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Abstract

We propose a modified density estimation problem
that is highly effective for detecting anomalies in
tabular data. Our approach assumes that the density
function is relatively stable (with lower variance)
around normal samples. We have verified this hy-
pothesis empirically using a wide range of real-
world data. Then, we present a variance-stabilized
density estimation problem for maximizing the
likelihood of the observed samples while minimiz-
ing the variance of the density around normal sam-
ples. To obtain a reliable anomaly detector, we in-
troduce a spectral ensemble of autoregressive mod-
els for learning the variance-stabilized distribution.
We have conducted an extensive benchmark with
52 datasets, demonstrating that our method leads
to state-of-the-art results while alleviating the need
for data-specific hyperparameter tuning. Finally,
we have used an ablation study to demonstrate the
importance of each of the proposed components,
followed by a stability analysis evaluating the ro-
bustness of our model.

1 INTRODUCTION

Anomaly detection (AD) is a crucial task in machine learn-
ing. It involves identifying patterns or behaviors that deviate
from what is considered normal in a given dataset. Accu-
rate identification of anomalous samples is essential for the
success of various applications such as fraud detection [Hi-
lal et al., 2021], medical diagnosis [Fernando et al., 2021,
Irshaid et al., 2022, Farhadian et al., 2022], manufacturing
[Liu et al., 2018], explosion detection [Rabin et al., 2016,
Bregman et al., 2021] and more.

An intuitive and well-studied perspective on anomaly detec-
tion is via the lens of density estimation. In this method, a
probabilistic model is trained to maximize the average log-

likelihood of non-anomalous or "normal" samples. Any sam-
ple that has a low likelihood value under the learned density
function is considered anomalous. For instance, Histogram-
based Outlier Score (HBOS) [Goldstein and Dengel, 2012]
uses a histogram of features to score anomalies. Variational
autoencoders [An and Cho, 2015] use a Gaussian prior for
estimating the likelihood of the observations. The Copula-
Based Outlier Detection method (COPOD) [Li et al., 2020]
models the data using an empirical copula and identifies
anomalies as "extreme" points based on the left and right
tails of the cumulative distribution function.

While the low-likelihood assumption for modeling anoma-
lous samples seems realistic, density-based anomaly detec-
tion methods often underperform compared to geometric
or one-class classification models [Han et al., 2022]. This
gap has been explained by several authors. One possible
explanation is the challenge of density estimation due to
the curse of dimensionality, which often leads to overfitting
[Nalisnick et al., 2019, Wang and Scott, 2019, Nachman and
Shih, 2020]. Another argument is that even "simple" exam-
ples may result in high likelihoods, despite not being seen
during training [Choi et al., 2018, Nalisnick et al., 2019]. To
bridge this gap, we propose a regularized density estimation
problem that prevents overfitting and significantly improves
the ability to distinguish between normal and abnormal sam-
ples.

We base our work on a new assumption on the properties
of the density function around normal samples. Specifically,
our key idea is to model the density function of normal
samples as roughly uniform in a compact domain, which
results in a more stable density function around inliers as
compared to outliers. We first provide empirical evidence to
support our stable density assumption. We then propose a
variance-stabilized density estimation (VSDE) problem that
is realized as a regularized maximum likelihood problem.
We propose a spectral ensemble of multiple autoregressive
models implemented using probabilistically normalized net-
works (PNNs) to learn a reliable and stable density esti-
mate. Each model is trained to learn a density representation
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of normal samples that is uniform in a compact domain.
We have conducted an extensive benchmark with 52 real-
world datasets, which demonstrates that our approach is a
new state-of-the-art anomaly detector for tabular data. A
schematic illustration of this procedure appears in Figure 1.

2 RELATED WORK

One popular line of solutions for AD relies on the geometric
structure of the data. These include methods such as Local
Outlier Factor (LOF) [Breunig et al., 2000], which locates
anomalous data by measuring local deviations between the
data point and its neighbors. Another method is to use the
distance to the k nearest neighbors (k-NN) to detect anoma-
lies. AutoEncoder (AE) can also be used to detect anomalies
by modeling them as harder-to-reconstruct samples [Zhou
and Paffenroth, 2017]. This approach was later improved by
Chen et al. [2017], who presented an ensemble of AE with
different dropout connections. Recently, Lindenbaum et al.
[2021] presented a robust AE that can exclude anomalies
during training using probabilistic gates.

One-class classification is a well-studied paradigm for de-
tecting anomalies. Deep One-Class Classification [Ruff
et al., 2018] trains a deep neural network to learn a trans-
formation that minimizes the volume of a hypersphere sur-
rounding a fixed point. The distance of a sample from the
center of the hypersphere is used to detect anomalies. Self-
supervision has been used in several studies to enhance the
classifier’s ability to distinguish between normal and abnor-
mal samples. For example, Qiu et al. [2021] applies affine
transformations to non-image datasets and uses the likeli-
hood of a contrastive predictor to detect anomalies. Another
approach is Internal Contrastive Learning (ICL) presented
by Shenkar and Wolf [2022], which uses a special masking
scheme to learn an informative anomaly score.

Density-based anomaly detection is a technique that works
under the assumption that anomalous events occur rarely
and are unlikely. Therefore, a sample that is unlikely is con-
sidered to have low "likelihood" and high probability density
for a normal sample. Several studies have followed this in-
tuition, implicitly or explicitly [Liu et al., 2020, Bishop,
1994, Hendrycks et al., 2018], even in classification [Chala-
pathy et al., 2018, Ruff et al., 2018, Bergman and Hoshen,
2020, Qiu et al., 2021] or reconstruction [Chen et al., 2018,
2017] based anomaly detection. However, recent research
has pointed out that anomaly detection based on simple
density estimation has several flaws. According to Le Lan
and Dinh [2021], methods based on likelihood scoring are
unreliable even when provided with a perfect density model
of in-distribution data. Nalisnick et al. [2019] demonstrated
that the regions of high likelihood in a probability distribu-
tion may not be associated with regions of high probability,
especially as the number of dimensions increases. Further-
more, Caterini and Loaiza-Ganem [2022] focuses on the

impact of the entropy term in anomaly detection and sug-
gests looking for lower-entropy data representations before
performing likelihood-based anomaly detection.

According to Li et al. [2022], non-parametric learning of
data distribution can be achieved by utilizing the empirical
cumulative distribution per data dimension. They aggregate
the estimated tail probabilities across dimensions to compute
an anomaly score. Livernoche et al. [2023] and Zamberg
et al. [2023] have recently shown that diffusion models have
potential in anomaly detection. Livernoche et al. [2023]
present Diffusion Time Estimation (DTE) that approximates
the distribution over diffusion time for each input, and use
those as anomaly scores. In this work, we present a new
variance-stabilized density estimation problem and show
that it is highly effective for detecting anomalies in tabular
data.

3 METHOD

Problem Definition Given samples X = {x1, . . . , xN},
where xi ∈ RD, we model the data by X = XN ∪ XA,
where XN are normal samples and XA are anomalies. Our
goal is to learn a score function S : RD → R, such that
S(xn) > S(xa), for all xn ∈ XN and xa ∈ XA while
training solely on x ∈ XN . In this study, we consider the
modeling of S() by estimating a regularized density of the
normal samples.

Intuition It is commonly assumed in the anomaly de-
tection field that normal data has a simple structure, while
anomalies do not follow a clear pattern and can be caused by
many unknown factors [Ahmed et al., 2016]. Density-based
models for anomaly detection [Bishop, 1994] work by as-
suming that the density of the data pX(·) is typically higher
for normal samples than for anomalies (pX(xn) > pX(xa)
for xn ∈ XN and xa ∈ XA). However, recent research has
shown that relying solely on the likelihood score of a density
model is not always effective (as discussed in Sec. 2). To
address this issue, one potential solution is to apply regular-
ization to the density estimation problem, which can reduce
overfitting [Rothfuss et al., 2019].

In Legaria et al. [2023], the authors show that different
anomaly detection distance metrics perform better for uni-
formly distributed normal data. Their approach inspired us
to introduce a new assumption for modeling the density
function of normal samples. Specifically, our working hy-
pothesis is that the density function around normal samples
is stable, which means that the variance of log pX(x) is
relatively low. This hypothesis holds true if the normal sam-
ples come from a uniform distribution. Our main idea is
to regularize the density estimation problem by ensuring
that the estimated density has a low variance around normal
samples.
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(a) (b)

Figure 1: (a) The proposed framework for anomaly detection. Our method involves using multiple versions of permuted
tabular data, which are fed into a Probabilistic Normalized Network (PNN). The PNN is designed to model the density of
normal samples as uniform in a compact domain. Each PNN is trained to minimize a regularized negative log-likelihood
loss (see Eq. 1). Since our PNN is implemented using an autoregressive model, we use a spectral ensemble of the learned
log-likelihood functions as an anomaly score for unseen samples. (b) Illustration of the proposed variance-stabilized density
estimation (VSDE) vs. standard (un-regularized) maximum likelihood estimation (MLE) for one-dimensional data. During
training, the VSDE learns a more "stable" density estimate around normal samples. This results in a better likelihood
estimate for distinguishing between normal and abnormal samples at test time. These findings are supported empirically by
our experimental results.

Empirical Evidence We evaluated our low variance as-
sumption using a diverse set of 52 publicly available tabular
anomaly detection datasets. For each dataset, we estimated
the variance of the log-likelihood of normal and anomalous
samples. To do this, we calculated σ̂2

n = EXN
(log p̂θ(x)−

µn)
2 for normal samples and σ̂2

a = EXA
(log p̂θ(x)− µa)

2

for anomalous samples, where µn and µa are the means of
the log density estimated over the normal and anomalous
samples, respectively.

We visualized the log-likelihood variance ratio between nor-
mal and anomalous samples in Figure 2. To compute the
variance ratio, we addressed the imbalance between nor-
mal and anomalous samples by randomly selecting normal
samples to match the quantity of anomalous ones. As indi-
cated by this figure, in most of the datasets (47 out of 52),
the variance ratio is smaller than 1 (below the dashed line).
This supports our hypothesis that the density around normal
samples has a relatively low variance. In [Ye et al., 2023],
the authors provide related empirical evidence that multiple
classifiers trained on normal samples have lower variance
than those trained on anomalous samples. We exploited
our assumption to derive a modified density estimation for
learning a stabilized density of normal samples.

Regularized density estimation Following recent
anomaly detection works [Bergman and Hoshen, 2020,
Qiu et al., 2021, Shenkar and Wolf, 2022], during training,
we only assume access to normal samples, Xtrain ⊂ XN .
To incorporate our low variance assumption, we have

formulated a modified density estimation problem that
imposes stability of the density function. To achieve
this, we minimize a regularized version of the negative
log-likelihood. Denoting a density estimator that is
parameterized by θ as p̂θ(x), our optimization problem can
be written as:

min−EXN

[
log p̂θ(x)

]
+ λVarXN

[
log p̂θ(x)

]
, (1)

where λ is a hyperpramater that controls the amount of reg-
ularization. Specifically, for λ = 0, Eq. 1 boils down to a
standard maximum likelihood problem, and using larger val-
ues of λ encourages a more stable (lower variance) density
estimate.

In recent years, various deep-learning techniques have been
proposed for density estimation. Among them, we have cho-
sen an autoregressive model to learn p̂θ(x), as it has shown
superior performance on density estimation benchmarks.
Although normalizing flow based models are also a well-
studied alternative [Dinh et al., 2014, 2016, Kingma et al.,
2016, Meng et al., 2022], we opted for the autoregressive
probabilistic model for their simplicity. The likelihood of a
sample x ∈ Xtrain is expressed based on this model.

p̂θ(x) =

D∏
i=1

p̂θ(x
(i)|x(<i)),

log p̂θ(x) =

D∑
i=1

log p̂θ(x
(i)|x(<i)),

(2)
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Figure 2: Evaluation of our "stable" density assumption. We plot the mean log-likelihood variance ratio between normal and
anomalous samples (see definition in the Intuition section below) for 52 publicly available tabular datasets. Values above the
dashed line are greater than 1. Our results indicate that in most datasets, the density is more stable (with lower variance)
around normal samples than anomalies. This corroborates our assumptions and motivates our proposed modified density
estimation problem for anomaly detection.

where x(i) is the i-th feature of x, and D is the input di-
mension. To alleviate the influence of variable order on our
estimate, we present below a new type of spectral ensemble
of likelihood estimates, each based on a different permuta-
tion of features.

To estimate our stabilized density, we harness a recently
proposed probabilistic normalized network (PNN) [Li and
Kluger, 2022]. Assuming the density of any feature x(i) is
compactly supported on [A,B] ∈ R, we can define the cu-
mulative distribution function (CDF) of an arbitrary density
as

P̂ (X(i) ≤ x(i)) =
Fθ(x

(i))− Fθ(A)

Fθ(B)− Fθ(A)
, (3)

whereFθ is an arbitrary neural network function with strictly
positive weights θ, and is thus monotonic. Since each strictly
monotonic CDF is uniquely mapped to a corresponding
density, we now have unfettered access to the class of all
densities on [A,B] ∈ R, up to the expressiveness of Fθ via
the relation

p̂θ(x
(i)) = ∇(i)

x P̂ (X ≤ x(i)). (4)

By conditioning each Fθ(x
(i)) on x(<i), we obtain in their

product an autoregressive density on x. This formulation
enjoys much greater flexibility than other density estimation
models in the literature, such as flow-based models [Dinh
et al., 2014, 2016, Ho et al., 2019, Durkan et al., 2019] or

even other autoregressive models [Uria et al., 2013, Sali-
mans et al., 2017] that model x(i) using simple distributions
(e.g., mixtures of Gaussian, Logistic). Our p̂θ represented by
Fθ is provably a universal approximator for arbitrary com-
pact densities on RD [Li and Kluger, 2022], and therefore
more expressive while still being end-to-end differentiable.
The model Fθ is composed of n layers defined recursively
by the relation

al = ψ(hA(Al)
Tal−1 + hb(bl, Al)) (5)

where l layer index of the PNN, a0 := x,ψ is the sigmoid ac-
tivation, andAl, bl are the weights and biases of the lth layer.
The final layer is defined as Fθ(x) = softmax(AT

nan−1).

Feature permutation ensemble Our density estimator is
autoregressive and it means that different input feature per-
mutations can result in different density estimates (as shown
in Eq. 2). However, we have used this characteristic to our
advantage and developed an ensemble-based approach for
density estimation that is based on randomized permutations
of the features, which makes our estimate more robust. To
achieve this, we have defined PD as the set of permutation
matrices of size D.

We learn an ensemble of regularized estimators, each min-
imizing objective Eq. 1 under a different random real-
ization of feature permutation Πℓ ∈ PD. We denote by
S(x) = log p̂θ(x) as the estimated log-likelihood of x. Next,
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we compute the score for each permutation, namely Sℓ(x)
is the score computed based on the permutation matrix
Πℓ, ℓ = 1, ..., Nperm. Finally, inspired by the supervised
ensemble proposed in Jaffe et al. [2015], we present a spec-
tral ensemble approach proposed for aggregating multiple
density estimation functions.

The idea is to compute the Nperm ×Nperm sample covari-
ance matrix of multiple log-likelihood estimates

Σ = E[(Si(x)− µi)(Sj(x)− µj)],

with µi = E(Si(x)). Then, utilizing the leading eigenvector
of Σ, denoted as v to define the weights of the ensemble. The
log-likelihood predictions from each model are multiplied
by the elements of v. Specifically, the spectral ensemble is
defined as

S̄(x) =

Nperm∑
ℓ=1

Sl(x)v[ℓ]. (6)

The intuition is that if we assume the estimation errors of
different estimators are independent, then the off-diagonal
elements of Σ should be approximately rank-one [Jaffe et al.,
2015]. Section 4.4 demonstrates that the spectral ensemble
works relatively well even for small values of Nperm. To
the best of our knowledge, this is the first extension of the
spectral ensemble [Jaffe et al., 2015] to anomaly detection.

4 EXPERIMENTS

All experiments were conducted using three different seeds.
Each seed consists of three ensemble models with different
random feature permutations. We used a learning rate of 1e-
4 and a dropout of 0.1 for all datasets. Batch size is relative
to the dataset size N/10 and has minimum and maximum
values of 16 and 8096, respectively. Experiments were run
on an NVIDIA A100 GPU with 80GB of memory.

4.1 SYNTHETIC EVALUATION

First, we use synthetic data to demonstrate the advantage
of our variance regularization for anomaly detection. We
generate simple two-dimensional data following [Buitinck
et al., 2013]. The normal data is generated by drawing 300
samples from three Gaussians with a standard deviation of
1 and means on (0, 0), (−5,−5), and (5, 5). We then gen-
erate anomalies by drawing 40 samples from two skewed
Gaussians centered at (−5, 5) and (5,−5). We train our
proposed autoregressive density estimator based on 150
randomly selected normal samples with and without the
proposed variance regularizer (see Eq. 1). In Figure 3, we
present the scaled log-likelihood obtained by both models.
As indicated by this figure, without regularization, the log-
likelihood estimate tends to attain high values in a small
vicinity surrounding normal points observed during training.
In contrast, the regularized model learns a distribution with

lower variance and more uniform distribution around nor-
mal points. In this example, the average area under the curve
(AUC) of the Receiver Operating Characteristics curve over
5 runs of the regularized model is 98.3, while for the unreg-
ularized model, it is 79.8. This example sheds some light
on the potential benefit of our regularization for anomaly
detection. The following section provides more empirical
real-world evidence supporting this claim.

4.2 REAL DATA

Experiments were conducted on various tabular datasets
widely used for anomaly detection. These include 47
datasets from the recently proposed Anomaly Detection
Benchmark [Han et al., 2022] and five datasets from
[Rayana, 2016, Pang et al., 2019]. The datasets exhibit vari-
ability in sample size (80-619,326 samples), the number of
features (3-1,555), and the portion of anomalies (from 0.03%
to 39.91%). We evaluate all models using the well-known
area under the curve (AUC) of the Receiver Operating Char-
acteristics curve. We follow the same data splitting scheme
as in ICL [Bergman and Hoshen, 2020, Shenkar and Wolf,
2022, Qiu et al., 2021], where the anomalous data is not
seen during training. The normal samples are split 50/50
between training and testing sets.

Baseline methods We compare our method to density
based methods like HBOS [Goldstein and Dengel, 2012],
COPOD [Li et al., 2020], and [Li et al., 2022], geometric
methods such as k-NN [Angiulli and Pizzuti, 2002], and
IForest [Liu et al., 2008], and recent neural network based
methods like ICL [Shenkar and Wolf, 2022], NTL [Qiu et al.,
2021], GOAD [Bergman and Hoshen, 2020], and DTE [Liv-
ernoche et al., 2023]. Following [Shenkar and Wolf, 2022],
we evaluate k-NN [Angiulli and Pizzuti, 2002] method with
k = 5. For GOAD [Bergman and Hoshen, 2020], we use
the KDD configuration, which specifies all of the hyperpa-
rameters, since it was found to be the best configuration
in previous work [Shenkar and Wolf, 2022]. For DTE, we
evaluated all of the three proposed configurations (DTE-NP,
DTE-IG, DTE-C). For brevity, we presented the result for
the best option obtained over the tested 52 datasets, DTE-
NP. While many other methods are specifically designed for
image data, to the best of our knowledge, this collection of
baselines covers the most up-to-date methods for anomaly
detection with tabular data.

Results In Figure 4(b), we present the AUC of our method
and all baselines evaluated on 52 different tabular anomaly
detection datasets. Our method outperforms previous state-
of-the-art schemes by a large margin (both on average and
median AUCs). Specifically, we obtained 86.0 and 92.4
mean and median AUC, better than the second-best method
(ICL) by 1.2 and 2.2 AUC points, respectively. We also
achieved an average rank of 3.3 over all datasets, which
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(a) (b)

Figure 3: Synthetic example demonstrating the effect of density stabilization. White dots represent normal samples xn ∈ XN ,
while yellow represents anomalies xa ∈ XA. (a): scaled unregularized log-likelihood estimation. (b): the proposed scaled
regularized log-likelihood estimate. Using the proposed stabilized density estimate (right) improved the AUC of anomaly
detection from 79.8 to 98.3 in this example.

(a) (b)

Figure 4: (a) A Dolan-More performance profile [Dolan and Moré, 2002] comparing AUC scores of 8 algorithms applied to
52 tabular datasets. For each method and each value of θ (x-axis), we calculate the ratio of datasets on which the method
performs better or equal to θ multiplied by the best AUC for the corresponding dataset. Specifically, for a specific method
we calculate 1

Ndata

∑
j AUCj ≥ θ · AUCbest

j , where AUCbest
j is the best AUC for dataset j and Ndata is the number of

datasets. The ideal algorithm would achieve the best score on all datasets and thus reach the left top corner of the plot for
θ = 1. Our algorithm yields better results than all baselines, surpassing ICL on values between θ = 0.95 and θ = 0.82.
Furthermore, our method covers all datasets (ratio equals 1) for θ = 0.82 and outperforms the second best, ICL [Shenkar
and Wolf, 2022], which achieves the same at θ = 0.69. This suggests that using our method on all datasets will never be
worse than the leading method by more than 18%. (b) Box plots comparing the results of all methods on the 52 evaluated
datasets. Each box presents the mean (red) and median (black) as well as other statistics (Q1, Q3, etc.).

surpasses the second- and third-best, 3.8 and 3.9, respec-
tively, by ICL and DTE-NP. Furthermore, our method was

never ranked last on any of the evaluated datasets. These
results indicate that our method is stable compared to the
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other methods tested. The complete results are available in
Table 5. We perform another performance analysis using
Dolan-More performance profiles [Dolan and Moré, 2002]
on AUC scores. Based on the curve presented in Figure 4,
our method performs best on a larger portion of datasets
for any θ. θ ∈ [0, 1] is a scalar factor multiplying AUC
obtained by the best method. For example, on all datasets,
our method is never worse than 0.82 times the highest AUC
obtained by any scheme (as indicated by the intersection of
our curve with the line y = 1). The Dolan-More curve is
further explained in the caption of this figure.

Table 1: Ablation study. We evaluate the removal of several
components of our model. Namely, λ = 0 indicates the
removal of the stability-inducing regularizer (Eq. 1), Πℓ = I
corresponds to no feature permutation, and mean ensemble
replaces the proposed spectral ensemble by a simple mean
of the different density estimators.

Variant λ = 0 Πℓ = I Mean Ensemble Ours

Abalone 95.6 (+1.9) 85.7 (-8.0) 90.6 (-3.1) 93.7 ±0.7
Annthyroid 88.2 (-6.1) 87.1 (-7.1) 92.0 (-2.3) 94.3 ±0.5
Arrhythmia 77.3 (-1.3) 78.6 78.2 (-0.4) 78.6 ±0.2
Breastw 94.1 (-5.2) 99.2 (-0.1) 98.5 (-0.8) 99.3 ±0.1
Cardio 59.6 (-34.1) 92.0 (-1.7) 92.1 (-1.6) 93.7 ±0.3
Ecoli 89.0 (-2.9) 87.0 (-4.9) 90.4 (-1.5) 91.9 ±1.5
Cover 58.9 (-39.1) 98.8 (-0.2) 97.6 (-1.4) 99.0±0.2
Glass 77.0 (-11.4) 89.0 (+0.6) 87.9 (-0.5) 88.4 ±1.2
Ionosphere 96.2 (-0.2) 96.4 96.0 (-0.4) 96.4 ±0.2
Letter 71.4 (-23.8) 94.2 (-1.0) 93.6 (-1.6) 95.2 ±0.3
Lympho 99.8 (+0.1) 99.9 (+0.2) 99.2 (-0.5) 99.7 ±0.1
Mammo. 87.0 (-0.9) 88.0 (+0.1) 86.5 (-1.4) 87.9 ±0.4
Musk 99.7 (-0.3) 100.0 100.0 100.0 ±0.0
Optdigits 66.3 (-20.7) 88.4 (+1.4) 85.5 (-1.5) 87.0 ±0.3
Pendigits 69.2 (-30.7) 99.7 99.4 (-0.3) 99.7 ±0.0
Pima 70.5 (+2.3) 64.8 (-3.4) 65.9 (-2.3) 68.2 ±0.4
Satellite 68.1 (-15.2) 84.3 (+1.0) 82.9 (-0.4) 83.3 ±0.2
Satimage-2 73.3 (-26.2) 99.0 (-0.5) 99.3 (-0.2) 99.5 ±0.1
Shuttle 99.6 (+0.1) 99.0 (-0.5) 99.5 99.5 ±0.2
Thyroid 97.4 (+2.0) 94.5 (-0.9) 93.0 (-2.4) 95.4 ±0.1
Vertebral 52.8 (-6.0) 52.9 (-5.9) 56.4 (-2.4) 58.8 ±2.1
Vowels 72.1 (-26.9) 97.8 (-1.2) 98.1 (-0.9) 99.0 ±0.1
Wbc 76.7 (-19.6) 95.8 (-0.5) 94.6 (-1.7) 96.3 ±0.1
Wine 93.2 (-0.1) 94.1 (+0.8) 90.6 (-2.7) 93.3 ±0.5

Mean 79.4 (-10.6) 88.7 (-0.3) 88.8 (-0.2) 90.0

4.3 ABLATION STUDY

We conduct an ablation study to evaluate all components of
the proposed scheme.

Variance stabilization In the first ablation, we evaluate
the properties of the proposed variance stabilization loss
(see Eq. 1). We conduct an ablation with 24 datasets and
compare the AUC of our model to a version that does not
include the new regularization. As indicated by Table 1,
there is a significant performance drop once the regularizer
is removed; specifically, the average AUC drops by more

than 10 points.

Ensemble of feature permutation We conduct an addi-
tional experiment with the same 24 datasets to evaluate the
importance of our permutation-based spectral ensemble. We
compare the proposed approach to a variant that relies on
a simple mean ensemble and to a variant that relies on a
spectral ensemble with no feature permutation. The results
presented in Table 1 demonstrate that the feature permu-
tations and spectral ensemble help learn a reliable density
estimate for anomaly detection.

4.4 STABILITY ANALYSIS

Here, we evaluate the stability of our approach to differ-
ent values of λ, different numbers of feature permutations
Nperm, for contamination in the training data, and for dif-
ferent types of synthetic anomalies injected to real data.

Regularization parameter To demonstrate that our
method is relatively stable to choice of λ. We apply our
framework to multiple datasets, with values of λ in the
range of [0, 10]. As indicated by the heatmap presented in
Figure 5, adding the regularization helps improve the AUC
in most datasets. Moreover, our performance is relatively sta-
ble in the range [1, 10]; we use λ = 3.33 in our experiments,
which worked well across many datasets.

Contaminated training data In the following experiment,
we evaluate the stability of our model to contamination in
the training data. Namely, we introduce anomalous samples
to the training data and evaluate their influence on our model.
In Table 2, we present the AUC of our model for several
datasets with different levels of training set contamination.
We focus on datasets with relatively many anomalies. As
indicated by these results, the performance of our model is
relatively stable to anomalies in the training set.

Table 2: AUC results for various amounts of anomalies in
the training data using different AD datasets. These results
show that our method is relatively stable to contamination
in the training set.

Anomaly % 1% 3% 5% 0%

Breastw 98.4 (-0.5) 98.7 (-0.2) 98.7 (-0.2) 98.9 ±0.1
Cardio 95.1 (+0.9) 94.3 (+0.1) 94.6 (+0.4) 94.2 ±0.7
Pima 67.7 (-0.4) 67.2 (-0.9) 67.6 (-0.5) 68.1 ±0.8
Ionosphere 95.9 (-0.1) 94.8 (-1.2) 94.1 (-1.9) 96.0±0.1
Vertebral 55.1 (+2.8) 53.2 (+0.9) 55.5 (+3.2) 52.3 ±0.8

Anomaly type analysis To better understand the strengths
and weaknesses of our model, we analyze its ability to de-
tect anomalies of different types. Toward this goal, we use
the semi-synthetic data created by Han et al. [2022], which
includes four types of common synthetic anomalies (Local,
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Figure 5: Stability analysis for the regularization parameter λ balances the likelihood and the variance loss. λ = 0 indicates
that no variance loss is applied. The numbers present the ratio between the AUC and the AUC obtained without regularization
(λ = 0). This heatmap indicates the advantage of the proposed regularization for anomaly detection. Furthermore, observe
the stability of the AUC for different values of λ.

Figure 6: Stability analysis of the number of permutations. Nperm = 1 indicates that no permutations are applied, while
Nperm = 5 is the result of a spectral ensemble of 5 permutations. The numbers present the ratio between the AUC of a
single model and the ensemble of Nperm permuted estimators.

Global, Dependent, and Clustered anomalies) injected into
real datasets. We use the same protocol as in the original
paper. The protocol discards the original datasets’ anoma-
lies as their types are unknown. Then, we generate synthetic
anomalies to replace the discarded ones, maintaining the
original datasets’ anomaly ratio. In Figure 7, we draw box
plots of our model’s AUC results when applied to all datasets
with the four different anomaly types. Overall, we have seen
encouraging AUC results of 98.7 and 92.9 for Global and
Cluster anomalies, respectively. On Local and Dependent,
we have slightly worse results of 85.0 and 83.5, respec-
tively. Intuitively, Global anomalies are generated from a
distribution completely independent of the normal samples.
Therefore, we expect our model to perform well on these
types of anomalies. In contrast, local anomalies are gen-
erated from a scaled version of a Gaussian mixture fitted
to the normal samples. Therefore, anomalies may fall in a
higher likelihood function region, making them harder to
identify. Raw AUC results are also available in Table 4.

Feature permutation To evaluate the influence of the
number of feature permutations on the performance of our
spectral ensemble, we run our model on several datasets
with values of Nperm = {1, 2, 3, 4, 5}. In Figure 6, we
present the AUC of our ensemble for Nperm > 1 relative
to the performance of a single model, with no ensemble
(Nperm = 1). This heatmap indicates that our ensemble im-
proves performance, and Nperm = 3 is sufficient to obtain
a robust spectral ensemble. Therefore, we use Nperm = 3
across our experimental evaluation. Furthermore, for the
spectral ensemble, we use the absolute value of v, to remove
arbitrary signs from this eigenvector (Eq. 6).

5 DISCUSSION

We revisit the problem of density-based anomaly detection
in tabular data. Our key observation is that the density func-
tion is more stable (with lower variance) around normal
samples than anomalies. We empirically corroborate our
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Table 3: Robustness analysis to different types of anomalies,
as detailed in Han et al. [2022]. Each column shows the
AUC score of our method on various datasets used in this
paper.

Dataset Global Cluster Local Dependency

Vertebral 94.6 93.7 77.0 87.0
WDBC 100.0 85.1 93.9 98.9
Stamps 99.1 88.4 85.1 82.7
Hepatitis 99.8 93.8 91.0 89.1
Wine 98.9 68.8 90.9 94.4
Lymphography 100.0 98.5 90.2 90.4
Pima 96.2 81.1 87.5 80.7
Glass 99.0 72.4 73.3 78.9
Breastw 98.2 94.8 72.0 75.6
WPBC 100.0 96.7 92.5 93.6
WBC 98.9 82.5 87.2 80.9
Vowels 98.4 87.0 88.7 90.3
Yeast 98.7 46.2 77.7 80.7
Letter 100.0 99.7 95.2 99.2
Cardio 100.0 94.7 90.3 92.3
Fault 100.0 98.7 84.5 98.2
Cardiotocography 99.9 95.9 90.1 84.3
Musk 100.0 100.0 99.7 93.7
Waveform 99.9 100.0 96.6 90.1
Speech 100.0 95.3 100.0 100.0
Thyroid 99.2 97.9 74.0 75.1
Wilt 83.6 94.7 70.7 63.9
Optdigits 100.0 99.9 98.2 88.9
PageBlocks 99.9 95.0 68.8 62.1
Satimage-2 99.9 95.2 88.0 99.6
Satellite 100.0 99.5 84.9 99.5
Landsat 99.9 97.4 75.6 99.5
Pendigits 98.7 97.9 91.0 90.3
Annthyroid 99.4 99.1 77.2 73.5
Mnist 100.0 100.0 99.6 84.8
Magic.gamma 98.3 95.6 76.2 77.0
Cover 98.5 97.3 84.3 89.1
Donors 99.4 99.5 73.1 64.5
Backdoor 100.0 96.0 100.0 82.9
Shuttle 99.8 92.8 90.1 80.6
Celeba 100.0 89.2 96.7 73.1
Fraud 100.0 100.0 87.6 97.5
Http 99.7 99.9 69.1 55.8
Skin 92.0 91.7 57.5 58.5
Mammography 98.6 97.8 69.8 82.1
Smtp 98.7 100.0 88.2 45.5

Mean 98.7 92.9 85.0 83.5

stability assumption using 52 publicly available datasets.
Then, we formulate a modified density estimation problem
that balances maximizing the likelihood and minimizing the
density variance. We introduce a new spectral ensemble of
probabilistic normalized networks to find a robust solution,
each computed based on a different feature permutation.
We perform an extensive benchmark demonstrating that our
method pushes the performance boundary of anomaly detec-
tion with tabular data. We then conduct an ablation study to

Figure 7: We evaluated the performance of our anomaly
detection method on four common types of synthetic anoma-
lies (Local, Global, Dependent, and Clustered anomalies)
injected into real datasets, following the approach suggested
by Han et al. [2022]. Our evaluation includes AUC results
on all 52 datasets with these common anomaly types.

validate the importance of each component of our method.
Finally, we present a stability analysis demonstrating that
our model is relatively stable to different parameter choices
and contamination in the training data.

Our work focuses on tabular datasets and does not explore
other potential domains like image data or temporal signals;
extending our models to these is compelling and can be
performed by introducing convolution or recurrent blocks
into our PNN. Our spectral ensemble adapts the supervised
ensemble [Jaffe et al., 2015] via an aggregation of density
functions. While the ensemble demonstrated robust empiri-
cal results, it still lacks theoretical guarantees; we believe
that studying its properties is an exciting question for future
work.

Another interesting question for future work, is studying the
relation between our objective and the Watanabe-Akaike
Information Criterion (WAIC) [Watanabe and Opper, 2010].
The WAIC is a criterion that can be used to identify out-
of-distribution samples [Choi et al., 2018], and is defined
as Eθ

[
log p̂θ(x)

]
− Varθ

[
log p̂θ(x)

]
, which resembles our

objective but is estimated by training several models each
initialized with a random θ.

Finally, there are several challenging datasets on which our
model is still far from obtaining state-of-the-art AUC values;
understanding how to bridge this gap is an open question.
In Appendix D, we highlight some of these examples and
analyze the relationship between the AUC of our model and
the different properties of the data.

3129



References

Mohiuddin Ahmed, Abdun Naser Mahmood, and
Md Rafiqul Islam. A survey of anomaly detection
techniques in financial domain. Future Generation
Computer Systems, 55:278–288, 2016.

Jinwon An and Sungzoon Cho. Variational autoencoder
based anomaly detection using reconstruction probability.
Special lecture on IE, 2(1):1–18, 2015.

Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection
in high dimensional spaces. In Principles of Data Min-
ing and Knowledge Discovery: 6th European Conference,
PKDD 2002 Helsinki, Finland, August 19–23, 2002 Pro-
ceedings 6, pages 15–27. Springer, 2002.

Liron Bergman and Yedid Hoshen. Classification-based
anomaly detection for general data. arXiv preprint
arXiv:2005.02359, 2020.

Christopher M Bishop. Novelty detection and neural net-
work validation. IEE Proceedings-Vision, Image and
Signal processing, 141(4):217–222, 1994.

Y Bregman, O Lindenbaum, and N Rabin. Array based
earthquakes-explosion discrimination using diffusion
maps. Pure and Applied Geophysics, 178:2403–2418,
2021.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng,
and Jörg Sander. Lof: identifying density-based local
outliers. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pages
93–104, 2000.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pe-
dregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae,
Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler,
Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt,
and Gaël Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. In
ECML PKDD Workshop: Languages for Data Mining
and Machine Learning, pages 108–122, 2013.

Anthony L Caterini and Gabriel Loaiza-Ganem. Entropic
issues in likelihood-based ood detection. In I (Still) Can’t
Believe It’s Not Better! Workshop at NeurIPS 2021, pages
21–26, 2022.

Raghavendra Chalapathy, Aditya Krishna Menon, and San-
jay Chawla. Anomaly detection using one-class neural
networks. arXiv preprint arXiv:1802.06360, 2018.

Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak
Turaga. Outlier detection with autoencoder ensembles. In
Proceedings of the 2017 SIAM international conference
on data mining, pages 90–98. SIAM, 2017.

Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and
Chiew Tong Lau. Autoencoder-based network anomaly
detection. In 2018 Wireless telecommunications sympo-
sium (WTS), pages 1–5. IEEE, 2018.

Hyunsun Choi, Eric Jang, and Alexander A Alemi. Waic, but
why? generative ensembles for robust anomaly detection.
arXiv preprint arXiv:1810.01392, 2018.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

Elizabeth D Dolan and Jorge J Moré. Benchmarking opti-
mization software with performance profiles. Mathemati-
cal programming, 91:201–213, 2002.

Conor Durkan, Artur Bekasov, Iain Murray, and George
Papamakarios. Neural spline flows. Advances in neural
information processing systems, 32, 2019.

Shelli F Farhadian, Ofir Lindenbaum, Jun Zhao, Michael J
Corley, Yunju Im, Hannah Walsh, Alyssa Vecchio,
Rolando Garcia-Milian, Jennifer Chiarella, Michelle
Chintanaphol, et al. Hiv viral transcription and immune
perturbations in the cns of people with hiv despite art.
JCI insight, 7(13), 2022.

Tharindu Fernando, Harshala Gammulle, Simon Denman,
Sridha Sridharan, and Clinton Fookes. Deep learning for
medical anomaly detection–a survey. ACM Computing
Surveys (CSUR), 54(7):1–37, 2021.

Markus Goldstein and Andreas Dengel. Histogram-based
outlier score (hbos): A fast unsupervised anomaly detec-
tion algorithm. KI-2012: poster and demo track, 1:59–63,
2012.

Songqiao Han, Xiyang Hu, Hailiang Huang, Mingqi Jiang,
and Yue Zhao. Adbench: Anomaly detection benchmark.
In Neural Information Processing Systems (NeurIPS),
2022.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich.
Deep anomaly detection with outlier exposure. arXiv
preprint arXiv:1812.04606, 2018.

Waleed Hilal, S Andrew Gadsden, and John Yawney. A
review of anomaly detection techniques and applications
in financial fraud. Expert Systems with Applications, page
116429, 2021.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and
Pieter Abbeel. Flow++: Improving flow-based generative
models with variational dequantization and architecture
design. In International Conference on Machine Learn-
ing, pages 2722–2730. PMLR, 2019.

3130



Lina Irshaid, Jonathan Bleiberg, Ethan Weinberger, James
Garritano, Rory M Shallis, Jonathan Patsenker, Ofir Lin-
denbaum, Yuval Kluger, Samuel G Katz, and Mina L Xu.
Histopathologic and machine deep learning criteria to pre-
dict lymphoma transformation in bone marrow biopsies.
Archives of Pathology & Laboratory Medicine, 146(2):
182–193, 2022.

Ariel Jaffe, Boaz Nadler, and Yuval Kluger. Estimating
the accuracies of multiple classifiers without labeled data.
In Artificial Intelligence and Statistics, pages 407–415.
PMLR, 2015.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen,
Ilya Sutskever, and Max Welling. Improved variational
inference with inverse autoregressive flow. Advances in
neural information processing systems, 29, 2016.

Charline Le Lan and Laurent Dinh. Perfect density models
cannot guarantee anomaly detection. Entropy, 23(12):
1690, 2021.

Uriel Legaria, Sergio Mota, Sergio Martinez, Alfredo Cobá,
Argenis Chable, and Antonio Neme. Anomaly detection
in the probability simplex under different geometries.
Information Geometry, pages 1–28, 2023.

Henry Li and Yuval Kluger. Neural inverse transform sam-
pler. In International Conference on Machine Learning,
pages 12813–12825. PMLR, 2022.

Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and
Xiyang Hu. Copod: copula-based outlier detection. In
2020 IEEE international conference on data mining
(ICDM), pages 1118–1123. IEEE, 2020.

Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar
Ionescu, and George Chen. Ecod: Unsupervised outlier
detection using empirical cumulative distribution func-
tions. IEEE Transactions on Knowledge and Data Engi-
neering, 2022.

Ofir Lindenbaum, Yariv Aizenbud, and Yuval Kluger. Prob-
abilistic robust autoencoders for outlier detection. arXiv
preprint arXiv:2110.00494, 2021.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation
forest. In 2008 eighth ieee international conference on
data mining, pages 413–422. IEEE, 2008.

Jie Liu, Jianlin Guo, Philip Orlik, Masahiko Shibata, Daiki
Nakahara, Satoshi Mii, and Martin Takáč. Anomaly de-
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A TYPES OF ANOMALIES

In this section, we detail the AUC results of our method for four different types of common synthetic anomalies (Local,
Global, Dependent, and Clustered anomalies). We follow the same protocol as detailed in Han et al. [2022]. For more details
please see our "Anomaly type analysis" section in our main text 4.4. In Table 4, we present all AUC results across all
datasets evaluated in this work. As indicated by these results, our model works well with global anomalies, and may struggle
with Dependency based or Local anomalies.
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Table 4: Robustness analysis to different types of anomalies, as detailed in Han et al. [2022]. Each column shows the AUC
score of our method on various datasets used in this paper.

Dataset Global Cluster Local Dependency

Vertebral 94.6 93.7 77.0 87.0
WDBC 100.0 85.1 93.9 98.9
Stamps 99.1 88.4 85.1 82.7
Hepatitis 99.8 93.8 91.0 89.1
Wine 98.9 68.8 90.9 94.4
Lymphography 100.0 98.5 90.2 90.4
Pima 96.2 81.1 87.5 80.7
Glass 99.0 72.4 73.3 78.9
Breastw 98.2 94.8 72.0 75.6
WPBC 100.0 96.7 92.5 93.6
WBC 98.9 82.5 87.2 80.9
Vowels 98.4 87.0 88.7 90.3
Yeast 98.7 46.2 77.7 80.7
Letter 100.0 99.7 95.2 99.2
Cardio 100.0 94.7 90.3 92.3
Fault 100.0 98.7 84.5 98.2
Cardiotocography 99.9 95.9 90.1 84.3
Musk 100.0 100.0 99.7 93.7
Waveform 99.9 100.0 96.6 90.1
Speech 100.0 95.3 100.0 100.0
Thyroid 99.2 97.9 74.0 75.1
Wilt 83.6 94.7 70.7 63.9
Optdigits 100.0 99.9 98.2 88.9
PageBlocks 99.9 95.0 68.8 62.1
Satimage-2 99.9 95.2 88.0 99.6
Satellite 100.0 99.5 84.9 99.5
Landsat 99.9 97.4 75.6 99.5
Pendigits 98.7 97.9 91.0 90.3
Annthyroid 99.4 99.1 77.2 73.5
Mnist 100.0 100.0 99.6 84.8
Magic.gamma 98.3 95.6 76.2 77.0
Cover 98.5 97.3 84.3 89.1
Donors 99.4 99.5 73.1 64.5
Backdoor 100.0 96.0 100.0 82.9
Shuttle 99.8 92.8 90.1 80.6
Celeba 100.0 89.2 96.7 73.1
Fraud 100.0 100.0 87.6 97.5
Http 99.7 99.9 69.1 55.8
Skin 92.0 91.7 57.5 58.5
Mammography 98.6 97.8 69.8 82.1
Smtp 98.7 100.0 88.2 45.5

Mean 98.7 92.9 85.0 83.5
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B DETAILED RESULTS

In this section, we present the full AUC results for 52 datasets with their standard deviations using all methods presented in
this paper.

Table 5: AUC results on 52 datasets from widely used anomaly detection benchmarks for tabular data [Han et al., 2022] and
[Rayana, 2016, Pang et al., 2019].

Method k-NN GOAD HBOS IForest COPOD ECOD ICL NTL DTE-NP Ours
2002 2020 2012 2008 2020 2022 2022 2022 2023

ALOI 51.5±0.2 50.2±0.2 52.3±0.0 50.8±0.4 49.5±0.0 53.1±0.0 54.2±0.8 52.0±0.0 51.2±0.5 60.5±0.3
Annthyroid 71.5±0.7 93.2±0.9 69.1±0.0 91.7±0.2 76.8±0.1 79.0±0.0 80.5 ±1.3 85.2±0.0 92.9±0.3 94.3±0.5
Backdoor 94.6±0.4 89.3±0.5 72.6±0.2 74.8±2.9 79.5±0.3 78.2±0.0 92.2±0.1 93.5±0.1 93.3±1.7 98.8±0.2
Breastw 99.6±2.1 97.7±0.8 99.6±0.6 99.8±1.2 99.8±0.3 99.2±0.0 99.1 ±0.3 96.3±0.3 99.3±0.1 99.3±0.1
Campaign 74.1±0.5 49.0±1.9 80.3±0.1 72.9±0.1 78.2±0.2 76.8±0.0 74.7 ±0.8 76.0±0.0 78.8±0.3 81.3±0.7
Cardio 90.5±5.2 84.6±3.0 81.2±1.2 94.2±1.0 93.0±0.4 93.3±0.0 92.7 ± 0.8 83.2±0.1 91.8±0.6 93.7±0.3
Cardio. 71.8±2.5 49.1±1.0 46.8±0.1 73.8±0.2 66.3±0.1 77.9±0.0 78.0 ±3.2 76.3±0.0 63.8±1.9 75.0±0.6
Celeba 63.1±2.9 28.4±0.8 76.8±1.5 70.5±0.7 75.1±0.9 75.7±0.0 80.3 ±1.5 68.8±0.2 70.4±0.4 71.7±5.7
Census 67.5±0.6 71.6±1.0 65.8±2.5 62.9±0.1 67.5±1.9 66.0±0.0 60.3 ±0.8 53.5±1.6 72.1±0.4 66.4±1.1
Cover 88.0±5.3 76.0±5.3 60.6±0.2 71.3±2.3 86.2±0.1 92.1±0.0 96.2 ±0.6 98.6±0.3 97.7±0.6 99.0±0.2
Donors 100.0±9.8 99.5±0.1 78.7±0.2 91.3±0.2 81.5±0.5 88.8±0.0 99.2 ± 0.8 85.0±0.4 99.3±0.3 95.8±2.8
Fault 58.8±0.9 65.4±1.6 53.0±0.1 57.6±0.4 49.1±0.1 46.5±0.0 78.7 ±0.7 58.0±0.2 58.6±0.7 78.1±0.2
Fraud 93.1±6.4 86.6±0.1 94.5±1.0 93.6±0.3 94.0±0.0 95.0±0.0 95.2 ±0.4 87.5±0.3 95.6±1.1 95.3±0.0
Glass 82.3±2.2 82.1±6.3 80.3±0.5 74.9±1.3 72.5±0.4 70.0±0.0 88.1 ± 5.0 72.5±0.2 89.6±3.5 88.4±1.2
Hepatitis 48.3±6.4 32.4±6.1 78.0±5.0 75.6±2.7 74.9±0.3 74.7±0.0 73.0 ±5.1 54.0±0.7 93.2±3.9 74.2±1.6
Http 99.8±0.0 50.4±0.1 99.7±1.0 99.0±0.1 98.8±0.7 97.9±0.0 99.5 ±0.0 100.0±0.5 100.0±0.0 99.9±0.0
InternetAds 73.7±0.9 66.4±3.0 53.1±3.9 45.6±14.4 65.9±5.5 43.1±0.0 84.1±1.4 76.0±2.7 70.0±2.2 86.0±0.1
Ionosphere 91.7±3.0 96.5±1.1 62.4±0.6 84.6±1.3 77.2±0.3 72.7±0.0 98.1±0.4 97.9±0.6 97.8±1.4 96.4±0.2
Landsat 68.4±0.8 58.6±1.6 73.2±6.3 60.1±0.1 49.3±0.9 36.8±0.0 74.9±0.4 66.5±2.1 68.2±1.8 70.7±0.4
Letter 36.6±2.9 87.6±0.9 35.2±1.1 33.0±4.1 40.9±0.2 56.7±0.0 92.8 ± 0.9 84.8±0.3 34.4±1.0 95.2±0.3
Lympho 99.5±20.5 59.9±14.2 97.9±3.7 99.8±1.0 99.3±3.0 100.0±0.0 99.5 ± 0.3 97.1±2.1 99.9±0.1 99.7±0.1
Magic.gamma 84.3±0.9 77.3±0.2 74.3±0.6 76.8±4.0 68±0.3 63.9±0.0 80.9±0.1 82.0±0.7 83.6±0.8 85.9±0.1
Mammo. 87.2±2.4 54.5±2.3 85.6±0.3 88.4±0.9 90.5±0.1 90.4±0.0 81.1±2.0 82.5±0.2 87.6±0.1 87.9±0.4
Mnist 93.4±0.1 87.7±1.0 74.5±0.1 87.2±1.3 77.7±0.1 73.6±0.0 98.2±0.0 98.0±0.0 94.0±0.4 92.9±0.0
Musk 99.7±2.9 100.0±0.0 96.4±0.0 90.5±0.9 99.7±0.0 95.6±0.0 100.0±0.0 100.0±0.1 100.0±0.0 100.0±0.0
Optdigits 99.5±7.9 93.1±1.9 89.2±3.6 81.5±1.0 69.3±3.2 59.6±0.0 97.5±1.5 84.7±0.1 94.3±1.7 87.0±0.3
PageBlocks 58.1±1.2 90.4±0.4 87.5±0.5 82.1±0.1 80.7±0.1 91.5±0.0 98.4 ±0.2 93.3±0.1 89.3±0.3 94.9±0.2
Pendigits 99.9±4.3 85.1±3.4 93.8±0.0 96.7±0.0 90.7±0.0 92.4±0.0 99.5±0.1 97.1±0.0 99.6±0.2 99.7±0.0
Pima 68.1±2.7 63.2±2.3 70.2±0.2 72.9±0.2 65.6±0.3 60.3±0.0 59.4±0.1 61.7±0.3 81.5±2.6 68.2±0.4
Satellite 82.2±1.1 78.2±0.9 84.5±1.0 77.4±0.6 68.3±0.3 58.2±0.0 80.6±1.7 82.4±0.4 82.1±0.7 83.3±0.2
Satimage-2 99.7±0.1 93.2±1.7 96.9±0.9 99.4±0.7 97.9±0.0 96.6±0.0 99.8±0.1 99.8±0.2 99.7±0.0 99.5±0.1
Shuttle 99.8±0.1 99.9±0.0 98.2±0.2 99.7±0.9 99.5±0.2 99.3±0.0 100.0 ±0.0 99.6±0.2 99.9±0.0 99.5±0.2
Skin 91.5±0.7 54.1±1.6 75.0±0.9 88.4±1.3 53.3±0.3 49.0±0.0 92.9±5.9 90.6±0.5 98.9±0.5 99.8±0.0
Smtp 92.8±2.3 72.2±7.7 84.7±0.2 90.5±1.5 92.0±0.1 88.0±0.0 83.5±2.4 86.7±0.1 93.0±2.9 81.2±4.9
SpamBase 77.0±4.3 79.4±0.8 82.2±0.1 85.6±1.2 72.1±0.1 64.6±0.0 74.3±0.5 44.1±0.0 83.7±0.7 86.1±0.2
Speech 36.9±1.8 54.1±4.4 37.0±1.2 40.1±0.7 37.4±0.8 46.7±0.0 58.9 ±2.7 62.5±0.2 41.4±0.0 52.9±0.1
Stamps 91.4±1.7 72.9±4.4 90.9±0.2 91.1±0.3 91.1±0.0 86.3±0.0 95.0 ±0.9 90.9±0.0 97.9±0.4 92.9±0.3
Thyroid 95.4±13.6 89.2±3.0 98.2±0.5 97.9±0.4 92.8±1.1 97.8±0.0 98.5 ±0.1 98.2±0.6 98.6±0.0 95.4±0.1
Vertebral 12.5±21.5 49.4±4.2 12.8±0.6 16.8±1.0 27.4±2.5 41.3±0.0 51.1±3.2 59.8±5.1 54.3±15.5 58.8±2.1
Vowels 82.6±7.2 97.6±0.5 53.4±0.1 62.2±1.6 52.8±0.0 59.1±0.0 99.7±0.1 98.0±0.0 81.4±1.4 99.0±0.1
Waveform 78.4±0.7 64.5±1.6 68.7±1.4 71.4±0.3 72.3±1.4 60.4±0.0 82.1 ±0.9 79.4±2.8 74.5±0.0 67.6±0.3
WBC 93.3±5.7 86.6±2.9 95.5±0.5 93.9±2.2 95.6±0.3 99.8±0.0 95.4±1.1 92.8±0.3 99.5±0.3 96.3±0.1
WDBC 98.9±0.0 94.8±0.5 94.4±7.0 99.2±1.3 98.6±0.5 97.2±0.0 99.1 ±0.0 99.8±6.2 99.5±0.4 99.7±0.1
Wilt 75.5±2.4 78.4±3.4 34.4±0.5 49.6±1.5 32.1±0.5 40.5±0.0 62.2±3.1 79.3±0.0 62.9±5.6 90.2±0.7
Wine 97.5±2.6 86.3±9.5 29.6±0.1 49.9±0.2 87.8±0.0 74.5±0.0 99.5±0.6 99.7±0.0 99.4±1.0 93.3±0.5
WPBC 50.3±3.7 51.7±0.6 49.2±0.0 49.6±1.0 49.2±0.0 45.9±0.0 52.3±3.4 42.3±0.0 83.2±13.5 52.8±0.2
Yeast 44.5±2.5 53.7±0.8 43.0±5.9 41.6±0.7 38.9±0.5 42.5±0.0 53.0 ±0.4 53.4±0.8 44.6±0.3 48.8±0.2
Abalone 98.9±3.2 54.3±7.8 85.4±1.2 89.8±1.2 92.4±0.9 85.1±0.0 94.3 ±0.6 85.1±1.0 94.7±0.8 93.7±0.7
Arrhythmia 81.8±1.9 64.3±8.8 78.5±0.8 80.8±0.9 77.4±1.4 79.7±0.0 81.7 ±0.6 76.5±0.9 50.0±0.0 78.6±0.2
Ecoli 98.0±8.5 84.7±6.8 42.9±1.6 42.0±4.2 90.7±1.5 76.7±0.0 86.5±1.2 73.1±2.3 88.2±0.0 91.9±1.5
Mulcross 100.0±3.6 51.3±15.8 98.4±0.6 98.4±0.4 73.5±0.0 91.4±0.0 100.0±0.0 90.5±0.0 100.0±0.0 99.9±0.0
Seismic 82.7±18.3 67.9±1.2 64.8±0.5 59.9±0.6 73.8±0.9 67.6±0.0 62.9±1.0 43.9±0.1 50.0±0.0 73.6±0.5

Mean 80.3 73.2 72.7 75.6 74.7 74.0 84.8 80.6 83.2 86.0
Median 85.8 76.7 77.4 79.1 77.0 76.2 90.2 84.8 90.7 92.4
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C DATA PROPERTIES

All datasets used in our paper were collected from widely used benchmarks for anomaly detection with tabular data. Most
datasets were collected by Han et al. [2022] and appear in ADBench: Anomaly Detection Benchmark. This benchmark
includes a collection of datasets previously used by many authors for evaluating anomaly detection methods. We focus on
the 47 classic tabular datasets from [Han et al., 2022] and do not include their newly added vision and NLP datasets. The
datasets that can be downloaded from 1 and were collected from diverse domains, including audio and language processing
(e.g., speech recognition), biomedicine (e.g., disease diagnosis), image processing (e.g., object identification), finance (e.g.,
financial fraud detection), and more. We added five classic tabular datasets used in several recent studies, including [Rayana,
2016, Pang et al., 2019, Shenkar and Wolf, 2022]. The properties of the datasets are diverse, with sample size in the range
80-619,326, the number of features varies between 3-1,555, and the portion of anomalies from 0.03% to 39.91%. The
complete list of datasets with properties appears in Table 6. Datasets from ALOI to Yeast are from [Han et al., 2022], and
datasets from Abalone to Seismic are from [Rayana, 2016].

Table 6: Properties of datasets presented in this paper.

Dataset # of samples # of features Anomalies [%]

ALOI 49534 27 3.04
Annthyroid 7200 6 7.42
Backdoor 95328 193 2.3
Breast 682 9 34.99
Campaign 41188 62 11.3
Cardio 1830 21 9.6
Cardiotocography 2114 21 9.61
Celeba 202598 39 2.2
Census 299284 500 6.2
Cover 286048 10 0.96
Donors 619326 10 1.1
Fault 1940 27 34.67
Fraud 284806 29 0.2
Glass 214 7 4.21
Hepatitis 80 19 16.2
Http 567498 3 0.39
InternetAds 1966 1555 18.72
Ionosphere 350 32 35.9
Landsat 6435 36 20.71
Letter 1600 32 6.25
Lympho 148 18 4.1
Magic.gamma 19020 10 35.16
Mammography 11182 6 2.3
Mnist 7602 100 9.21
Musk 3062 166 3.1
Optdigits 5216 64 2.81
PageBlocks 5392 10 9.46
Pendigits 6870 16 2.2
Pima 768 8 34.9
Satellite 6434 36 31.64
Satimage-2 5802 36 1.22
Shuttle 49096 9 7.1
Skin 245056 3 20.75
Smtp 95156 3 0.03
SpamBase 4207 57 39.91
Speech 3686 400 1.65
Stamps 340 9 9.1
Thyroid 3772 6 2.1
Vertebral 240 6 12.5
Vowels 1456 12 3.43
Waveform 3442 21 2.9
WBC 222 9 4.5
WDBC 366 30 2.72
Wilt 4819 5 5.33
Wine 128 13 7.7
WPBC 198 33 23.74
Yeast 1364 8 34.16
Abalone 4177 8 6
Arrhythmia 452 274 15
Ecoli 1831 21 2.7
Mulcross 262144 4 10
Seismic 2584 11 6.5

1https://github.com/Minqi824/ADBench/tree/main/adbench/datasets/Classical
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D PERFORMANCE ANALYSIS

In this section, we evaluate the relationship between different data properties and the performance of our model. First, we
present scatter plots of the AUC of our model vs. the portion of outliers, number of features, and number of samples in each
data. All these scatter plots are presented in Fig. 8. We further present the rank of our method as the color of each marker
(dataset) in the scatter plot. To analyze these results, we computed correlation values of -0.27, -0.12, and 0.18, indicating the
relation between the AUC and the portion of outliers, the number of features, and the number of samples, respectively. Since
these are considered weak correlations, it is hard to deduce from these values what regime is best or worst for our algorithm.

Datasets on which the proposed approach was ranked 7.5, 8, and 9 include Shuttle, Waveform, and Smtp, respectively. On
Shuttle, we obtain an AUC of 99.5; therefore, we do not consider this to be a performance gap. On Waveform and Smtp, our
algorithm was surpassed by 10-20 %. Since these datasets have a large variance ratio σ2

a/σ
2
n > 1, we suspect a stronger

regularization could improve performance. This is also evident in these datasets’ performance variability demonstrated in
Fig. 5 when varying λ.

Figure 8: Scatter plots comparing the AUC of our model and different properties of the datasets, including % of outliers, #
of features, and # of samples. Each dot represents a dataset, the y-axis represents the AUC, and the color indicates the rank
of our method for the specific dataset.
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