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Abstract

We consider the problem of ranking a set of n
items given a sample of their pairwise preferences.
It is well known from the classical results of sort-
ing literature that without any further assumption,
one requires a sample size of Ω(n log n) with ac-
tive selection of pairs whereas, for a random set
pairwise preferences the bound could be as bad
as Ω(n2). However, what if the learner is exposed
to additional knowledge of the items features and
their pairwise preferences are known to be mod-
elled in terms of their feature similarities – can
these bounds be improved? In particular, we intro-
duce a new probabilistic preference model, called
feature-Bradley-Terry-Luce (f-BTL) for the pur-
pose, and present a new least squares based algo-
rithm, fBTL-LS, which requires a sample complex-
ity much lesser than O(n log n) random pairs to
obtain a ‘good’ ranking. The sample complexity of
our proposed algorithms depends on the degree of
feature correlation of the items that makes use of
tools from classical graph matching theory, shed-
ding light on the true complexity of the problem –
this was not possible before with existing matrix
completion based tools. We also prove tightness of
our results showing a matching information theo-
retic lower bound for the problem. Our theoretical
results are corroborated with extensive experimen-
tal evaluations on varying datasets.

1 INTRODUCTION
Given a set of n items and m pairwise comparisons among
them, the problem of ranking from pairwise preferences is
to recover an underlying ranking among the n items. This
is a well-studied problem in several disciplines including
statistics, operations research, theoretical computer science,
social choice theory, machine learning, decision systems etc
[23, 4, 15, 20, 2], [5, 9, 11, 16], [24, 6, 18, 22, 3, 7, 19, 21,

17]. A typical approach to solve this problem is to assume
that the comparisons are generated in a stochastic fashion
according to a score based pairwise probability model, e.g.
Bradley-Terry-Luce model [4] [15] or the Thurstone model
[23] and develop algorithms [9], [16], [18], [3] that first
estimate the score vector from the given comparisons and
obtain the final ranking by simply sorting their estimated
scores.

However in practice they suffer from several shortcomings:
Firstly, often times side information such as features or re-
lationships among items are available, e.g. to rank a set of
mobile phones, it is natural to use features such as cost, bat-
tery life, size etc., which influence the pairwise preferences
of users in preferring one mobile over other. However, most
algorithms do not take this additional information into ac-
count. Secondly, they fail to handle the case when new items
get added as one cannot find the position of a new item in
an already estimated ranking without collecting at least few
pairwise preferences of it. Finally, the sample complexity of
previous approaches scale as O(n log n) which can proved
to be sub-optimal when item preferences are based on their
feature similarities.

In this work, we introduce the feature-Bradley–Terry–Luce
(f-BTL) model of pairwise comparisons to tackle the prob-
lems listed above. The f-BTL model is a generalization of
the standard BTL model where the probability of preferring
one item over the other explicitly depends on their associ-
ated features such that similar items get similar ranks. We
next propose a least squares-based algorithm fBTL-LS – the
novelty of our approach lies in the sample complexity anal-
ysis (i.e. the number of comparisons needed to achieve a
fixed error) for recovering a ‘near-optimal’ ranking. The
key ingredient used here is a relation graph that we de-
fine on the items based on their features correlation and
apply ideas from classical graph matching theory on the
relation graph. Precisely, our sample complexity bound is of
O(α logα), where on an intuitive level, α denotes the num-
ber of the main (independent) items that influence the pref-
erence structures of the rest of n− α items in the set—This
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shows a significant reduction in the number of comparisons
needed, compared to the earlier known bound O(n log n),
especially when α << n, which often is the case in many
applications. Furthermore, we also give a matching sample
complexity lower bound analyzing the minimal number of
pairwise preferences required, establishing the optimality
of our algorithm. Our experimental evaluation shows the
proposed algorithm significantly outperforms existing algo-
rithms, demonstrating its usefulness on various special types
of relation graphs including union of cliques, disconnected
graphs, trees, stars, cycles, etc. Our contributions are listed
below:

1. We introduce a new probabilistic model, f-BTL, for rank-
ing from pairwise comparisons which explicitly uses fea-
tures associated with items (Sec. 2).

2. We give a novel sample complexity analysis using ideas
from graph matching theory that captures the dependencies
among features explicitly in terms of structural properties
of the graph, unlike previous approaches (Sec. 3).

3. We propose an algorithm, fBTL-LS and provide its sample
complexity guarantees for recovering a ‘good estimate’ of
the score vector under f-BTL (Sec. 4).

4. We finally show our sample complexity guarantee is tight
proving a matching lower bound (Sec. 5).

5. Our experimental results support our theoretical findings
showing the superiority of our algorithm on both synthetic
data and real datasets (Sec. 6).

2 PRELIMINARIES AND SETTING

(a) Relation graph G([n], E)
associated to U (Sec. 2.1)

(b) The bipartite graph CM =
(I(G) ∪M,∆M ) (Thm. 3.1)

Figure 1: Few graphical demonstrations

Notations. We use lowercase boldface letters for vectors,
uppercase boldface letters for matrices, lowercase letters for
scalars and uppercase letters for constants. ∥ · ∥2 denotes
the ℓ2 norm for vectors and spectral norm for matrices.
∥ · ∥F denotes the Frobenius norm for matrices. We denote
the set {1, . . . , n} by [n]. For any matrix A ∈ Rm×n, we
abbreviate Aij = A(i, j).

Bradley-Terry-Luce (BTL) model.([4], [15]) A standard
probabilistic model for pairwise comparisons is the Bradley-
Terry-Luce (BTL) model where the probability of preferring
item i over j is given by: Pij = exp(θi)

exp(θi)+exp(θj)
, θ ∈ Rn

being the ‘score vector’ of the n items.

2.1 PROBLEM SETTING

Let [n] = {1, . . . , n} be the set of items to be ranked, and
their feature vectors are U = {u1, . . . ,un} ⊂ Rd, where
U respects a relation graph G([n], E) as follows:

Feature (U) vs Relation graph (G). We assume the feature
set U of the n items are associated to an underlying relation
graph G([n], E) by a natural assumption: G([n], E) is such
that there exists an independent set of G, say I(G), such
that the set of item features U = {ui}i∈[n] lies in the linear
span of only that of I(G), {ui}i∈I(G). More formally,

ui =
∑

j∈I(G)∩N̄G(i)

Bjiuj ∀i ∈ [n], (1)

where NG(i) = {j ∈ [n] | (i, j) ∈ E} denotes the set of
neighboring nodes of i in G, and N̄G(i) = NG(i) ∪ {i}.
Here B ∈ Rn×α is a coefficient matrix that expresses U
in terms of the bases features {ui}i∈I(G). Note, we also
assume B is such that any α × α submatrix of B is of
rank α, which ensures none of the dependent features can
be represented as a linear combination of the other depen-
dent features, or precisely I(G) is a maximal independent
set of the independent nodes and all the dependent items
[n] \ I(G), can only be represented as a unique linear com-
bination of the independent nodes I(G). Thus we assume
Bij = 0 whenever (i, j) /∈ E, and the subset of vectors in
U corresponding to the items in the independent set I(G)
are linearly independent. Thus d ≥ α, and {ui}i∈I(G) form
a basis for span(U). Hence Bij = 1, if j = i, or else
Bij = 0, ∀j ̸= i, ∀i ∈ [α]. We denote α = |I(G)|; clearly,
it becomes the independent number of G if I(G) corre-
sponds to a maximum independent set. We will henceforth
assume I(G) = [α], w.l.o.g, unless specified otherwise.
(see Fig. 1a for further illustration).

Preference Model. We introduce the feature Bradley–Terry–
Luce model (f-BTL) where the probability of preferring item

i over j is given by: Pij =
e(wTui)

e(wTui) + e(wTuj)
, w ∈ Rd.

Note that the f-BTL model reduces to the standard BTL
model when α = n and U is the standard basis. Clearly
the ‘score vector’ θ ∈ Rn for f-BTL model turns out to be
θi = wTui.

Sampling Model. We assume that a set M of m ∈ [
(
n
2

)
]

pairs is generated where each pair is chosen with some
probability p ∈ [0, 1]. Each pair in M is compared K times
independently according to f-BTL model.

Remark. (1) shows that two items with similar set of neigh-
bours in I(G) are similar in terms their features. This along
with f-BTL model ensures two similar items are also similar
in their scores θi, and hence rankings.
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Problem. Under f-BTL model and given U, for what values
of m and K can one find an estimated score vector θ̂ such
that P

(
∥θ−θ̂∥2

∥θ∥2
≤ ϵ
)
> 1− δ ? Here ϵ > 0 and δ ∈ [0, 1]

are two given problem parameters, which respectively de-
note the allowable error limit and performance confidence.

Performance Error. The error above is measured in terms
of normalized l2 error ∥θ−θ̂∥2

∥θ∥2
, which is a natural perfor-

mance measure for score based probability models (e.g.
BTL, Thurstone etc.) [16, 3]. Moreover, it is actually suit-
able for measuring ranking performances as it upper bounds
the pairwise disagreement error – the weighted Kendall-Tau
loss [16]:

pd(θ, θ̂)=

(
1

n∥θ∥22

∑
i<j

(
θi − θj

)2
1
(
(θi − θj)(θ̂i − θ̂j)<0

))1
2

Thus giving a (ϵ, δ) guarantee for the normalized ℓ2-error
also ensures the same for pd(θ, θ̂). We use both of the losses
in our experiment evaluations (Section 6).

2.2 RELATED WORKS

Ranking from pairwise comparisons has been studied ex-
tensively in various disciplines owning to its huge practi-
cal importance, reviewing all lies beyond the scope of this
work. We review only the works most relevant to our setting.
The most related work is [17], however, they assume the
features to lie in some low dimensional space and use a
matrix completion-based approach to predict the ranking.
Note that the low-rank assumption is a global assumption
on the features that might miss out completely on the ex-
act dependencies on the items. [8] also consider a feature
preference information model, but do not analyze the graph
theoretic aspects of feature dependencies.[9], [3] also use
a least squares-based approach, but without any feature in-
formation. [16, 24, 6, 18, 22] [7], [19], [21] work in the
pairwise ranking setting under different probabilistic mod-
els (including BTL model), but again none of them use
features explicitly and hence are sub-optimal for our set-
ting (as we will see in the experiments). [11] work in a
setting where the probabilities come from some unknown
low-dimensional feature embedding of the items. However,
they require the pairs to be queried actively, whereas our
work focuses on random (passive) selection of pairs. There
is also a rich ranking literature on noisy sorting [5], approx-
imation algorithms [2], dueling bandits [25] etc., which are
fundamentally different from the passive setting under the
BTL model considered here. Table 1 summarizes the sample
complexities of a few related works.

Previous results show that under the standard BTL model,
the Rank Centrality [16] [19], MLE under the BTL model
[22] and the Least Squares [3] algorithms need O(n log n)
comparisons to achieve a small error with probability at least
1−O(poly(1/n)). However, these algorithms do not con-

sider the features explicitly. The Feature Low Rank model
of [17] uses features but requires O(d2 log(n)) pairs to be
compared. Another related work is [12], which proposes an
estimator for the parameters of a generalized linear para-
metric model, which includes classical preference mod-
els like Bradley-Terry and Thurstone. By addressing the
violation of independence, they prove a sample complex-
ity guarantee, showing that with Gaussian-distributed fea-
tures, the estimator converges to a rescaled version of the
model parameters based on the ambient dimension, num-
ber of samples, and comparisons. Their results indicate that
achieving an accuracy ϵ > 0 in model parameters requires
Ω(dn log3 n/ϵ2) comparisons when the number of samples
is Ω(d/ϵ2), which they validate through experiments on
synthetic data. We show our proposed fBTL-LS algorithm
requires only O(α logα) samples.

Ranking Sampling Sample
Model Technique Complexity

Noisy permutation [5] Active O(n log n)

Low d-dimensional embedding [11] Active O(d log2 n)
Deterministic tournament [2] Active O(npoly(log n))

Rank-r preference with ν incoherence [9] Passive O(nνr(log n)2)
Bradley Terry Luce (BTL) [16] Passive O(n log n)

Noisy permutation [24] Passive O(n log n)
Low r-rank pairwise preference [19] Passive O(nr log n)
Low d-rank feature with BTL [17] Passive O(d2 log n)

Rank aggregation balancing features [8] Passive O(n)
f-BTL (α ‘independent items’) [This work] Passive O(α logα)

Table 1: State-of-the-art vs Our work

3 ANALYSIS: KNOWN PREFERENCES
We begin by analyzing the problem for the noiseless case
where for every pair (i, j) that is compared, we have access
to the exact value for Pij . This analysis will shed light into
the structure of the problem which will be useful later to
analyse the case when Pijs are unknown and need to be
estimated from its noisy observations (Section 4). Under
this setting, the goal is to bound the number of samples m
needed to exactly recover the score vector θ where θi =
wTui ∀i ∈ [n]. From Equation 1, we have that wTui =∑
j∈I(G)

Bjiw
Tuj ,

or equivalently, θi =
∑

j∈I(G)

Bjiθj ∀i ∈ [n]. (2)

As we have access to U and B, we only need to recover the
scores of θj = wTuj ∀j ∈ [α] so that the remaining scores
can be computed using Equation 2. For a pair (i, j), under
the f-BTL model, the following holds:

α∑
k=1

γij
k θk =

α∑
k=1

γij
k (wTuk) = log

(
Pij

Pji

)
(3)

where γij
k = Bik − Bjk. Note that, from (1), this clearly

implies γij
k = 0 if k /∈ N(i) ∪ N(j) as both B(i, k) =

B(j, k) = 0 in that case. Eqn. (3) shows that knowing Pij
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for any pair (i, j) gives rise to a linear equation involving
the score vectors corresponding to the items only in I(G).
Since the f-BTL model is invariant to constant shift of the
score vector θ, we can w.l.o.g. assume that one of the item
score to be 0 (with appropriate shift). Thus to recover the
item scores, we only need I(G) − 1 linearly independent
equations of type Eqn. (3) that can be used to solve for the
scores of the items in I(G), i.e {θi}i∈I(G). However, if the
coefficient γij

k is 0 in (3) corresponding to the pair/edge
(i, j), then it does not involve θk. Thus, the equations of
the selected pairs should be such that each item in I(G)
appears in at least one of the equations so that it can be
solved for.

Thus our problem now is to compute the number of pairs
needed to ensure that with high probability each item in
I(G) appears in at least one equation of the form of Equa-
tion 3. To compute this number, we need to explicitly model
the dependencies among features. We do this below and
prove the necessary result using the Hall’s marriage theo-
rem, a classical result from graph matching theory. We state
the theorem below for convenience.

Hall’s Marriage Theorem. [10] Let C = (A∪A′, E) be a
finite bipartite graph and for any S ⊆ A, NC(S) denote the
neighbours of S in A′. Then C admits a matching entirely
covering A if |NC(S)| ≥ |S| ∀S ⊆ A.

The bipartite graph C = (A ∪ A′,∆) for our purpose is
defined as follows: Set A is just the set of items in the
independent set i.e., A = I(G). (Recall I(G) = [α]). Set
A′ consists of

(
n
2

)
nodes, each corresponding to an edge

(i, j). For an edge (i, j), define

Fij = {k ∈ I(G) : γij
k ̸= 0} (4)

Thus Fij is a subset of independent nodes I(G) which are
adjacent to at least either of item i or j (as otherwise γij

k = 0,
as argued above). Hence by observing the preference Pij

of the pair (i, j), we have an equation involving the items
in Fij . We define the edge set ∆ such that an edge from
node k ∈ I(G) to an edge (i, j) is present in the bipartite
graph C iff k ∈ Fij . For any set of edges M ⊆

(
n
2

)
, define

the reduced bipartite graph CM = (I(G) ∪ M,∆M ) by
restricting the A′ to M and defining ∆M correspondingly.
(see Fig. 1b).

Theorem 3.1. Given a set of edges M ⊆
(
n
2

)
, the bipartite

graph CM = (I(G) ∪ M,∆M ) admits a matching that
covers A iff the system of linear equations induced by edges
admits a unique solutions.

Theorem 3.1 gives us a novel way to analyse the num-
ber of pairs needed to obtain enough (linearly indepen-
dent) equations to uniquely solve for the score vector θ.
In particular, we only need to bound the probability that
the Hall’s marriage condition is not met to get a bound
on the number of pairs needed. (This is since when the

condition is met, a matching cover would give I(G) lin-
early independent equations to solve for the base scores
of items in I(G), i.e {θi}i∈I(G)). Before we prove the
result, we need the following definitions for a given set
M . Let Mk denote the neighbours of node k in CM . Let
cI = | ∪k∈I Mk|, dI = | ∩k∈I Mk|, I ⊆ I(G). We now
prove the main result of this section:

Theorem 3.2 (Bound On Error Probability). Given a
relation graph G,feature matrix U, a set of pairs M where
|M | = m generated according to the sampling model above
(where each pair is chosen with probability p), and the exact
preference probabilities Pij ∀(i, j) ∈ M , the probability
that the score vector θ is same as that estimated score vector
θ̂ that is got by solving the equations obtained is bounded
by

P(θ̂ ̸= θ) ≤
min{α(G),dmax(G)+1}∑

q=1

∑
I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)(cI−(q−1)),

dmax(G) being the maximum degree of G.

Proof. (sketch) From Theorem 3.1 we have that one only
fails to recover the true θ if and only if the edge set ∆M of
the bipartite graph CM fails to cover A. Thus:

P(θ ̸= θ̂) = P({A is not covered by CM})
= P({∃S′ ⊆ A s.t. |NCM

(S′)| < |S′|}) (Hall’s Marriage)

Now if we denote the event Fi := {∃S′ ⊆ A s.t. |S′| =
i and S′ is not covered by CM}, ∀i ∈ [α(G)], and recalling
A = [α(G)], one can further show

P(θ ̸= θ̂) = P({∃S′ ⊆ A s.t. |NCM
(S′)| < |S′|})

= P(F1 ∪ F2 ∪ F3 . . . Fα(G)) = P(F1)

+P(F2 ∩ F c
1 ) + . . .+P(Fα(G) ∩ F c

α(G)−1) (5)

Assuming the pairwise node preferences are drawn accord-
ing to the edges sampled from an Erdős-Rényi random graph
G(n, p) and applying Thm. 3.1 on the event Fq ∩ F c

q−1 for
any 1 ≤ q ≤ α(G), we get:

P(Fq ∩ F c
q−1) = P

(
{∃S′ ⊆ A, |S′| = q, S′ is not cover-

ed by CM and ∀S′
1 ⊂ A, |S′

1| < q, S′
1 is covered by CM})

≤
∑

I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−q, (6)

where the last inequality follows from the observation that
for any S′ ⊆ A, |S′| = q if S′ is not covered by CM but
all it subsets S′

1 ⊂ S′ are, then G(n, p) must have sampled
exactly q − 1 edges from ∩i∈S′Mi and none from

(
∪i∈I

Mi \ ∩i∈IMi

)
. Combining (5) in (6):

P(θ ̸= θ̂) ≤ P (F1) + . . .+ P (Fα(G) ∩ F c
α(G)−1)

=

α(G)∑
q=1

∑
I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−(q−1),
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where we assume
(
x
y

)
= 0, if x < y. The result follows

further noting that if dmax(G) < α(G), then for any I ⊆
[α(G)] such that |I| > (dmax + 1), then dI = 0. The
complete proof is given in Appendix A.2.

Remark. The above theorem gives us a way of choosing p
such that the probability of not satisfying the Hall’s condi-
tion (and hence not having enough equations to solve) can
be bounded by a suitable value. As can be seen in the Theo-
rem, the quantities of interest are cI and dI which capture
the dependencies among the feature vectors of the nodes in
the graph.

For several graphs, these quantities are easily computable,
yielding the sample complexity bounds:

Theorem 3.3 (Sample Complexity for Common Graphs).
Under the settings of Theorem 3.2, the sample complexity
bounds for the following graphs are: 1. m = O(n log(nδ ))
for a disconnected graph, star graph, or cycle, 2. m =
O(log( 1δ )) for a clique, 3. m = O(r log( rδ )) for union of r
disconnected cliques.

Proof. (sketch) The results could be obtained by first deriv-
ing the exact expression of P(θ ̸= θ̂) for the specific graphs
and solving for p equating it to δ. The required sample fol-
lows subsequently from the expected number of sampled
edges p

(
n
2

)
. Eg., for r-Disconnected Cliques: Say G has

r ∈ [n] disconnected cliques, G1, G2, . . . Gr, each with
d ∈ [n] edges (i.e. for each k ∈ [r], |E(Gk)| = d), assum-
ing n = rd. Thus in this case α(G) = r. Without loss of
generality let I(G) = {1, 2, . . . r}. Then ∀k ∈ [r], we have
Mk = {(i, j) | (i, j) ∈ E(Gk)} ∪ {(k, j) | j ∈ [n] \ {k}}.
Thus nk =

(
d
2

)
+ (r − 1). Moreover note that ∀I ⊆ [n],

|I| = 2, cI = 2(
(
d
2

)
+ (r − 1))− 1 = d(d− 1) + (r − 2),

dI = 1 and |I| ≥ 3, dI = 0.

Then applying Theorem 3.2 and noting dmax(G) ≤
⌈n
r ⌉ one can get: P(θ ̸= θ̂) ≤ r2(e−p((d2)+r−1)).

Now solving r2(e−p((d2)+r−1)) ≤ δ this implies
p ≥ 1

(d2)+(r−1)
log
(

r2

δ

)
. Thus the expected number

of edges (pairwise preferences) in the random graph
required is atleast p

(
n
2

)
= n(n−1)/2

d(d−1)/2+r−1 log
(

r2

δ

)
≥

n(n−1)r2

n(n−r)+2r2(r−1) log
(

r2

δ

)
≥ r log

(
r2

δ

)
, where the last in-

equality follows assuming r < n√
2

. Moreover setting d = 1

and d = n, we can recover the for disconnected and com-
plete graphs respectively etc. The derivation for all the cases
are in Appendix A.3.

Remark. Theorem 3.3 captures the connection between the
structure of the relation graph G([n], E) (induced by the
features) and the sample complexity for recovering the item
scores θ, under f-BTL model. E.g., if the graph is a clique,
then there is only one independent vector and we need only

O(1) pairwise samples; but for a disconnected graph, star
or cycle where α = O(n), we recover the O(n log n) re-
sult for BTL model [16]. Moreover, there are graphs (e.g.
r-disconnected cliques where α = r) where the sample
complexity scale as O(α log(α) (independent to n). Thus
we get significant improvement in the sample complexity
by exploiting the structure of the features which [17] fails
to achieve. Sample complexities of few other graphs, e.g.
regular graphs and trees are discussed in Appendix A.3.

It is also worth noting that the main structural assumption we
exploited in Theorem 3.3 towards achieving the O(α logα)
sample complexity is the low α-dimensional embedding.
Indeed, for a more general overview of our graph theoretic
problem framework in (1), could assume I(G) to be an
index set of some basis items, where the set {ui ∈ Rα |
i ∈ I(G)} represents a basis of the set of item features
U. Further, to mimic (1), now we assume a corresponding
coefficient matrix B̃ s.t. U = B̃Uα, where Uα represents
the “basis matrix" with vectors in {ui | i ∈ I(G)} stacked
in the columns of Uα. In fact, note we do not need the
knowledge of Uα apriori: As given the true feature matrix
U , we can derive one basis (by Gauss elimination or even
Gram-Schmidt) that spans the feature space set U. This is
precisely what we adapted for our real-data experiments in
Section 6.2.

4 GENERAL CASE: UNKNOWN
PREFERENCES

In this section, we consider the original problem where we
don’t have access to the exact Pij values but only estimates
of it available from the K independent comparisons made.
In this setting, we cannot expect to solve the linear equations
exactly. We propose f-BTL, a least squares based algorithm,
shown in Algorithm 1 to solve for the score vector. Let the
graph induced by the edge set M on the n nodes be called
the comparison graph. The node-edge incidence matrix
Q ∈ Rn×m used in the algorithm is QQT which is the
standard unnormalized Laplacian of the comparison graph
i.e., L = QQT = D−A where D is the diagonal matrix
of degrees and A is the adjacency matrix. Algorithm 1 is
motivated using the fact that when the true probabilities are
known exactly, following holds:

QTBv = y (7)

where ∀(i, j) ∈ M,yij = log
(

Pij

Pji

)
and where v ∈ Rα

such that vi = θi ∀i ∈ [α], y = (yij)(i,j)∈M ∈ Rm. Above

relation simply follows as: yij = log
(

Pij

Pji

)
= log

(
eθi

eθj

)
=

θi−θj , ∀i, j ∈ [n] by the property of f-BTL model (Section
2.1). But since only noisy estimates ŷ are available instead
of true y, we take a least squares approach. The details is
described in Algorithm 1.
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4.1 CONNECTIVITY

The results of [3] show the sample complexity for the least
squares algorithm for standard BTL model depends on how
well connected the comparison graph is. Precisely, this is
measured w.r.t the second Eigenvalue of the Laplacian L
which is 0 if and only if the comparison graph is discon-
nected. Thus when the comparison graph is disconnected,
there is no way to recover the score vector in the standard
BTL case. However, as we will see below, our analysis will
depend on the least eigenvalue of the matrix Q̃Q̃T and not
the Laplacian matrix. The important point to note here is that
even if the comparison graph is disconnected, the fBTL-LS
algorithm may still recover the score vector. This is because
of the fact that the algorithm makes use of the matrix B of
coefficients to relate scores across possibly disconnected
components in the comparison graph.

Algorithm 1 Algorithm: fBTL-LS
Require: G, U, a set M of m pairs each compared K

times.
Compute B from U such that Equation 1 is satisfied for
all ui, i ∈ [n].
Compute the node-edge incidence matrix Q ∈ Rn×m

from M . Let Q̃ = BTQ

Compute P̂ij=

{
fraction of times i beats j ∀(i, j) ∈ M

0 ∀(i, j) /∈ M

Compute ŷ ∈ Rm where ∀(i, j) ∈ M, ŷij = log
(

P̂ij

P̂ji

)
Solve v̂ = argminx∈Rα ∥Q̃Tx− ŷ∥

Set θ̂i =

{
v̂i ∀i ∈ [α]

compute using Equation (2) ∀i /∈ [α]

return score vector θ̂

An example of this is shown in Figure 2. Here n = 3 and
M = {(1, 2), (1, 3), (4, 5)} and m = |M | = 3. The com-
parison graph as can be seen in the figure is disconnected.
The nodes circled in red are assumed to be the independent
set nodes. The exact relation between the feature vectors
of the independent set i.e., {u1,u2} and those not in the
independent set i.e., {u3,u4,u5} are given by the matrix B
shown in the figure. It can be verified for this example that
the matrix BTLB (also shown in the figure) has non zero
eigenvalues though the Laplacian is block diagonal (which
happens iff the comparison graph is disconnected).

Figure 2: A disconnected comparison graph for which the
BTLB has non-zero minimum eigenvalue

Theorem 4.1 (Recovery Guarantee for fBTL-LS Algo-

rithm). Let M be a set of m edges generated as per the
sampling model and let each pair in M be compared K
times independently according to the f-BTL model. Then for
any positive scalar K ≥ 6(1 + e2b)2 log n, with probability
at least 1 − 2m

n3 , the normalized ℓ2-error of Algorithm 1
satisfies

∥θ̂ − θ∥
∥θ∥

≤ 2

a
·

√
λmax(BTB)

λmin(BTB)
·
√

m

α
·
√
λn

λ1
,

λ1 = min{λ > 0 | λ is an eigen value of BTLB}, λn =
λmax(B

TLB). λmin(B
TB) and λmax(B

TB) respectively
denotes the minimum and maximum non-zero eigenvalues of
the positive semi-definite matrix BTB. a, b > 0 denote the
range of the f-BTL parameter such that |θi| ≥ a, ∀i ∈ [α]
and |θi| ≤ b, ∀i ∈ [n].

Proof. (sketch) Let us denote the reduced Laplacian ma-
trix by L̃ = Q̃Q̃T = BTQQTB = BTLB which
is clearly positive semi-definite and has all non-negative
eigenvalues. Let f(x) = ∥Q̃Tx − ŷ∥2, then note that
v̂ = argminx∈Rα f(x) in Algorithm 1 would satisfy the
optimality condition ∇f(v̂) = 0 when

Q̃ŷ = Q̃Q̃T v̂ = L̃v̂, (8)

On the other hand, assuming v ∈ Rα s.t. vi = θi, ∀i ∈ [α]

and y ∈ Rm be such that yij = log

(
Pij

Pji

)
, we have v =

argminx∈Rα ∥Q̃Tx− y∥2 which gives

Q̃y = L̃v. (9)

Above condition holds for any i, j ∈ [n], yij = θi − θj ,
and so y = LTθ = LTBv = Q̃Tv, where the second
equality holds due to (2). Combining (8) and (9) we get
Q̃(y − ŷ) = L̃(v − v̂) from which it can be shown that,
λmin(L̃L̃

T )∥v − v̂∥2 ≤ λmax(Q̃
T Q̃)∥y − ŷ∥2. Noting

λmax(Q̃
T Q̃) = λmax(Q̃Q̃T ) = λn and λmin(L̃L̃

T ) =
(λmin(L̃))

2 = (λminQ̃Q̃T )2 = λ2
1 above further implies:

∥v − v̂∥ ≤ ∥y − ŷ∥
√
λn

λ1
. (10)

Now in order to bound ∥y− ŷ∥ =
√∑

(i,j)∈E(yij − ŷij)2,

we first note: |yij−ŷij | ≤ |(logPij−log P̂ij)|+|(logPji−
log P̂ji)|. Denoting νij = |Pij − P̂ij | and applying Hoeffd-
ing’s Inequality:

P
(
νij ≥ η

)
= P

(
|Pij − P̂ij | ≥ η

)
≤ 2e−2η2K (11)

As |θi| ≤ b,∀i ∈ [n], we have 1
1+e2b

≤ Pij ≤
e2b

1+e2b
,∀i, j ∈ [n]. Also as K ≥ 6(1 + e2b)2 log n, using
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