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Abstract

Safeguarding critical infrastructure has emerged as
a global challenge. Effective mobile security forces
are essential to address complex security concerns.
A key challenge involves designing optimal pa-
trolling strategies for mobile units. Two bodies
of research dealt with this: stochastic patrolling
and partially observable stochastic games. Alas,
the first approach makes too-far-reaching simpli-
fying assumption and the second one is computa-
tionally challenging. The model proposed in this
paper is inspired by partially observable stochas-
tic games, and it enables comprehensive modeling
of attacker-defender interactions while remaining
computationally friendly. With our robust SHIELD
algorithm, we are able to find a defense strategy
where the probability of capturing the attacker can
be nearly doubled compared to the state of the art.

1 INTRODUCTION

In an era of growing connectivity and technological inter-
dependence, protecting critical infrastructure has become a
worldwide challenge. Unfortunately, recently rising geopo-
litical instabilities have made maintaining desirable security
level significantly more difficult [Tamilselvan et al., 2024].
While in the last decades threats consisted of crime, indus-
trial espionage, or terrorism, nations now have to safeguard
critical infrastructure from state-sponsored (hybrid-warfare)
attacks, exemplified by incidents in the Baltic Sea [Bueger
and Liebetrau, 2023]. This issue is exacerbated by advanc-
ing technology that allows for more sophisticated attacks in
remote locations. This increases the sheer size of the areas
that have to be protected. For instance, a single offshore
wind farm in the Baltic Sea typically covers an area of about
100 km2, with dozens of wind turbines, offshore transformer
stations, and hundreds of kilometers of underwater cables.

Last but not least, our understanding of what should consti-
tute critical infrastructure has evolved and it is now much
broader [Pursiainen and Kytömaa, 2023]. As a result, any
limited security resources has to be spread even thinner.

An effective security force needs to be mobile, enabling it
not only to detect an attack but also to promptly summon an
appropriate response. In this context, one of the key issues
is to design optimal patrolling strategies for mobile units.
Unfortunately, under realistic assumptions this becomes a
challenging game-theoretic problem. Deterministic routes
are predictable; thus, they are likely to be exploited by an
attacker. Given this, the literature focused on the so-called
stochastic patrolling, where the defender(s) randomize their
behaviour [Basilico, 2022]. The time in the model is dis-
cretized into turns during which both players, the defender
and the attacker, take actions. The attacker observes the
moves of the defender and can attack any target at any turn,
but the penetration takes a predefined number of turns. If de-
tected within this time, the attack fails. A recent work in this
vein, John et al. [2023], studies the problem of patrolling
San Francisco intersections by a police unit. The authors
assume that the defender strategy is a standard Markov deci-
sion process and that this strategy is known by the attacker
including defender’s current position. Unfortunately, the
stochastic patrolling literature introduces a plethora of sim-
plifying assumptions that make its results difficult to apply
in a realistic setting. For instance, while the capabilities of
the defender and the attacker are in reality asymmetric, in
the stochastic patrolling literature they usually make their
decision based on the same (or very similar) information.

This limitation can be to some extent addressed by employ-
ing partially observable stochastic games (POSGs) [Horák
et al., 2023]. Specifically, POSGs enable explicit modelling
of the information asymmetry between the attacker and the
defender, allowing one party to observe a smaller subset of
the environment. Within this framework, both the attacker
and the defender can perform multiple actions, modifying
the state of the environment. Moreover, both players make
their decisions based on the entire history of the confronta-
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Figure 1: Stylized scenario of defending the port of Gdynia.

tion, with a discount factor giving greater weight to cur-
rent events. However, all this additional expression power
comes at a cost of a greater computational challenge, mak-
ing POSGs difficult to apply in practice.

In this work we present a model that combines methods
from stochastic patrolling [Duan et al., 2019, 2021, John
et al., 2023] based on a Markov chain control with game-
theoretic methods based both on POSGs [Horák et al., 2023]
and on Stackelberg games that were successfully applied
in many real-world scenarios [Pita et al., 2009, Shieh et al.,
2012]. For the new model, we construct an effective algo-
rithm to compute an optimal strategy in a scenario when
the security incidents are scarce and there is a little interac-
tion between the defender and the attacker, but a successful
attack is devastating. In particular, we consider an infinite
event horizon with no discount factor and the game value
considers a worst-case (instead of average) payoff. Our main
contributions are as follows.

1. Under natural finiteness assumptions, we show that
there exists an optimal strategy for the defender that
admits a hidden Markov model and we characterize
game payoff for such strategies (Theorem 2.1).

2. We introduce the concept of memory of hidden Markov
model that allows to (almost) linearize a highly-
nonlinear formula for the game payoff (Theorem 4.1).

3. We introduce SHIELD - an algorithm based on linear
programming that computes optimal defender strate-
gies for strategy spaces with a fixed hidden Markov
model structure (Section 6).

4. We prove a non-trivial upper bounds for all strategies
that admit hidden Markov models (Theorem 5.1).

5. We perform an extensive experimental evaluation of
our approach, which includes a computation of a strat-
egy that has 19.3% efficiency against 10.2% that was
found in John et al. [2023], under some additional
assumptions about attacker’s behaviour (Section 7).

As a running example, let us consider a USV (an unmanned
surface vehicle) that is to patrol the port of Gdynia in Poland
(see Figure 1). While introducing the concepts and notation
throughout the paper, we will build upon this example to
give a better intuition behind the abstract terms.

Example 1.1. Figure 1 shows the map of the port of Gdynia
in Poland. In 2023 it ranked as the third busiest port in the
Baltic Sea in terms of container cargo.The port also features
a passenger terminal and is adjacent to the Gdynia Naval
Base. Possible routes for the USV are depicted on the map.

2 THE MODEL

2.1 PATHS IN STATE AND ACTION SPACES

A state and action space is a directed graph (V,E) with
a set of vertices V that are called states and a set of edges
E ⊂ V × V that are called actions. We allow self-loops.

A path in a state and action space (V,E) is a sequence
(v0, v1, . . .) of states such that (vi, vi+1) ∈ E. A path may
be finite (this includes the empty path ϵ) or infinite. We let
V ∗ denote the set of all finite paths and V denote the set of
all infinite paths in (V,E).

For p ∈ V ∗, let |p| denote the length of p (measured as the
length of the sequence of nodes, e.g., a path made of two
edges has length 3). For k ∈ N, we let V k ⊂ V ∗ denote the
subset of all paths of length k.

For p ∈ V ∗ and q ∈ V ∗ ∪ V we let pq = p · q denote the
concatenation of paths p and q. If P ⊂ V ∗, Q ⊂ V ∗ ∪ V ,
then

PQ = P ·Q = {pq : p ∈ P, q ∈ Q, pq ∈ V ∗ ∪ V} .

In particular, we let V kp = V k ·p denote the set of all paths
that are concatenations of a path of length k with a path
p ∈ V ∗.

A shift operator shiftV : V → V removes the first state
from an infinite path (v0, v1, v2, . . .), i.e.,

shiftV((v0, v1, v2, . . .)) = (v1, v2, . . .).

If V is known from the context, then we write shift instead
of shiftV .

2.2 A GENERAL FORMULATION

Let (L,R) denote a physical state and action space. It is
a directed graph over which the game is played. We do not
make any assumptions about its structure. Elements of L are
called locations and elements of R are called routes. Note
that we will commonly use a single element of L to represent
a location of multiple patrolling units, cf. Section 3.2.

Let L∗ be the set of finite paths in (L,R) which we call
histories. We let ϵ ∈ L∗ denote the empty path. Intuitively,
a sequence in L∗ encodes subsequent positions of the pa-
trolling units during surveillance. We will also interpret
elements of L∗ to be branches in defender’s game tree.
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Let L be the set of infinite paths in (L,R) which we call
patrol schedules (i.e., we consider the schedules to be ex-
tended indefinitely). A defender strategy is a probability
measure µ on L. We consider L to be a measurable space
with a σ-algebra of measurable sets generated by the collec-
tion of cones:

Cp = {pq ∈ L : q ∈ L} for p ∈ L∗.

In other words, the cone Cp of p ∈ L∗ is the set of all
infinite paths in L that begin with p.

A defender strategy µ determines how schedules are gen-
erated, (cf. Section 2.4.3), so eventually we can think that
the defender strategy tells us what is the probability that the
patrolling unit will follow a given schedule.

Example 2.1. In the case of the port of Gdynia, the physical
and action space (L,R) corresponds to the actual physical
space of the port, with locations L representing different
position in the port area (nodes in the graph on Figure 1),
and routes R representing transition routes between these
positions (edges in Figure 1). A history in L∗ is then a finite
path that the USV might take during a daily patrol (probably
visiting the same locations multiple times), while L is the
set of patrolling paths that are infinite.

Let T be a finite set of attack plans of the attacker. For
the sake of generality, we do not impose any additional
requirements on T at this moment. It can be, e.g., the set
of targets chosen by the attacker (together with the time-
lengths of attacks on each target), or the set of paths that the
attacker plans to take in order to reach chosen targets.

A payoff function is a map G : L× T → R. For j ∈ T , we
let Gj = G(·, j). We interpret the value of Gj(p) to be the
payoff of the defender if the attacker executes an attack plan
j at time 0 against the patrol schedule p ∈ L. Let n ∈ N and
let shiftn denote the composition of shift with itself n times.
We let Gn

j = Gj ◦ shiftn, Gn
j : L → R. We interpret Gn

j (p)
to be the defender payoff if the attacker executes attack plan
j ∈ T at time n ∈ N against the patrol schedule p ∈ L.

Let L∗
+ = L∗ \ {ϵ}. We define the game value for strategy

µ of the defender to be

V (µ) = inf
i∈L∗

+

min
j∈T

E
(
G

|i|−1
j

∣∣∣ Ci

)
= inf

i∈L∗
+

min
j∈T

1

µ(Ci)

∫
Ci

G
|i|−1
j dµ.

Here a pair (i, j) ∈ L∗
+ × T is an attacker strategy, with

i being an observation of the attacker (i.e., a sequence of
physical states triggering the attack), and j being the attack
plan executed as a reaction to observing i. Following John
et al. [2023], we assume the attack begins at the moment
when observation i ends. Hence, the game value depends on
the last state of history i, and we evaluate Gj after discarding

|i| − 1 history states. Therefore, G|i|−1
j : L → R is a payoff

function of the defender against the strategy (i, j).

Example 2.2. In the case of the port of Gdynia, the set
of attack plans T can simply be of the set of docks in the
port (the red rectangular nodes in Figure 1 are the location
of the docks, while the blue round nodes are the non-dock
locations) if we assume that the attacker is able to directly
reach each dock. However, the attack plans T may also be
paths in (L,R) if we assume that the attacker must traverse
a path from the port entrance to a given dock. The payoff
value Gθ−1

j (p) might express the probability that the at-
tacker launching a strike against target j at time θ is caught
by the USV following a particular patrol route p. Similarly,
the game value V (µ) would be the expected probability of
apprehending the attacker by a UAV with schedule gener-
ated by strategy µ, under assumption that the attacker picks
the moment of attack i and the target j optimally.

2.3 THE GAME DYNAMICS

Informally, the game defined in Section 2.2 is played be-
tween a dynamic defender and a static attacker. The defender
is dynamic in the sense that they play an extensive-form
game (a game with a sequence of moves and incomplete
information) over the game tree L∗. The attacker is static in
the sense that they play a normal-form game (a game with a
single move and complete information) by picking a single
attack plan j ∈ T to be executed when the defender reaches
state i ∈ L∗

+ in the game tree. Note that this distinction is
not precise: the set of attack plans T may be very well a
set of extensive-form attack strategies transformed into a
normal-form with intricacies of player interactions hidden
in the definition of the payoff function G. Nonetheless, this
distinction is important in practice: we assume that sets L
and T are not too large, so computations may be performed
in a reasonable time.

The definition of the game value V (µ) accounts for the
worst-case scenario for the defender, when the attacker at-
tacks in the worst possible game tree state i ∈ L∗

+. That
is, as usual in the security settings, the game value V (µ)
is computed as the Stackelberg equilibrium, where the at-
tacker picks their strategy with full knowledge of defender’s
strategy µ. Note that the infimum infi∈L∗

+
may be not at-

tained for any i ∈ L∗
+. This is known as infinitely patient

attacker problem (cf. Vorobeychik et al. [2014]).

The underlying theme of the paper is that the defender pa-
trols some critical infrastructure that is hardly ever attacked.
Therefore, attacker’s actions and the payoff value are invisi-
ble to the defender until the end of the game: the goal is to
prevent or deter the attack and we consider the interaction
between the defender and the attacker after the attacker is
detected to be a separate sub-game that is modeled in a
computation of payoff G.
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2.4 FINITENESS ASSUMPTIONS

2.4.1 History matching

The usual assumption in the setting of Stackelberg equilib-
rium is that the attacker knows the mixed strategy of the
defender based on the observation of their past actions. It
is reasonable to ask: how does the attacker learn defender’s
strategy? A recent study by Lanctot et al. [2023] has shown
that, among many modern machine learning approaches in
a similar (albeit simpler) setting, a technique called history
matching was the most successful.

Let t ∈ N be the current moment in time and let i ∈ Lt+1.
A context of length k for some k ≤ t + 1 is a sequence
it−k+1, it−k+2, . . . , it−1, it of k− 1 past states that ends at
the current state. History matching tries to match a context
to historical data: if t is much greater than k, we may look
for t0 < t such that it0−j = it−j for j = 0, 1, . . . , k − 1,
i.e., a sequence of length k from the past matching the last
k states. We want to exploit a possibility that the defender
will repeat their past actions if the context matches.

If the defender properly randomizes their actions, the at-
tacker can only exploit statistical data gathered from ob-
servation of the past actions in the same context. Since the
number of contexts of length k in non-trivial cases grows ex-
ponentially with k and since the attacker learns from obser-
vation of physical space (which takes time), the paradigm
of the paper is to assume that the attacker bases their deci-
sion about an attack on an observation of a context of length
k, for some fixed k. The notion of observations, on which
the attacker bases their decision to execute an attack plan,
can be generalized, and its important property is finiteness.

Note that we treat length k of a context observation to be an
inherent attribute of attacker’s type and we will construct
defender’s strategy µ against an assumed value of k. This
is so because the attacker learns µ from an observation of
defender’s action. Alas, it is also a defender’s weakness.

2.4.2 Actionable observations

The discussion of history matching strategy motivates the
following: let I ⊂ L∗

+ be a finite set that we call a set of
actionable observations for the attacker. We think of ac-
tionable observations as of the ones that can trigger an attack
decision, i.e., we can say that i ∈ L∗

+ is actionable if upon
observing context i, the attacker can decide to take action,
and otherwise they definitely do not. In other words, after θ
time steps during which the attacker is waiting (absent from
the physical state and action space), the attacker observes
a sequence i ∈ L∗

+, and if this sequence is actionable, the
attacker acts conditionally, according to a chosen attack plan
in a way that shall be most beneficial for them.

Example 2.3. In the case of the port of Gdynia, an attacker

might consider all observation of a given length k as the
set of actionable observations. It would correspond to an
attacker who records the activities of the USV for a very
long time and attempts to predict its route. For k = 1 the
attacker’s reasoning would be: if the USV is at the moment
at dock VII and I start the attack on dock IX, what is the
probability that I get caught? Similarly, for k = 2 the
reasoning would be: if the USV is at the moment at dock VII,
it arrived from dock VIII, and I start the attack on dock VII,
what is the probability that I get caught? It is worth noting,
that as the observation length k increases, the attacker needs
to conduct their surveillance for a longer time in order to
obtain a reasonable approximation of the defender strategy.

We define the game value against I to be

VI(µ) = inf
θ∈N

min
i∈I

min
j∈T

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
.

The value VI(µ) denotes the value that is the most beneficial
for the attacker amongst the choice of an attack plan and
an actionable observation. Recall that for θ ∈ N, we let
Lθ denote the set of paths of length θ in (L,R) and let
Lθi denote the set of all paths from Lθ concatenated with
i ∈ L∗, i.e., Lθi = {p · i : p ∈ Lθ, p · i ∈ L∗}.

In the following, we let I = Lk for k ∈ N, i.e., we consider
attackers that base their attack decision on an observation
of a context of length k. Note that a setting with k = 1
was considered in John et al. [2023] and an arbitrary k was
allowed in Basilico et al. [2009]. A distinctive feature of the
present paper is to allow the defender to have a hidden state,
so µ may depend on a context that is longer than k.

Lemma 2.11. We have V (µ) = infI⊂L∗
+
VI(µ), so in par-

ticular V (µ) ≤ VI(µ) for each I ⊂ L∗
+.

We say that strategy µ constructed against I is robust if
V (µ) = VI(µ). Let µ∗ be an optimal defender strategy
and let µ∗

I be an optimal defender strategy against I .
Note that an optimal defender strategy against I may be not
robust, i.e. it is possible that V (µ∗) > V (µ∗

I).

2.4.3 Bounded attack resolution time

For p ∈ L∗, we let P (p) = µ(Cp). It is the probability that
the defender will follow history p. A behavioral strategy
of the defender (cf. [Horák et al., 2023, Definition 3.2]) is
a map P (· | ·) : L × L∗ → [0, 1] defined by the formula
P (q | p) = P (pq)

P (p) for p ∈ L∗ and q ∈ L, undefined if
P (p) = 0 or if pq is not a path.

A behavioral strategy P (· | ·) uniquely determines measure
µ and may be used to sample an element p ∈ L according
to µ, by recursively sampling the next state pk+1 according
to the distribution P (pk+1 | p0p1 · · · pk−1pk).

1Proofs of all theorems are given in the Appendix.
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We assume a bounded attack resolution time, i.e. that for
each j ∈ T there exists τj ∈ N such that for each p, q ∈ L

if (p0, . . . , pτj−1) = (q0, . . . qτj−1), then Gj(p) = Gj(q).

In other words, the payoff Gj depends only on τj initial
states of a patrol schedule. In such case we say that an
attack plan j ∈ T resolves within τj turns (i.e. τj − 1 time
steps). Using this assumption we may define Gj on Lτj .
Let p ∈ Lτj . We define Gj(p) to be Gj(pq) for any q ∈ L
such that pq ∈ L. We assume that there are no dead ends in
(L,R), i.e. that every path can be indefinitely extended.

Example 2.4. In the case of the port of Gdynia, the value of
τj would correspond to the time necessary to complete the
attack on target j. For example, the time might be greater
for the docks situated deeper into the port if the attacker has
to actually traverse the path between the port entrance and
their desired target.

Lemma 2.2. Let θ ∈ N, i ∈ L∗
+ and j ∈ T and let µ be

a defender strategy that induces strategy P (p) = µ(Cp).
Assume that an attack plan j ∈ T resolves within τj turns.
We have

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
=

=
1∑

p∈Lθi P (p)

∑
p∈LθiLτj−1

P (p)G
θ+|i|−1
j (p).

2.4.4 Time-invariance

Intuitively, a defender’s strategy that depends on time (or in
other words - a behavioral strategy that depends on the depth
in the game tree) may be vulnerable to a properly timed
attack. In the definition of VI(µ), the attacker picks a time
of attack θ ∈ N that is most favorable to him. Therefore
in the present paper we restrict our attention to defender
strategies µ that are shift-invariant or time-invariant, i.e.
strategies such that µ(L ·A) = µ(A) for every measurable
set A ⊂ L and for the set of locations L. An important
example of time-invariant measure is a push-forward of a
Markov measure that is introduced in Section 4.1.

Example 2.5. In the case of the port of Gdynia, a shift-
invariant defender strategy would select the next destination
of the USV based on the finite number of previous actions,
without looking indefinitely far into the past.

We say defender strategy µ is discrete if the range of the
behavioral strategy,

{
P (s | p) : p ∈ L∗, s ∈ L

}
, is finite.

Otherwise we say that µ is continuous. Note that for each
I ⊂ L∗

+ and for each discrete defender strategy µ there
exists a time-invariant strategy ν such that VI(ν) ≥ VI(µ).
However, we do not know if every continuous defender
strategy may be approximated by a discrete strategy with a
close game value against I .

If strategy µ is shift-invariant, then VI(µ) can be computed
by the following formula that involves only a finite set of
parameters and a minimization over a finite set.

Lemma 2.3. Let θ ∈ N, i ∈ L∗ and j ∈ T and let µ be
a defender strategy that induces strategy P (p) = µ(Cp).
Assume that an attack plan j ∈ T resolves within τj turns.
If µ is shift-invariant, then

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
=

1

P (i)

∑
p∈iLτj−1

P (p)G
|i|−1
j (p).

Definition 2.1. For i ∈ L∗
+, p ∈ L∗ we let

P (i ∼ p) =

{
P (i shift(p))

P (i) if p0 = i|i|−1,

0 if p0 ̸= i|i|−1.

Using θ to denote |i| − 1, P (i ∼ p) is a conditional prob-
ability that the patrol schedule from time θ is equal to p
under the condition that from time 0 it equals i. Observe
that these intervals overlap: the last state of i has to be equal
to the first state of p, otherwise the probability is 0. Note
that P (i ∼ p) is undefined if P (i) = 0.

Theorem 2.1. Assume that an attack plan j ∈ T resolves
within τj turns. If µ is shift-invariant, then the game value
against I ⊂ L∗

+ is equal to

VI(µ) = min
i∈I

min
j∈T

∑
p∈Lτj

P (i ∼ p)Gj(p).

3 A PATROLLING GAME

In this section, we describe a specific method of constructing
a physical space (L,R), attack plans T and payoff functions
Gj . What gets constructed this way is a patrolling game
which is a crucial instance of our general model.

3.1 A PATROLLING SETTING

A patrolling setting (environment) is a model of protecting
critical infrastructure viewed statically, before any dynamic
interplay between the defender and the attacker is taken into
account. The setting consists of the following:

1. A set U of patrolling units, a set T of protected tar-
gets (corresponding to the attack plans), and a set of
defender’s values of targets V : T → R.

2. A directed graph (Lu, Ru) defined for each patrolling
unit u ∈ U . The graph describes the topology of the
critical infrastructure that we protect, and consists of:
the set of locations that are being patrolled Lu, and the
set of connecting routes (edges) Ru ⊂ Lu × Lu.
We allow self-loops in Ru. Each route has its length
du : Ru → N+. The lengths can vary between the
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edges, and are specified in time units. We can think of
them as depending both on physical distance between
locations and on speed of the patrolling unit.

3. A coverage function Γu : Lu × T → [0, 1] defined for
each patrolling unit u ∈ U . For a patrolled location
l ∈ Lu and a target t ∈ T , the function Γu(l, t) is
the probability that the patrolling unit u stationed at
location l will catch an intruder within a single unit of
time while he attacks target t.

It is easier to understand the coverage function when it
is binary-valued. Then, for each unit u the set {t ∈ T :
Γu(l, t) = 1} can be interpreted as the targets protected by
the unit u from the vertex l. We generalize this notion to take
into account the possibility of imperfect target protection.

Example 3.1. In the case of the port of Gdynia, the set U
might consist of a USV and a UAV (unmanned aerial vehi-
cle). These two patrolling units might then have different
patrolling routes, thus different (Lu, Ru) graphs (e.g., the
UAV could fly directly between any two locations, while
the USV can only travel on water). The coverage func-
tion could express the fact that a patrolling unit situated at
location l corresponding to a given dock t fully protects
it (Γu(l, t) = 1), while also partially protecting dock t′

whose corresponding location is connected to l with an edge
(Γu(l, t

′) = 1
2 ). The value V might be greater for military

docks, and smaller for the civilian ones.

3.2 A PHYSICAL STATE AND ACTION SPACE

A physical space (L,R) (mentioned in Section 2.2), rep-
resenting the dynamics of the defensive force, provides a
unified framework where a single state uniquely represents
an arrangement of multiple defensive resources and each
action takes a single unit of time. We construct (L,R) and
a coverage function Γ: L × T → [0, 1], using patrolling
environment data specified in Section 3.1.

First, for each unit u ∈ U , we get rid of the length function
du by subdividing long edges of the graph (Lu, Ru) into
several edges of unit length. The procedure is detailed in
Appendix A.1. We extend the coverage function Γu to in-
termediate vertices by setting coverage to 0, i.e. no target is
protected when unit is in an intermediate state. Note that any
other extension would work with our method, e.g. a linear
interpolation of coverage from both ends of the long edge.

Then, the physical space (L,R) is defined to be a tensor
product of subdivided graphs. A coverage function Γ: L×
T → [0, 1] is defined by the formula

Γ(v, t) = 1−
∏
u∈U

(1− Γu(πu(v), t)),

where πu : L → Lu denotes a projection from the product
graph onto its u-th factor, i.e., selecting the location of

the unit u from the vector of all unit locations. While in
our formula we assume that each patrolling unit has an
independent chance to catch the intruder, any other joint
distribution of coverage functions would work.

Example 3.2. In the case of the port of Gdynia, the states
L of the physical space could correspond to the pairs of the
position of the USV and the position of the UAV, while the
actions R to the transitions of both units to new positions.
Assume that each unit provides coverage 1 for the location
where it is positioned, and 1

2 to adjacent locations. The
coverage function Γ((l1, l2), t) would then have the value
of 1 for dock t corresponding to either l1 or l2, 3

4 for docks
adjacent to both l1 and l2, 1

2 for docks adjacent to either l1
or l2 but not both, and 0 for all other docks.

We can think of the physical space, (L,R), as a board on
which a game between the defender and the attacker is
played. We consider a static attacker who commits to a
single decision to perform an attack on a target j ∈ T . Let
τ : T → N+ denote the attack duration of targets. Once
the attacker commits to attack j ∈ T , the defender has
τj turns to catch them. The defender patrols the locations
according to a patrolling schedule p ∈ L. The probability
that the defender will successfully defend target j ∈ T is:

Dj(p) = 1−
τj−1∏
t=0

(
1− Γ(pt, j)

)
.

The formula is based on an assumption that at each moment
of time the patrolling units have independent chance to
capture the attacker. Like before, this assumption is not
essential and the method presented in the paper will work
with any joint distribution. Let V : T → R denote the value
of targets, equal for both players. We assume that the game
is constant-sum and this assumption is essential in our paper.
Defender’s payoff depends both on p and j and is equal to

Gj(p) = V (j)Dj(p).

4 A STRATEGY SPACE

4.1 A HIDDEN MARKOV MODEL

The key idea of our work is to let the defender’s hidden
state be more elaborate than the position of their patrolling
units, thus allowing a more complex behavior and giving
advantage against certain types of attackers. To this end, we
let (S,A) be a strategy state and action space, used by
the defender to control their defensive resources. We equip
(S,A) with a graph homomorphism X : S → L, called
projection. We use X to translate defender’s actions in
the strategy space (internal scheduling) to actions in the
physical space (L,R) (movement of patrolling units).

To explain the paradigm of a hidden Markov model let us
consider an example shown in Figure 2. The physical space
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has 4 locations connected into a star-shaped graph with
a center node x and three leaves T = {a, b, c} that are
possible targets of attack. There is a single patrolling unit.
Number of turns to attack each target is equal to 4, τa =
τb = τc = 4. Each target has value 1 and the patrolling unit
protects only the node that it is visiting. Consider an attacker
with observation length 1, i.e. consider a set I = {a, b, c, x}
of actionable observations. We look for a strategy µ that
maximizes VI(µ).

First, consider a case where the patrolling unit moves from
the center node x to each of leaf nodes a, b, c with uniform
probability 1

3 . This is a Markov chain model that was consid-
ered previously in the literature [John et al., 2023]. One of
optimal attacker strategies against it is to attack node c when
the patrolling unit is observed at node a; the probability that
the attack will be intercepted is then equal to 1

3 .

A better strategy for the defender against this type of at-
tacker is to never visit the same leaf node twice in a row: if
the patrolling unit arrived at position x from leaf a, then it
should move either to b or to c with probability 1

2 . An op-
timal attacker strategy does not change, but the probability
that the attack will be intercepted increases to 1

2 . Note that
this strategy is robust: the payoff will remain the same if
we add elements to the set of actionable observations. The
reason behind this is that even if we increase the observation
length of the attacker, allowing them to distinguish between
the strategy states of the defender, they cannot avoid capture
with probability greater than 1

2 . Their set of strategies is
then: attacking the peripheral node that the defender just
left, attacking one of the other peripheral nodes than the
one that the defender just left, or attack one of the other
peripheral nodes than the one that the defender is at right
now. All of these strategies result in getting captured with
probability 1

2 . Therefore, by Lemma 2.1, this is an optimal
strategy for the defender.

This strategy may be realized by a Markov chain on a strat-
egy space (S,A) (see Figure 2). The projection X translates
actions in the strategy space into actions in the physical
space (L,R), i.e., into the movements of the patrolling unit.

(S,A)

1
21

2

1
2

1
2

1
2

1
2

X

(L,R)

x

a

b

c

1
3

1
3

1
3

Figure 2: A strategy space (left) over a star-graph with three
leaves (right). The hidden states over the center allow for
construction of more sophisticated strategy that increases
a payoff from 1

3 to 1
2 against an opponent making attack

decision based on the position of the single patrolling unit.

To define a hidden Markov model, let M be a Markov
chain on (S,A) with a transition matrix N and a stationary
distribution σ. Let S be a set of infinite paths in (S,A), let ν
be a Markov measure induced by M on S (cf. [Sarig, 2009,
Definition 1.8]), and let µ = ν ◦X−1 be a push-forward of
measure ν from S to L. Measure µ is a defender strategy
and we call ν a hidden Markov model for µ.

Note that by [Sarig, 2009, Proposition 1.8] the Markov
measure ν is shiftS-invariant, so its push-forward µ =
ν ◦ X−1 is shiftL-invariant. Thus, Theorem 2.1 applies
to defender strategies with hidden Markov models. The
following lemma relates measure µ = ν ◦X−1 to the tran-
sition probabilities N and the stationary distribution σ of
the hidden Markov chain.

Lemma 4.1. Assume that µ has a hidden Markov model
with a stationary distribution σ, transition matrix N and
projection X : S → L. Let X∗ : S

∗ → L∗ be a natural map
induced by X , i.e., the element-wise application of X . Then
for each p ∈ L∗ we have

P (p) = µ(Cp) =
∑

q∈X−1
∗ (p)

σq0

|p|−2∏
i=0

Nqi,qi+1 .

4.2 A SPACE WITH MEMORY

In this section, we introduce the key concept of the paper
– state and action spaces with memory. Let (S,A) be a
strategy state and action space. Let Z be a function on S
with arbitrary range rg(Z). We say that (S,A) has memory
of length t with respect to Z (where t ≥ 1) if the following
condition holds for each pair of states r, s ∈ S:

if Z(r) ̸= Z(s), then for each pair of paths
rr1r2r3 · · · rt−1, ss1s2s3 · · · st−1 of length t we
have rt−1 ̸= st−1.

In other words, if Z differentiates states r and s, then
the internal defender’s state after any t − 1 actions will
still be different. The principle might be easier to under-
stand in its contrapositive form: for all r, s ∈ S, if for
some paths rr1r2r3 · · · rt−1 and ss1s2s3 · · · st−1 we have
rt−1 = st−1, then Z(r) = Z(s). Thus, the current internal
state s ∈ S of the defender determines uniquely what at-
tacker’s observation was t− 1 steps ago. In other words, the
states in S contain the information about the last t obser-
vations of the attacker. Note that it does not force the state
space to be large, as is shown in Appendix D, together with
a couple of other methods and examples of constructions of
spaces with memory.

Let MZ : S×{0, . . . , t−1} → rg(Z), where rg(Z) denotes
the range of Z, be a memory function that maps a pair
(s, i) to the past value of Z, i.e., its value i steps before the
defender reached the state s. Lemma 4.2 shows that MZ is
properly defined.
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Lemma 4.2. Assume that the (S,A) has memory of length t
with respect to Z for t ≥ 1 and that each s ∈ S has at least
one incoming edge. Then the memory function MZ : S ×
{0, . . . , t− 1} → rg(Z) that satisfies

for each s ∈ S and each p ∈ St such that pt−1 = s

we have MZ(s, i) = Z(pt−1−i)

is well-defined.

4.3 CONSTRUCTING SPACES WITH MEMORY

In our approach, a strategy state and action space is a space
with memory of length t with respect to projection X . Such
spaces may be constructed in several ways. See Appendix D
for a more detailed discussion.

The most straightforward approach is to construct a space of
paths, where each state is a path of length t in the original
physical graph. Such a space may be endowed with addi-
tional states: a tensor product of a space with memory t with
an arbitrary graph is again a space with memory t. A space
of paths may be filtered by heuristics, e.g., we may consider
only simple paths as elements of the strategy space.

Interestingly, a number of states in a space with memory t
doesn’t have to be large, as is seen in the construction of
space of disjoint cycles. Such a space replicates the usual
approach to patrolling with Stackelberg games in matrix
form, cf. [Shieh et al., 2012].

4.4 A LIFT OF ATTACKER’S OBSERVATION

We assumed that attacks are triggered by histories sampled
from L∗i, where i ∈ I is an actionable observation. We now
assume that the actionable observations are the sequences
of length h from L, i.e., I = Lh and we let h ∈ N be an
observation length.

Let X be a projection from (S,A) to (L,R) defined in
Section 4.1. Let Yh : L

∗ · Lh → Lh defined by

Yh(p) = (p|p|−h, . . . , p|p|−2, p|p|−1)

be a context of length h of history p ∈ L∗ such that |p| ≥ h.
Intuitively, Yh(p) selects the last h elements of p.

If the strategy space (S,A) has a memory of length at least
h with respect to X , then we may lift the observation Yh to
be a function of s ∈ S:

Ỹh(s) = (MX(s, h− 1),MX(s, h− 2), . . . ,MX(s, 0)),

where MX is the memory function defined in Section 4.2.
Intuitively, Ỹh(s) produces the last h states of the physical
space (L,R) based on the current state s of the strategy
space (S,A).

Consider s ∈ S∗, a sequence of internal strategy states.
Let p ∈ L∗ be the result of applying projection X to each
element of s, i.e., p = X∗(s) using notation introduced in
Lemma 4.1. Then Yh(p) = Ỹh(s|s|−1), i.e., the history of
length h in the physical space is encoded by the last state
s|s|−1 in the strategy space.

Motivated by the above property, we define an attacker’s
observation function to be a function Y : S → I , where
I = Lh is the attacker’s set of actionable observations. No-
tice the assumption that the strategy space (S,A) has mem-
ory at least h, i.e., the internal space of the defender is rich
enough to encompass the attacker’s actionable observations.

Note that the dependence of Y on S does not mean that
the attacker observes the internal state of the defender. It
means that the strategy state space S is complex enough to
reconstruct the attacker’s observation. This assumption is
very useful from the technical point of view, as it simplifies
the description of the model and its solution.

4.5 A SWITCH OF PERSPECTIVE

We now introduce a crucial formula that switches perspec-
tive from the future into the past, allowing us to (almost)
linearize a highly non-linear formula given in Theorem 2.1
and Lemma 4.1.

Lemma 4.3. Let i ∈ L∗ and t ∈ N. Let

Ĥi,t =

{
s ∈ S :

(
X−1

∗ (i) · St
)
∩ (S∗ · s) ̸= ∅

}
be a set of all states in strategy space that are reachable
after following path i in the physical space and continuing
for t time steps. If (S,A) has a memory of length |i| + t
with respect to X and P has a hidden Markov model with
stationary distribution σ, then P (i) =

∑
s∈Ĥi,t

σs.

Assume that the strategy space (S,A) has memory of length
at least τj with respect to X and Y , where τj is the du-
ration of the attack plan j, while X and Y are defined in
Section 4.4. Notice that the payoff function Gj of the attack
plan j depends only on the last τj states of the physical
space. Hence, we can lift the payoff function Gj :

G̃j(s) = Gj(MX(s, τj−1),MX(s, τj−2), . . . ,MX(s, 0)),

where G̃j(s) : S → R, and MX is a memory function.
Moreover, for i ∈ I let

Hi,t = {s ∈ S : MY (s, t) = i},

i.e., Hi,t is the set of states where t time units ago the
attacker’s observation returned an actionable observation i.

Theorem 4.1. Assume that (S,A) has memory of length
maxj∈T τj with respect to X and Y , and that the defender
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strategy µ has a hidden Markov model with a stationary
distribution σ. Then

VI(µ) = min
i∈I

min
j∈T

∑
s∈Hi,τj−1

σsG̃j(s)∑
s∈Hi,τj−1

σs
.

5 AN UPPER BOUND THEOREM

Now we prove an upper bound theorem for patrolling games
introduced in Section 3. As a corollary we obtain a method
of computing upper bounds via the linear problem 1, which
vastly generalizes methods that exist in the literature.

Theorem 5.1. If µ is shift-invariant, then

V (µ) ≤ min
j∈T

V (j)τj
∑
s∈L

P (s)Γ(s, j).

Note that if µ has a hidden Markov model, then probabili-
ties P (s) satisfy network-flow conditions on graph (L,R).
Therefore the following linear program computes an up-
per bound on V (µ) for any strategy µ that admits a hidden
Markov model.

max
ξ, σ,N

ξ

s.t.
∑
w∈L

σw = 1∑
v∈L : (w,v)∈R

Nw,v = σw for w ∈ L

∑
v∈L : (v,w)∈R

Nv,w = σu for w ∈ L

ξ ≤ V (j)τj
∑
s∈L

σsΓ(s, j) for j ∈ T

ξ ∈ R
σw ∈ [0, 1] for w ∈ L

Nw,v ∈ [0, 1] for (w, v) ∈ R

(1)

6 SHIELD

In this section we introduce Security Heuristic for Intru-
sion Exposure and Location Defense (SHIELD) – an
algorithm that constructs a nearly optimal hidden Markov
model strategy for the defender for a patrolling game with
a fixed set of actionable observations of the attacker. The
setup used for the algorithm is identical with one used in
Section 4.5.

First, we construct a space (S,A) with memory of
length maxi∈I |i| + maxj∈T τj − 1. Although any such
space works, the choice restricts the set of available strate-
gies µ, so the game value VI(µ) depends on this choice.

By Theorem 4.1, the goal of the defender is to find the
stationary distribution σ of a Markov chain on (S,A) with

Algorithm 1 Approximating V ∗ using the bisection method.

Input: Strategy space (S,A), set of actionable observations I , set
of attack plans T , defender payoff function G, ϵ > 0.

Output: The lower and upper bound of V ∗ precise up to ϵ.
1: V ∗

L ← 0
2: V ∗

U ← maxj∈T,v∈S Gj(v)
3: while V ∗

U − V ∗
L > ϵ do

4: V ∗
M ← (V ∗

U + V ∗
L )/2

5: if linear problem 2 feasible with ξ = V ∗
M then

6: V ∗
L ← V ∗

M

7: else
8: V ∗

U ← V ∗
M

9: return V ∗
L , V ∗

U

the maximal value V ∗ = maxσ VI(µ). Thus, if we fix ξ ∈
R, the following linear problem is feasible iff ξ ≤ V ∗.

max
σ,N

0

s.t.
∑
w∈S

σw = 1∑
v∈S : (w,v)∈A

Nw,v = σw for w ∈ S

∑
v∈S : (v,w)∈A

Nv,w = σw for w ∈ S

∑
w∈Hi,τj−1

σw

(
G̃j(w)− ξ

)
≥ 0, i ∈ I, j ∈ T

σw ∈ [0, 1] for w ∈ S

Nw,v ∈ [0, 1] for (w, v) ∈ A

(2)

Having the above linear formulation, we can approximate
the value of V ∗ arbitrarily well by using the bisection
method (see pseudocode in Algorithm 1).

Example 6.1. To finish our example of the port of Gdynia,
consider the network presented in Figure 1 with all docks
being equally valuable to the defender, and all non-docks
being worthless. Assume that each USV provides coverage
1 for dock corresponding to the node where it is positioned,
and coverage 1

2 to adjacent docks. Moreover, assume that
it takes 3 time units to attack each of the docks, and the
actionable observations of the attacker are all sequences of
length 1, i.e., the attacker makes their decision based on
the current positions of the USVs. In such a setting, the
optimal probability of capturing the attacker calculated by
our algroithm is 0.25 if the defender has one USV at their
disposal, and it grows to 0.95 if we add another USV.

7 EXPERIMENTAL EVALUATION

We evaluate our solution on real-life and ran-
dom networks. Our implementation is published at
github.com/anagorko/stackelberg-games-core.
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Figure 3: The defender utility in subgraphs of the San Fran-
cisco network. Each line corresponds either to value com-
puted either via our linear program (LP) or via Monte Carlo
simulations (MC) with different values of attacker’s obser-
vation length. Each Mone Carlo data point is an average
over 103 roll-outs with 103 actions each. The colored areas
(extremely narrow) represent 95% c.i.

7.1 SAN FRANCISCO POLICE DISTRICT

In the model by John et al. [2023], the defender controls a
single patrol unit, and the set of targets consists of twelve
intersections in downtown San Francisco. The targets are
connected into a weighted clique with integer weights rep-
resenting the minutes of travel time between intersections,
ranging from 1 to 9, with attack times of the targets ranging
from 6 to 11. The attacker observes the current position
of the security unit, i.e., the observation length is 1. The
authors of John et al. [2023] use a JAX-based gradient opti-
mizer to find a patrolling solution with utility equal to 0.102.
Our algorithm is able to identify a patrolling solution with
the lower bound of the defender utility equal to 0.193. In
other words, we are able to find a defense strategy where
the probability of apprehending the attacker is almost
two times greater than the state of the art.

7.2 SENSITIVITY TO OBSERVATION LENGTH

Our algorithm computes an optimal strategy against an at-
tacker with a given observation length h. However, it re-
mains unclear how would such strategy fare against an at-
tacker with other observation lengths. To investigate it we
now run Monte Carlo simulations on increasingly large in-
duced subgraphs of the San Francisco network. For each
subgraph, we generate 103 roll-outs of the defender strategy
consisting of 103 actions each. We then assume that the at-
tack has either observation length h, h+1, or h−1, and they
select the target and observation from the roll-out that yield
the smallest average risk of getting caught, i.e., the greatest
utility of the attacker. Figure 3 presents the results. The the-
oretical bound computed by the linear program is confirmed
by our simulations. Moreover, the strategy is even more suc-
cessful against an opponent with shorter observation length.
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Figure 4: The left plot presents the mean utility of the de-
fender, while the right one the mean runtime. Each data
point is an average over 100 Barabási-Albert networks. The
colored areas (very narrow) represent 95% c.i.

Unfortunately, an attacker with longer observation length is
able to capitalize on the strategy optimized against a weaker
opponent and inevitably avoids detection.

7.3 EVALUATION ON RANDOM NETWORKS

To evaluate the effects of the network size and structure on
the outcomes of our experiments, we also perform simula-
tions with randomly networks generated. To this end, we
use Barabási-Albert 1999, Erdős-Rényi 1959, and Watts-
Strogatz 1998 models. We generate networks of varying
size, while setting the average degree of a node to 2. In the
case of the Watts-Strogatz model we set the rewiring proba-
bility to 1

4 . For each such network we calculate the utility
of the defender using a single security resource. All simula-
tions in this section are run on a computer with Intel Core
i7-11700K CPU, and 16 GB RAM. Figure 4 presents the
results of our simulations for the Barabási-Albert, the results
for the other two models can be found in the supplementary
materials, and exhibit similar trends. As can be seen both
increasing the observation length of the attacker, as well
as decreasing the attack time of the nodes can significantly
lower the utility of the defender. In particular, an attacker
with observation length zero becomes more dangerous if we
give them the ability to observe the defender’s activities than
if we decrease their attack time. Unfortunately, increasing
the observation length results in a sharp growth of the run
time required to compute the optimal strategy, exacerbating
the danger posed by a well-informed attacker.

8 CONCLUSIONS

In this work, we proposed a model on the interface of
stochastic patrolling and game theoretic models. We con-
structed an effective algorithm and showed that it improved
upon state of the art for some settings in the literature.
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A AUXILIARY DEFINITIONS

A.1 LONG EDGE SUBDIVISION

Long edge subdivision used in Section 3.2 is described as follows.

Given a route r ∈ Ru connecting two vertices li and lj such that |r| > 1, we add |r| − 1 intermediate vertices lr1, . . . , l
r
|r|−1

between the nodes li and lj and connect them by new edges, each of length 1, i.e., instead of having a long edge
r = (li, lj) ∈ Ru we now have the following |r| directed short edges (i.e., each of length 1): r0 = (li, l

r
1), r1 = (lr1, l

r
2), . . .,

rk = (lrk, l
r
k+1), . . ., r|r|−1 = (lr|r|−1, lj).

This way, we obtain a graph T ′
u = (L′

u, R
′
u) with broken down edges, where

L′
u = Lu ∪

⋃
r∈Ru:|r|>1

{lrk : k = 1, . . . , |r| − 1},

and

R′
u =

(
Ru \ {r ∈ Ru : |r| > 1}

)
∪

∪
⋃

r=(li,lj)∈Ru:|r|>1

{(li, lr1), (lr1, lr2), . . . , (lr|r|−1, lj)}.

A.2 TENSOR PRODUCT OF GRAPHS

Given two graphs G = (VG, EG) and H = (VH , EH), the tensor product G×H of these graphs is defined as follows: the set
of vertices VG×H is equal to the cartesian product VG × VH of the sets of vertices of G and H , and a pair ((v0, u0)(v1, u1))
is an edge of G×H iff (v0, v1) ∈ EG, and (u0, u1) ∈ EH .
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B PROOFS

B.1 THE PROOF OF LEMMA 2.1

Lemma 2.1. We have V (µ) = infI⊂L∗
+
VI(µ), so in particular V (µ) ≤ VI(µ) for each I ⊂ L∗

+.

Proof. From the definition of VI(µ),

VI(µ) = inf
θ∈N

min
i∈I

min
j∈T

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
.

By setting I = {i} for i ∈ L∗
+ and θ = 0, we obtain

inf
I⊂L∗

+

VI(µ) ≤ inf
i∈L∗

+

V{i}(µ) ≤ inf
i∈L∗

+

min
j∈T

E
(
G

0+|i|−1
j

∣∣∣ CL0i

)
= V (µ),

with the last equality coming from the definition of V (µ). Hence

inf
I⊂L∗

+

VI(µ) ≤ V (µ).

To prove the reverse inequality, first observe that CLθi =
⊔

p∈Lθ Cpi for each i ∈ I and θ ∈ N, where
⊔

denotes disjoint
union. Hence, by the law of total expectation,

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
=

∑
p∈Lθ

µ(Cpi)

µ(CLθi)
E(G

θ+|i|−1
j | Cpi).

Since
∑

p∈Lθ
µ(Cpi)
µ(C

Lθi
) = 1, we have

∑
p∈Lθ

µ(Cpi)

µ(CLθi)
E
(
G

θ+|i|−1
j

∣∣∣ Cpi

)
≥ min

p∈Lθ
E
(
G

θ+|i|−1
j

∣∣∣ Cpi

)
.

Finally,

V (µ) = inf
i∈L∗

+

min
j∈T

E
(
G

|i|−1
j

∣∣∣ Ci

)
=

= inf
θ∈N

min
p∈Lθ

inf
i∈L∗

+

min
j∈T

E(G
|pi|−1
j | Cpi) =

= inf
θ∈N

inf
i∈L∗

+

min
j∈T

(
min
p∈Lθ

E
(
G

θ+|i|−1
j

∣∣∣ Cpi

))
≤

≤ inf
θ∈N

inf
i∈I

min
j∈T

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
= VI(µ).

B.2 A VALUE OF THE GAME – GENERAL FORMULATION

Lemma 2.2. Let θ ∈ N, i ∈ L∗
+ and j ∈ T and let µ be a defender strategy that induces strategy P (p) = µ(Cp). Assume

that an attack plan j ∈ T resolves within τj turns. We have

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
=

=
1∑

p∈Lθi P (p)

∑
p∈LθiLτj−1

P (p)G
θ+|i|−1
j (p).
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Proof. From the definition of conditional expected value,

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
=

1

µ(CLθi)

∫
C

Lθi

G
θ+|i|−1
j dµ.

Hence, we have to prove that:

1. µ(CLθi) =
∑

p∈Lθi

P (p),

2.
∫
C

Lθi

G
θ+|i|−1
j dµ =

∑
p∈LθiLτj−1

P (p)G
θ+|i|−1
j (p).

From the definition of a cone, we have

CLθi =
⊔

q∈Lθ

Cqi =
⊔

q∈Lθ

⊔
r∈Lτj−1

Cqir,

where
⊔

denotes a disjoint union (notice that p iterates over all possible sequences of the length τj − 1 that can be the
extensions of qi).

Therefore, from the definition of P we have

µ(CLθi) = µ

 ⊔
q∈Lθ

Cqi

 =
∑
q∈Lθ

µ(Cqi) =
∑
q∈Lθ

P (qi) =
∑

p∈Lθi

P (p)

which completes the proof of the first point.

Moreover, we have ∫
C

Lθi

G
θ+|i|−1
j dµ =

∑
q∈Lθ

∑
r∈Lτj−1

∫
Cqir

G
θ+|i|−1
j dµ =

=
∑
q∈Lθ

∑
r∈Lτj−1

µ(Cqir)G
θ+|i|−1
j (qir) =

=
∑
q∈Lθ

∑
r∈Lτj−1

P (qir)G
θ+|i|−1
j (qir) =

=
∑

p∈LθiLτj−1

P (p)G
θ+|i|−1
j (p),

since G
θ+|i|−1
j is constant on Cqir and equal to G

θ+|i|−1
j (qir) by the assumption that attack plan j resolves within τj turns.

This completes the proof of the second point, and the Lemma.

B.3 A VALUE OF THE GAME – SHIFT-INVARIANT STRATEGY

Lemma 2.3. Let θ ∈ N, i ∈ L∗ and j ∈ T and let µ be a defender strategy that induces strategy P (p) = µ(Cp). Assume
that an attack plan j ∈ T resolves within τj turns. If µ is shift-invariant, then

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
=

1

P (i)

∑
p∈iLτj−1

P (p)G
|i|−1
j (p).

Proof. From the definition of conditional expected value,

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
=

1

µ(CLθi)

∫
C

Lθi

G
θ+|i|−1
j dµ.
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From shift-invariance of µ, i.e. µ = µ ◦ shift−1, we have

µ(CLθi) = µ(LθCi) = µ(Ci) = P (i).

Using integration by substitution,∫
C

Lθi

G
θ+|i|−1
j dµ =

∫
shift−θ(Ci)

G
|i|−1
j ◦ shiftθ dµ =

∫
Ci

G
|i|−1
j dµ.

B.4 THE PROOF OF THEOREM 2.1

Theorem 2.1. Assume that an attack plan j ∈ T resolves within τj turns. If µ is shift-invariant, then the game value against
I ⊂ L∗

+ is equal to

VI(µ) = min
i∈I

min
j∈T

∑
p∈Lτj

P (i ∼ p)Gj(p).

Proof. From the definition of VI(µ),

VI(µ) = inf
θ∈N

min
i∈I

min
j∈T

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
.

By Lemma 2.3,

E
(
G

θ+|i|−1
j

∣∣∣ CLθi

)
=

1

P (i)

∑
p∈iLτj−1

P (p)G
|i|−1
j (p).

Hence

VI(µ) = inf
θ∈N

min
i∈I

min
j∈T

1

P (i)

∑
p∈iLτj−1

P (p)G
|i|−1
j (p) =

= min
i∈I

min
j∈T

∑
p∈iLτj−1

P (p)

P (i)
G

|i|−1
j (p) =

= min
i∈I

min
j∈T

∑
p∈Lτj−1

P (ip)

P (i)
G

|i|−1
j (ip) =

= min
i∈I

min
j∈T

∑
p∈Lτj

P (i ∼ p)Gj(p).

B.5 A NON-LINEAR FORMULATION FOR PROBABILITY OF FOLLOWING A PATH

Lemma 4.1. Assume that µ has a hidden Markov model with a stationary distribution σ, transition matrix N and projection
X : S → L. Let X∗ : S

∗ → L∗ be a natural map induced by X , i.e., the element-wise application of X . Then for each
p ∈ L∗ we have

P (p) = µ(Cp) =
∑

q∈X−1
∗ (p)

σq0

|p|−2∏
i=0

Nqi,qi+1 .

Proof. Let q ∈ S∗ such that X∗(q) = p. From the definition of a Markov measure [Sarig, 2009, Definition 1.8], we have

ν(Cq) = σq0

|p|−2∏
i=0

Nqi,qi+1
.
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We have X−1
∗ (Cp) =

⊔
q∈X−1

∗ (p) Cq . where
⊔

denotes a disjoint union. From the definition of a push-forward measure,

µ(Cp) = (ν ◦X−1)(Cp) = ν(X−1
∗ (Cp)) =

= ν

 ⊔
q∈X−1

∗ (p)

Cq

 =
∑

q∈X−1
∗ (p)

σq0

|p|−2∏
i=0

Nqi,qi+1 .

B.6 EXISTENCE OF A MEMORY FUNCTION

Lemma 4.2. Assume that the (S,A) has memory of length t with respect to Z for t ≥ 1 and that each s ∈ S has at least
one incoming edge. Then the memory function MZ : S × {0, . . . , t− 1} → rg(Z) that satisfies

for each s ∈ S and each p ∈ St such that pt−1 = s

we have MZ(s, i) = Z(pt−1−i)

is well-defined.

Proof. Fix the space (S,A), the observation function Z and assume the space has memory of length t w.r.t. Z. We need
to demonstrate that for every i ≤ t the value MZ(s, i) is well-defined. Indeed, fix i ≤ t − 1 and fix s ∈ S. Then, since
the space has the memory of length t with respect to Z, by looking at the contrapositive reading of the condition defining
the memory length it is trivial to note that the observation Z(pt−1−i) is uniquely determined for any sequence of actions
a1, . . . , ai ∈ A leading from pt−1−i to s. Therefore, the definition MZ(s, i) := Z(pt−1−i) is correct.

B.7 THE PROOF OF LEMMA 4.3

Lemma 4.3. Let i ∈ L∗ and t ∈ N. Let

Ĥi,t =

{
s ∈ S :

(
X−1

∗ (i) · St
)
∩ (S∗ · s) ̸= ∅

}
be a set of all states in strategy space that are reachable after following path i in the physical space and continuing for t
time steps. If (S,A) has a memory of length |i|+ t with respect to X and P has a hidden Markov model with stationary
distribution σ, then P (i) =

∑
s∈Ĥi,t

σs.

Proof. From the definition, we have

P (i) = µ(Ci) = ν(X−1
∗ (Ci)) = ν(X−1

∗ (i) · St · S),

where ν is a hidden Markov model for µ. Observe that from the assumption that S has a memory of length |i| + t with
respect to X , we have

Ĥi,t ∩ Ĥj,t = ∅ for all j ∈ L|i| such that i ̸= j.

It follows that
X−1(i) · St =

{
q ∈ S|i|+t : q|i|+t ∈ Ĥi,t

}
= S|i|+t−1 · Ĥi,t.

Therefore,
ν(X−1

∗ (i) · St · S) = ν(S|i|+t−1 · Ĥi,t · S) = ν(Ĥi,t · S),

the last equality from shift-invariance of ν. Finally, from additivity of ν and from Lemma 4.1, we have

ν(Ĥi,t · S) =
∑

s∈Ĥi,t

P (Cs) =
∑

s∈Hi,t

σs.
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B.8 THE PROOF OF THEOREM 4.1

Theorem 4.1. Assume that (S,A) has memory of length maxj∈T τj with respect to X and Y , and that the defender strategy
µ has a hidden Markov model with a stationary distribution σ. Then

VI(µ) = min
i∈I

min
j∈T

∑
s∈Hi,τj−1

σsG̃j(s)∑
s∈Hi,τj−1

σs
.

Proof. We have i ∈ I ⊂ L∗ and

Hi,τj−1 = {s ∈ S : MY (s, τj − 1) = i} =

=
{
s ∈ S : MX(s, τj − 1 + k) = i|i|−1−k for k = 0, 1, . . . , |i| − 1

}
=

=

{
s ∈ S :

(
X−1

∗ (i) · Sτj−1
)
∩ (S∗ · s) ̸= ∅

}
= Ĥi,τj−1.

Hence by Lemma 4.3, we have P (i) =
∑

s∈Hi,τj−1
σs. Recall that

G̃j(s) = Gj(MX(s, τj − 1),MX(s, τj − 2), . . . ,MX(s, 0)).

From Theorem 2.1, we have

VI(µ) = min
i∈I

min
j∈T

∑
p∈Lτj

P (i ∼ p)Gj(p) =

= min
i∈I

min
j∈T

∑
p∈i|i|−1L

τj−1

P (i shift(p))

P (i)
Gj(p) =

= min
i∈I

min
j∈T

∑
p∈i|i|−1L

τj−1 P (i shift(p))Gj(p)∑
s∈Hi,τj−1

σs
.

Note that G̃j is constant on Ĥi shift(p),0 since (S,A) has a memory of length τj with respect to X . We also have

Hi,τj−1 =
⊔

p∈i|i|−1L
τj−1

Ĥi shift(p),0.

Hence

∑
p∈i|i|−1L

τj−1

P (i shift(p))Gj(p) =
∑

p∈i|i|−1L
τj−1

 ∑
s∈Ĥi shift(p),0

σs

Gj(p) =

=
∑

p∈i|i|−1L
τj−1

 ∑
s∈Ĥi shift(p),0

σsG̃j(s)

 =
∑

s∈Hi,j

σsG̃j(s).

B.9 PROOF OF THEOREM 5.1

Theorem 5.1. If µ is shift-invariant, then

V (µ) ≤ min
j∈T

V (j)τj
∑
s∈L

P (s)Γ(s, j).
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Proof. Directly from the definition we have

V (µ) ≤ min
j∈T

min
i∈L

E
(
Gj

∣∣ Ci

)
.

Since the attack plan j resolves in τj turns, we have (cf. proof of Lemma 2.3)

E
(
Gj

∣∣ Ci

)
=

1

P (i)

∑
p∈iLτj−1

P (p)Gj(p).

Since
∑

i∈L P (i) = 1, we have

min
i∈L

∑
p∈iLτj−1

P (p)

P (i)
Gj(p) ≤

∑
i∈L

P (i)
∑

p∈iLτj−1

P (p)

P (i)
Gj(p) =

∑
p∈Lτj

P (p)Gj(p).

Hence
V (µ) ≤ min

j∈T

∑
p∈Lτj

P (p)Gj(p).

Let’s notice that:

Dj(p) = 1−
τj−1∏
t=0

(
1− Γ(pt, j)

)
≤

τj−1∑
t=0

Γ(pt, j),

and ∑
p∈Lτj

P (p)

τj−1∑
t=0

Γ(pt, j)

 =

τj−1∑
t=0

∑
p∈Lτj

Γ(pt, j)P (p) ≤
∑
s∈L

Γ(s, j)

τj−1∑
t=0

∑
p∈Lτj

δpt=sP (p)

 ,

where δ is the Kronecker delta (i.e., δpt=s = 1 if pt = s, and δpt=s = 0 otherwise). Since µ is shift-invariant, for each
s ∈ L and each t we have ∑

p∈Lτj

δpt=sP (p) = P (s),

hence ∑
p∈Lτj

P (p)

τj−1∑
t=0

Γ(pt, j)

 ≤ τj
∑
s∈L

Γ(s, j)P (s).

Therefore

V (µ) ≤ min
j∈T

∑
p∈Lτj

P (p)Gj(p)

= min
j∈T

∑
p∈Lτj

P (p)

1−
τj−1∏
t=0

(1− Γ(pt, j))

V (j)

= min
j∈T

V (j)
∑

p∈Lτj

P (p)

1−
τj−1∏
t=0

(1− Γ(pt, j))


≤ min

j∈T
V (j)

∑
p∈Lτj

P (p)

τj−1∑
t=0

Γ(pt, j)


≤ min

j∈T
V (j)τj

∑
s∈L

P (s)Γ(s, j).
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C EXAMPLES

C.1 THE MODEL FROM John et al. [2023] AS AN INSTANCE OF OUR GENERAL MODEL

Let us describe the framework by John et al. [2023] that analyzes stochastic surveillance strategies of randomized patrolling
robots, using the formalism of our model. Let H = (L,R) be a physical state and action space. Assume that a Markov chain
P is given and that the defender patrols H according to P , and let µP be the defender strategy derived from P . Consider the
set of attack plans T to be a subset of L (where each target lj ∈ T implicitly contains the information on the attack-time τj
of the vertex lj). The set of strategies of the attacker is

{(λ, lj) : λ ∈ L∗, lj ∈ L},

where λ is a (finite) sequence of nodes of L visited by the patrolling unit until the moment of the attack. If we let Xk to be
the value of P at time k, i.e., the node visited at time k, then

tij = min{k : X0 = li, Xk = lj}

is a random variable representing the number of time periods between the agent leaving the node li ∈ L and their arrival to
node lj ∈ L. The payoff of the defender Gj(p) is equal to 1, if tij ≤ τj , and −1 otherwise, where p0 = li, i.e., if at the time
0 of the schedule p the defender is located in the node li. The game value of the strategy µ of the defender is then simply

V (µ) = min
li∈L

min
j∈T

µ
(
tij ≤ τj

)
.

C.2 A STAR GRAPH

Consider a physical and strategy states shown in Figure 5. There is a single patrolling unit. The set of targets is the set of
vertices of the physical space and the attack time for each vertex is equal to 3. We assume that we are playing against an
opponent with observation length 1, i.e. an opponent that observes the current position of the patrolling unit.

(S,A)

1
2

1
2

1
2

1
2

1
2

1
2

X

(L,R)

1
3

1
3

1
3

Figure 5: A strategy space (left) over a star-graph with three leaves (right). The hidden states over the center allow for
construction of more sophisticated strategy, as described in Section C.

We consider two defense strategies: (1) the patrolling unit is governed by a Markov chain defined on the physical space; (2)
the patrolling a Markov chain defined on the strategy space. In both cases the optimal Markov chain selects its actions with
uniform probability. However, the expected payoff for the defender playing strategy (1) is 1

3 and it increases to 1
2 when he

switches to strategy (2).

C.3 A 5-CYCLE

Consider a 5-cycle as presented in Figure 6. Let all nodes be targets with the same value and attack time equal 2.

Let us consider an attacker with memory of length 2. According to results from exact solver, defender’s strategy with hidden
states is able to achieve up to 1

3 capture probability, as compared to 1
4 for one without memory. An example of optimal

strategy for the defender is moving in sequences of two edges clockwise or two edges counterclockwise. After a sequence,
he should randomly choose the direction of the next by picking the same as previously with probability 1

3 and reverse with
probability 2

3 .
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A

B

C

D

E

1

1

1
1

1

1

1

1

1

1

Figure 6: A physical space based on a 5-cycle.

Notice that the attacker will always benefit from attacking target two edges away from defender’s current position. Assume
that defender’s last move was from E to A. Then the probability that defender will move to B and then to C is the probability
that when he finishes the sequence, he chooses to continue going counterclockwise, which is 1

3 . The probability that defender
will move to E and then to D is the probability that he just finished sequence of two moves and now starts going clockwise,
which is 1

2 · 2
3 = 1

3 . This shows that capture probability is 1
3 .

C.4 A 2n+ 1-CYCLE

The above strategy can actually be generalized. Let (L,R) be a cycle with 2n+ 1 vertices. Assume all of them are targets
with the same value and the attack time is equal to n.

As above, suppose the attacker has memory of length 2. Consider the following strategy: make n steps in one direction
(randomly choosing the clockwise direction or the anti-clockwise one), and then randomly choose the direction of the next
sequence of n moves by drawing the same direction as for the previous sequence with probability 1

n+1 and reverse the
direction with probability 1− 1

n+1 .

Again, the attacker benefits most from attacking a target that is n edges away from defender’s current location. Thus, by the
same reasoning as before, this strategy is quaranteed to give the defender the capture probabiltiy equal to 1

n+1 against a
rational attacker.

C.5 COMPARISON WITH GAME VALUES COMPUTED BY Horák et al. [2023]

We can compare game values of the model from Horák et al. [2023] to the ones we compute with our model. Over there, the
game value is defined as:

VI(µ) = inf
σ

∞∑
i=1

γi−1Pb,µ,σ(s
(i))R(s(i)a

(i)
1 a

(i)
2 ),

where si is the i-th state of the game (in our terminology: the i-th element of the patrol schedule), σ is the attacker strategy,
Pb,µ,σ is the probability of the state in the i-th round of the game being s , depending on the initial distribution b, and the
players strategies, aij are actions of j-th player in the i-th round, and R are payoffs of the defender for a given round. If we
apply similar finiteness and invariance assumptions, as we have above, to this model in Horák et al. [2023], set discount
factor γ = 1, assume that actions of attacker do not affect the defender, but that his activity is implicit in the objective
function, and replace the sum of R-s with Gj(p) then the game value from Horák et al. [2023] becomes in the notation of
our model:

VI(µ) = inf
j∈T

∑
i∈I

∑
p∈Lτj

P (ip)Gj(p).

That means that we compute game value as a worst case scenario, while Horák et al. [2023] computes game value as an
average. We believe that in security scenarios the former is more adequate.
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D CONSTRUCTING SPACES WITH MEMORY

There are many ways of constructing strategy spaces with memory. For instance, given a physical space (L,R), and a
positive integer k, we may define the states of S to be k + 1-tuples of nodes from L, interpreted as as the current position of
the patrolling unit, together with k positions visited immediately before. Then, |S| = Lk+1, and S has memory of length k
with respect to X . For m ≤ k the attacker can then observe the current position of the unit and its previous m locations.1

This construction is illustrated in the section D.1 of the Appendix.

Consider another example of a strategy space with memory. Given an arbitrary physical space (L,R), we can construct
the strategy space as the set of mutually disjoint finite cycles {Cki

: i = 1, . . . , |L|}, each of length ki. Such a space is
equivalent to selecting a mixed strategy in a Stackelberg game where pure strategies are patrols from a predetermined set,
similarly to the models built in recent years in many widely applicable works on security games Sinha et al. [2018]. Since in
such a space almost all moves of the defender but the initial one are deterministic, the memory of the space (with respect to
X) is actually infinite, despite the fact that the size of the space can be relatively small.

Further, consider constructing the strategy space by taking a tensor product of the physical space (L,R) and an arbitrary
graph G. In particular, the graph G might be a clique, in which case it can be seen as an internal memory of the defender.
Aside from knowing their location in the physical space, the defender can use G to store an additional piece of information,
with the number of distinct states equal to the number of nodes in G. The length of memory then depends on G, notice
however that as a result of the tensor multiplication the length of the memory cannot decrease.

D.1 SPACE WITH MEMORY OVER THE 5-CYCLE

To see a concrete example of a specific construction of space with memory, the physical space (L,R) to be the cycle graph
C5 with 5 vertices {l0, . . . , l4}, and edges in both directions, i.e.,

R = {(li, li+1), (li, li−1) : i = 0, . . . , 4},

where the addition and subtraction are defined modulo 5. Suppose all edges have equal length 1, and that each vertex stores
a target of equal positive value. Now assume we have one patrolling unit and define S := L3, i.e., the states of S are triples
of vertices, interpreted as the current position l of the unit, together with the two vertices visited by the unit immediately
before l, where if e.g.,

si = (l1, l3, l0),

then it means the current position of the patrol is l1, to which it arrived from l3, and one step earlier it was in l0. In other
words, the states of the strategy space can be identified with paths of length 2. Obviously, |S| = 125. We may define the
attacker’s observation Y : S → Y in such a way that Y = L2, for any

si = (li1 , li2 , li3) ∈ S

define
Y (si) = (li1 , li2),

that is the attacker observes the current position of the patrolling unit and its previous location (the attacker, observing the
physical space, remembers the location from which the patrolling unit came to the current position). The formal requirement
for this to be well-defined is for the space has memory of length 1 with respect to X . The space S has actually memory equal
to the length of the paths. Assume now that the sequence of physical states of the patrol is the repeated cycle l0, l1, l2, l3, l4.
Then, in the strategy space, the sequence of internal strategy space generated by the defender will be

s = ((l0, l4, l3), (l1, l0, l4), (l2, l1, l0), . . .).

Then, the attacker’s observations will be
((l0, l4), (l1, l0), (l2, l1), . . .).

This is an instance of a strategy space, where each node can be identified with with a path of (given fixed length) nodes from
the physical space.

It is worthwhile to observe in this place that if the strategy space S is a cyclic graph (even when we forget about the direction
of the edges), then if for a given natural number n, the girth of the graph, i.e., the length of a shortest cycle contained in the
graph, is greater or equal than 2n, then the space has memory at least n (it can be actually larger).

1The formal requirement for this to be well defined is for the space to have memory of length m− 1 with respect to X .
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E SUPPLEMENTARY FIGURES
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Figure 7: The left plot presents the mean utility of the defender, while the right plot presents the mean runtime. Each data
point is an average over 100 Erdős-Rényi networks. The colored areas (very narrow in most cases) represent 95% confidence
intervals.
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Figure 8: The left plot presents the mean utility of the defender, while the right plot presents the mean runtime. Each data
point is an average over 100 Watts-Strogatz networks. The colored areas (very narrow) represent 95% confidence intervals.
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F GLOSSARY

Notation Description

Cp A cone in L over p ∈ L∗, i.e.
Cp = {q ∈ L : pi = qi for i ≤ |p|}.

G The payoff function of the defender G : L × T → R, where G(p, j) is the payoff of the defender if the
attacker executes an attack plan j at time 0 against the patrol schedule p.

Γu Coverage function Γu : Lu × T → [0, 1] defined for each patrolling unit u ∈ U , where Γu(l, t) is the
probability that the patrolling unit u stationed at location l will catch an intruder within a single unit of time
while he attacks target t.

Gj The payoff function of the defender when attacker executes attack plan j ∈ T , i.e., Gj = G(·, j).
G̃j Lift of the payoff function, i.e., G̃j(s) = Gj((MX(s, τj − 1),MX(s, τj − 2), . . . ,MX(s, 0)), where

MX(s, i) maps (s, i) to the past value of X from i steps before the defender reached the state s.
Gn

j The defender payoff if the attacker executes attack plan j ∈ T at time n ∈ N against the patrol schedule
p ∈ L, i.e.

Gn
j = Gj ◦ shiftn .

I Actionable observations of the attacker, i.e. a set I ⊂ L∗, i.e., upon observing i ∈ I , the attacker can decide
to take action, and otherwise they definitely does not make motion to perform an attack plan.

(i, j) An attacker strategy, i.e., a pair (i, j) ∈ L∗ × T of a moment of the attack i ∈ N and an attack plan j ∈ T .

L A set of infinite paths in (L,R), i.e.

L = {(s1, s2, s3, . . .) : si ∈ L, (si, si+1) ∈ R}.

L∗ A set of finite paths in a state and action space (L,R), i.e.

L∗ = {p = (p1, p2, . . . , pk) : pi ∈ L, (pi, pi+1) ∈ R}.

We allow an empty path, for k = 0, denoted ϵ.
(L,R) A state and action space, i.e. a directed graph, R ⊂ L× L.
(Lu, Ru) The set of locations Lu patrolled by a particular unit u ∈ U , and the set of routes Ru that it traverses.

M A Markov chain on (S,A) with a transition matrix N and a stationary distribution σ.
µ The defender strategy µ = ν ◦X−1 with a hidden Markov model ν.
µ∗ An optimal defender strategy, i.e.

µ∗ ∈ argmax
P

V (µ).

µ∗
I An optimal defender strategy against I , i.e.

µ∗
I ∈ argmax

µ
VI(µ).

N Transition matrix of the Markov chain.
ν Markov measure induced by M on S.
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Notation Description

P Behavioral strategy of the defender, i.e., P (s | p) is the probability that the defender enters location s ∈ L,
given that so far they have been following the patrolling schedule p.

|p| For p = (p1, p2, . . . , pk) ∈ L∗, we let |p| = k denote the length of p.
p · q If p, q ∈ L∗, then p · q is concatenation of paths, i.e.

p · q = (p1, p2, . . . , pk, q1, q2, . . . , ql),

where p = (p1, p2, . . . , pk) and q = (q1, q2, . . . , ql). If we write p · q, then we implicitly assume that
p · q ∈ L∗, i.e. (pk, q1) ∈ R.

S A set of infinite paths in (S,A).
(S,A) Strategy state and action space used by the defender to control their defensive resources.
shift A shift operator shift : L → L, i.e.

shift(s1, s2, s3, . . .) = (s2, s3, . . .).

σ Stationary distribution of the Markov chain.

T The set of attack plans of the attacker.
τj The attack duration of attack plan j ∈ T .

U The set of patrolling units.

V (µ) Game value against the defender strategy µ, i.e.

V (µ) = inf
I⊂L∗

VI(µ).

V Defender’s values of targets V : T → R.
VI Game value against the set of actionable observations I , i.e., the value that is most beneficial for the attacker

amongst the choice of an attack plan and an actionable observation.

X Projection, i.e., a graph homomorphism X : S → L that translates defender’s internal scheduling to actions
in the physical space.

Y Attacker’s observation function Y : S → I .
Yh History of length h, i.e., Yh(p) = shift|p|−h(p).
Ỹh Lift of the attacker’s observation function, i.e., Ỹh(s) = (MX(s, h− 1),MX(s, h− 2), . . . ,MX(s, 0)),

where MX(s, i) maps (s, i) to the past value of X from i steps before the defender reached the state s.
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