
Value-Based Abstraction Functions for Abstraction Sampling

Bobak Pezeshki1 Kalev Kask1 Alexander Ihler1 Rina Dechter1

1University of California, Irvine

Abstract

Monte Carlo methods are powerful tools for solv-
ing problems involving complex probability dis-
tributions. Despite their versatility, these methods
often suffer from inefficiencies, especially when
dealing with rare events. As such, importance sam-
pling emerged as a prominent technique for alle-
viating these challenges. Recently, a new scheme
called Abstraction Sampling was developed that
incorporated stratification to importance sampling
over graphical models. However, existing work
only explored a limited set of abstraction functions
that guide stratification. This study introduces three
new classes of abstraction functions combined with
seven distinct partitioning schemes, resulting in
twenty-one new abstraction functions, each moti-
vated by theory and intuition from both search and
sampling domains. An extensive empirical analysis
on over 400 problems compares these new schemes
highlighting several well-performing candidates.

1 INTRODUCTION

The partition function (Z) is an important quantity in prob-
abilistic graphical model inference and is often estimated
using Monte Carlo methods such as Importance Sampling
(IS) [Rubinstein and Kroese, 2016, Liu et al., 2015, Gogate
and Dechter, 2011]. Inspired by the works of Knuth [1975]
and Chen [1992], a framework called Abstraction Sampling
(AS) [Broka et al., 2018] was introduced extending IS by
enabling samples to represent multiple configurations. AS
uses concepts from Stratified Sampling [Rubinstein and
Kroese, 2016, Rizzo, 2007] and Compact Search [Dechter
and Mateescu, 2007, Marinescu and Dechter, 2009] to build
a sampled subtree called a probe which is then used to com-
pute an estimate. Probes are built level-by-level according
to a variable ordering where, at each level, an abstraction
function groups nodes into abstract states from which rep-
resentative nodes are selected to extend paths in the probe.

Using what are referred to as context-based abstraction func-
tions, Broka et al. [2018] showed competitive performance
of AS against IS, Weighted Mini-Bucket Importance Sam-
pling (wMBIS) [Liu et al., 2015, Ihler et al., 2012], and
IJGP-SampleSearch (IJGP-ss) [Gogate and Dechter, 2011].
Kask et al. [2020] improved Abstraction Sampling scalabil-
ity with the AOAS algorithm that more efficiently applied
AS to AND/OR search spaces. AOAS showed improved per-
formance, additionally comparing to state-of-the-art scheme
Dynamic Importance Sampling (DIS) [Lou et al., 2019].

However, AS development has lacked exploration of diverse
and potentially more effective abstraction functions. While
Hsiao et al. [2023] proposed using graph neural networks to
learn abstraction functions, such methods require learning
on a corpus of similar problems before use.

Contributions. This work provides a detailed study of
new abstraction schemes for AS. We present a new class of
abstractions defined by real-valued functions aimed at cap-
turing relevant similarity features between nodes. Three
classes of this new framework are introduced and aug-
mented by seven partitioning strategies. A purely random-
ized scheme is also introduced. An extensive empirical eval-
uation is performed on over 400 problems, comparing our
novel schemes against: each other, the previous relCB and
randCB abstraction functions [Broka et al., 2018, Kask et al.,
2020], and implicitly against IS, wMBIS, IJGP-ss, and DIS.

Our experiments identify three schemes in particular that
perform significantly better than any previous scheme. Our
results demonstrate a significant improvement for one of
the most competitive sampling schemes, thus also yielding
a substantial computational advance for one of the most
challenging tasks in probabilistic inference.

2 GENERAL BACKGROUND

Graphical Models. A graphical model, such as a
Bayesian or Markov network [Pearl, 1988, Darwiche, 2009,
Dechter, 2013], can be defined by a 3-tupleM=(X,D,F),

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:2861–2901.

mailto:<pezeshkb@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<kkask@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<ihler@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<dechter@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024

where X is a set of variables, and D is the set of vari-
able domains, and F is a set of functions such that each
function fα ∈ F is defined over a subset of variables
α ⊆X (called the function’s scope) capturing local interac-
tions.M defines a global function, often a factorized prob-
ability distribution on X, P (X) = 1

Z

∏
α fα(Xα), where

Z =
∑

X

∏
α fα(Xα), known as the partition function, is

a normalization factor. A primal graph G=(V,E) ofM
associates each variable with a node (V=X) with edges
e ∈ E connecting nodes whose variables interact locally,
appearing in the scope of the same functions.

Search Spaces of Graphical Models. A graphical model
can be transformed into a compact AND/OR search space
to leverage conditional independence and facilitate efficient
search algorithms [Dechter and Mateescu, 2007].

Given a primal graph G, an AND/OR search space is de-
fined relative to a pseudo tree T =(V,E′), a directed rooted
tree that captures conditional independence encoded in the
model. A pseudo tree T is constructed according to a vari-
able ordering such that every arc of G not in E′ is a back-arc
in T . This construction ensures conditional independence
of any variable and its descendants from variables found in
the other branches of T given assignments to their common
ancestors. The pseudo tree in Figure 1a was constructed
using a variable ordering o = [A,B,C,D]. The dashed line
shows an edge in the primal graph that is missing from T ,
but that would be a back-arc if it were present. From its
structure we see that variables C and D are independent
of B given assignment to A. Here A is referred to as a
branching variable since it branches to multiple children.

Guided by a pseudo tree T , an AND/OR search tree T has
alternating levels of OR nodes corresponding to variables
and AND nodes corresponding to possible assignments to
those variables. Figure 1 shows an AND/OR search tree
and its guiding pseudo tree. Note that in the pseudo tree,
variables B and C extend to different branches from A.
Similarly, in the AND/OR search tree, we see OR nodes B
and C extending to different branches under each possible
assignment of A. An arc into an AND node nX of variable
X has a cost c(nX) equal to the product of functions fα ∈
F such that the path to nX fully instantiates all X ′ ∈ α and
such that X ∈ α [Dechter and Mateescu, 2007].

Notation. Capital letters (X) represent variables and small
letters (x) their values. Boldfaced letters represent a collec-
tion. Boldfaced capital letters (X) denote a collection of
variables, |X| its cardinality, DX their joint domains (all
possible configurations of X), and bolded x a particular
realization in that joint domain (a particular configuration
of X).

In the context of search, n is used generally to represent
nodes in a search tree. For AND/OR search trees, nX is
used to specifically refer to an AND node associated with
variable X , and YnX

the OR node associated with variable

(a)

A

B

0

C

0 1 0 1

B

1

C

0 1 0 1

10 20

1 4 2 5 10 20 5 10

D

0 1

2 3

D

0 1

5 10

D

0 1

10 20

D

0 1

15 5

Ancestor
Branching

Mass of

(b)
Figure 1: A full AND/OR tree representing 16 possible full
configurations of binary variables A,B,C, and D guided by
the pseudo tree shown in subfigure (a) above. The path cost for
the highlighted node nA=0,C=1 at the end of the path→(A=
0)→(C=1) is g(nA=0,C=1) = 10·5. The value of the subtree
under nA=0,C=1 is Z(nA=0,C=1) = 2·1+3·1. Boxed in green
is the ancestor branching subtree for nA=0,C=1 and it has the
value R(nA=0,C=1) = 1 ·1 + 4 ·1. Thus, Q(nA=0,C=1) =
(10·5)·(1·1 + 4·1)·(2·1 + 3·1).

Y that is the child of nX . ch(n) are the children of node
n. path(n) is the configuration of the variables along the
path from the root of a search tree T to node n according to
assignments corresponding to that path. For the highlighted
node n in Figure 1b, path(n) = {A=0, C=1}. varpath(n)
is the set of variables that path(n) provides a configuration
for. In Figure 1b varpath(n) = {A,C}. The cost of the arc
to an AND node nX is

c(nX) =
∏

f∈{fα∈F | α⊆varpath(nX), X∈α}

f(path(nX)). (1)

or 1, vacuously. Letting anc(n) be the AND node an-
cestors of n in the search tree, the cost of path(n) is
g(n) =

∏
n′∈anc(n) c(n

′). In Figure 1b, g(n) = 10 · 5.

We now define some important quantities involved in evalu-
ating AND/OR search spaces.

Z(n). The total cost of the subtree rooted at n. For an
AND node nX with children OR nodes YnX

∈ ch(nX),
Z(nX) satisfies

Z(nX) =
∏

YnX
∈ch(nX)

Z(YnX
) (2)

2862

such that for OR nodes YnX

Z(YnX
) =

∑
nY ∈ch(YnX

)

c(nY) · Z(nY) (3)

with Z(nX) = 1 in the case nX has no children.

Note that given n∅ as the dummy root node of AND/OR
tree T , Z(n∅) = Z of the underlying modelM. We denote
estimation of Z(n) as Ẑ(n). Heuristic estimates of Z(n)
are more specifically denoted as h(n).

R(n). On the path from the root of an AND/OR tree T
to some node nX , there may be an intermediate node nY
associated with branching variable Y in the guiding pseudo
tree T . (In Figure 1b, on the path to the highlighted node
nA=0,C=1, node nA=0 is traversed where A is a branch-
ing variable in T of Figure 1a). When this happens, the
remaining variables of the model are split between differ-
ent branches. Thus, the Z(n) of any node down one of the
branches will necessarily omit the costs from the config-
urations of the variables included in the other branch(es).
R(nX), or the ancestor branching mass, captures these
omitted costs. (In Figure 1b, the green box shows the por-
tion of T corresponding to R(nA=0,C=1)).

More formally, let br(nX) be the set of ancestor nodes nYi

of nX such that each Yi is a branching variable ancestor of
X in T . We then define R(nX) simply as:

R(nX) =
∏

nY ∈br(nX)

∏
WnY

∈ch(nY)

WnY
̸∈path(nX)

Z(WnY
), (4)

(In Figure 1b, br(nA=0,C=1) = {nA=0}, A being the only
branching variable ancestor of C in T , and BnA=0

the only
respective child OR node not not on the path to nA=0,C=1.
Thus, R(nA=0,C=1) = Z(BnA=0

)). We denote approxima-
tions to R(n) as r(n).

Q(n). We can now concisely define a quantity Q(n) as
the contribution to Z from all full configurations consistent
with path(n). In other words, Q(n) is the unnormalized
measure of the configuration path(n), with P (path(n)) =
Q(n)
Z . The quantity Q(n) obeys:

Q(n) = g(n)·R(n)·Z(n). (5)

Example. In Figure 1b, consider the path from the root to
the red node nA=0,C=1. Following nA=0 to our node, we
see OR node BnA=0

branches off of the path. So,

Q(nA=0,C=1) = g(nA=0,C=1) ·R(nA=0,C=1) ·Z(nA=0,C=1)

= g(nA=0,C=1) ·Z(BnA=0) ·Z(nA=0,C=1)

= (10·5) ·(1·1 + 4·1) ·(2·1 + 3·1)

Stratified Importance Sampling. Abstraction Sampling
builds on Stratified Importance Sampling, which in turn
builds on Importance Sampling and Stratified Sampling.
Importance Sampling is a Monte Carlo scheme used for
approximating likelihood queries [Rubinstein and Kroese,
2016, Liu et al., 2015, Gogate and Dechter, 2011]. Stratified

Algorithm 1: AOAS Overview
1. Initialization: Begin with a dummy root node r.

2. Probe Generation: Proceeding in a DFS manner according
to a pseudo tree T ...

(a) Expansion: Generate children nodes n corresponding
to the next variable in the DFS ordering of T . Inherit
w(n) from parents and assign appropriate
g(n), h(n), and r(n) values.

(b) Abstraction:
i. Form Abstract States: Using a(·), partition newly

expanded nodes into abstract states.
ii. Select Representative: Using proposal

p(n) ∝ q(n), stochastically select a representative
from each abstract state and reweigh it such that
w(n)← w(n)

p(n)

(c) Backtrack: After reaching a leaf in T , recursively
backtrack until reaching the node that extends to the
next unexplored branch of T . While backtracking,
update parent node n′’s Ẑ(n′) estimates based on its
children’s w(n), g(n), and Ẑ(n) values.

(d) Repeat: Repeat steps 2a-2c until backtracking to the
root node.

3. Return: Ẑ = w(r) Ẑ(r) for the root node r.

Sampling is a variance reduction technique for sampling a
search space by first dividing it into disjoint strata [Rubin-
stein and Kroese, 2016]. In Stratified Importance Sampling,
the sample space is first divided into k strata, then represen-
tatives from each strata chosen and re-weighted to represent
the omitted members of their respective strata. Rizzo [2007]
shows that to reduce overall variance given strata of equal
mass under the proposal, the sum of the variances within
the strata should be minimized.

3 ABSTRACTION SAMPLING

Abstraction Sampling (AS) [Broka et al., 2018] applies con-
cepts of Stratified Importance Sampling to sampling over
probabilistic graphical models. AS is guided by an abstrac-
tion function a(·) that dictates how nodes are partitioned
into abstract states (abstract states being analogous to strata
in stratified sampling). A search tree is iteratively expanded
along a variable ordering. After each expansion, a(·) is
used to group nodes into abstract states. Then AS uses an
importance-sampling-like process to select a representative
from each abstract state and reweights it using importance
sampling weights to account for the unselected nodes it rep-
resents. The selected nodes are then further expanded and
the process iterates. This process yields a weighted sampled
subtree of the full search tree T as a sample, referred to as a
probe. It is important to note that AS probes can contain mul-
tiple full configurations, whereas samples from importance
sampling are each only a single full configuration.

2863

B

0 1

A C

0 1 0 1

A C

0 1 0 1

D

0 1

D

0 1

D

0 1

D

0 1

(a)

B

A

0

C

0 1

A

1

C

0 1

D

0 1

D

0 1

D

0 1

D

0 1

0 10 1

(b)

B

A

0

C

0 1 0 1

A

1

C

0 1

X

D

0 1

D

0 1

D

0 1

D

0 1

(c)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(d)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(e)

B

A

0

C

0 1 0 1

D

1

D

0

(f)

Figure 2: From Kask et al. [2020], a sample trace of AOAS
following ordering B → A→ C → D. Transparent nodes in-
dicate portions of the reachable search space yet to be explored.
Gray boxes indicate nodes considered for abstraction. Nodes
with the same domain values (also indicated by the same color)
are abstracted into the same abstract state. Only one node of
each color is stochastically selected as a representative for its
respective abstract state. Step (c) shows an optional pruning
step. Step (f) shows the final probe capturing four full config-
urations: B=0, A=0, C=0, D=0, B=0, A=1, C=0, D=0,
B=0, A=0, C=1, D=1, B = 0, A = 1, C = 1, D = 1.

AOAS. Taking Abstraction Sampling further, Kask et al.
[2020] introduced algorithm AOAS that more effectively
applied Abstraction Sampling to AND/OR search spaces
and significantly improved its performance. AOAS uses a
proposal function p(n) ∝ w(n)q(n) = w(n)g(n)h(n)r(n)
where a weight w(n) accounts for the nodes previously
abstracted into the path to n, g(n) is the cost of the path
to n, h(n) is a heuristic estimate of Z(n), and r(n) is an
estimate ofR(n) (see Figure 3). Algorithm 1 provides a high
level description of the AOAS procedure. Figure 2 shows
a sample trace of AOAS from Kask et al. [2020]. A more
detailed version of the algorithm and detailed description of
the sample trace can be found in the Supplemental Materials.

n'
n''

nX

h(nX)

w(nX)

nX'

X'' X

r(nX)
g(n)

Figure 3: The unnormalized proposal distribution w(n)q(n)
visualized to show it considering nodes previously abstracted
(via w(n)), the ancestor branching mass (via r(n)), current
path cost (via g(n)), and subtree mass (via h(n)).

4 VALUE-BASED ABSTRACTIONS

The choice of abstraction function is a crucial aspect of Ab-
straction Sampling but has only received limited attention so
far. The main focus of this work is to identify new abstrac-
tion functions that significantly improve AS performance.

Existing State-of-the-Art: Context-Based Abstraction
Functions. Broka et al. [2018] designed abstractions
based on assignments to a variable’s contextC(X) - a subset
of its ancestors in T whose assignments uniquely determine
the AND/OR subtree below it [Dechter and Mateescu, 2007].
However, the number of configurations to a context is expo-
nential in the context’s size. Thus, Broka et al. [2018] and
Kask et al. [2020] used relaxed context-based (RelCB) and
randomized context-based (RandCB) abstractions to control
the number of abstract states. RelCB uses a parameter nCtx
that groups nodes with the same configuration over the most
recent nCtx−1 context variables (the relaxed context) into
the same abstract state. With a domain size of k, this yields
at most knCtx abstract states at each level. RandCB con-
siders the entire context but bounds the number of abstract
states per level based on an nAbs parameter and by using a
randomized hashing scheme to associate each full context
assignment to one of the nAbs abstract states.

Value-Based Abstractions. We now introduce a new way
to form abstractions that we call Value-Based Abstractions.
They are defined by (1) a positive real-valued function
µ : DX → R+, where DX is a set of configurations for
the variables X , and by (2) a partitioning scheme ψµ that
assigns nodes to abstract states based on their µ value and
in an order-consistent manner as defined next.

Definition 4.1 (Value-Ordered Partitioning)
Given nAbs and a function µ : DX → R+, a partition-
ing function ψµ : DX → {A1, A2, ...AnAbs}, is order-
consistent with µ relative to the nAbs abstract states if for
any n1 ∈ Ai and n2 ∈ Aj , i < j ⇔ µ(n1) ≤ µ(n2).

2864

4.1 VALUE-BASED ABSTRACTION CLASSES

We introduce three Value-Based Abstraction classes, each
characterized by a unique value function µ that signifies a
notion of similarity between nodes. We will subsequently
provide partitioning schemes that, together with µ, will yield
a set of full abstraction functions.

1. Heuristic-Based Abstractions. Heuristic-Based (HB)
abstractions use µ(n) = h(n), where h(n) is a heuristic
estimate of Z(n). Unlike partial or hashed contexts as used
by Broka et al. [2018], heuristic estimates of Z(n) can often
provide quantitative insight into potential similarities of
Z(n) values. In particular, this intuition holds when using
heuristics that provide bounds on Z(n) such as those via
Weighted Mini-Bucket Elimination (wMBE) [Dechter and
Rish, 2003, Liu and Ihler, 2011].

2. Heuristic and Ancestral Branching-Based Abstrac-
tions. Recall that r(n) is an estimate of n’s ancestor
branching mass R(n). We can show that:

Theorem 4.1 (AOAS Exact Abstractions)
If an abstraction function a(·) forms abstract states Ai ∈ A

such that ∃ci ∈ R+,∀n ∈ Ai,
h(n)r(n)
Z(n)R(n) = ci whenever

Z(n)R(n) > 0 (or h(n)r(n) = 0 otherwise), then AOAS
is exact with its estimates having zero variance.

This observation suggests to use hr(n) = h(n)r(n)
Z(n)R(n) as a

similarity measure. When nodes having close hr values are
placed in the same abstract state it can lead to a reduction in
variance of the resulting estimate. However, without access
to Z(n) or R(n) we cannot evaluate this ratio directly. In-
stead we use the intuition that grouping based on h(n)r(n)
may result in sets of nodes also with similar Z(n)R(n), and
thus result in similar hr(n). We call such schemes that use
µ(n) = h(n)r(n) HR-Based (HRB) abstractions.

3. Q-Based Abstractions. Another intuition for generat-
ing abstractions comes from statistics theory. In his work
on stratified Importance Sampling, Rizzo [2007] showed
the potential of overall variance reduction by forming strata
(abstract states) having equal mass under the proposal dis-
tribution and that minimizes the variance within each strata.
Thus, since our proposal p is proportional to w(n)q(n), we
use µ(n) = w(n)q(n) = w(n)g(n)h(n)r(n) in what are
called Q-based (QB) abstractions.

4.2 ORDERED PARTITIONING SCHEMES

Next we describe seven partitioning schemes ψ to be used
with µ to partition the nodes n into abstract states. Together,
µ and ψ define a value-based abstraction function.

Running Example. We will use a running example to
illustrate the result of using various partitioning schemes.

Assume we have eight nodes with the following µ(n):
1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100 (6)

Algorithm 2: ΨsimpleVB

1 baseCardinality ← ⌊ |n|
nAbs
⌋

2 extras← |n| mod nAbs
3 n∗ ← SORT (n, µ, low-to-high)
4 jbegin ← 1
5 foreach i← 1, ..., nAbs do
6 if extras > 0 then
7 jend ← jbegin + baseCardinality
8 extras← extras− 1

9 else
10 jend ← jbegin + baseCardinality − 1
11 Ai ← {n∗

jbegin
, ..., n∗

jend
}

12 jbegin ← jend + 1

13 end
14 A← ∪nAbs

i=1 Ai

15 return A

and want to partition the nodes into nAbs = 4 abstract
states. As we describe each partitioning scheme, we also
demonstrate how the scheme would partition these nodes.

1. SimpleVB. The simpleVB (simple value-based) scheme
groups nodes having similar µ(n) into the same state by a
simple 2-step process: 1) nodes are ordered by µ(n) (low to
high), and 2) nodes are partitioned into abstract states with
[approximately] equal cardinality.

Running Example: {1.0, 1.1}, {1.2, 1.3}, {1.4, 1.5}, {10, 100}.

This method leverages speed while still aiming to roughly
group nodes with similar µ(n) together.

2. minVarVB. minVarVB uses Ward’s Minimum Vari-
ance Hierarchical Clustering, also known as Ward’s Method
[Ward, 1963] (Algorithm 3), to cluster nodes into nAbs ab-
stract states. Use of Ward’s method minimizes total within
variance of µ(·) across all abstract states. Ward’s Method
can be combined with Lance-Williams linear distance up-
dates [Lance and Williams, 1967] to increase efficiency.
More details on Ward’s Method and Lance-Williams linear
distance updates are found in the Supplemental Materials.

Running Example: {1.0, 1.1, 1.2}, {1.3, 1.4, 1.5}, {10}, {100}.

In contrast to simpleVB, minVarVB places considerable com-
putational resources into computing abstractions by using
Ward’s Method. Thus minVarVB leads to fewer probes being
generated but provably forms abstractions that minimize the
total within variance of µ(n) among the abstract states.

3. equalDistVB. In attempt to combine the intuition from
minVarVB and the speed of simpleVB, equalDistVB greedily
adds nodes in order of µ (low to high) into an abstract state
Ai until

µ(A1,...,i)=

i∑
j=1

∑
n∈Aj

µ(n) ≥ Qi=
i ·

∑
n′∈n µ(n

′)

nAbs
, (7)

i.e., until the total sum of node values from A1, ...,Ai

reaches or exceeds i
nAbs of the total across all of the nodes

2865

Algorithm 3: Ward’s Method
1. Initialization: Treat each data point as an individual cluster.

Assign each cluster a label.

2. Compute Pairwise Distances: Calculate the pairwise
distances between all clusters. Various distance metrics can
be used, such as Euclidean distance.

3. Cluster Merging Iteration:

(a) Identify the pair of clusters Ci and Cj that, when
merged into a new cluster Cij , results in the smallest
increase in the overall within-cluster variance. This is
determined using the formula:

∆V ar = V ar(Cij)− (V ar(Ci) + V ar(Cj))

where V ar(Cij) is the variance of the merged cluster,
and V ar(Ci) and V ar(Cj) are the variances of
clusters Ci and Cj , respectively.

(b) Update distance measures between the newly merged
cluster and all other clusters.

4. Repeat: Repeat steps 2-3 until the desired number of clusters
is achieved.

being partitioned. When paired with Q-based abstractions,
equalDistVB aims to partition nodes into equal mass states
under the proposal, motivated by Rizzo [2007].

Running Example: {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100},{},{},{}.

Although equalDistVB hopes to strike a balance between
efficiency and low variance of µ(n) within each abstract
state, from the running example we can see it may yield
undesirable partitionings for skewed distributions of µ(·)
values. In the example, all of the nodes need to be placed into
the first of four abstract states before the sum of their values
reaches/exceeds 1

4 of the total of all nodes being partitioned.
Thus, the remaining abstract states end up empty.

4. equalDistVB2. A second version of the equalDist
scheme, equalDistVB2, follows the same general strategy as
equalDistVB but uses a reversed sort ordering in attempt to
mitigate overfilling of abstract states. Modifying the sort or-
der from low-to-high to high-to-low in Line 1 of Algorithm
4 converts equalDistVB to equalDistVB2.

Running Example: {100}, {}, {}, {10, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0}

We see that equalDistVB2 can still over-pack abstract states.
The next two variants aim to mitigate this issue further.

5. equalDistVB3. In order to further lessen over-packing
and ensure abstract states are not left empty, equalDistVB3
modifies equalDistVB2 so that, after processing each ab-
stract state, the next state always has a node added to it
by default before checking the abstract state fill condition.
Modifying the sort order from low-to-high to high-to-low in
Line 1 and Ai ← {} to Ai ← {n∗j}; j ← j + 1; in Line 4
of Algorithm 4 converts equalDistVB to equalDistVB3.

Running Example: {100}, {10}, {1.5}, {1.4, 1.3, 1.2, 1.1, 1.0}.

Algorithm 4: ΨequalDistVB

1 n∗ ← SORT (n, µ, low-to-high)
2 j ← 1
3 foreach i← 1, ..., nAbs do
4 Ai ← {}
5 while µ(A1,...,i) < Qi do
6 Ai ← Ai ∪ {n∗

j}
7 j ← j + 1

8 end
9 end

10 A← ∪nAbs
i=1 Ai

11 return A

While still very efficient, equalDistVB3 ensures that the
provided nAbs granularity is honored, allowing users better
control of the search vs. sampling interpolation possible
with Abstraction Sampling.

6. equalDistVB4. The final equalDist variant, equalD-
istVB4, aims for more even partitioning. Before processing
each abstract state Ai, a new cut-off is determined based
the remaining nodes n∗

rm and remaining abstract states:

Q̂i =

∑
n∈n∗

rm
µ(n)

nAbs− i+ 1
. (8)

Nodes are added to abstract state Ai while µ(Ai) < Q̂i.
Modifying the sort order from low-to-high to high-to-low
in Line 1 and µ(A1,...,i) < Qi to µ(Ai) < Q̂i in Line 5 of
Algorithm 4 converts equalDistVB to equalDistVB4.

Running Example: {100}, {10}, {1.5, 1.4, 1.3}, {1.2, 1.1, 1.0}.

Still computationally efficient, equalDistVB4 spreads nodes
with small values more evenly across abstract states.

7. randVB. It can be beneficial to rely on randomness to
ensure a diverse sampling of abstractions. randVB does this
by sampling nAbs−1 partition points uniformly at random
and without replacement from between nodes sorted accord-
ing to µ(·), and then partitions the nodes accordingly. The
resulting abstract states ensure that nodes are still grouped
according to µ(·), but the sizes of those groups vary.

Algorithm 5: ΨrandVB

1 s ∼ Unif({M ⊆ {1, ..., |n| − 1} | |M | = nAbs− 1})
2 s∗ ← SORT (s)
3 n∗ ← SORT (n, µ, high-to-low)
4 j ← 1
5 foreach i← 1, ..., nAbs−1 do
6 Ai ← {n∗

j , ..., n
∗
s∗i
}

7 j ← s∗i + 1

8 end
9 AnAbs = {n∗

j , ..., n
∗
|n∗|}

10 A← ∪nAbs
i=1 Ai

11 return A

Running Example: ex1: {100, 10}, {1.5}, {1.4, 1.3, 1.2},
{1.1, 1.0}; ex2: {100}, {10, 1.5, 1.4, 1.3}, {1.2, 1.1}, {1.0}; etc.

2866

Complexity. Assuming µ(·) isO(1), each of the proposed
partitioning schemes have time complexity O(|n| log |n|)
and space complexity O(|n|), with the exception of min-
VarVB, which requires O(|n|2) for both. More details can
be found in the Supplemental Materials.

5 RANDOM-ONLY ABSTRACTIONS

Another unexplored approach was to use purely randomized
abstraction schemes. At first glance, one may not expect
such schemes to perform well, but randomization in concert
with an informative heuristic and proposal can be beneficial.

Intuition. First, given an informative heuristic, the
stochastic selection of a representative node within each
abstract state using a good proposal function will typically
opt for nodes that represent greater mass, which is generally
beneficial in importance sampling. Second, the randomness
of node assignments to the abstract states enables nodes
that may otherwise have little chance of being selected to
occasionally have a greater chance of selection, leading to a
more diverse distribution of probes.

The simpleRand Scheme. More concisely referred to as
RAND, the simpleRand scheme partitions nodes via a 2-
step process: 1) nodes first are shuffled to create a uniformly
random permutation, and then 2) the nodes are partitioned
into (approximately) equal cardinality nAbs abstract states.

Algorithm 6: ΨsimpleRand

1 baseCardinality ← ⌊ |n|
nAbs
⌋

2 extras← |n| mod nAbs
3 n∗ ← RANDOM_SHUFFLE(n)
4 jbegin ← 1
5 foreach i← 1, ..., nAbs do
6 if extras > 0 then
7 jend ← jbegin + baseCardinality
8 extras← extras− 1

9 else
10 jend ← jbegin + baseCardinality − 1
11 Ai ← {n∗

jbegin
, ..., n∗

jend
}

12 jbegin ← jend + 1

13 end
14 A← ∪nAbs

i=1 Ai

15 return A

Running Example: {1.4, 1.1}, {1.2, 10}, {1.0, 1.3}, {100, 1.5}.

Complexity. Both time and space are O(|n|).

6 EMPIRICAL EVALUATION

Overview. All combinations of Value-Based Abstraction
Classes: Heuristic-Based (HB), HR-Based (HRB), and Q-
Based (QB); with each of the Ordered Partitioning Schemes:
simpleVB, minVarVB, equalDistVB1-4, and randVB; were

tested, resulting in twenty-one value-based abstraction func-
tions. The formerly evaluated context-based (CTX) abstrac-
tion functions: randCB and relCB were compared against.
In addition, the purely random abstraction function, RAND,
was also included. With the exception of RelCB, each ab-
straction function uses a hyper parameter, nAbs, which
bounds the number of abstract states at any level. RelCB
instead uses an nCtx parameter that limits the number of
context variables used in assigning abstract states. To facili-
tate comparison, we report RelCB’s nCtx parameter instead
as an equivalent nAbs parameter assuming a domain size
of 2. (For example, if RelCB was run using nCtx = 6, we
report it with nAbs = 26). All abstraction functions were
tested using the AOAS algorithm [Kask et al., 2020]. All
algorithms were implemented in C++. All experiments were
run on a 2.66 GHz processor and allotted 8 GB of memory.

Heuristics. To inform the sampling proposal, Weighted
Mini-Bucket Elimination (wMBE) [Dechter and Rish, 2003,
Liu and Ihler, 2011] – which pairs well with AND/OR
search [Mateescu and Dechter, 2005] – is used as a heuristic.
The i-bound (iB) parameter controls the strength of wMBE,
where higher i-bounds generally lead to stronger heuristics,
and thus better proposals, at the expense of more computa-
tion and memory. We standardize our experiments by using
the same i-bound when comparing across algorithms.

Benchmarks. In line with previous work on Abstraction
Sampling, we perform experiments on the same set of over
400 problems from five benchmarks: DBN, Grids, Linkage-
Type4, Pedigree, and Promedas used by Kask et al. [2020].
We refer to problem instances with known Z values as
Exact. Larger problems without exact solutions are called
LARGE. For LARGE problems, estimates from 10hr of
AOAS using the RAND - RAND being well performing
- are used as the reference Z value. When experimenting

Table 1: Exact Benchmark Statistics. Average statistics for
Exact problems. N: number of instances, |X|: average number
of variables, k: average of problems’ largest domain sizes, w*:
average induced tree-width, d: average T depth.

Benchmark N |X| k w* d

DBN 66 67 2 29 30
Grids 8 250 2 22 49
Pedigree 25 690 5 25 89
Promedas 65 612 2 21 62

Table 2: LARGE Benchmark Statistics. Average statistics
for LARGE problems. N: number of instances, |X|: average
number of variables, k: average of problems’ largest domain
sizes, w*: average induced tree-width, d: average T depth.

Benchmark N |X| k w* d

DBN 48 216 2 78 78
Grids 19 3432 2 117 220
Linkage-Type4 82 6550 5 45 761
Promedas 173 1194 2 72 114

2867

on Exact problems, algorithms use a small i-bound of 5
(weakening the heuristic estimates) and were given a limited
time of 300sec to increase difficulty. For LARGE problems,
an i-bound of 10 and time limit of 1200sec are used.

Performance Measure. To evaluate performance, we de-
fine error as: Error = | log10 Ẑ − log10 Z

∗|, where Ẑ is
the estimate obtained from AS and Z∗ is the reference Z
value. For Exact problems, Z∗ = Z.

6.1 RESULTS

Summary Comparison. To examine potential of the dif-
ferent methods, we tested each algorithm with a range
of nAbs∈ {1, 4, 16, 64, 256, 512, 1024, 2048}. For each nAbs
and benchmark, we calculated the average error across prob-
lems of the benchmark and identified the nAbs that resulted
in the lowest average error. Table 3a focuses on Exact prob-
lems and shows this lowest average error and corresponding
nAbs for each algorithm. Table 3b shows the corresponding
results for LARGE problems on the better performing QB
and RAND classes, and the CTX class for comparison. If an
algorithm was unable to produce a positive Monte Carlo Z
estimate for a problem (denoted "Fail"), the wMBE heuris-
tic bound was used as its Z estimate and error computed
accordingly. We highlight the best performing schemes.

Comparison using 100 Samples. To assess the quality of
abstraction functions in an implementation-agnostic manner
and irrespective of resulting probe-sizes or speed, we con-
ducted experiments using a one-hundred sample limit (m-
100). Table 4 shows these results on Exact problems for the
better performing QB and Rand classes using nAbs = 256.
nAbs = 256 was chosen as (1) it is an intermediate granular-
ity and (2) all schemes produced 100 samples in a reasonable
time. We highlight the best performing schemes.

Varying nAbs. Table 5 shows average error for nAbs∈
{4, 64, 1024} on Exact problems of each benchmark. We
focus on the better performing variants of QB: min-
VarQB, equalDistQB3, equalDistQB4; the purely random-
ized scheme RAND; and the context-based schemes (CTX)
for comparison. In Figure 4 and Figure 5, we also show
average error across a wider array of nAbs for minVarQB
and equalDistQB4, respectively, the latter also acting as a
representative for the profile of equalDistQB3 and RAND.

Time Series Plot. Figure 6 and Figure 7 show time-series
results for the better performing QB algorithms, RAND, and
CTX schemes on a representative Grids and Promedas prob-
lem. Each algorithm was plotted with the nAbs that resulted
in the lowest average error for the respective benchmark.

6.2 ANALYSIS

Comparison with Context-Based Schemes. Table 3a
shows that there is always a partitioning scheme for HB and
HRB that can outperform the best CTX scheme on Exact

Figure 4: Varying nAbs for minVarQB. Average error on
Exact problems using iB-5 and time limit 300 sec for each
benchmark at various abstraction granularities (in log2).

Figure 5: Varying nAbs for equalDistQB4. Average error
on Exact problems using iB-5 and time limit 300 sec for each
benchmark at various abstraction granularities (in log2).

problems. For HB, the simple and rand partitioning schemes
perform best, whereas for the HRB class it is more bench-
mark dependent. QB with minVar, equalDist3, and equalD-
ist4 partitioning outperform the CTX schemes across all
benchmarks. RAND also consistently outperforms the CTX
schemes. Results from Table 3b on LARGE problems agree,
with the exception of QB with minVar and RAND, which
fall slightly shy of randCB’s performance on Promedas.

Comparison with Purely Randomized Abstractions.
Table 3 shows RAND is a particularly well performing
scheme across all benchmarks. However, the QB class us-
ing the equalDist3 and equalDist4 strategies is consistently
comparable or better than the purely randomized scheme.
No other scheme does as well.

Comparison with Non Abstraction Sampling Schemes.
In prior work by Broka et al. [2018] and Kask et al. [2020],
Abstraction Sampling using CTX based abstractions was
shown as competitive against several powerful schemes
such as Importance Sampling (IS), Weighted Mini-Bucket
Importance Sampling (wMBIS) [Liu et al., 2015], IJGP-

2868

Class Scheme nAbs Fail nAbs Fail nAbs Fail nAbs Fail
simple 2048 0 0.440 1024 0 2.202 2048 0 0.150 1024 0 0.575
minVar 1 0 1.361 16 0 3.251 64 0 0.422 16 2 2.509

equalDist 1 0 1.365 2048 0 10.854 1024 0 0.303 1024 0 2.332
equalDist2 1 0 1.570 512 0 8.050 1024 0 0.315 64 0 2.123
equalDist3 1 0 1.489 2048 0 2.764 1024 0 0.279 256 0 2.196
equalDist4 1024 0 2.819 64 0 6.029 512 0 0.214 2048 0 1.355

rand 256 0 0.496 2048 0 2.248 2048 0 0.185 2048 0 0.752
simple 2048 0 0.491 4 0 9.667 256 0 0.225 2048 0 0.705
minVar 1 0 1.500 64 0 2.319 256 0 0.309 16 1 2.801

equalDist 1 0 1.305 256 0 10.635 1024 0 0.638 16 4 4.055
equalDist2 1 0 1.549 2048 0 6.790 16 0 0.457 16 2 3.445
equalDist3 1 0 1.405 1024 0 2.292 16 0 0.537 16 2 2.656
equalDist4 1 0 1.511 512 0 1.829 64 0 0.483 2048 0 2.024

rand 2048 0 0.451 4 0 6.122 64 0 0.666 1024 1 2.165
simple 1 0 1.469 16 0 10.076 256 0 0.297 256 1 3.164
minVar 2048 0 0.050 1024 0 1.566 64 0 0.210 64 1 1.062

equalDist 4 0 1.174 2048 0 8.134 2048 0 0.144 2048 0 0.583
equalDist2 2048 0 0.736 2048 0 4.405 1024 0 0.145 2048 0 0.539

equalDist3 2048 0 0.042 2048 0 1.771 512 0 0.148 2048 0 0.412
equalDist4 2048 0 0.130 512 0 1.754 512 0 0.134 512 0 0.437

rand 1 0 1.295 256 0 6.048 16 0 0.740 16 2 5.988
rand 4 0 1.381 4 0 5.030 16 0 0.540 1024 1 2.442
rel 1 0 1.472 64 0 4.021 64 0 0.424 64 6 4.349

RAND rand 2048 0 0.104 1024 0 1.501 1024 0 0.143 1024 0 0.513

HRB

QB

CTX

Avg. Error

HB

DBN GridsiB-5, t-300sec, Exact Promedas
Avg. Error

Pedigree
Avg. ErrorAvg. Error

(a)

Class Scheme nAbs Fail nAbs Fail nAbs Fail nAbs Fail
simple 1 0 6.540 16 0 197.931 2048 13 48.681 4 34 11.919
minVar 2048 0 1.837 1024 0 28.423 256 31 93.058 16 13 5.403

equalDist 512 0 5.423 2048 0 118.547 2048 22 46.196 512 15 5.960
equalDist2 2048 0 3.813 2048 0 91.994 1024 21 40.310 2048 12 4.982

equalDist3 2048 0 1.645 2048 0 19.277 1024 20 37.490 256 5 2.560
equalDist4 2048 0 1.643 2048 0 18.866 2048 16 30.512 512 5 2.476

rand 4 0 6.292 16 0 163.973 256 17 156.992 4 28 11.532
rand 64 0 5.710 512 0 111.104 2048 53 194.741 256 0 3.222
rel 1 0 6.267 1024 0 80.633 1024 37 129.189 16 34 11.247

RAND rand 2048 0 2.123 2048 0 19.053 1024 19 33.804 1024 10 3.936

QB

CTX

iB-10, t-1200sec, LARGE DBN Grids Linkage-Type4 Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

(b)
Table 3: Summary Comparison. Each table shows the Abstraction Class (Class), Partitioning Scheme (Scheme), bound on the
number of abstract states per level (nAbs), number of problems for which a positive solution could not be estimated (Fail), and
average log10 Z error (Avg. Error) across Exact problems (subtable (a)) and LARGE problems (subtable (b)) in each benchmark.
Color bars visualize error magnitudes. We hightliht the best performing algorithms: those for which: (1) difference in total average
error (summed across the benchmarks) with respect to the best such total was less than 15% of the best, and (2) within each
individual benchmark, the difference in average error with respect to the best average error was less than 35% of the best. (An
exception to the latter criterion was granted to Exact DBN, on which the best average error from equalDistQB3 was unusually low).

Class Scheme nAbs Fail Fail Fail Fail

simpleQB 256 0 5.350 0 17.406 0 1.059 14 9.659

minVarQB 256 0 0.111 0 1.911 0 0.223 1 1.634
equalDist 256 0 5.619 0 15.533 1 0.858 13 5.420

equalDist2 256 0 2.319 0 11.220 0 0.563 6 3.479

equalDist3 256 0 0.173 0 3.615 0 0.206 1 1.473

equalDist4 256 0 0.277 0 2.305 0 0.180 1 1.373

randQB 256 0 4.982 0 12.653 0 3.211 13 19.441

rand 256 0 3.587 0 9.568 2 4.695 3 14.386

rel 256 0 5.265 0 8.013 0 1.097 36 10.845

RAND rand 256 0 0.288 0 2.464 0 0.325 3 2.570

CTX

Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

QB

iB-5, m-100, Exact DBN Grids Pedigree

Table 4: 100-Sample Comparison. For abstraction granularity
of nAbs = 256, aggregated statistics (as described in Table
3) for Exact problems of each benchmark with each algorithm
allotted 100 samples.

SampleSearch (IJGP-ss) [Gogate and Dechter, 2011], and
Dynamic Importance Sampling [Lou et al., 2019]. Thus,
superior performance against CTX schemes implicitly indi-
cates competitiveness against the these other methods.

Abstraction Quality of the QB Schemes. When drawing
an equal number of samples with the same abstraction gran-

Class Scheme nAbs Fail Fail Fail Fail
4 0 1.684 0 3.622 0 1.434 2 2.518

64 0 0.180 0 1.897 0 0.210 1 1.062
1024 0 0.060 0 1.566 0 0.479 2 1.837

4 0 1.594 0 5.861 0 1.668 1 1.804
64 0 0.236 0 2.570 0 0.221 0 0.570

1024 0 0.051 0 1.844 0 0.155 0 0.462
4 0 1.371 0 5.988 0 1.648 1 1.678

64 0 0.215 0 2.438 0 0.231 0 0.596
1024 0 0.150 0 1.891 0 0.150 0 0.455

4 0 1.381 0 5.030 0 1.852 7 4.643
64 0 1.763 0 5.950 0 0.598 1 2.659

1024 0 2.007 0 5.513 0 1.114 1 2.442
4 0 1.850 0 5.933 0 1.332 10 5.729

64 0 3.510 0 4.021 0 0.424 6 4.349
1024 0 5.086 0 5.136 0 1.041 15 6.688

4 0 1.018 0 4.329 0 1.705 2 2.947
64 0 0.418 0 2.094 0 0.212 0 0.757

1024 0 0.120 0 1.501 0 0.143 0 0.513
RAND rand

DBN
Avg. Error

QB

minVar

equalDist3

equalDist4

Grids
Avg. Error Avg. Error Avg. Error

Pedigree PromedasiB-5, t-300sec, Exact

CTX

rand

rel

Table 5: Varying nAbs. Average error when using nAbs ∈
{4, 64, 1024} for minVarQB, equalDistQB3, equalDistQB4,
the CTX based algorithms, and RAND, each with iB-5 and
time limit of 300 sec.

ularity of nAbs = 256 (Table 4), QB with equalDist3 and
equalDist4 and RAND are well performing as seen when

2869

Figure 6: Z estimates from various algorithms versus time on
Exact Grids problem grid20x20.f15 using iB = 5. The dashed
black line shows the true Z value.

Figure 7: Z estimates from various algorithms versus time on
Exact Promedas problem or_chain_209.fg using iB = 5. The
dashed black line shows the true Z value.

using a time limit (Table 3). A key difference is that QB
with minVar, which had showed slightly worse performance
under a time limit, is now best. This in part explains the suc-
cess of QB equalDist3 and equalDist4, which try to emulate
QB minVar while using faster greedy strategies.

Anytime Behavior. Figure 6 and Figure 7 show that Ab-
straction Sampling estimates continue to improve as time
progresses. We also notice that estimates are often underes-
timates that increase over time, a common phenomenon of
importance sampling due to the proposal distribution’s tails.

Choice of Abstraction Granularity. From Table 5 we
see that for the well performing QB equalDist3 and equalD-
ist4 schemes and for the RAND scheme there is a trend
that greater nAbs improves performance. Figure 5 further
supports this for QB with equalDist4, for which plots of
QB equalDist3 and RAND have similar profiles (omitted
for brevity). However in Figure 4 and Table 5 we see that
for minVar error begins to increase when nAbs becomes
too high. This can be explained by the higher computational
cost of forming minVar abstractions (which is more time

HB HRB QB
simple 2.75 1.12 0.72
minVar 1.05 1.13 2.95

equalDist 0.75 0.59 1.16
equalDist2 0.84 0.75 1.82
equalDist3 1.20 1.01 4.05
equalDist4 0.87 1.14 3.90

rand 2.41 0.93 0.60

Figure 8: Performance Matrix. Relative average performance
of value-based schemes vs. existing context-based abstractions.
Values > 1.00 indicate superior performance.

consuming), leaving less time for probe generation.

Summary of Results. Experiments show the QB scheme
with equalDist3 or equalDistQB4 and RAND performing
the best of the newly proposed abstraction functions, signifi-
cantly outperforming the former state-of-the-art (Figure 8).
These schemes tend to improve as the abstraction granularity
nAbs increases up to a point, past which we see little dif-
ference in performance. Thus, our study suggests that these
three abstraction schemes should be the first choice when
using AOAS, and be used with the largest nAbs feasible.

7 CONCLUSION

This exploration of abstraction functions for use with
AND/OR Abstraction Sampling (AS) featured a new value-
based abstraction framework, introducing three abstraction
classes: HB, QB, and HRB each defined by real-valued
functions that aim to capture informative elements from
search and sampling to guide abstractions and improve AS
performance. Each class was tested with each of seven node
partitioning schemes to form twenty-one new abstraction
functions. Additionally, a new purely randomized abstrac-
tion scheme, RAND, was presented that places nodes into
equal cardinality abstract states completely at random.

Results from an extensive empirical evaluation on over 400
benchmark problems show two of the QB based schemes
(equalDistQB3, and equalDistQB4) and the RAND scheme
having superior performance consistently and throughout
all benchmarks. In particular, performance was significantly
improved relative to former state-of-the-art context-based
abstractions, and thus also implicitly against Importance
Sampling, Weighted Mini-Bucket Importance Sampling,
IJGP-SampleSearch, and Dynamic Importance Sampling.

Based on this study and earlier findings, we believe that
AOAS is one of the best schemes for estimating the partition
function to date. Future work will explore adjusting the
abstraction schemes to problem instances through learning
and also the potential for applying adaptive sampling.

Acknowledgements
Thank you to the reviewers for their valuable comments and
suggestions. This work was supported in part by NSF grants
IIS-2008516 and CNS-2321786.

2870

References

Filjor Broka, Rina Dechter, Alexander. Ihler, and Kalev
Kask. Abstraction sampling in graphical models. In
Proceedings of the Thirty-Fourth Conference on Un-
certainty in Artificial Intelligence, UAI 2018, Mon-
terey, California, USA, August 6-10, 2018, pages 632–
641, 2018. URL http://auai.org/uai2018/
proceedings/papers/234.pdf.

P.-C. Chen. Heuristic sampling: A method for predicting the
performance of tree searching programs. SIAM Journal
on Computing, 21:295–315, 1992.

A. Darwiche. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press, 2009.

Rina Dechter. Reasoning with Probabilistic and De-
terministic Graphical Models: Exact Algorithms.
Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool Publishers, 2013.
doi: 10.2200/S00529ED1V01Y201308AIM023.
URL http://dx.doi.org/10.2200/
S00529ED1V01Y201308AIM023.

Rina Dechter and Robert Mateescu. AND/OR search spaces
for graphical models. Artificial Intelligence, 171(2-3):
73–106, 2007.

Rina Dechter and Irina Rish. Mini-buckets: A general
scheme for bounded inference. J. ACM, 50(2):107–
153, 2003. doi: 10.1145/636865.636866. URL http:
//doi.acm.org/10.1145/636865.636866.

Vibhav Gogate and Rina Dechter. Samplesearch: Im-
portance sampling in presence of determinism. Ar-
tif. Intell., 175(2):694–729, 2011. doi: 10.1016/j.artint.
2010.10.009. URL https://doi.org/10.1016/
j.artint.2010.10.009.

Vincent Hsiao, Dana Nau, and Rina Dechter. Graph neural
networks for dynamic abstraction sampling. In AAAI
Workshop on Graphs and More Complex Structures for
Learning and Reasoning (GCLR), 2023.

Alexander Ihler, Natalia Flerova, Rina Dechter, and
Lars Otten. Join-graph based cost-shifting schemes.
In Nando de Freitas and Kevin P. Murphy, editors,
Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, Catalina Island,
CA, USA, August 14-18, 2012, pages 397–406. AUAI
Press, 2012. URL https://dslpitt.org/
uai/displayArticleDetails.jsp?mmnu=1&
smnu=2&article_id=2302&proceeding_id=
28.

Kalev Kask, Bobak Pezeshki, Filjor Broka, Alexander Ihler,
and Rina Dechter. Scaling up and/or abstraction sam-
pling. In Christian Bessiere, editor, Proceedings of the

Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 4266–4274. International
Joint Conferences on Artificial Intelligence Organization,
7 2020. doi: 10.24963/ijcai.2020/589. URL https:
//doi.org/10.24963/ijcai.2020/589. Main
track.

D.E. Knuth. Estimating the efficiency of backtracking algo-
rithms. Math. Comput., 29:1121–136, 1975.

G. N. Lance and W. T. Williams. A General Theory of
Classificatory Sorting Strategies: 1. Hierarchical Systems.
The Computer Journal, 9(4):373–380, 02 1967. ISSN
0010-4620. doi: 10.1093/comjnl/9.4.373. URL https:
//doi.org/10.1093/comjnl/9.4.373.

Qiang Liu and Alexander. Ihler. Bounding the partition
function using holder’s inequality. In Proceedings of
the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2,
2011, pages 849–856, 2011.

Qiang Liu, John W Fisher III, and Alexander Ihler. Prob-
abilistic variational bounds for graphical models. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 1432–1440. Curran Asso-
ciates, Inc., 2015.

Qi Lou, Rina Dechter, and Alexander Ihler. Interleave varia-
tional optimization with monte carlo sampling: A tale of
two approximate inference paradigms. 2019.

R. Marinescu and Rina Dechter. Memory intensive
AND/OR search for combinatorial optimization in graph-
ical models. Artificial Intelligence, 173(16-17):1492–
1524, 2009.

Robert Mateescu and Rina Dechter. The relationship be-
tween and/or search and variable elimination. pages 380–
387, 01 2005.

J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

Maria L. Rizzo. Statistical computing with R. Chapman &
Hall/CRC, 2007.

Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and
the Monte Carlo Method. Wiley Publishing, 3rd edition,
2016. ISBN 1118632168.

Joe H. Ward. Hierarchical grouping to optimize an objective
function. Journal of the American Statistical Association,
58(301):236–244, 1963. ISSN 01621459. URL http:
//www.jstor.org/stable/2282967.

2871

http://auai.org/uai2018/proceedings/papers/234.pdf
http://auai.org/uai2018/proceedings/papers/234.pdf
http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023
http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023
http://doi.acm.org/10.1145/636865.636866
http://doi.acm.org/10.1145/636865.636866
https://doi.org/10.1016/j.artint.2010.10.009
https://doi.org/10.1016/j.artint.2010.10.009
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2302&proceeding_id=28
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2302&proceeding_id=28
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2302&proceeding_id=28
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2302&proceeding_id=28
https://doi.org/10.24963/ijcai.2020/589
https://doi.org/10.24963/ijcai.2020/589
https://doi.org/10.1093/comjnl/9.4.373
https://doi.org/10.1093/comjnl/9.4.373
http://www.jstor.org/stable/2282967
http://www.jstor.org/stable/2282967

Value-Based Abstraction Functions for Abstraction Sampling

(Supplemental Materials)

Bobak Pezeshki1 Kalev Kask1 Alexander Ihler1 Rina Dechter1

1University of California, Irvine

Abstract

For revised supplemental materials, please visit https://ics.uci.edu/~dechter/publications.
html. This document includes supplemental background, descriptions, details, and results in extension to the
main paper. Given its size, we suggest using the table of contents to navigate. For an additional background on
graphical models, AND/OR search trees, and variable elimination, please view the EXTENDED BACKGROUND
supplemental document.

CONTENTS

1 AOAS Background 3

1.1 Sample Algorithm Trace . 3

1.2 Detailed Algorithm . 3

2 Probe Size Variability 5

3 Exact Abstraction Proofs 7

3.1 ORAS . 7

3.2 AOAS . 8

4 Paradigms Intuiting Abstraction Strategies 10

4.1 Search Paradigms . 10

4.2 Sampling Paradigms . 10

5 Additional Information About Value-Based Abstractions 12

6 Detailed Descriptions of Ordered Partitioning Schemes for Value Based Abstractions 13

6.0.1 simpleVB . 13

6.0.2 minVarVB . 14

6.0.3 equalDistVB . 15

2872

mailto:<pezeshkb@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<kkask@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<ihler@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<dechter@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024
https://ics.uci.edu/~dechter/publications.html
https://ics.uci.edu/~dechter/publications.html

6.0.4 equalDistVB2 . 16

6.0.5 equalDistVB3 . 17

6.0.6 equalDistVB4 . 17

6.0.7 randVB . 18

7 Extended Results 19

7.1 Summary Comparison. 19

7.1.1 Exact Problems . 19

7.1.2 LARGE Problems . 21

7.2 Comparison using 100 Samples. 23

7.2.1 Exact Problems . 23

7.2.2 LARGE Problems . 23

7.3 Time Series Plot . 24

7.3.1 LARGE Problems . 24

8 Additional Results 28

8.1 Probe Size . 28

8.2 Abstraction Speed . 28

2873

1 AOAS BACKGROUND

Taken with permission directly from Kask et al. [2020].

1.1 SAMPLE ALGORITHM TRACE

Here we show a trace of abstraction sampling using the AOAS algorithm using an abstraction function that groups AND
nodes of the same domain value together in an abstract state.

B

0 1

A C

0 1 0 1

A C

0 1 0 1

D

0 1

D

0 1

D

0 1

D

0 1

(a)

B

A

0

C

0 1

A

1

C

0 1

D

0 1

D

0 1

D

0 1

D

0 1

0 10 1

(b)

B

A

0

C

0 1 0 1

A

1

C

0 1

X

D

0 1

D

0 1

D

0 1

D

0 1

(c)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(d)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(e)

B

A

0

C

0 1 0 1

D

1

D

0

(f)

Figure 1: From Kask et al. [2020], a sample trace of AOAS following DFS ordering B → A→ C → D. Transparent nodes
indicate portions of the reachable search space yet to be explored. Gray boxes indicate nodes considered for abstraction.
Nodes with the same domain values (also indicated by the same color) are abstracted into the same abstract state. Only one
node of each color is stochastically selected as a representative for its respective abstract state. Step (c) shows an optional
optional pruning step. Step (f) shows the final example probe capturing four full configurations: B = 0, A = 0, C = 0, D =
0, B = 0, A = 1, C = 0, D = 0, B = 0, A = 0, C = 1, D = 1, B = 0, A = 1, C = 1, D = 1.

Starting with variable B (Figure 1a), each node belongs to a different abstraction and is therefore kept. Next, we expand to A
and abstract across its nodes (Figure 1b). Not restricted to proper abstractions, we partition across all nodes of A, regardless
of whether they fall under B=0 or B=1. We see two nodes in each abstract state (denoted by the red and blue coloring).
Next we calculate their respective proposals (line 21). Note that the proposal of each node n relies on r(n) (line 15), which
captures the values of the nodes in its Out(path(n)), in this case nodes of C. Since the nodes of C have not been expanded
yet, we use their heuristic values as an approximation of their values. We then stochastically choose a representative from
each abstract state (line 23). Suppose that both red and blue representatives are stochastically chosen from under B=0
(Figure 1c). Since A has no descendant, we backtrack to B, updating its node values (line 33) and performing a pruning step
(line 31). In pruning, we remove AND nodes of B that do not extend to AND nodes of A, and thus prune B=1 (denoted by
the red "X" in Figure 1c), in order to ensure formation of proper AND/OR probes. Finally, we expand and abstract C and D
(Figures 1d-1f). The r(n) for D’s nodes is inherited from the r(nC) of its respective nC parent. We backtrack from D to the
root updating values (no further pruning was necessary). The result is a valid probe (Figure 1f) containing four solutions:
(B=0, A=0, C=0, D=0), (B=0, A=0, C=1, D=1), (B=0, A=1, C=0, D=0), and (B=0, A=1, C=1, D=1). We estimate
the partition function by computing Ẑ(B).

1.2 DETAILED ALGORITHM

2874

Algorithm 1: AOAS.
Input: Graphical modelM = (X,D,Φ), a pseudo tree T forM rooted at a dummy singleton variable D, an

abstraction function a, heuristic function h. For any node n, g(n) = its path cost, w(n) = its importance weight,
and Ẑ(n) = its estimated value (initialized to h(n)).

Output: ẐM, an estimate of the partition function ofM

1 Function AOAS(T , h, a)
2 begin
3 PROBE ← nD, g(nD), w(nD), r(nD), Ẑ(nD)←1
4 STACK ← push(empty stack, D)
5 while STACK is not empty do
6 X ← top(STACK)
7 if X has unvisited children in T then
8 Y ← the next unvisited child of X
9 foreach nX ∈ PROBE do

10 PROBE ← PROBE expanded from nX to Y
11 F ′Y ← newly added AND nodes of Y ∈ PROBE
12 foreach nY ∈ F ′Y do
13 w(nY)← w(nX)
14 g(nY)← g(nX) · c(nY)

15 r(nY)← r(nX) ·
∏
{S ̸=Y ∈chT (X)} V̂ (SnX

)

16 end
17 end
18 A← {Ai |Ai={nY ∈PROBE | a(n)= i}}
19 foreach Ai ∈ A do
20 foreach n ∈ Ai do
21 p(n)← w(n)·g(n)·h(n)·r(n)∑

m∈Ai
w(m)·g(m)·h(m)·r(m)

22 end
23 nYi ∝p Ai ; // randomly select
24 w(nYi

)← w(nYi
)/p(nYi

)

25 Ẑ(nYi)← 1
26 PROBE ← PROBE \Ai ∪ {nYi}
27 end
28 push(STACK, Y)

29 else
30 pop(STACK), W ← top(STACK)
31 PROBE ← PROBE s.t. all nW without descendants are pruned
32 foreach nW in PROBE do
33 Ẑ(nW)← Ẑ(nW) ·

∑
nX←child(nW) Ẑ(nX) · c(nX) · w(nX)

w(nW)

34 end
35 if X = D then ẐM = Ẑ(D);
36 end
37 end
38 return ẐM
39 end

2875

2 PROBE SIZE VARIABILITY

Even with the same abstraction function and granularity (ie. allowed number of abstract states per level), probe sizes can
vary greatly. One reason for this is due to abstractions causing nodes from certain branches of the probe to replaced by
representative from other branch, and thus the current branch will no longer be extended. We provide a paired example
in Figure 3 and Figure 4 where in both cases the probes are constructed according to the pseudo tree shown in Figure 2,
an abstraction function is used that groups nodes with the same domain value together (indicated by yellow coloring for
grouping of nodes with a domain value of 0 and blue coloring grouping nodes together that have domain value of 1) is used,
and the abstraction granularity is set to nAbs = 2 (meaning that nodes are abstracted into at most two abstract states).

Figure 2: A linear psuedo tree.

(a) Variable A is expanded.
Each node is placed into
a separate abstract state
and each is selected to rep-
resent their respective ab-
stract state.

(b) Variable B is expanded from each ex-
isting node of A. B nodes with domain
value 0 are joined together into an ab-
stract state (yellow); B nodes with do-
main value 1 constitute a different ab-
stract state (blue). For each resulting ab-
stract state, the corresponding node un-
derneath the branch of A← 0 is stochas-
tically selected as the representative. As
there are no selected representatives un-
derneath the branch of A ← 1, those
nodes will no longer be extended (and
can be pruned).

(c) Variable C is expanded from each representa-
tive node of B. C nodes with domain value 0 are
joined together into an abstract state (yellow);
C nodes with domain value 1 constitute a differ-
ent abstract state (blue). For each resulting ab-
stract state, the corresponding node underneath
the branch of A ← 0, B ← 0 is stochastically
selected as the representative. As there are no
selected representatives underneath the branch
of A ← 0, B ← 1, those nodes will no longer
be extended (and can be pruned).

Figure 3: An example of a "skewed" probe construction following the pseudo tree in Figure 2, using an abstraction function
that groups nodes of the same domain value into the same abstract state, and using a granularity of nAbs = 2. At each level,
representatives of all abstract states are chosen under the same single branch, thus only extending only one path in the probe.

2876

(a) Variable A is expanded.
Each node is placed into
a separate abstract state
and each is selected to rep-
resent their respective ab-
stract state.

(b) Variable B is expanded from each ex-
isting node of A. B nodes with domain
value 0 are joined together into an ab-
stract state (yellow); B nodes with do-
main value 1 constitute a different ab-
stract state (blue). The stochastically se-
lected representative from the B = 1 ab-
stract state ends up under the A ← 0
branch while the representative from the
B = 0 abstract state is selected from un-
der A← 1. As a result, both A← 0 and
A ← 1 branches have an extension to a
node from B and will continue to be ex-
tended.

(c) Variable C is expanded from each existing
node of B. C nodes with domain value 0 are
joined together into an abstract state (yellow); C
nodes with domain value 1 constitute a different
abstract state (blue). The stochastically selected
representative from the C = 1 abstract state
ends up under the A← 0, B ← 1 branch while
the representative from the C = 0 abstract state
is selected from under A ← 1, B ← 0. As a
result, both A← 0, B ← 1 and A← 1, B ← 0
branches have an extension to a node from C
and will continue to be extended.

Figure 4: An example of a "balanced" probe construction following the pseudo tree in Figure 2, using an abstraction function
that groups nodes of the same domain value into the same abstract state, and using a granularity of nAbs = 2. At each level,
representatives of all abstract states are chosen under the same single branch, thus only extending only one path in the probe.

2877

3 EXACT ABSTRACTION PROOFS

Required Definitions.

Definition 3.0.0.1 (Abstraction Function h(n) vs. Z(n) Proportionality)
An abstraction function a(n) maintains h(n) vs. Z(n) proportionality if, for every abstract state Ai formed by a(n),
∀n ∈ Ai, h(n) = αZ(n), for some constant α specific to Ai.

Definition 3.0.0.2 (Abstraction Function h(n)r(n) vs. Z(n)R(n) Proportionality)
An abstraction function a(n) maintains h(n)r(n) vs. Z(n)R(n) proportionality if, for every abstract state Ai formed by
a(n), ∀n ∈ Ai, h(n)r(n) = αZ(n)R(n), for some constant α specific to Ai.

Definition 3.0.0.3 (Exact Abstraction Function)
An abstraction function a(.) is exact for an abstraction sampling algorithm, AS, if use of a(.) with AS always leads to AS
estimates having zero variance and Ẑ = Z for every AS probe.

3.1 ORAS

Theorem 3.1.0.1 (ORAS Exact Abstractions from h(n) vs. Z(n) Proportionality)
If an abstraction function a(.) maintains h(n) vs. Z(n) Proportionality, then it is an exact abstraction function for ORAS.

Proof. We know that if we were to use exhaustive search, we would arrive at the true Z value. We use a proof by induction
that assumes that after each abstraction step we will compute the rest of the probe exactly using exhaustive search. Thus, if
abstractions are performed layer by layer down from the root, after each abstraction we know that Z(n′) will be computed
exactly for the selected node n′.

We denote the estimate that would be generated by a probe constructed after t time steps as Ẑ(t)(PROBE). (As we will
describe, each time step will correspond to an abstraction step). As a base case, Ẑ(t=0)(PROBE) = Z since all values will
be computed exactly via exhaustive search. In the inductive step, we will show that after each time step t, if instead of using
exhaustive search immediately, we first perform an abstraction on the current level of the probe, the resulting estimate of the
newly abstracted probe Ẑ(t+1)(PROBE) will remain unchanged. Namely, we will show that

Ẑ(t)(PROBE)− Ẑ(t+1)(PROBE) = 0

This shows that the abstractions maintain exactness of the probe’s estimate.

Starting from the left hand side

LHS = Ẑ(t)(PROBE)− Ẑ(t+1)(PROBE)

We note the difference in the overall probe estimates during an Abstraction Sampling is due to the change in the probe
estimate that results from each individual abstraction step (namely selection and reweighing of a representative node n′

from an abstract state Ai). Thus for our time steps, we will focus on the difference in value resulting from a single arbitrary
abstraction step.

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− w(t+1)(n′)g(n′)Z(n′)

Above, the left term shows the contribution to the partition function due to nodes of abstract state Ai (still assuming we will
perform exhaustive search below each one), and the right term is the contribution of a selected node n′ after abstraction
(note the adjustment to the selected node’s weight).

Using the fact that w(t+1)(n′) = w(t)(n′)
p(n′) (from the importance weight modification), we now get

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− w(t)(n′)

p(n′)
g(n′)Z(n′)

(Note that p(n′) cannot be zero, otherwise n′ would not have been selected).

2878

Noting that for p(n′) = w(t)(n′)g(n′)h(n′)∑
n∈Ai

w(t)(n)g(n)h(n)
and substituting we get

=
∑
n∈Ai

w(t)(n)g(n)Z(n)

− w(t)(n′)g(n′)Z(n′)

∑
n∈Ai

w(t)(n)g(n)h(n)

w(t)(n′)g(n′)h(n′)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− Z(n′)

h(n′)

∑
n∈Ai

w(t)(n)g(n)h(n)

Now, per our assumption, ∀n ∈ Ai, let h(n) = αZ(n), where α is the proportionality constant by which h(n) differs from
Z(n). Then

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− Z(n′)

αZ(n′)

∑
n∈Ai

w(t)(n)g(n)αZ(n)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− α

α

∑
n∈Ai

w(t)(n)g(n)Z(n)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)−
∑
n∈Ai

w(t)(n)g(n)Z(n)

= 0 = RHS

3.2 AOAS

Theorem 3.2.0.1 (AOAS Exact Abstractions from h(n)r(n) vs. Z(n)R(n) Proportionality)
If an abstraction function a(.) maintains h(n)r(n) vs. Z(n)R(n) Proportionality, then it is an exact abstraction function
for AOAS.

Proof. We know that if we were to use exhaustive search, we would arrive at the true Z value. We use a proof by induction
that assumes that after each abstraction step we will compute the rest of the probe exactly using exhaustive search. Thus, if
abstractions are performed layer by layer down from the root, after each abstraction we know that Z(n′) will be computed
exactly for the selected node n′. We also assume that, R(n) for every node will be computed exactly. This assumption holds
true before we perform any abstractions (as everything is computed exactly via exhaustive search) and continues to hold if
we can show that, after each abstraction step, the resulting estimates remains unchanged (and thus remains exact).

We denote the estimate that would be generated by a probe constructed after t time steps as Ẑ(t)(PROBE). (As we will
describe, each time step will correspond to an abstraction step). As a base case, Ẑ(t=0)(PROBE) = Z since all values will
be computed exactly via exhaustive search. In the inductive step, we will show that after each time step t, if instead of using
exhaustive search immediately, we first perform an abstraction on the current level of the probe, the resulting estimate of the
newly abstracted probe Ẑ(t+1)(PROBE) will remain unchanged. Namely, we will show that

Ẑ(t)(PROBE)− Ẑ(t+1)(PROBE) = 0

This shows that the abstractions maintain exactness of the probe’s estimate.

Starting from the left hand side
LHS = Ẑ(t)(PROBE)− Ẑ(t+1)(PROBE)

We note the difference in the overall probe estimates during an Abstraction Sampling is due to the change in the probe
estimate that results from each individual abstraction step (namely due to the selection and reweighing of a representative
node n′ from an abstract state Ai). Thus for our time steps, we will focus on the difference in value resulting from a single
arbitrary abstraction step.

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)− w(t+1)(n′)g(n′)Z(n′)R(n′)

2879

Above, the left term shows the contribution to the partition function due to nodes of abstract state Ai (still assuming we will
perform exhaustive search below each one), and the right term is the contribution of a selected node n′ after abstraction
(note the adjustment to the selected node’s weight).

Using the fact that w(t+1)(n′) = w(t)(n′)
p(n′) (from the importance weight modification), we now get

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)− w(t)(n′)

p(n′)
g(n′)Z(n′)R(n′)

(Note that p(n′) cannot be zero, otherwise n′ would not have been selected).

Noting that for p(n′) = w(t)(n′)g(n′)h(n′)r(n′)∑
n∈Ai

w(t)(n)g(n)h(n)r(n′)
and substituting we get

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

− w(t)(n′)g(n′)Z(n′)R(n′)

∑
n∈Ai

w(t)(n)g(n)h(n)r(n)

w(t)(n′)g(n′)h(n′)r(n′)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

− Z(n′)R(n′)

h(n′)r(n′)

∑
n∈Ai

w(t)(n)g(n)h(n)r(n)

Now, per our assumption, ∀n ∈ Ai, let h(n)r(n) = αZ(n)R(n), where α is the proportionality constant by which h(n)r(n)
differs from Z(n)R(n). Then

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

− Z(n′)R(n′)

αZ(n′)R(n′)

∑
n∈Ai

w(t)(n)g(n)αZ(n)R(n)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

− α

α

∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)−
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

= 0 = RHS

2880

4 PARADIGMS INTUITING ABSTRACTION STRATEGIES

Next we review concepts from search and sampling that offer paradigms from which we draw ideas for abstraction functions.

4.1 SEARCH PARADIGMS

In [tree] search, one can merge nodes that have the same value to produce a more efficient graph search Mateescu et al.
[2008]. Abstraction functions by Broka et al. [2018] focused on this paradigm and approached it by using the concept of
a node’s context - the assignments to the smallest subset of a node’s ancestor variables that dictates its value. Due to the
potentially large context size for variables, and consequently the exponentially high number of combinations of assignments
to the context, the full context of variables could not be used in most cases. Broka et al. [2018] resolved this by creating
two context-based abstraction functions that were relaxed to allow nodes with different contexts to be grouped in the same
abstract state. However, sharing the same partial context does not necessarily imply the same, nor even similar, node values.
Our new Heuristic-Based abstractions hope to provide more accurate abstractions based on the same ideology.

4.2 SAMPLING PARADIGMS

Consider wanting to compute the Ep∗ [f(x)] =
∑

x f(x)p
∗(x) for a distribution p∗(.) over a variable X that is

difficult to sample from but easy to evaluate, and given a positive value function f(x). Using a proposal distribu-
tion p(.) that is easy to sample from, and noticing the equivalency of the target quantity with

∑
x

f(x)p∗(x)
p(x) p(x),

we can be estimate the quantity by importance sampling by drawing m samples to estimate the equivalent quantity
Ep[f(x)

p∗(x)
p(x)] ≈

1
m

∑m
j=1 f(x

(j))p
∗(x(j))
p(x(j))

, x(j)iid∼p. it is well known that importance sampling achieves zero variance when
1) p(x) = 0 =⇒ p∗(x) = 0, and 2) otherwise p(x) is proportional to p∗(x)f(x) Kahn and Marshall [1953], Owen [2013].

Lemma 4.2.0.1 (Importance Sampling Exact Proposal Based on Proportionality with Target Distribution)
Given a distribution p∗(.) over a variable X that is easy to evaluate, and given a positive value function f(x), importance
sampling to estimate Ep∗ [f(x)] achieves zero variance when using a proposal function p(.) such that 1) p(n) = 0 =⇒
p∗(n)f(n) = 0, and 2) p(n) ∝ p∗(n)f(n), otherwise.

Note that we can also use importance sampling to simply compute
∑

x f(x) =
∑

x
f(x)
p(x)p(x) = Ep[

f(x)
p(x)] ≈

1
m

∑m
j=1

f(n(j))
p(x(j))

, x(j)iid∼p. Note that the partition function over a graphical model, Z =
∑

x F (x),F (x) =
∏

f∈F f(x), has
the form of this task.

In fact, expanding an AND/OR search tree level-by-level, the partition function Z with respect to the nodes n at any variable
X can be written as Z =

∑
n g(n)Z(n)R(n). Thus, using a proposal p(.) to perform importance sampling at any level we

could instead estimate

Z =
∑
n

g(n)Z(n)R(n) =
∑
x

g(n)Z(n)R(n)

p(n)
p(n) (1)

≈ 1

m

m∑
j=1

g(n(j))Z(n(j))R(n(j))

p(n(j))
, n(j) iid∼p (2)

Thus, sampling at any level would also allow for zero variance / exact computation if similarly p(n) ∝ g(n)Z(n)R(n).

Note that in Abstraction Sampling each abstract state involves a node selection procedure analogous to importance
sampling and that AOAS uses a proposal p(n) ∝ g(n)h(n)r(n). g(n) can always be evaluated exactly. Then assuming that
h(n) = 0 =⇒ Z(n) = 0 and r(n) = 0 =⇒ R(n) = 0, it naturally follows that designing each abstract states Ai such
that ∀n ∈ Ai, h(n)r(n) = α g(n)Z(n)R(n), for some constant α, we similarly achieve zero variance.

Definition 4.2.0.1 (Abstraction Function h(n)r(n) vs. Z(n)R(n) Proportionality)
An abstraction function a(n) maintains h(n)r(n) vs. Z(n)R(n) proportionality if, for every abstract state Ai formed by
a(n), ∀n ∈ Ai, h(n)r(n) = αZ(n)R(n), for some constant α specific to Ai.

Definition 4.2.0.2 (Exact Abstraction Function)
An abstraction function a(.) is exact for an abstraction sampling algorithm, AS, if use of a(.) with AS always leads to AS
estimates having zero variance and Ẑ = Z for every AS probe.

2881

Thus, we can say:

Theorem 4.2.0.2 (AOAS Exact Abstractions from h(n)r(n) vs. Z(n)R(n) Proportionality)
If an abstraction function a(.) maintains h(n)r(n) vs. Z(n)R(n) Proportionality, then it is an exact abstraction function
for AOAS. (Proof in Supplemental Materials)

Normally we neither have access to the proportionality constant α or even know whether nodes have the same α. However
one idea is to use the magnitude of h(n)r(n) itself as a heuristic for similarities in α. This drives the intuition for a new
HR-Based class of abstractions.

Also from a sampling perspective, Rizzo [2007] showed the following about stratified importance sampling when sampling
from equal area strata under the proposal:

Proposition 4.2.0.3 (Stratified Importance Sampling Variance Reduction)
Suppose that M = mk is the number of replicates for an importance sampling estimator θ̂I , and ˆθSI is a stratified importance
sampling estimator, with estimates θ̂j for θj on the individual strata, each with m replicates. If V ar(θ̂I) = σ2/M and
V ar(θ̂j) = σ2

j /m, j = 1, ..., k, then

σ2 − k

k∑
j=1

σ2
j ≥ 0, (3)

with equality if and only if θ1 = ... = θk. Hence stratification never increases variance, and there exists a stratification that
reduces the variance except when [the proposal function] g(x) is constant.

Two takeaways from this proposition are that 1) we can achieve variance reduction with respect to importance sampling
(analogous to Abstraction Sampling with all nodes placed into a single abstract state) by stratifying into equal area strata
under the proposal, and 2) reducing the variance of each strata σ2

j leads to greater variance reduction. These will help drive
the intuition for a new Q-Based abstraction class, as well as motivate several new partitioning schemes.

2882

5 ADDITIONAL INFORMATION ABOUT VALUE-BASED ABSTRACTIONS

As described in the main paper, value-based abstraction functions consist of two parts: (1) a value function µ : n → R
that assigns a real value on a positive scale to nodes n that are to be abstracted, and (2) a partitioning scheme that then
abstracts nodes based on µ(n). And because µ(n) are values on a positive scale (implying semantics between smaller vs.
larger values), the partitioning schemes can be designed to partition the nodes in a way that maintains an ordering of µ(n).
This results in what we call value-based ordered abstractions.

Algorithm 2: General Value-0Ordered Abstraction Function Scheme
input :A set of nodes n to be partitioned into abstract states; an abstraction value function µ(·); a parameter nAbs bounding the

number of abstract states; a partitioning function Ψo(·) that partitions n into abstract states such that nodes are ordered by
µ(n) according to sort-order o

output :Nodes n partitioned into abstract states A = {Ai | i <= nAbs} such that sort order o of µ(n) is maintained across all Ai.
1 begin
2 if |n| <= nAbs then
3 A = {{n} | n ∈ n}
4 else
5 A = Ψo(n, µ, nAbs)
6 return A

7 end

2883

6 DETAILED DESCRIPTIONS OF ORDERED PARTITIONING SCHEMES FOR VALUE
BASED ABSTRACTIONS

We now present seven schemes, each defined by a unique sort order o and partition strategy Ψ combination. Each scheme
uses a different method to partition nodes into abstract states keeping the nodes in sort order according to o. With a provided
value function µ(.), each scheme can be used to form an ordered value abstraction function. In addition to defining each
scheme, we also describe the motivation behind its creation.

Running Example As we motivate and describe the schemes, we will also provide an example of abstract states that
would result from partitioning the following nodes:

{1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100} (4)
into nAbs = 4 abstract states by each of partitioning schemes that will be presented.

6.0.1 simpleVB

ΨsimpleVB (Algorithm 3)

Algorithm 3: ΨsimpleVB

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)
output :n partitioned into abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that ∀Ai,Aj ∈ A,−1 ≤ |Ai| − |Aj | ≤ 1

1 begin
2 baseCardinality ← ⌊ |n|

nAbs
⌋

3 extras← |n| mod nAbs
4 n∗ ← SORT (n, µ, low-to-high)
5 jbegin ← 1
6 foreach i← 1, ..., nAbs do
7 if extras > 0 then
8 jend ← jbegin + baseCardinality
9 extras← extras− 1

10 else
11 jend ← jbegin + baseCardinality − 1
12 Ai ← {n∗

jbegin
, ..., n∗

jend
}

13 jbegin ← jend + 1

14 end
15 A← ∪nAbs

i=1 Ai

16 return A

17 end

The simpleVB (simple value-based) scheme follows the motivation of grouping nodes of similar value in the same abstract
state by a simple 2-step method: 1) first, nodes are ordered by their heuristic value (low to high), and 2) next the ordered
nodes are partitioned into [approximately] equal cardinality abstract states.

Time Complexity.
Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.
No more than linear space is required. O(|n|)

Result on Running Example.
{1.0, 1.1}, {1.2, 1.3}, {1.4, 1.5}, {10, 100}

Through its simplicity, this method aims to leverage speed allowing for abstractions to be formed much quicker leading to
greater number of samples.

1Such that nodes maintain sort order o across all abstract states.

2884

6.0.2 minVarVB

Ψ = ΨminVarVB (Algorithm 4)

Algorithm 4: ΨminVarVB

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)
output :n partitioned into abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} satisfying min

∑
Ai∈A V ar(Ai, v)

1 begin
2 A = WardsMethod(n, nAbs, µ(·),Euclidian distance)
3 return A

4 end

As mentioned in Section 4.2, Proposition 4.2.0.3, Rizzo [2007] showed that in stratified importance sampling minimizing
variance of the estimates within individual strata can lead to a reduction in overall variance.

The minVarVB scheme was designed based on this intuition. The scheme uses Ward’s Minimum Variance Hierarchical
Clustering (or Ward’s Method, for short) Ward [1963] to group nodes into a nAbs abstract states so as to minimize variance
within each abstract state with respect to the provided value function µ(.).

Ward’s Minimum Variance Hierarchical Clustering is an agglomerative hierarchical clustering algorithm designed to create
a dendrogram by iteratively merging clusters. The primary objective is to minimize the total within-cluster variance. Ward’s
method works as outlined in Algorithm 5.

Algorithm 5: Ward’s Method
1. Initialization: Treat each data point as an individual cluster. Assign each cluster a label or identifier.

2. Compute Pairwise Distances: Calculate the pairwise distances between all clusters. Various distance metrics can be
used, such as Euclidean distance.

3. Cluster Merging Iteration:
(a) Identify the pair of clusters Ci and Cj that, when merged into a new cluster Cij , results in the smallest increase

in the overall within-cluster variance. This is determined using the formula:
∆V ar = V ar(Cij)− (V ar(Ci) + V ar(Cj))

where V ar(Cij) is the variance of the merged cluster, and V ar(Ci) and V ar(Cj) are the variances of clusters
Ci and Cj , respectively.

(b) Update distance measures between the newly merged cluster and all other clusters.

4. Repeat: Repeat steps 2-3 until the desired number of clusters is achieved.

Ward’s Method can be combined with Lance-Williams linear distance updates Lance and Williams [1967] to increase
efficiency. Lance-Williams linear distance updates, in the context of agglomerative clustering, refer to the formula used to
calculate the distance between clusters as they are merged during the hierarchical clustering process. The general form of
Lance-Williams distance updates can be expressed as follows:

d(ij)k = αidik + αjdjk + αdij + γ|dik − djk| (5)
where:

• dij , dik, and djk are the pair-wise distances between clusters Ci, Cj , and Ck

• d(ij)k is the distance between the newly merged cluster Ci ∪Cj and cluster Ck

• αi, αj , α, and γ are coefficients that depend on the linkage criterion used

In the case of Ward’s method, the coefficients are specific to the minimization of within-cluster variance and are calculated

2885

as follows:

αi =
|Ci|+ |Ck|

|Ci|+ |Cj |+ |Ck|

αj =
|Cj |+ |Ck|

|Ci|+ |Cj |+ |Ck|

α = − |Ck|
|Ci|+ |Cj |+ |Ck|

γ = 0

(6)

(The inclusion of γ provides additional flexibility in the more general case, adjusting the distance updates based on the
specific clustering criterion being used).

Time Complexity.2
The choice of clusters to merge generally leads to having a O(|n|3) time complexity due to the need to compare pair-wise
distances between all clusters at each iteration. However, in the case where nodes are distributed linearly in one dimension,
use of a priority queue, and using Lance-Williams distance updates, the time complexity is can be reduced to O(|n|2).

Space Complexity.2
The space complexity is implementation dependent, with most time-efficient variants making use of a distance matrix
leading to O(|n|2) space complexity.

Result on Running Example.
{1.0, 1.1, 1.2}, {1.3, 1.4, 1.5}, {10}, {100}

In contrast to simpleVB, minVarVB places considerable resources into computing abstractions, leading to fewer samples,
but with potentially better estimates with an appropriate value function µ(.).

6.0.3 equalDistVB

ΨequalDistVB (Algorithm 6)

Algorithm 6: ΨequalDistVB

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)

output : With µ(A1,...,i) = (
∑i

j=1

∑
n′∈Aj

µ(n′), nlast
Ai

be the last node in Ai, andQi =
i·
∑

n∈n∗ µ(n)

nAbs
, n partitioned into

abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that for i = 1, ..., nAbs in order, (µ(A1,...,i) ≥ Qi) ∧
((Ai = {}) ∨ (µ(A1,...,i)− µ(nlast

Ai
) < Qi))

1 begin
2 n∗ ← SORT (n, µ, low-to-high)
3 j ← 1
4 foreach i← 1, ..., nAbs do
5 Ai ← {}
6 while µ(A1,...,i) < Qi do
7 Ai ← Ai ∪ {n∗

j}
8 j ← j + 1

9 end
10 end
11 A← ∪nAbs

i=1 Ai

12 return A

13 end

In sampling it is generally beneficial to predominantly sample high impact regions of the search/sampling space. Allowing
the provided value function µ(.) to serve as a heuristic of nodes that are part of these high impact spaces, equalDistVB
attempts to balance this intuition with the notion of variance reduction from minVarVB in attempts to group fewer predicted
high impact nodes together in abstract states and allowing for the predicted lower impact nodes to be part of larger abstract
states. Also inspired by the simplicity of simpleVB, the scheme works by greedily adding nodes in value order (low to high)
into abstract state Ai until the total sum of node values from A1, ...,Ai reaches or exceeds the i

nAbs quantile.

2Assuming µ(n) is O(1) in both time and space.

2886

When paired with the QB abstraction class, the equalDistVB schemes also attempts to partition notes into abstract states
of equal mass under the proposal. This in corresponds to the condition for Proposition 4.2.0.3 for stratified importance
sampling variance reduction.

Time Complexity.2
µ(A1...i) can be updated progressively in constant time, and thus computation of Qi at each iteration can also be done in
constant time. Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100}, {}, {}, {}

Although, this method hopes to find a balance between intuitions previously explored, and without compromising speed and
efficiency of abstract state generation, from the running example we can see how this method yield undesirable results in the
presence of certain distributions of node values. In this example, the first quantile is only reached after all the nodes have
been added to the first abstract state, leaving no nodes remaining to be partitioned into the subsequent abstract states.

6.0.4 equalDistVB2

ΨequalDistVB2 (Algorithm 7)

Algorithm 7: ΨequalDistVB2

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)

output : With µ(A1,...,i) = (
∑i

j=1

∑
n′∈Aj

µ(n′), nlast
Ai

be the last node in Ai, andQi =
i·
∑

n∈n∗ µ(n)

nAbs
, n partitioned into

abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that for i = 1, ..., nAbs in order, (µ(A1,...,i) ≥ Qi) ∧
((Ai = {}) ∨ (µ(A1,...,i)− µ(nlast

Ai
) < Qi))

1 begin
2 n∗ ← SORT (n, µ, high-to-low)
3 j ← 1
4 foreach i← 1, ..., nAbs do
5 Ai ← {}
6 while µ(A1,...,i) < Qi do
7 Ai ← Ai ∪ {n∗

j}
8 j ← j + 1

9 end
10 end
11 A← ∪nAbs

i=1 Ai

12 return A

13 end

By simply reversing the sort order, equalDistVB2 is able to use the same partitioning strategy ΨequalDistVB associated with
equalDistVB meanwhile mitigate some of the overfilling of abstract states.

Time Complexity.2
µ(A1...i) can be updated progressively in constant time, and thus computation of Qi at each iteration can also be done in
constant time. Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{100}, {}, {}, {10, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0}

We see that equalDistVB2 can still be subject to over packing of abstract states. Next we present two more equalDistvB
variants that continue to mitigate this artifact.

2887

6.0.5 equalDistVB3

ΨequalDistVB3 (Algorithm 8)

Algorithm 8: ΨequalDistVB3

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)

output : With µ(A1,...,i) = (
∑i

j=1

∑
n′∈Aj

µ(n′), nlast
Ai

be the last node in Ai, andQi =
i·
∑

n∈n∗ µ(n)

nAbs
, n partitioned into

abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that for i = 1, ..., nAbs in order, (µ(A1,...,i) ≥ Qi) ∧
((|Ai| = 1) ∨ (µ(A1,...,i)− µ(nlast

Ai
) < Qi))

1 begin
2 n∗ ← SORT (n, µ, high-to-low)
3 j ← 1
4 foreach i← 1, ..., nAbs do
5 Ai ← {n∗

j}
6 j ← j + 1;
7 while µ(A1,...,i) < Qi do
8 Ai ← Ai ∪ {n∗

j}
9 j ← j + 1

10 end
11 end
12 A← ∪nAbs

i=1 Ai

13 return A

14 end

In order to lessen over packing and ensure abtract states are not left empty, equalDistVB3 modifies equalDistVB2 so that,
after processing of each abstract state, the next state is forced an addition of at least a single node by default.

Time Complexity.2
µ(A1...i) can be updated progressively in constant time, and thus computation of Qi at each iteration can also be done in
constant time. Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{100}, {10}, {1.5}, {1.4, 1.3, 1.2, 1.1, 1.0}

Still highly efficient, equalDistVB3 manages to ensure that the provided nAbs granularity is honored, allowing users better
control of the search vs. sampling interpolation possible with Abstraction Sampling.

6.0.6 equalDistVB4

ΨequalDistVB4 (Algorithm 9)

The final varaint of the equalDist schemes, equalDistVB4 attempts to perform a more even partitioning than the previous
variants by recomputing quantiles. Each time the algorithm progesses to processing a new abstract state, remaining nodes
and abstract states are used to compute new quantiles which are then used to guide filling of the current abstract state in the
same way previously done.

Time Complexity.2
µ(A1...i) can be updated progressively in constant time, and thus computation of Q̂i at each iteration can also be done in
constant time. Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{100}, {10}, {1.5, 1.4, 1.3}, {1.2, 1.1, 1.0}

Still highly efficient, equalDistVB3 manages to ensure that the provided nAbs granularity is honored, allowing users better

2888

Algorithm 9: ΨequalDistVB4

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)

output : With µ(A1,...,i) = (
∑i

j=1

∑
n′∈Aj

µ(n′), nlast
Ai

be the last node in Ai, and Q̂i =
µ(n∗)−µ(A1,...,i−1)

nAbs−i+1
, n partitioned

into abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that for i = 1, ..., nAbs in order, (µ(Ai) ≥ Q̂i) ∧
((|Ai| = 1) ∨ (µ(Ai)− µ(nlast

Ai
) < Q̂i))

1 begin
2 n∗ ← SORT (n, µ, high-to-low)
3 j ← 1
4 foreach i← 1, ..., nAbs do
5 Ai ← {}
6 while µ(Ai) < Q̂i do
7 Ai ← Ai ∪ {n∗

j}
8 j ← j + 1

9 end
10 end
11 A← ∪nAbs

i=1 Ai

12 return A

13 end

control of the search vs. sampling interpolation possible with Abstraction Sampling.

6.0.7 randVB

ΨrandVB (Algorithm 10)

Algorithm 10: ΨrandVB

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)
output :n partitioned into abstract states1 A = {Ai | i ∈ {1, ..., nAbs}}

1 begin
2 n∗ ← SORT (n, µ, high-to-low)
3 s ∼ Unif({M ⊆ {1, ..., |n∗| − 1} | |M | = nAbs− 1})
4 s∗ ← SORT (s)
5 j ← 1
6 foreach i← 1, ..., nAbs−1 do
7 Ai = {n∗

j , ..., n
∗
s∗i
}

8 j ← s∗i + 1

9 end
10 AnAbs = {n∗

j , ..., n
∗
|n∗|}

11 A = ∪nAbs
i=1 Ai

12 return A

13 end

If the quality of µ(.) as a measure of similarity is unknown or poor, it could instead be beneficial to rely on randomness to
ensure a diverse sampling of abstractions. randVB does this by sampling nAbs−1 partition points between the sorted nodes
n∗ uniformly at random and without replacement, and then partitions the nodes accordingly. As a result, abstract states are
formed such that nodes are still grouped according to µ(.), but the size of those groups varies.

Time Complexity.2
O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{100, 10}, {1.5}, {1.4, 1.3, 1.2}, {1.1, 1.0};
{100}, {10, 1.5, 1.4, 1.3}, {1.2, 1.1}, {1.0}; ...etc.

2889

7 EXTENDED RESULTS

In extension to the main paper, here we show a more comprehensive set of aggregated data tables, now also including the
standard deviation of the errors, the average number of samples drawn, and average probe sizes.

7.1 SUMMARY COMPARISON.

7.1.1 Exact Problems

Class Scheme nAbs Fail
simple 2048 0 0.440 0.862 354 233936
minVar 1 0 1.361 2.840 600260 136

equalDist 1 0 1.365 2.835 634640 136
equalDist2 1 0 1.570 3.292 493719 196
equalDist3 1 0 1.489 3.018 489934 196
equalDist4 1024 0 2.819 5.501 114 2965761

rand 256 0 0.496 0.796 2840 30952
simple 2048 0 0.491 0.976 353 233936
minVar 1 0 1.500 2.972 635538 136

equalDist 1 0 1.305 2.508 654598 136
equalDist2 1 0 1.549 3.405 664595 136
equalDist3 1 0 1.405 3.014 662702 136
equalDist4 1 0 1.511 3.064 664347 136

rand 2048 0 0.451 0.719 358 233936
simple 1 0 1.469 2.920 677854 136
minVar 2048 0 0.050 0.173 10 233936

equalDist 4 0 1.174 2.407 478845 181
equalDist2 2048 0 0.736 1.831 17787 3326
equalDist3 2048 0 0.042 0.137 346 233936
equalDist4 2048 0 0.130 0.378 1969 153490

rand 1 0 1.295 2.723 683431 136
rand 4 0 1.381 2.626 197143 476
rel 1 0 1.472 3.093 695636 136

RAND rand 2048 0 0.104 0.243 359 233936

DBNiB-5, t-1300sec, Exact

Avg. Probe SizeAvg. Num. Samplesstd(Avg. Error)

HB

HRB

QB

CTX

Avg. Error

Table 1

Class Scheme nAbs Fail
simple 1024 0 2.202 3.807 1536 365339
minVar 16 0 3.251 5.615 37401 6295

equalDist 2048 0 10.854 19.810 12787 36088
equalDist2 512 0 8.050 14.709 44538 11654
equalDist3 2048 0 2.764 4.210 588 805429
equalDist4 64 0 6.029 11.585 10521 359937

rand 2048 0 2.248 3.933 709 737966
simple 4 0 9.667 17.275 441504 1678
minVar 64 0 2.319 3.816 3046 25570

equalDist 256 0 10.635 18.892 86568 6357
equalDist2 2048 0 6.790 11.752 12056 35124
equalDist3 1024 0 2.292 3.951 1259 396048
equalDist4 512 0 1.829 3.057 2787 188320

rand 4 0 6.122 10.479 465813 1643
simple 16 0 10.076 17.905 113719 6499
minVar 1024 0 1.566 2.844 14 397296

equalDist 2048 0 8.134 16.643 12162 70457
equalDist2 2048 0 4.405 9.051 11932 71415
equalDist3 2048 0 1.771 3.391 612 788719
equalDist4 512 0 1.754 3.159 2793 190568

rand 256 0 6.048 10.294 6041 100691
rand 4 0 5.030 9.168 471163 1421
rel 64 0 4.021 7.528 36934 14867

RAND rand 1024 0 1.501 2.530 1504 390548

CTX

iB-5, t-300sec, Exact Grids
Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

Avg. Error std(Avg. Error)

Table 2

2890

Class Scheme nAbs Fail
simple 2048 0 0.150 0.564 393 1208067
minVar 64 0 0.422 0.894 1904 34760

equalDist 1024 0 0.303 0.626 1104 406884
equalDist2 1024 0 0.315 0.536 1090 410306
equalDist3 1024 0 0.279 0.539 727 606552
equalDist4 512 0 0.214 0.622 1526 305759

rand 2048 0 0.185 0.473 406 1170793
simple 256 0 0.225 0.378 3637 155656
minVar 256 0 0.309 0.543 131 149534

equalDist 1024 0 0.638 0.921 1653 247759
equalDist2 16 0 0.457 0.646 83869 5396
equalDist3 16 0 0.537 0.843 63832 8067
equalDist4 64 0 0.483 0.836 14789 34813

rand 64 0 0.666 0.983 17216 36226
simple 256 0 0.297 0.510 3672 153687
minVar 64 0 0.210 0.561 1939 36977

equalDist 2048 0 0.144 0.646 524 808760
equalDist2 1024 0 0.145 0.637 1067 410631
equalDist3 512 0 0.148 0.643 1403 324983
equalDist4 512 0 0.134 0.600 1415 322792

rand 16 0 0.740 1.021 76974 8055
rand 16 0 0.540 0.827 169911 2790
rel 64 0 0.424 0.653 28214 29061

RAND rand 1024 0 0.143 0.619 878 620063

iB-5, t-300sec, Exact Pedigree
Avg. Error std(Avg. Error)

CTX

Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

Table 3

Class Scheme nAbs Fail
simple 1024 0 0.575 1.288 7878163 215898
minVar 16 2 2.509 5.329 4119191 2304

equalDist 1024 0 2.332 3.857 8057221 145513
equalDist2 64 0 2.123 4.632 8086745 8209
equalDist3 256 0 2.196 4.354 8212578 53287
equalDist4 2048 0 1.355 2.486 8106429 471471

rand 2048 0 0.752 1.476 8136226 382946
simple 2048 0 0.705 1.594 8281435 444640
minVar 16 1 2.801 5.552 8302630 2403

equalDist 16 4 4.055 7.212 8505442 1255
equalDist2 16 2 3.445 6.549 8445561 1667
equalDist3 16 2 2.656 5.561 8389700 2330
equalDist4 2048 0 2.024 3.247 8278922 429451

rand 1024 1 2.165 4.691 8284836 184056
simple 256 1 3.164 5.634 8156519 44804
minVar 64 1 1.062 3.999 8149950 13097

equalDist 2048 0 0.583 1.053 8159447 85975
equalDist2 2048 0 0.539 1.098 8146812 87006
equalDist3 2048 0 0.412 0.917 8136397 517395
equalDist4 512 0 0.437 1.062 8155880 126503

rand 16 2 5.988 12.148 8401169 1892
rand 1024 1 2.442 4.755 8045093 2016
rel 64 6 4.349 7.852 8384108 3268

RAND rand 1024 0 0.513 1.033 8047804 228960

iB-5, t-300sec, Exact Promedas
Avg. Error std(Avg. Error)

CTX

Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

Table 4

2891

7.1.2 LARGE Problems

Class Scheme nAbs Fail

simple 512 0 3.059 5.994 466 213236

minVar 1 0 6.372 10.410 170425 434

equalDist 1 0 6.354 10.259 171742 434

equalDist2 1 0 6.172 9.889 146566 598

equalDist3 1 0 6.548 10.206 144646 598

equalDist4 1 0 6.525 10.576 162296 434

rand 64 0 1.855 2.986 3682 27039

simple 2048 0 3.202 6.388 116 844724

minVar 1 0 6.102 9.811 167382 434

equalDist 1 0 6.273 10.219 165303 434

equalDist2 1 0 6.689 10.719 164615 434

equalDist3 1 0 6.564 10.301 163186 434

equalDist4 1 0 6.606 10.704 162441 434

rand 2048 0 1.915 3.994 116 844724

simple 1 0 6.540 10.583 162844 434

minVar 2048 0 1.837 4.023 11 844724

equalDist 512 0 5.423 9.545 28518 50129

equalDist2 2048 0 3.813 7.105 11104 162286

equalDist3 2048 0 1.645 3.853 115 844724

equalDist4 2048 0 1.643 3.847 170 758313

rand 4 0 6.292 9.781 52602 1721

rand 64 0 5.710 8.760 4947 22519

rel 1 0 6.267 10.128 165870 434

RAND rand 2048 0 2.123 4.214 116 844724

DBN
Avg. Error std(Avg. Error) Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

CTX

iB-10, t-1200sec, LARGE

Table 5

Class Scheme nAbs Fail

simple 2048 0 73.710 117.967 585 5281698

minVar 64 0 71.628 112.070 1948 184817

equalDist 2048 0 149.888 252.503 6894 438547

equalDist2 1024 0 119.823 195.442 12859 247710

equalDist3 64 0 82.927 124.857 15758 197893

equalDist4 1024 0 63.194 97.515 1020 2846847

rand 2048 0 82.203 132.286 527 5492402

simple 1024 0 193.654 311.138 1042 3061184

minVar 512 0 37.972 56.653 29 1534848

equalDist 2048 0 127.990 216.992 6524 475696

equalDist2 2048 0 104.502 168.754 6388 501514

equalDist3 2048 0 38.936 52.976 429 6090687

equalDist4 2048 0 34.676 50.051 460 5664129

rand 16 0 160.168 262.678 78263 48729

simple 16 0 197.931 331.349 73034 51032

minVar 1024 0 28.423 44.701 7 3064517

equalDist 2048 0 118.547 209.112 6013 932447

equalDist2 2048 0 91.994 160.979 5935 939064

equalDist3 2048 0 19.277 31.795 429 6135039

equalDist4 2048 0 18.866 34.470 462 5658527

rand 16 0 163.973 270.397 78137 48849

rand 512 0 111.104 189.309 53385 66495

rel 1024 0 80.633 131.304 1990 1210381

RAND rand 2048 0 19.053 30.561 517 5915471

Grids
Avg. Error std(Avg. Error) Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

CTX

iB-10, t-1200sec, LARGE

Table 6

2892

Class Scheme nAbs Fail

simple 2048 21 47.383 124.818 215 6362535

minVar 256 37 133.377 208.955 118 526228

equalDist 2048 37 136.462 209.952 806 1725651

equalDist2 2048 36 132.531 206.716 775 1763041

equalDist3 2048 32 118.653 191.472 373 4231305

equalDist4 2048 29 98.222 180.908 260 5348049

rand 2048 21 52.171 117.178 258 5548243

simple 2048 17 48.474 105.528 201 7170175

minVar 512 38 138.131 211.272 31 1203151

equalDist 2048 32 123.253 192.089 1138 1438777

equalDist2 2048 34 129.751 198.056 1114 1453506

equalDist3 2048 31 118.091 185.967 405 4586845

equalDist4 2048 26 95.895 158.305 335 5182785

rand 1024 18 127.021 162.172 576 3170049

simple 2048 13 48.681 102.256 165 7582217

minVar 256 31 93.058 176.650 115 595380

equalDist 2048 22 46.196 128.408 324 3606296

equalDist2 1024 21 40.310 115.108 823 1613744

equalDist3 1024 20 37.490 115.666 428 3151667

equalDist4 2048 16 30.512 104.300 155 7276760

rand 256 17 156.992 197.622 2123 786014

rand 2048 53 194.741 250.879 78237 12693

rel 1024 37 129.189 210.249 911 2128473

RAND rand 1024 19 33.804 107.942 531 3043774

Linkage-Type4
Avg. Error std(Avg. Error) Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

CTX

iB-10, t-1200sec, LARGE

Table 7

Class Scheme nAbs Fail

simple 1024 16 5.981 14.402 5303 316842

minVar 16 25 9.433 17.375 135360 3961

equalDist 64 23 9.664 16.936 122333 11729

equalDist2 16 22 9.465 17.026 438953 3209

equalDist3 16 18 8.534 16.129 364644 3961

equalDist4 16 19 8.011 15.663 368986 3973

rand 64 22 8.296 16.348 129906 14836

simple 512 15 5.849 14.157 10763 158416

minVar 16 24 9.577 17.048 130796 4001

equalDist 16 32 11.596 19.010 546356 2629

equalDist2 4 25 10.380 17.881 1755156 841

equalDist3 16 22 9.779 17.253 388573 3844

equalDist4 16 22 9.217 16.843 383539 3876

rand 64 27 9.556 17.661 128420 15010

simple 4 34 11.919 19.156 2214241 849

minVar 16 13 5.403 13.076 127451 4261

equalDist 512 15 5.960 13.509 21151 61005

equalDist2 2048 12 4.982 12.955 5495 230190

equalDist3 256 5 2.560 8.629 16078 90936

equalDist4 512 5 2.476 8.229 7638 187975

rand 4 28 11.532 19.413 2330332 841

rand 256 0 3.222 5.085 160087 12862

rel 16 34 11.247 18.992 761684 2399

RAND rand 1024 10 3.936 11.615 5010 348002

Promedas
Avg. Error std(Avg. Error) Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

CTX

iB-10, t-1200sec, LARGE

Table 8

2893

7.2 COMPARISON USING 100 SAMPLES.

7.2.1 Exact Problems

Table 9

Class Scheme nAbs Fail Fail Fail Fail
simpleQB 256 0 1.601 0 4.768 0 0.337 14 3.121
minVarQB 256 0 5.028 0 5.134 0 0.615 1 5.423
equalDist 256 0 5.269 0 15.958 1 2.145 13 6.556

equalDist2 256 0 5.966 0 11.009 0 1.384 6 6.464
equalDist3 256 0 6.203 0 5.804 0 0.669 1 5.480
equalDist4 256 0 4.501 0 22.576 0 1.103 1 4.382

randQB 256 0 0.712 0 5.515 0 0.531 13 4.988
simpleQB 256 0 1.638 0 15.757 0 0.721 14 3.014
minVarQB 256 0 4.703 0 2.404 0 0.287 1 4.295
equalDist 256 0 6.030 0 16.132 1 2.817 13 8.830

equalDist2 256 0 6.361 0 10.462 0 2.546 6 8.272
equalDist3 256 0 6.613 0 4.236 0 2.291 1 7.427
equalDist4 256 0 6.753 0 3.179 0 1.241 1 5.552

randQB 256 0 0.720 0 9.838 0 1.818 13 7.074
simpleQB 256 0 5.350 0 17.406 0 1.059 14 9.659
minVarQB 256 0 0.111 0 1.911 0 0.223 1 1.634
equalDist 256 0 5.619 0 15.533 1 0.858 13 5.420

equalDist2 256 0 2.319 0 11.220 0 0.563 6 3.479
equalDist3 256 0 0.173 0 3.615 0 0.206 1 1.473
equalDist4 256 0 0.277 0 2.305 0 0.180 1 1.373

randQB 256 0 4.982 0 12.653 0 3.211 13 19.441
rand 256 0 3.587 0 9.568 2 4.695 3 14.386
rel 256 0 5.265 0 8.013 0 1.097 36 10.845

RAND rand 256 0 0.288 0 2.464 0 0.325 3 2.570

QB

CTX

HRB

HB

iB-5, m-100, Exact DBN Grids Pedigree Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

7.2.2 LARGE Problems

Table 10

Class Scheme nAbs Fail Fail Fail Fail
simpleQB 256 0 4.179 0 108.953 0 189.141 14 16.389
minVarQB 256 0 8.219 0 45.460 0 182.791 1 17.221
equalDist 256 0 8.013 0 164.767 1 230.627 13 19.890

equalDist2 256 0 8.233 0 119.203 0 231.620 6 18.944
equalDist3 256 0 7.905 0 67.626 0 219.364 1 18.612
equalDist4 256 0 7.588 0 54.643 0 199.565 1 17.186

randQB 256 0 3.741 0 108.760 0 203.436 13 18.494
simpleQB 256 0 4.203 0 190.126 0 180.424 14 15.857
minVarQB 256 0 7.770 0 29.575 0 188.654 1 17.492
equalDist 256 0 7.947 0 151.765 1 235.331 13 20.390

equalDist2 256 0 8.616 0 114.215 0 229.609 6 20.395
equalDist3 256 0 7.653 0 37.005 0 222.866 1 19.932
equalDist4 256 0 8.201 0 31.368 0 213.918 1 18.694

randQB 256 0 3.254 0 150.130 0 205.219 13 19.157
simpleQB 256 0 7.921 0 194.220 0 180.487 14 22.732
minVarQB 256 0 2.848 0 22.838 0 182.296 1 11.742
equalDist 256 0 6.443 0 140.283 1 192.449 13 17.245

equalDist2 256 0 4.583 0 96.859 0 193.109 6 15.704
equalDist3 256 0 3.036 0 25.042 0 170.706 1 11.426
equalDist4 256 0 2.715 0 20.978 0 162.793 1 11.885

randQB 256 0 7.791 0 163.214 0 205.186 13 23.984
rand 256 0 4.789 0 97.951 2 232.778 3 16.285
rel 256 0 7.664 0 65.146 0 188.194 36 20.609

RAND rand 256 0 3.070 0 26.185 0 178.273 3 13.957

QB

CTX

HRB

HB

iB-10, m-100, LARGE DBN Grids Linkage-Type4 Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

2894

7.3 TIME SERIES PLOT

7.3.1 LARGE Problems

Plot 1: Z estimates from various algorithms versus time on DBN problem rus_100_200_7_1 using iB = 10. The dashed
black line shows the estimated true Z value.

2895

Plot 2: Z estimates from various algorithms versus time on Grids problem grid80x80.f10.wrap using iB = 10. The dashed
black line shows the estimated true Z value.

2896

Plot 3: Z estimates from various algorithms versus time on Linkage-Type4 problem grid20x20.f15 using iB = 10. The
dashed black line shows the estimated true Z value.

2897

Plot 4: Z estimates from various algorithms versus time on Promedas problem or_chain_43.fg using iB = 10. The dashed
black line shows the estimated true Z value.

2898

8 ADDITIONAL RESULTS

8.1 PROBE SIZE

In our running abstraction example discussed in Supplemental Section 6, we observed that despite employing the same
granularity, certain Ordered Partitioning Schemes may underutilize the allotted number of abstract states. Moreover, paths
extended during initial iterations may become incomplete in subsequent iterations . These truncated paths may be pruned
altogether and cut the number of nodes. To assess how effectively different schemes handle continual extension of paths, we
fixed nAbs at 2048 and plotted the Probe Size against the number of variables for each problem in the Promedas benchmark
(Plot 5).

Plot 5: For the given abstraction granularity and benchmark, the size of the probe (in log10) relative to the number of
problem variables (in log10) using iB-10.

0.977 1.319 1.662 2.004 2.347 2.689 3.032 3.374
log10 nVars

0.000

0.644

1.288

1.931

2.575

3.219

3.863

4.507

5.151

5.794

lo
g1

0
pr

ob
e

siz
e

Probe Size vs. nVars
(Benchmark=Promedas, nAbs=2048)

equalDistQB
equalDistQB2
equalDistQB3
equalDistQB4
minVarQB
randCB
randQB
relCB
simpleQB

Even with the same granularity different abstraction functions can lead to vastly different utilization of abstract states,
pruning, and thus probe sizes. Plot 5 highlights this. As seen in the plot (and generalizes across the different benchmarks and
abstraction value classes) the simpleQB, minVarQB, equalDistQB3, equalDistQB4, and randQB schemes tend to produce
larger probes, indicating more of the allotted abstract states utilized and fewer branches being pruned.

8.2 ABSTRACTION SPEED

In order to understand more about the speed of each scheme at performing abstractions, in Figure ?? we plot the number of
samples versus average probe size for problems of the Promedas benchmark. (For other benchmarks and nAbs, please see

2899

the Supplemental Materials).

Plot 6: For the given abstraction granularity and benchmark, the number of samples (in log10) relative to the probe size (in
log10) using iB-10.

0.000 0.644 1.288 1.931 2.575 3.219 3.863 4.507 5.151 5.794
log10 probe size

0.000
0.853
1.705
2.558
3.410
4.263
5.116
5.968
6.821
7.674

lo
g1

0
nu

m
be

r o
f s

am
pl

es

Number of Samples vs. Probe Size
(Benchmark=Promedas, nAbs=2048)

equalDistQB
equalDistQB2
equalDistQB3
equalDistQB4
minVarQB
randQB
simpleQB

Plot 6 shows the number of samples that were able to be drawn relative to the size of generated probes, thus providing an
understanding of the speed abstractions occur. As expected, we notice the minVar scheme (which utilizes a computationally
intensive hierarchical clustering process to abstract nodes) has the lowest sample efficiency. The other schemes have
comparable abstraction speeds.

2900

References

Filjor Broka, Rina Dechter, Alexander. Ihler, and Kalev Kask. Abstraction sampling in graphical models. In Proceedings of
the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10,
2018, pages 632–641, 2018. URL http://auai.org/uai2018/proceedings/papers/234.pdf.

H. Kahn and A. W. Marshall. Methods of reducing sample size in monte carlo computations. Journal of the Operations
Research Society of America, 1(5):263–278, 1953. ISSN 00963984. URL http://www.jstor.org/stable/
166789.

Kalev Kask, Bobak Pezeshki, Filjor Broka, Alexander Ihler, and Rina Dechter. Scaling up and/or abstraction sampling.
In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, pages 4266–4274. International Joint Conferences on Artificial Intelligence Organization, 7 2020. doi:
10.24963/ijcai.2020/589. URL https://doi.org/10.24963/ijcai.2020/589. Main track.

G. N. Lance and W. T. Williams. A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems. The
Computer Journal, 9(4):373–380, 02 1967. ISSN 0010-4620. doi: 10.1093/comjnl/9.4.373. URL https://doi.org/
10.1093/comjnl/9.4.373.

Robert Mateescu, Rina Dechter, and Radu Marinescu. AND/OR multi-valued decision diagrams (aomdds) for graphical
models. J. Artif. Intell. Res. (JAIR), 33:465–519, 2008. doi: 10.1613/jair.2605. URL http://dx.doi.org/10.
1613/jair.2605.

Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/mc/, 2013.

Maria L. Rizzo. Statistical computing with R. Chapman & Hall/CRC, 2007.

Joe H. Ward. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58
(301):236–244, 1963. ISSN 01621459. URL http://www.jstor.org/stable/2282967.

2901

http://auai.org/uai2018/proceedings/papers/234.pdf
http://www.jstor.org/stable/166789
http://www.jstor.org/stable/166789
https://doi.org/10.24963/ijcai.2020/589
https://doi.org/10.1093/comjnl/9.4.373
https://doi.org/10.1093/comjnl/9.4.373
http://dx.doi.org/10.1613/jair.2605
http://dx.doi.org/10.1613/jair.2605
https://artowen.su.domains/mc/
http://www.jstor.org/stable/2282967

