 0
u k

v k
2

Vector decomposition algorithm convergence.
 Decomposition error for different Q.

 Averaged on 23 random vectors of dimension 1000.

butterfly
dct
givens
householder
qr

Figure 2: Convergence criterion (∥x0 − uk − v̂k∥2) for
randomly generated vector x of length 1000. The semi-
transparent area shows the confidence interval.

Differences in convergence raise a natural question about
the convergence properties of Algorithm 1. On each iteration
we have a vector as an input x, from which we subtract a
projection, resulting in a vector x − x̂. Thus, we consider
the difference between them as a decreasing factor on the
iteration and any constructive approach to bound its norm
with respect to the matrix Q properties is of interest.

Suppose on k-th iteration we have xk and the squared norm
after a single iteration of the algorithm ∥xk+1∥22 could be
either ∥x∥22 −

∥x∥2
1

n or ∥x∥22 −
∥QT x∥2

1

n from (2) and (3).
Note also, that the choice is made in favor of maximum 1-
norm max(∥x∥1, ∥QTx∥1). Overall, we decrease the resid-
ual norm at each iteration, which ensures the convergence
of the algorithm. One can consider starting iteration, where
∥x0∥2 = ∥x∥2 = 1, which leads to the

∥x− x̂∥2 ≤ 1− 1

n

(
max(∥x∥1, ∥QTx∥1)

)2
(4)

Clearly, the specific choice of the matrix Q affects the quan-
tity max(∥x∥1, ∥QTx∥1). Moreover, this simple estimation
immediately poses another interesting question. How does
the choice of an input vector x affect the convergence?
The answer could be obtained from studying the follow-
ing optimization problem, which is clearly related to the
Kolmogorov width Temlyakov [1998] estimation:

min
∥x∥2=1

max(∥x∥1, ∥QTx∥1) (5)

The problem (5) determines the worst-case convergence
rate for a specific matrix Q. To address the problem we
considered several classes of orthogonal matrices Q (see
more details in Section 3) and performed a search across
all eigenvectors of the matrix QT (∥QTx∥1 = ∥λx∥1). The
results are presented in Table 1.
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Figure 3: Convergence criterion (∥x− x̂∥2) of the matrix decomposition Kashin algorithm for different layers of OPT-125m
model. Left: The algorithm with the DCT matrix converges very slowly after several iterations. Right: The algorithm with
the DCT matrix converges well for another layer.

Matrix version of the algorithm. As we delved into the
nuances of matrix decomposition, leveraging the pioneering
Kashin vector decomposition algorithm 1 initially seemed a
straightforward extension: vectorize the matrices and pro-
ceed with the decomposition. Yet, this simplistic approach
soon revealed its limitations, especially when faced with
matrices of even moderate size, such as the 768 × 3072
matrices encountered in the fully connected layers of the
OPT-125m model. The challenge of managing large vectors
soon made it clear that we needed a new approach. This led
to the development of the Matrix Decomposition Kashin
Algorithm (Algorithm 2), an improved version of the ear-
lier method, specifically created to tackle the difficulties
involved in breaking down matrices.

In the naive implementation to decompose a matrix of shape
m×n one needs to store matrix Q of shape mn×mn, while
the matrix version leads to memory reduction since we need
to store m×m+ n× n for Q1 and Q2. The genesis of the
proposed Algorithm 2 follows from the simple observation.
Let’s assume our orthogonal matrix Q can be represented
as a Kronecker product of two smaller orthogonal matrices
QT

1 and QT
2 :

Q = QT
2 ⊗QT

1 (6)

From the properties of Kronecker product, we get:

(QT
2 ⊗QT

1 )vec(X) = vec(QT
1 XQ2) (7)

However, by assuming the special structure of Q we might
lose the robustness guaranteed for random orthogonal matri-
ces (as proven in [Kashin, 1977], [Lyubarskii and Vershynin,
2010]). Indeed, as shown in [Guedon et al., 2008], some dis-
crete orthonormal systems produce slightly worse bounds.

Figure 4 illustrates that the time needed for the same compu-

Algorithm 2 Matrix Decomposition Kashin Algorithm

Input: Matrix X ∈ Rm×n, Orthogonal matrices Q1, Q2,
Tolerance ε > 0
Output: Matrices U, V̂ ∈ Rm×n, such that X ≈ U +
V̂ = U + Q1V QT

2 and both Vec(U) and Vec(V ) have
small infinity norm.
Initialize U ← 0m×n, V̂ ← 0m×n

Define projection πX(Y ) :=
Vec(X)⊤Vec(Y )

∥Vec(Y )∥22
· Y

while ∥X − U − V̂ ∥ ≥ ε do
Y ← QT

1 XQ2

if ∥Vec(X)∥1 > ∥Vec(Y )∥1 then
π ← πX(Sign(X))
U ← U + π

else
π ← πX(Q1Sign(Y )Q⊤

2 )
V̂ ← V̂ + π

end if
X ← X − π

end while
Return: X,U, V̂

tations is notably less for the matrix version of the algorithm
than for the vector one.

3 HOW ORTHOGONAL MATRIX Q
AFFECTS THE ALGORITHM

The choice of orthogonal matrix Q in algorithms 1 and 2
can significantly impact convergence and execution time.
Figure 3 demonstrates the different convergence properties
of the algorithm for different input matrices.

In this work, we have tried several classes of orthogonal
matrices:
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Figure 4: Left: Matrix Decomposition Kashin Algorithm 2 performs significantly faster for matrices, than vectorization and
applying Vector Decomposition Kashin Algorithm 1. Right: Time comparison of different orthogonal matrices for Matrix
Decomposition Kashin Algorithm

3.1 RANDOM ORTHOGONAL MATRIX

Random orthogonal matrix Q is obtained from the QR de-
composition of a matrix generated from a normal distribu-
tion.

3.2 HOUSEHOLDER REFLECTION

The Householder matrix is an orthogonal matrix that de-
scribes a reflection across a hyperplane orthogonal to some
unit vector y:

Q = I − 2yy∗ (8)

3.3 DISCRETE COSINE TRANSFORM

Discrete Cosine Transform (DCT) is an orthogonal linear
mapping similar to the discrete Fourier transform (DFT),
but using only the cosine functions. We chose the most
commonly used form, DCT-II:

Q[i, j] =


1√
n
, j = 0√
2
n cos

(
π(2i+1)j

2n

) (9)

3.4 BUTTERFLY MATRICES

Butterfly matrices are a class of structured orthogonal matri-
ces that allow fast vector-by-matrix multiplication.

A butterfly matrix Q of size n = 2m can be represented
as a product of m block diagonal matrices (called butterfly
factor matrices). We denote each butterfly factor matrix as
Bk, where k indicates block size:

Q = BnBn
2
. . . B2

Bk = diag(F1, F2, . . . , Fn
k
)

(10)

Figure 5: Butterfly factor matrices from left to right: B8, B4,
B2

Each block Fi (a butterfly factor) of size k has a form[
D1 D2

D3 D4

]
where Di is a k

2 ×
k
2 diagonal matrix. Figure 5

shows an example of a butterfly matrix of size 16.

Matrices like Householder Reflection (3.2), Discrete Cosine
Transform (3.3), and Butterfly matrices (3.4) support faster
matvec multiplications (faster than O(n2)) due to their spe-
cial structure. For example, Householder transformation
boils down to a simple operation with two vectors:

(I − 2yy∗)x = x− 2⟨y, x⟩y (11)

while DCT and Butterfly matrices allow for O(n log n) com-
plexity of matrix-vector multiplication.

3.5 CONVERGENCE PROPERTIES

However, an obvious problem arises for Householder Re-
flexion considering the convergence bound (4): when ∥x∥1
is small (for example, x is very sparse) and the dimension is
high, vectors y and x might be orthogonal, thus QTx will be
equal to x (x will lie on the reflection plane and will be the
eigenvector of QT ). This keeps max(∥x∥1, ∥QTx∥1) small
and, consequently, the convergence bound - high.

We try to estimate potential minimums of
max(∥x∥1, ∥QTx∥1) expression in Table 1 by taking
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Table 1: Estimation for x = Re[y], y ∈ eig(Q). Mean over
100 generated Q matrices (except for DCT). Matrix size is
500× 500. All results are divided by

√
n.

Q min∥x∥2=1 max{∥x∥1, ∥QTx∥1}

RANDOM 0.548
HOUSEHOLDER 0.076
DCT 0.330
BUTTERFLY 0.547

the real part of eigenvalues (only the Householder matrix is
symmetric and has real eigenvectors) of each orthogonal
matrix. These results allow us to hypothesize that qr and
butterfly matrices in the general case should converge best.
These results coincide with the empirical convergence of
the algorithm for randomly generated vectors (Figure 2).

4 QUANTIZATION APPROACH

As soon as we have the decomposition X = U +Q1V QT
2 ,

where u and v have small infinity norm, we may hope, that
the entries distribution of these vectors may be quantized
well. The idea behind the quantization approach is fairly
simple. We replace the values in the factors with the nearest
centroids values, calculated with the clustering procedure.
For illustration, we consider matrix X ∈ R500×200 with
entries from standard distribution and apply Matrix Decom-
position Kashin Algorithm 2 to it. Figure 6 clearly illustrates
that values of factors U and V are well quantized.

The red lines and dots on the graph represent the centroids
of corresponding clusters of values. The number of clusters
is defined by the number of bits for quantization. Figure 6
contains 4 clusters per factor, which means, that we need to
store the values of 16 = 24 points or 4 bits. From the same
figure, one can conclude, that 16 clusters per factor leads to
the 16× 16 = 256 = 28 possible pairs of clusters.

To measure the quality of the proposed quantization proce-
dure we decided to consider weights of OPT models [Zhang
et al., 2022] and decompose all layers except the embedding
layer in the model in a similar manner. So, we applied Algo-
rithm 2 for each weight matrix Xi and recieved Ui, V̂i for
layer i. After that, we applied the clustering procedure to
the set of 2-dimensional vectors obtained from stacking Ui

values and Vi = QT
1 V̂iQ2 values with a selected number of

clusters (32 for 5 bits, 64 for 6 bits, etc.). After obtaining
centroids, we replace each entry in the matrices Ui, Vi with
its closest centroid value. As a result, we have quantized
factors Uq

i and V q
i with relatively small infinity error. And

all we have to do is to replace the old forward pass with ma-
trix Xi(·) with the new forward pass

[
Uq
i +Q1V

q
i Q

T
2

]
(·).

It is important to highlight, that we do not need to store the

Table 2: Perplexity for OPT family of models with differ-
ent quantization schemes. Part of the transformer layers are
quantized with Kashin M-bit quantization (those, for which
Kashin decomposition has converged) and others are quan-
tized with N-bit. The "Quantized Layers" column specifies
how many layers were quantized with each method (first
fraction for N-bit and second fraction for kM-bit).

QUANTIZATION PERPLEXITY QUANTIZED LAYERS

OPT-125M

FP32 42.01

8-BIT 42.19 72/72
8-BIT + K6-BIT 43.38 15/72 + 57/72
8-BIT + K5-BIT 45.74 15/72 + 57/72
4-BIT 48.92 72/72
4-BIT + K6-BIT 44.88 15/72 + 57/72
4-BIT + K5-BIT 47.25 15/72 + 57/72

OPT-350M

FP32 36.64

8-BIT 36.77 146/146
8-BIT + K6-BIT 37.59 25/146 + 121/146
8-BIT + K5-BIT 40.01 25/146 + 121/146
4-BIT 44.46 146/146
4-BIT + K6-BIT 37.61 25/146 + 121/146
4-BIT + K5-BIT 40.05 25/146 + 121/146

matrices Q1 and Q2, their action is replaced with effective
DCT or Butterfly matvec procedures.

However, we observed, that not all layers could be com-
pressed equally well with Algorithm 2. This is clearly dis-
tinguished either visually (see Figure 7) or from monitoring
convergence speed. The reasons behind such behavior of
the method are yet to be described. For practical reasons,
we decided not to decompose such layers. The results are
presented in Table 2.

5 EXPERIMENTS

To prove the efficacy of our method, we use the Open Pre-
trained Transformers (OPT [Zhang et al., 2022]) language
models and the LAMBADA dataset [Paperno et al., 2016].

First, we try to compare Kashin Decomposition with differ-
ent orthogonal matrices for several layers of the opt-125m
language model. Unlike randomly generated matrices, the
convergence of Kashin decomposition for network weights
can be quite unpredictable. Figure 3 depicts the value of
the convergence criterion for two different layers of the first
transformer block. For the fc1 layer, the algorithm fails to
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Figure 6: Factors U and V are well quantized after computing Kashin decomposition.

Table 3: GLUE

QUANTIZATION COLA SST-2 QQP QNLI MNLI RTE STS-B MRPC WNLI

ROBERTA-BASE

FP32 59.06 93.8 91.24/88.36 92.62 88.1/87.43 67.87 89.65/89.49 87.75/91.2 56.34

UNIFORM 4BIT 0.0 49.08 36.82/53.82 49.46 31.82/31.82 52.71 10.08/9.37 68.38/81.22 56.34
KMEANS 4BIT 46.97 92.77 88.77/87.39 89.27 83.98/82.85 55.23 79.65/80.47 71.32/75.77 56.34
KASHIN 4BIT (OURS) 52.09 90.37 89.53/86.73 91.14 86.41/85.51 60.28 87.29/87.26 83.08/87.10 56.34

BERT-BASE

FP32 59.31 91.74 90.66/87.39 90.74 83.96/84.24 64.98 88.94/88.77 84.31/88.81 42.25

UNIFORM 4BIT 1.24 49.66 38.09/52.75 49.22 32.24/33.34 50.18 -0.21/-0.25 63.97/76.02 49.3
KMEANS 4BIT 54.43 91.51 88.87/85.33 88.01 78.63/78.76 55.23 85.06/85.0 34.55/8.87 54.92
KASHIN 4BIT (OURS) 59.65 91.63 90.28/87.33 90.06 83.88/84.01 63.53 88.76/88.56 84.80/89.31 42.25

Figure 7: Left: Slow convergence of the Matrix Decomposi-
tion Kashin algorithm for a particular weight matrix from
OPT-125m leads to poor concentration of values and high
quantization error. Right: another layer weight matrix could
be easily decomposed and quantized.

converge in the maximum number of steps and dct con-
verges slower than butterfly and qr. For the q_proj layer,
dct performs on par with qr and slightly better than but-
terfly. Kashin Decomposition with householder reflection
performs poorly in both cases. In all further experiments,
we use either qr or butterfly orthogonal matrices.

Next, we apply Kashin Quantization and measure LLM’s
perplexity. As seen in Figures 3 and 7, Kashin Decomposi-

tion doesn’t always converge for LLM weights, which leads
to high quantization error. In our experiments with the OPT
family of models, we encountered about 0.2 fractions of
poorly converged layers. To compensate for these layers,
we leave their weights with the default quantization scheme
(8-bit or 4-bit versions of weights from the huggingface
hub). Results can be seen in Table 2.

Kashin Quantization achieves a trade-off between low bit
weights, inference speed, and LLM prediction quality. For
example, full 4-bit quantization significantly raises the
model’s perplexity, whereas 4-bit + Kashin 6-bit quanti-
zation almost restores the quality of the 8-bit model. That,
in conjunction with the ability to perform lower-bit oper-
ations and faster matrix multiplication (with the right or-
thogonal matrix choice, for example, butterfly matrices) can
significantly reduce LLM’s inference speed and memory
requirements.

Additionally, we conduct experiments on text classification
with a set of downstream tasks (GLUE benchmark). We have
finetuned Bert and RoBerta models, measured their accuracy
as a baseline, and then quantized linear layers in transformer
blocks with three quantization methods: uniform, kmeans,
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Figure 8: Scheme of post-training quantization approach.

and Kashin quantization (ours). Kashin quantization demon-
strates superior quality on almost all GLUE datasets for
both models (Figure 3).

6 RELATED WORK

Large Language Models (LLMs) nowadays are ubiquitous
and used in all imaginable applications. However, their com-
plexity heavily depends on several parameters. For example,
the flagship of LLAMA-2 [Touvron et al., 2023a] family of
models has over 70 billion parameters. This impedes model
speed and sometimes makes training or even inference im-
possible due to a lack of GPU memory.

Quantization [Nagel et al., 2021] is a popular technique to
reduce the model size and inference time. Naturally, it is
often applied to LLMs. For instance, QLORA [Dettmers
et al., 2023] paper used quantized weights in conjunction
with Low-Rank Adapters to fine-tune language models on
downstream tasks, and LLM.int8 [Dettmers et al., 2022] has
introduced a new Int8 matrix multiplication procedure for
feed-forward and attention projection layers in transformers.
Still, the quantization of transformers often proves to be
a tricky task, especially the quantization of activations. It
happens due to the presence of huge outliers in activations
that originate from the attention mechanism ([Bondarenko
et al., 2021], [Bondarenko et al., 2023]).

Best accuracy results are usually obtained with quantization-
aware training. Another approach, taken in [van Baalen
et al., 2020], is to learn bit-width and quantization param-
eters simultaneously with model weights. However, both
techniques require dataset and resources to train the model
with an additional step of quantization on each weight up-
date.

To avoid training expenses, methods that allow for no
training/fine-tuning have been of particular interest in
several papers: authors in [Eldad et al., 2019] scale
the weights of consecutive layers which allows them to
achieve smaller quality drop on a wide variety of networks;

AdaRound [Nagel et al., 2020] proves that rounding to the
nearest node of the quantization grid is not the best strategy
and propose to choose rounding by optimization process
which requires only a few thousand samples of data, re-
searches in [Hubara et al., 2020] further develop the idea
of AdaRound, complementing it with integer programming
to determine the best bit-width for each layer.

It is important to note that there are other ways to reduce
memory footprint when using large models, such as auto-
matic mixed precision [Micikevicius et al., 2017], opera-
tions approximation [Bershatsky et al., 2022, Novikov et al.,
2023], and checkpointing [Chen et al., 2016, Gusak et al.,
2022].

In our work we use Kashin Representations, introduced in
[Kashin, 1977]. It’s an expansion of vector x in a redundant
orthogonal basis which guarantees that the maximum among
absolute values of coefficients (the infinity norm) is upper
bounded. It is a source for representation in Eq. 1 and Algo-
rithm 1. [Garnaev and Gluskin, 1984] discusses the redun-
dancy level in Kashin representations and [Lyubarskii and
Vershynin, 2010] investigates the applicability of Kashin
representations to vector quantization using tight orthogonal
frames that satisfy uncertainty principle.

7 CONCLUSION AND FURTHER
RESEARCH

We have proposed a matrix case generalization of the Kashin
Representation algorithm and applied it to the weights of
transformer language models. We have compared different
choices of orthogonal matrices and theorized on efficacy of
each based on both empirical results and metrics in Eq. 5
estimation among eigenvectors of Q.

Kashin Quantization backed up by the conventional uniform
quantization achieves a good compromise between model
perplexity and memory requirements. Additionally, Kashin
representation allows to use of faster matrix multiplication
due to the choice of Q.
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There is much yet to be determined about the properties of
convergence of Algorithm 2. As noted in Section 5, the pro-
posed decomposition for matrices of model weights doesn’t
always converge in a restricted number of iterations. The
proper investigation of both failed matrix weights and spe-
cial structure of orthonormal basis Q is a question of further
research.

We are looking forward to applying Kashin Decomposition
to the quantization of activations. As shown in [Bondarenko
et al., 2021] and [Bondarenko et al., 2023], quantization
of transformer activations often suffers from huge outliers.
Since Kashin Representation guarantees an upper bound on
infinity norms (maximum absolute value) of decomposition
factors, it can be assumed that Kashin Quantization should
be particularly beneficial to LLM activations quantization.
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