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Abstract

We present a novel approach to uncertainty quan-
tification in classification tasks based on label-wise
decomposition of uncertainty measures. This label-
wise perspective allows uncertainty to be quanti-
fied at the individual class level, thereby improving
cost-sensitive decision-making and helping under-
stand the sources of uncertainty. Furthermore, it
allows to define total, aleatoric, and epistemic un-
certainty on the basis of non-categorical measures
such as variance, going beyond common entropy-
based measures. In particular, variance-based mea-
sures address some of the limitations associated
with established methods that have recently been
discussed in the literature. We show that our pro-
posed measures adhere to a number of desirable
properties. Through empirical evaluation on a vari-
ety of benchmark data sets – including applications
in the medical domain where accurate uncertainty
quantification is crucial – we establish the effec-
tiveness of label-wise uncertainty quantification.

1 INTRODUCTION

Thanks to methods of unprecedented predictive power, ma-
chine learning (ML) is becoming more and more ingrained
into peoples’ lives. It increasingly supports human decision-
making processes in fields ranging from healthcare [Lam-
brou et al., 2010, Senge et al., 2014, Yang et al., 2009,
Mobiny et al., 2021] and autonomous driving [Michelmore
et al., 2018] to socio-technical systems [Varshney, 2016,
Varshney and Alemzadeh, 2017]. The safety requirements
of such applications trigger an urgent need to report uncer-
tainty alongside model predictions [Hüllermeier and Waege-
man, 2021]. Meaningful uncertainty estimates are indispens-
able for trust in ML-assisted decisions as they signal when
a prediction is not confident enough to be relied upon.
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Figure 1: Label-wise aleatoric and epistemic uncertainties
for MNIST instances.

In order to address predictive uncertainty about a query in-
stance x (e.g., an image like in Fig. 1), it is often crucial to
identify its source. For one, uncertainty can arise through
inherent stochasticity of the data-generating process, omit-
ted variables or measurement errors [Gruber et al., 2023].
As such, aleatoric uncertainty (AU) is a fixed but unknown
quantity. In addition, a lack of knowledge about the best
way to model the data-generating process induces epistemic
uncertainty (EU). Under the assumption that the model class
is correctly specified, collecting enough information will
reduce the EU until it vanishes in the limit of infinite data
[Hüllermeier and Waegeman, 2021]. The attribution of un-
certainty to its sources can inform decisions in various ways.
For instance, it might help practitioners realize that gath-
ering more data will be futile when only AU is present,
or guide sequential learning processes like active learning
[Shelmanov et al., 2021, Nguyen et al., 2022] and Bayesian
optimization [Hoffer et al., 2023, Stanton et al., 2023] by
seeking out promising parts of the search space that can be
explored to reduce EU while avoiding uninformative areas
with high AU.

Quantifying both AU and EU necessitates a meaningful un-
certainty representation. In supervised learning, we consider
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hypotheses in the form of probabilistic classifiers h that map
a query instance x to a probability distribution p = h(x)
on the label space. This prediction provides an estimate
of the ground-truth (conditional) probability p∗(· |x), i.e.,
p(y) estimates the true probability p∗(y |x) of observing
class label y as outcome given x. When predicting a single
class label in a deterministic way, p will be a Dirac measure.
The case of probabilistic classification, which we study in
this work, is more informative in the sense that a (posterior)
probability is associated with all possible class labels, giving
rise to a natural notion of AU around the observed outcome
y. However, such probabilistic expressions are point predic-
tions (in the space of probability distributions) derived from
a single hypothesis h learned on the training data. Since all
other candidates in the hypothesis space are discarded in
the process, p cannot, by design, represent EU [Hüllermeier
and Waegeman, 2021].

Expressing EU requires a further level of uncertainty repre-
sentation. A straightforward approach is to impose a second-
order distribution, effectively assigning a probability (den-
sity) to each candidate first-order distribution p, and equate
the dispersion of this distribution with EU. Both the classi-
cal Bayesian paradigm [Gelman et al., 2013] and evidential
deep learning (EDL) methods [Ulmer et al., 2023] follow
this idea. As an alternative, methods founded on more gen-
eral theories of probability, such as imprecise probabilities
[Walley, 1991, Augustin et al., 2014], have been considered
[Corani et al., 2012, Sale et al., 2023b].

In recent years, probabilistic classification has increasingly
embraced a bi-level distributional approach, with a predom-
inant reliance on Shannon entropy to dissect uncertainty
into its aleatoric and epistemic components [e.g., Kendall
and Gal, 2017, Smith and Gal, 2018, Charpentier et al.,
2022]. In this approach, the entropy of the categorical out-
put distribution over class labels is associated with the total
predictive uncertainty for a query instance x. By a well-
known result from information theory [Cover and Thomas,
1999], this quantity decomposes additively into conditional
entropy (representing AU) and mutual information (repre-
senting EU). While this set of measures may seem concise
and intuitive, Wimmer et al. [2023] recently pointed out
that it does not fulfill certain properties that one would natu-
rally expect to hold. Whereas these methods solely focus on
quantifying uncertainty at a global level, we argue that this
perspective may not suffice for all decision-making scenar-
ios. To address this gap, we propose an approach centered on
label-wise uncertainty quantification. This approach allows
for a more nuanced understanding of uncertainty, enabling
decision-makers to evaluate the uncertainty associated with
individual class predictions.

By adopting a label-wise perspective, our method facili-
tates more informed decision-making, especially in contexts
where the consequences of incorrect predictions—as in med-
ical scenarios—differ between classes.

This perspective on uncertainty quantification not only pre-
serves the global perspective inherent in traditional ap-
proaches, but also enhances it by providing insights at the
class level. Moreover, since a label-wise decomposition of
uncertainty measures effectively amounts to reducing multi-
nomial to binary classification, our approach is no longer
restricted to uncertainty measures for categorical variables,
such as entropy. Instead, it is amenable to a much broader
class of measures, including variance as arguably the most
common statistical measure of dispersion.

Our contributions are as follows:

(1) We propose a label-wise perspective enabling reason-
ing about uncertainty at the individual class level, aid-
ing decision-making especially in scenarios where the
stakes of incorrect predictions vary across classes. To
this end, we leverage entropy- and variance-based mea-
sures for label-wise uncertainty quantification.

(2) We showcase that adopting a label-wise perspective
retains the global perspective at the same time. In this
regard, we demonstrate that the proposed measures sat-
isfy a set of desirable properties, enhancing their theo-
retical appeal. In particular we show that our proposed
variance-based measures overcome the drawbacks of
the entropy-based approach, recently highlighted in the
literature, without sacrificing practical applicability.

(3) Through empirical evaluation, we validate the efficacy
of our approach, demonstrating its competitiveness in
(global) downstream tasks such as prediction with ab-
stention and out-of-distribution detection. Our empiri-
cal findings are substantiated across a range of classical
machine learning benchmarks and verified in the medi-
cal domain, where suitable uncertainty quantification
is indispensable.

Proofs of our theoretical results can be found in Appendix A.
For experimental details and supplementary experiments,
refer to Appendix B and Appendix C, respectively.

2 QUANTIFYING SECOND-ORDER
UNCERTAINTY

In the following, we will be concerned with the supervised
classification scenario. We refer to X as instance space, and
we assume categorical target variables from a finite label
space Y = {y1, . . . , yK}, where K ∈ N≥2. Thus, each
instance x ∈ X is associated with a conditional distribution
on the measurable space (Y, 2Y), such that θk ..= p(yk |x)
is the probability to observe label yk ∈ Y given x ∈ X .
Further, we note that the set of all probability measures
on (Y, 2Y) can be identified with the (K − 1)-simplex
∆K

..=
{
θ = (θ1, . . . , θK) ∈ [0, 1]K | ∥θ∥1 = 1

}
. Conse-

quently, for each θ ∈ ∆K , an associated degree of aleatoric
uncertainty can be calculated.
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To effectively represent epistemic uncertainty, it is necessary
for the learner to express its uncertainty regarding θ. This
can be achieved by a second-order probability distribution
over the first-order distributions θ.

Two popular methods to obtain a second-order (predic-
tive) distribution are Bayesian inference and Evidential
Deep Learning. In both approaches, we arrive at a second-
order predictor h2 : X −→ ∆

(2)
K , where ∆

(2)
K denotes the

set of all probability measures on (∆K , σ(∆K)); we call
Q ∈ ∆

(2)
K a second-order distribution. For the sake of sim-

plicity, we omit the conditioning on the query instance x in
the notation. Hence, given an instance x, the second-order
distribution Q represents our probabilistic knowledge about
θ, i.e., Q(θ) is the probability (density) of θ ∈ ∆K . In
the remainder of this paper, we assume that a second-order
distribution Q is already provided.

Given an uncertainty representation in terms of a second-
order distribution Q ∈ ∆

(2)
K , the subsequent question is how

to suitably quantify total, aleatoric, and epistemic uncer-
tainty. Popular approaches to uncertainty quantification in
the literature [Houlsby et al., 2011, Gal, 2016, Depeweg
et al., 2018, Smith and Gal, 2018, Mobiny et al., 2021] rely
on information-theoretic measures derived from Shannon
entropy [Shannon, 1948]. In the following section, we will
revisit these commonly accepted entropy-based uncertainty
measures and discuss meaningful properties that any uncer-
tainty measure should possess.

2.1 ENTROPY-BASED MEASURES

We begin by revisiting the arguably most common entropy-
based approach in machine learning for quantifying predic-
tive uncertainty represented by a second-order distribution
Q. This approach leverages (Shannon) entropy and its con-
nection to mutual information and conditional entropy to
quantify total, aleatoric, and epistemic uncertainty associ-
ated with Q.

Shannon entropy for a (first-order) probability distribution
θ ∈ ∆K is given by

H(θ) ..= −
K∑

k=1

θk log2 θk . (1)

Now, let Y : Ω −→ Y be a (discrete) random variable, and
denote by θY its corresponding distribution on the measur-
able space (Y, 2Y). Then, we can analogously define the
entropy of the random variable Y by simply replacing θk in
(1) by the respective distribution of Y . Entropy has estab-
lished itself as an accepted uncertainty measure due to both
appealing theoretical properties and the intuitive interpreta-
tion as a measure of uncertainty. In particular, it measures
the uniformity degree of the distribution of a random vari-
able.

Subsequently, following the notation of Wimmer et al.
[2023], we assume that Θ ∼ Q. Therefore, Θ : Ω −→ ∆K

is a random first-order distribution which is distributed ac-
cording to a second-order distribution Q, and consequently
takes values Θ(ω) = θ in the (K − 1)-simplex ∆K .

Given a second-order distribution Q, we can consider its
expectation given by

θ̄ ..= EQ[Θ] =

∫
∆K

θ dQ(θ) , (2)

which yields a probability distribution θ̄ on (Y, 2Y). This
measure corresponds to the distribution of Y when we view
it as generated from first sampling Θ ∼ Q and then Y
according to Θ. Then, it is natural to define the measure of
total uncertainty (TU) as the entropy (1) of θ̄:

TU(Q) ..= H (EQ[Θ]) . (3)

Similarly, aleatoric uncertainty (AU) can be defined in terms
of conditional entropy H(Y |Θ):

AU(Q) ..= EQ[H(Y |Θ)] =

∫
∆K

H(θ) dQ(θ) . (4)

By fixing a first-order distribution θ ∈ ∆K , all EU is es-
sentially removed and only AU remains. However, as θ is
not precisely known, we take the expectation with respect
to the second-order distribution. The measure of epistemic
uncertainty is particularly inspired by the widely known
additive decomposition of entropy into conditional entropy
and mutual information (see also Section 2.4 in Cover and
Thomas [1999]). This is expressed as follows:

H(Y )︸ ︷︷ ︸
entropy

= H(Y |Θ)︸ ︷︷ ︸
conditional entropy

+ I(Y,Θ).︸ ︷︷ ︸
mutual information

(5)

Rearranging (5) for mutual information yields a measure of
epistemic uncertainty

EU(Q) ..= I(Y,Θ) = H(Y )− H(Y |Θ). (6)

While entropy, mutual information, and conditional entropy
provide meaningful interpretations for quantifying uncer-
tainties within first-order predictive distributions, the suit-
ability of these entropy-based measures for second-order
quantification has been challenged by Wimmer et al. [2023].
This criticism was substantiated on the basis of a set of
desirable properties, which will be discussed next.

2.2 DESIRABLE PROPERTIES

In this section we discuss desirable properties that any suit-
able uncertainty measure should fulfill. In the (uncertainty)
literature it is standard practice to establish measures based
on a set of axioms [Pal et al., 1993, Bronevich and Klir,
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2008]. Such an axiomatic approach was also adopted in
the recent machine learning literature [Hüllermeier et al.,
2022, Sale et al., 2023a]. To this end, we revisit the axioms
outlined by Wimmer et al. [2023], while also taking into
account recently proposed properties that further refine the
understanding of what constitutes a suitable measure of
second-order uncertainty [Sale et al., 2023a]. Before dis-
cussing the proposed axioms, we first provide some mathe-
matical preliminaries.

Definition 2.1. Let Θ ∼ Q, Θ′ ∼ Q′ be two random vec-
tors, where Q,Q′ ∈ ∆

(2)
K . Denote by σ(Θ) the σ-algebra

generated by the random vector Θ. Then we call Q′

(i) a mean-preserving spread of Q, iff Θ′ d
= Θ+Z, for

some random vector Z with E[Z |σ(Θ)] = 0 almost
surely (a.s.) and maxk Var(Zk) > 0;

(ii) a spread-preserving location shift of Q, iff Θ′ d
= Θ+z,

where z ̸= 0 is a constant;

(iii) a spread-preserving center-shift of Q, iff it is a spread-
preserving location shift with E[Θ′] = λE[Θ] + (1−
λ)(1/K, . . . , 1/K)⊤ for some λ ∈ (0, 1).

Note that for definitions (ii) and (iii) it should be guaranteed
that the shifted probability measure Q′ remains valid within
its support.

Now, let TU, AU, and EU denote, respectively, measures
∆

(2)
K → R≥0 of total, aleatoric, and epistemic uncertainty

associated with a second-order uncertainty representation
Q ∈ ∆

(2)
K . Wimmer et al. [2023] propose that any uncer-

tainty measure should fulfill (at least) the following set of
axioms:

A0 TU, AU, and EU are non-negative.

A1 EU(Q) = 0, if and only if Q = δθ, where δθ denotes
the Dirac measure on some θ ∈ ∆K .

A2 EU and TU are maximal for Q being the uniform dis-
tribution on ∆K .

A3 If Q′ is a mean-preserving spread of Q, then EU(Q′) ≥
EU(Q) (weak version) or EU(Q′) > EU(Q) (strict
version), the same holds for TU.

A4 If Q′ is a spread-preserving center-shift of Q, then
AU(Q′) ≥ AU(Q) (weak version) or AU(Q′) >
AU(Q) (strict version), the same holds for TU.

A5 If Q′ is a spread-preserving location shift of Q, then
EU(Q′) = EU(Q).

Axiom A0 is an obvious requirement, ensuring that such
measures reflect a degree of uncertainty without implying
the absence of information or negative uncertainty, which
would be conceptually unsound. Axiom A1 addresses the
behavior of EU in the context of Dirac measures, where

a Dirac measure δθ represents a scenario of complete cer-
tainty about θ ∈ ∆K . The vanishing of EU in this context
aligns with the intuitive understanding that epistemic uncer-
tainty should be zero when there is absolute certainty about
the true underlying model. Further, Axiom A2 considers
the condition under which EU and TU attain their maximal
values, specifically when Q is the uniform distribution on
∆K . This reflects situations of maximum uncertainty or ig-
norance, where the lack of knowledge about any specific
outcome θ ∈ ∆K leads to the highest level of uncertainty.
As we will discuss later, this axiom is not without contro-
versy, particularly in the fields of statistics and decision
theory. Axiom A3 encapsulates the idea that spreading a dis-
tribution while preserving its mean should not reduce, and
might increase, the epistemic (and thus, total) uncertainty.
It underscores the notion that increased dispersion (while
maintaining the mean) is associated with higher uncertainty,
a concept that is central in statistics. Conversely, leaving
the dispersion constant but shifting the distribution closer to
the barycenter of the simplex, thereby expressing a belief
about θ that is closer to uniform, should be reflected by an
increase in AU (Axiom A4). Lastly, Axiom A5 asserts that
a spread-preserving location shift, which alters the distribu-
tion’s location without affecting its spread, should leave the
epistemic uncertainty unchanged. This property highlights
the distinct nature of epistemic uncertainty, which is sensi-
tive to the spread of the distribution rather than its location
[Hüllermeier et al., 2022].

Taking into consideration recently proposed criteria for mea-
sures of second-order uncertainty [Sale et al., 2023a], we
expand the existing set of Axioms A0–A5 by introducing
two additional properties. For the set of all mixtures of
second-order Dirac measures on first-order Dirac measures
we write

∆δm =
{
δm ∈ ∆

(2)
K : δm =

∑
y∈Y

λy · δδy ,
∑
y∈Y

λy = 1
}
,

where δδy denotes the second-order Dirac measure on δy ∈
∆K for y ∈ Y . Each element in this set should arguably
have no aleatoric uncertainty, such that we postulate the
following Axiom A6.

A6 AU(δm) = 0 holds for any δm ∈ ∆δm .

Now, let Y1 and Y2 be partitions of Y and Q ∈ ∆
(2)
K ; further

denote by Q| Yi
the corresponding marginalized distribution

for i ∈ {1, 2}.

A7 TUY(Q) ≤ TUY1
(Q| Y1

) + TUY2
(Q| Y2

), and the
same holds for AU and EU.

Axiom A7 guarantees that the total uncertainty of a second-
order distribution is bounded by the sum of total uncertain-
ties of its corresponding marginalizations.
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3 LABEL-WISE UNCERTAINTY
QUANTIFICATION

In this section, we propose to measure uncertainty in a label-
wise manner, and to obtain the overall uncertainty associated
with a prediction by aggregating the uncertainties across the
individual labels. This approach allows us to adopt a label-
wise perspective while retaining the global one.

Let us emphasize again that the label-wise perspective is
particularly useful in settings where decisions following the
prediction of different labels are associated with unequal
costs. For instance, when predicting the sub-type of a cer-
tain medical condition, with costly treatment administered
at occurrence of one of the sub-types, the marginal uncer-
tainty about this category might be of particular interest.
We present some experimental results on medical images in
Section 4.1. The global view, on the other side, is crucial in
scenarios where understanding the overall uncertainty is key
to making informed decisions. For instance, TU serves as an
indicator for the overall reliability of the model for the given
observation. Meanwhile, AU and EU distinguish between
the uncertainty arising from the data’s inherent variability
and that stemming from the model’s knowledge limitations,
respectively.

We denote by Y : Ω −→ {0, 1}K the K-dimensional
random vector indicating the presence or absence of a par-
ticular label yk ∈ Y for k ∈ {1, . . . ,K}. Further, define
Θk := P (Yk = 1) and assume that the random vector
Θ = (Θ1, . . . ,ΘK) is distributed according to a second-
order distribution Q ∈ ∆

(2)
K , i.e., Θ ∼ Q. Moreover, let Qk

be the marginal distribution of the random variable Θk, such
that Θk ∼ Qk, and denote its expectation by θ̄k = E[Θk].

Our general approach to label-wise uncertainty quantifi-
cation adheres to the following template: First, we define
local measures of total, aleatoric, and epistemic uncertainty
per label: TU(Qk), AU(Qk), EU(Qk) for k ∈ {1, . . . ,K}.
One way to define these measures in a meaningful way is
to adopt a loss-based perspective: Consider a learner mak-
ing probabilistic predictions θ̂ for a (binary) outcome Yk,
which are penalized with a loss ϕ(θ̂, Yk). If Yk is distributed
according to θk, then the expected loss is given by

ϕ(θ̂, θk) ..= EYk∼θk ϕ(θ̂, Yk) . (7)

In our case, θk itself is presumably distributed according to
the second-order distribution Qk, so the prediction θ̂ induces
the expected loss

Eθk∼Qk
ϕ(θ̂, θk) = Eθk∼Qk

EYk∼θk ϕ(θ̂, Yk) . (8)

Broadly speaking, the idea is as follows: If the expected loss
(8) can be kept small, by virtue of an appropriate prediction
θ̂, then this signifies a situation of low (total) uncertainty.
Otherwise, if this is not possible, then the uncertainty is high.
More specifically, we suggest the following definitions for
the three types of uncertainty:

• Total uncertainty is the minimum of (8), i.e., the ex-
pected loss of the risk-minimizing prediction θ̂ given
knowledge of the second-order distribution Qk:

TU(Qk) ..= min
θ̂

Eθk∼Qk
ϕ(θ̂, θk) (9)

• Aleatoric uncertainty is the expected loss of the risk-
minimizing prediction θ̂ given knowledge about the
true θk (sampled from Qk).

AU(Qk) ..= Eθk∼Qk
min
θ̂

ϕ(θ̂, θk) (10)

• Epistemic uncertainty is the difference between these
two, i.e., the extra loss that is caused by the lack of
knowledge about the true θk:

EU(Qk) ..= TU(Qk)− AU(Qk) (11)

In particular, total uncertainty reflects an optimistic perspec-
tive inherent in the idea of quantifying uncertainty in terms
of unavoidable loss. To illustrate, let us consider the follow-
ing: Given a second-order distribution Qk, from which a
distribution θk will be sampled, one aims to predict θ̂ and
will then incur the loss ϕ(θ̂, θk). The objective is to mini-
mize the expected loss, hence the minimum in (9). Success
in minimizing this expected loss implies that Qk is "peaked"
or close to a Dirac measure, indicating low uncertainty. Con-
versely, if Qk is widely spread and not very informative,
the uncertainty is high, and even the optimal prediction θ̂
cannot ensure a low loss. This explains the rationale behind
total uncertainty (9).

The additive relationship of the (global) entropy-based mea-
sures has been a subject of debate in the literature [Wimmer
et al., 2023]. In our framework, it can be justified as fol-
lows: As discussed before, TU represents the unavoidable
loss in predicting θk, incorporating an epistemic component
since the true data-generating process θk is unknown and
only characterized by Qk. This epistemic uncertainty would
vanish if θk were known, leaving only aleatoric uncertainty.
With θk known, the best prediction aligns with θ̂ = θk,
resulting in a loss ϕ(θk, θk); for instance, in the case of
log-loss, this equates to Shannon entropy. Therefore, AU is
defined as the expectation with respect to Qk of this residual
loss, as per Equation (10). Consequently, EU is measured by
the difference between TU and AU, indicating the extent (in
expectation) to which the unavoidable loss can be mitigated
by eliminating epistemic uncertainty.

Nevertheless, certain scenarios call for a global perspective
on predictive uncertainty. To obtain corresponding mea-
sures, the most obvious idea is to define total, aleatoric,
and epistemic uncertainty associated with a second-order
distribution Q ∈ ∆

(2)
K by summing over all label-wise un-
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certainties:

TU(Q) :=

K∑
k=1

TU(Qk) (12)

AU(Q) :=

K∑
k=1

AU(Qk) (13)

EU(Q) :=

K∑
k=1

EU(Qk) (14)

As mentioned, one advantage of the label-wise decompo-
sition, which goes hand in hand with a binarization of the
problem (the Yk are binary outcomes), is that it broadens
the scope of measures that can be applied. Our approach as
outlined above is “parameterized” by the loss function ϕ.
Natural candidates for this loss are (strictly) proper scoring
rules [Gneiting and Raftery, 2007], which have the meaning-
ful property that the risk-minimizer θ̂ in (7) coincides with
θk itself; therefore, total and aleatoric uncertainty become,
respectively,

TU(Qk) = ϕ(θ̄k, θ̄k) = ϕ(E[Θk],E[Θk]) (15)

AU(Qk) = Eθk∼Qk
ϕ(θk, θk) (16)

Our construction extends the well-established information-
theoretic decomposition of Shannon entropy into condi-
tional entropy and mutual information, which are the most
widely used measures for uncertainty quantification in ma-
chine learning. Specifically, when the loss function ϕ is the
log-loss, entropy-based measures are recovered as a spe-
cial case. Our generalization allows for the use of losses
other than log-loss, such as variance, thereby broadening
the scope and applicability of our framework. Furthermore,
we demonstrate desirable properties of this generalization.

In the following, we propose two concrete instantiations:
The log-loss ϕ(θ̂, Y ) = −(Y log(θ̂) + (1− Y ) log(1− θ̂)),
which leads to entropy as (total) uncertainty, and the squared-
error loss ϕ(θ̂, Y ) = (θ̂ − Y )2, which leads to variance as
uncertainty measure.

We note that variance is an example of a measure that can be
applied to the binary case but not to the categorical case in
general. However, our label-wise approach addresses this is-
sue, enabling the effective use of variance-based uncertainty
measures for classification purposes.

3.1 ENTROPY-BASED MEASURES

In complete analogy to global entropy-based measures (3),
(4), and (5) we can define the corresponding label-wise
counterparts for all k ∈ {1, . . . ,K}:

• Label-wise total uncertainty (15) is given by H(θ̄k) =
H(E[Θk]).

• Label-wise aleatoric uncertainty (16) is given by ex-
pected conditional entropy E[H(Yk |Θk)].

• Label-wise epistemic uncertainty is given by the ex-
pected KL-divergence E[DKL(Θk || θ̄k)].

The corresponding global measures (12–14) are then given
as follows:

TU(Q) :=

K∑
k=1

H(E[Θk]) (17)

AU(Q) :=

K∑
k=1

E[H(Yk |Θk)] (18)

EU(Q) :=

K∑
k=1

E[DKL(Θk || θ̄k)] (19)

In the following we demonstrate which of the properties
discussed in 2.2 are fulfilled by the entropy-based measures
constructed in a label-wise manner.

Theorem 3.1. Entropy-based measures (17), (18), and (19)
satisfy Axioms A0, A1, A2 (only for TU), A3 (strict version),
A4 (strict version, only for TU), A6, and A7.

3.2 VARIANCE-BASED MEASURES

Here, we leverage the law of total variance: for any random
variable X ∈ L2(Ω,A, P ) and sub-σ-algebra F ⊆ A,

Var(X) = E[E[(X − E[X | F ])2 | F ]︸ ︷︷ ︸
=:Var(X | F)

] + Var(E[X | F ]) .

Then, observing that σ(Θk) ⊆ F for any k ∈ {1, . . . ,K},
we get

Var(Yk) = E[Var(Yk |σ(Θk))] + Var(E[Yk |σ(Θk)])

= E[Θk · (1−Θk)] + Var(Θk) .

This equality suggests an alternative definition of total un-
certainty and its (additive) decomposition into an aleatoric
and an epistemic part:

• Label-wise total uncertainty is given by Var(Yk) and is
obtained as an instantiation of (15) with ϕ the squared-
error loss.

• Label-wise aleatoric uncertainty (16) is captured by
E[Θk · (1−Θk)], reflecting the inherent randomness in
the outcome of each Yk. Just like conditional entropy,
it can be seen as the (expected) “conditional variance”
of Yk and corresponds to the expected squared-error
loss provided the true value of Θk is given.

• Label-wise epistemic uncertainty is quantified by
Var(Θk). Just like mutual information corresponds
to the expected reduction in log-loss achieved by the
knowledge of Θk, Var(Θk) is the expected reduction
of squared-error loss.
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Figure 2: Coronal 2D image from a patient with malignant lesions. Left: CT, middle: PET with segmentation by medical
experts, right: corresponding aleatoric and epistemic uncertainties, ground truth class and predicted class.

Summing over all label-wise uncertainties yields global
measures of total, aleatoric, and epistemic uncertainty:

TU(Q) :=

K∑
k=1

Var(Yk) (20)

AU(Q) :=

K∑
k=1

E[Θk(1−Θk)] (21)

EU(Q) :=

K∑
k=1

Var(Θk) (22)

Finally we demonstrate that variance-based measures (20),
(21), and (22) satisfy a number of desirable properties, dis-
cussed in depth in Section 2.2.

Theorem 3.2. Variance-based measures (20), (21), and (22)
satisfy Axioms A0, A1, A2 (only for TU), A3 (strict version),
A4 (strict version) and A5–A7.

Let us highlight that, while entropy-based measures do not
fulfill property A5 (as previously pointed out by Wimmer
et al. [2023]), this property is now met by the variance-based
measures.

On a further note, let us remark that the idea of using
variance-based uncertainty measures is not completely new.
In particular, a decomposition derived from the law of to-
tal variance has been used in regression problems for quite
some time [Depeweg et al., 2018]. Moreover, Duan et al.
[2024] introduce variance-based uncertainty measures for
classification, yet they motivate this from the EDL paradigm
and do not discuss any theoretical properties.

4 EXPERIMENTS

In this experimental section, our aim is twofold. Firstly,
we empirically illustrate the practical efficacy of the label-
wise uncertainty quantification approach, as motivated in the

preceding sections. This is achieved through experiments
conducted on medical data sets, where uncertainty quantifi-
cation is deemed particularly critical. Our results not only
reinforce the theoretical underpinnings discussed earlier but
also highlight the importance of reliable uncertainty quan-
tification in high-stakes medical applications.

Secondly, additional experiments on common benchmark
data sets are designed to illustrate that adopting a label-
wise perspective does not come at the expense of a global
viewpoint. Due to the fundamental lack of a ground truth in
studying uncertainty (as opposed to predictive performance
where ground-truth labels are usually available), it is chal-
lenging to assess the quality of the uncertainty estimates.

As such, we study the (global) effectiveness of the proposed
measures in two different tasks: prediction with abstention
and out-of-distribution (OoD) detection.

Details on model architecture and training setup as well
as additional experiments can be found in Appendix B
and Appendix C, respectively. The code is available in
a public repository (https://github.com/YSale/
label-uq).

4.1 LABEL-WISE UNCERTAINTIES

For the evaluation in the medical domain, we use a data
set of Positron Emission Tomography/Computed Tomogra-
phy (PET/CT) images which comprises 501 full-body scans
from patients with malignant lymphoma, melanoma, and
lung cancer, as well as 513 scans from individuals with-
out malignant lesions (negative controls) [Gatidis et al.,
2022]. Each scan is annotated with a tumor segmentation
performed by a medical expert. We extract from each 3D
CT and PET volume multiple 2D images which are used
to train a deep neural network ensemble and evaluate the
label-wise uncertainty quantification.

Figure 2 depicts a qualitative example of a 2D PET/CT
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image from the data set with the corresponding label-wise
uncertainties from our evaluation. We observe low aleatoric
uncertainty and negligible epistemic uncertainty for the
melanoma class. This implies that the approximation of
the aleatoric uncertainty is reliable. On the contrary, the
classes lung cancer and lymphoma are associated with high
aleatoric and high epistemic uncertainty, suggesting that the
prediction with respect to these classes may not be accurate.
This observation is plausible from a medical perspective
as we observe multiple tumors in the image which are not
limited to the lung area and thus might indicate a different
tumor class as well. In this instance, we could request a med-
ical expert to annotate additional data for the classes lung
cancer and lymphoma, thereby diminishing the epistemic
uncertainty associated with these classes. Here, a global
measure of uncertainty would only give epistemic uncer-
tainty with respect to all classes, meaning a doctor would
have to annotate data for all classes.

Having a more detailed understanding of the label-wise
uncertainties is crucial for the decision-making in medical
applications supporting a given diagnosis. Moreover, it al-
locates resources to the relevant classes and saves valuable
examination time and costs.

In Appendix C.1, we provide further examples of images
with the highest total, aleatoric, and epistemic uncertainty.

4.2 ACCURACY-REJECTION CURVES

We generate Accuracy-Rejection Curves (ARCs) by reject-
ing the predictions for instances on which the predictor
is most uncertain and computing the accuracy on the re-
maining subset [Hühn and Hüllermeier, 2009]. Given a
good uncertainty quantification method, the accuracy should
monotonically increase with the percentage of rejected in-
stances, because the model misclassifies instances with low
uncertainty less often than instances with high uncertainty.

To approximate the second-order distribution, we train an
ensemble of five neural networks on the CIFAR10 data set
[Krizhevsky et al., 2009]. We compare the proposed label-
wise entropy- and variance-based uncertainty measures to
the entropy-based baseline (cf. Section 2.1) as used in the
Bayesian setting. Figure 3 shows the ARCs for the CIFAR10
data set. The accuracies are reported as the mean over five
independent runs and the standard deviation is depicted by
the shaded area.

The ARCs for all uncertainty measures closely align with
the entropy-based baseline and exhibit similar qualitative
behaviors. This highlights the effectiveness of the global
measure derived from the local (label-wise) measures.

In this regard, let us note that our goal is not to demonstrate
that label-wise constructed measures always perform better
than their entropy equivalents. Instead, we show that they
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Figure 3: Accuracy-rejection curves generated on the CI-
FAR10 data set. We compare entropy (TUent), label-wise
constructed entropy (TUlent), and the variance-based (TUvar)
measure of total uncertainty.

fulfill many desirable properties and are highly competi-
tive in downstream task applications. In particular, this is a
very relevant use-case in medical scenarios as it implies that
a high classification accuracy can be reached by rejecting
a portion of the data. In practice, this could mean that a
machine learning algorithm, supplying predictions for un-
ambiguous cases, can work in tandem with a medical expert,
examining images deemed too difficult for machine-based
prediction, to achieve high accuracy overall.

Further experiments using medical and machine learning
data sets can be found in Appendix C.

4.3 OUT-OF-DISTRIBUTION DETECTION

Another way to assess and compare measures of uncertainty
is to conduct out-of-distribution detection experiments. We
train a model on an in-distribution (iD) data set, and com-
pute uncertainty values on instances of the iD test set. Sub-
sequently, the model is exposed to data from an OoD data
set, and we similarly assess the uncertainty for these new
instances. The model, which has not previously encountered
the OoD data, is expected to exhibit increased epistemic
uncertainty for these instances. The ability to distinguish
between iD and OoD data is an important requirement for a
reliable machine learning model, because accurate predic-
tions cannot be guaranteed on OoD data.

Our approach involves training an ensemble of five neural
networks on the FashionMNIST [Xiao et al., 2017] data
set (iD), using MNIST [LeCun et al., 1998] and KMNIST
[Clanuwat et al., 2018] as our chosen OoD data sets. To
determine the effectiveness in distinguishing between iD
and OoD instances using total uncertainty, we calculate
the AUROC and compute its mean and standard deviation
across five independent runs. Similarly, we conduct OoD
experiments for CIFAR10 (iD) with SVHN [Netzer et al.,
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Table 1: OoD detection performance. AUROC and standard
deviation over five runs are reported. EUent denotes mutual
information, EUvar the variance-based measure, and EUlent
label-wise entropy. Best performance is in bold.

FashionMNIST CIFAR10

Methods MNIST KMNIST SVHN CIFAR10.2

EUvar .882 ± 0.18 .959 ± .005 .761 ± .022 .999 ± .001
EUlent .894 ± .017 .967 ± .004 .745 ± .027 1.00 ± .001
EUent .895 ± .017 .969 ± .004 .760 ± .026 .998 ± .002

2011] and CIFAR10.2 [Lu et al., 2020] as OoD data sets.

Table 1 shows the results for the networks trained on Fash-
ionMNIST or CIFAR10. Overall, the compared measures
perform well. In particular, the label-wise measures and the
entropy-based measures yield similar results, emphasizing
again that using the label-wise measures in a global way
does not sacrifice performance.

5 CONCLUDING REMARKS

We introduced a novel approach to quantifying uncertainty
in classification tasks, adopting a label-wise perspective that
allows for reasoning about uncertainty at the level of indi-
vidual classes. This can be beneficial for decision-making
in situations where incorrect predictions have unequal con-
sequences for different classes, and for deciding about the
right course of action to reduce uncertainty. Addressing criti-
cisms in the recent literature and problems of the commonly
used information-theoretic (entropy-based) measures, we
showed that our measures satisfy many desirable properties.
We also presented empirical results highlighting the prac-
tical usefulness of these measures. Overall, we trust that
this work is a step towards a more interpretable representa-
tion of uncertainty that will be beneficial for safety-critical
applications.

Our approach to decomposing uncertainty in a label-wise
manner is in direct correspondence with the one-vs-rest de-
composition of a multinomial into several binary classifica-
tion problems. An interesting idea for future work, therefore,
is the use of other decomposition techniques. In any case,
thanks to the binarization, our approach is amenable to a
very broad class of uncertainty measures. Specifically, we
presented a framework that is parameterized by a loss func-
tion (proper scoring rule) ϕ. As another direction of future
work, we plan to elaborate more deeply on the appropri-
ate choice of this loss, and the effect it has on uncertainty
quantification.
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A PROOFS

Proposition A.1. Let Q′ ∈ ∆
(2)
K be a mean-preserving spread of Q ∈ ∆

(2)
K , i.e., let Θ ∼ Q, and Θ′ ∼ Q′ be two random

vectors such that we have Θ′ d
= Θ+Z, for some random vector Z with E[Z |σ(Θ)] = 0 almost surely.

Now, define

EU(Q) = EQ[DKL(Θ ∥ θ̄)], (23)

where DKL(Θ ∥ θ̄) denotes the Kullback-Leibler (KL) divergence of Θ from its mean θ̄. Then the claim is that EU(Q′) >
EU(Q).

Proof. First, note that DKL(Θ ∥ θ̄) is a convex function of Θ since θ̄ ∈ ∆K is a constant. Given that Θ′ d
= Θ + Z and

E[Z |σ(Θ)] = 0 almost surely, it follows that EQ′ [Θ′ | σ(Θ)] = Θ.
Jensen’s inequality states that for a strict convex function f and a non-constant random vector Y , we have E[f(Y )] >
f(E[Y ]). Then Jensen’s inequality implies:

EQ′ [DKL(Θ
′∥θ̄) |σ(Θ)] > DKL(EQ′ [Θ′ |σ(Θ)] ∥ θ̄)︸ ︷︷ ︸

=DKL(Θ ∥ θ̄)

a.s.

By this we get

EQ′ [DKL(Θ
′ ∥ θ̄)] = EQ[EQ′ [DKL(Θ

′ ∥ θ̄) |σ(Θ)]] > EQ[DKL(Θ ∥ θ̄)], (24)

by the law of total expectation. This concludes the proof.
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Proof of Theorem 3.1. We prove that the entropy-based uncertainty measures (17), (18), and (19) satisfy Axioms A0, A1,
A2 (only for TU), A3 (strict version), A4 (strict version, only for TU), A6, and A7 of Section 2.2.

A0: This property holds true since entropy H(·) and KL-divergence DKL(· || ·) are non-negative.

A1: Let Q = δθ ∈ ∆
(2)
K be a Dirac measure on θ ∈ ∆K . Since DKL(θk || θ̄k)] = 0 if and only if θk = θ̄k and consequently

EQk
[DKL(Θk || θ̄k)] = 0 for all k ∈ {1, . . . ,K} the claim holds true.

A2: First we show that the function U(θ) =
∑K

k=1 H(θk) is strictly concave on ∆K with unique maximizer β =
(1/K, . . . , 1/K). We observe that

∇2U(θ) =


−
[
log(2)
θ1

+ log(2)
1−θ1

]
0 · · · 0

0 −
[
log(2)
θ2

+ log(2)
1−θ2

]
· · · 0

...
...

. . .
...

0 0 · · · −
[
log(2)
θK

+ log(2)
1−θK

]


is negative definite. To find the maximizer, we consider the Lagrangian dual:

max
θ∈∆k,λ

U∗(θ, λ) = max
θ∈∆k,λ

U(θ) + λ

(
K∑

k=1

θk − 1

)
.

The first-order conditions are

∂U∗(θ, λ)

∂θk
= log2(θk)− log2(1− θk) + λ = 0, k ∈ {1, ...,K} and

K∑
k=1

θk = 1,

which are solved by θ = (1/K, . . . , 1/K) and λ = log2
K−1
K − log2

1
K . This implies that TU is maximized for

Q ∈ ∆
(2)
K such that E[Θk] = 1/K for all k ∈ {1, . . . ,K}. The latter holds true for Q being the uniform distribution

on ∆
(2)
K .

Thus, for any Q ∈ ∆
(2)
K satisfying E[Θk] = 1/K for all k ∈ {1, . . . ,K} we obtain

TU(Q) = log2(K) + (K − 1) log2(K/(K − 1)).

It is easy to show that the maximum of EU aligns with that of TU. Assume, for the sake of argument, that EU is
maximal for QUnif being the uniform distribution on ∆

(2)
K . Since TU decomposes additively in AU and EU, it follows

that AU(QUnif) = 0. However, given that AU(Qunif) > 0, this leads to a contradiction, demonstrating that EU cannot
be maximal for QUnif .

A3: Let Q′ ∈ ∆
(2)
K be a mean-preserving spread of Q ∈ ∆

(2)
K , i.e., let Θ ∼ Q,Θ′ ∼ Q′ be two random vectors such

that Θ′ d
= Θ+Z, for some random vector Z with E[Z |σ(Θ)] = 0 almost surely. Applying Proposition A.1 yields

EQ′
k
[DKL(Θ

′
k ∥ θ̄k)] > EQk

[DKL(Θk ∥ θ̄k)] for all k ∈ {1, . . . ,K} and with that EU(Q′) > EU(Q).

Since we have by definition TU(Q′) =
∑K

k=1 H(EQ′
k
[Θ′

k]), and EQ′
k
[Θ′

k] = EQk
[Θk] for all k ∈ {1, . . . ,K} by the

mean-preserving spread assumption, TU(Q′) = TU(Q) follows.

A4: Let Q′ be a spread-preserving center shift of Q such that E[Θ′] = λE[Θ] + (1 − λ)(1/K, . . . , 1/K)⊤ for some
λ ∈ (0, 1). Because also Θ′ = Θ+ z with z ̸= 0, this implies E[Θ] ̸= (1/K, . . . , 1/K)⊤. From the proof of A2 we
know that (1/K, . . . , 1/K) maximizes

∑K
k=1 H(θk) and concavity of H(·) implies TU(Q′) > TU(Q).

A6: Let δm ∈ ∆δm , such that we have

AU(δm) =

K∑
k=1

E[H(Yk |Θk)]

=

K∑
k=1

∑
yk∈{0,1}

H(δyk
)λyk

(δyk
)

= 0,

where the last equation holds true, since H(δyk
) = 0 for all yk ∈ {0, 1} and k ∈ {1, . . . ,K}.
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A7: Let Q ∈ ∆
(2)
K and denote by Q| Y1

and Q| Y2
the corresponding marginalized distribution, where Y1 and Y2 are

partitions of Y . It holds

TUY(Q) =
∑
k∈Y

H(EQk
[Θk]) =

∑
k∈Y1

H(EQk
[Θk]) +

∑
k∈Y2

H(EQk
[Θk])

= TUY1
(Q| Y1

) + TUY2
(Q| Y2

),

similarly the same holds for AU. Due to the additive decomposition the claim is also true for EU.

This concludes the proof.

Proof of Theorem 3.2. We prove that variance-based uncertainty measures (20), (21), and (22) satisfy Axioms A0, A1, A2
(only for TU), A3 (strict version), A4 (strict version) and A5–A7 of Section 2.2.

A0: This property holds trivially true.

A1: Let Q = δθ ∈ ∆
(2)
K be a Dirac measure on θ ∈ ∆K . Then EU[δθ] = 0 holds trivially true, since VarQk

[Θk] = 0 for all
k ∈ {1, . . . ,K}. The other direction follows similarly.

A2: First we show that the function V (θ) =
∑K

k=1 θk(1 − θk) is strictly concave on ∆K with unique maximizer
β = (1/K, . . . , 1/K). It holds

∇2V (θ) = −2diag(1, . . . , 1),

which is negative definite. To find the maximizer, we consider the Lagrangian dual:

max
θ∈∆K ,λ

V ∗(θ, λ) = max
θ∈∆K ,λ

V (θ) + λ

( K∑
k=1

θk − 1

)
.

The first-order conditions are

∂V ∗(θ, λ)

∂θk
= 1− 2θk + λ = 0, k ∈ {1, . . . ,K} and

K∑
k=1

θk = 1,

which are solved by θ = β and λ = −(K − 2)/K. This implies that TU is maximized for any Q ∈ ∆
(2)
K such that

E[Θk] = 1/K for all k ∈ {1, . . . ,K}. The latter holds true for Q being the uniform distribution on ∆
(2)
K .

The proof that EU is not maximal for QUnif being the uniform distribution on ∆
(2)
K is completely analogous to the

proof of A3 in Theorem 3.1.

A3: Let Q′ ∈ ∆
(2)
K be a mean-preserving spread of Q ∈ ∆

(2)
K , i.e., let Θ ∼ Q,Θ′ ∼ Q′ be two random vectors such that

Θ′ d
= Θ+Z, for some random vector Z with E[Z |σ(Θ)] = 0 almost surely. Then, we have the following:

EU(Q′) =

K∑
k=1

Var(Θk + Zk) (25)

=

K∑
k=1

Var(Θk) + Var(Zk) + 2Cov(Θk, Zk) (26)

= EU(Q) +

K∑
k=1

Var(Zk) (27)

> EU(Q) (28)

Note that the equality (27) holds true, since we know that Cov(Θk, Zk) = 0. To see this, observe that we have
E[ΘkZk] = E[E[ΘkZk |σ(Θk)]] = 0 due to the mean-preserving spread assumption. Similarly, we know that
E[Zk] = 0, such that we have Cov(Θk, Zk) = E[ΘkZk] − E[Θk]E[Zk] = 0. The inequality (28) is strict since by
assumption maxk Var(Zk) > 0.
Since we have E[Θ] = E[Θ′] by assumption, the weak version of A3 holds for TU.
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A4: Let Q′ be a spread-preserving location shift of Q such that E[Θ′] = λE[Θ] + (1 − λ)(1/K, . . . , 1/K)⊤ for some
λ ∈ (0, 1). From the proof of A2 we know that β = (1/K, . . . , 1/K) maximizes

∑K
k=1 θk(1 − θk), which in turn

immediately implies TU(Q′) > TU(Q). The inequality for AU is then implied by EU(Q′) = EU(Q) (Axiom A5).

A5: Let Θ ∼ Q, and (Θ+ z) ∼ Q′, where z ̸= 0 is a constant. Then, we observe

EU(Q′) =

K∑
k=1

Var(Θk + zk)

=

K∑
k=1

E[((Θk + zk)− E[Θk + zk])
2]

=

K∑
k=1

E[(Θk − E[Θk])
2]

= EU(Q).

A6: With δm ∈ ∆δm we have

AU(δm) =

K∑
k=1

E[Θk(1−Θk)]

=

K∑
k=1

λk(1− 1) + (1− λk)(0− 0)

= 0.

A7: Let Q ∈ ∆
(2)
K and further denote by Q| Y1

and Q| Y2
the corresponding marginalized distribution, where Y1 and Y2

are partitions of Y . It holds

TUY(Q) =
∑
k∈Y

Var(Yk) =
∑
k∈Y1

Var(Yk) +
∑
k∈Y2

Var(Yk)

= TUY1
(Q| Y1

) + TUY2
(Q| Y2

),

similarly the same holds for AU. Due to the additive decomposition the claim is also true for EU.

This concludes the proof.
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B EXPERIMENTAL DETAILS

In this section, we provide a detailed overview of the experimental setup to allow reproduction of the results.

The experimental code is written in Python 3.9 using the PyTorch [Paszke et al., 2019] library.

B.1 EXPERIMENTS ON ML DATA SETS

Data sets. For all data sets, we use the respective dedicated train-test splits. We only use pre-processing for the CIFAR10
data set. Each image is normalized using the mean and standard deviation per channel of the training set. Additionally, the
training images are cropped randomly (while adding 4 pixels of padding on every border and randomly flipped horizontally).

Ensembles. The ensembles are built using two base models: a Convolutional Neural Network (CNN) and a ResNet18
[He et al., 2016]. The CNN has two convolutional layers followed by two fully connect layers. The convolutional layers
have 32 and 64 filters of 5 by 5 and the fully connected layers have 512 and 10 neurons, respectively. The layers have ReLU
activations and the last layer uses a softmax function to output probabilities. The ResNet18 model has a fully connected
last layer of 10 units and a softmax function to generate probabilities for 10 classes. The output of the ensemble is generated
by averaging over the outputs of the individual ensemble members.

Accuracy-Rejection Curves

We train 5 CNNs on FMNIST, MNIST and KMNIST and 5 ResNets on CIFAR10 and SVHN. We use Adam [Kingma
and Ba, 2015] with the default hyper-parameters to train the CNNs in 10 epochs for MNIST and 20 epochs for FMNIST and
KMNIST using a batch size of 256. We train the ResNets using stochastic gradient descent with weight decay set to 10−4,
momentum at 0.9, and a learning rate of 0.1, setting the learning rate to 0.001 at epoch 20 and to 0.0001 at epoch 25. The
models are trained for 30 epochs in total. The ARCs are then generated using the test set.

Out-of-Distribution Detection

We train 5 CNNs on FashionMNIST and 5 ResNets on CIFAR10, using the same setup as for the ARCs. Epistemic
uncertainty is computed on the test sets of the corresponding data sets without applying any data augmentation.

B.2 EXPERIMENTS ON MEDICAL IMAGES

Data set. We use a publicly available PET/CT image data set [Gatidis et al., 2022] with respective dedicated train-test splits.
During the preprocessing, we extract 2D images as coronal slices from the 3D PET and CT image volumes. Furthermore,
each image is resized to 400× 400 pixels, normalized using the mean and standard deviation per channel of the training set
and stacked into a three channel image consisting of a PET, CT, and fusion channel. The final data set consists of 96000 2D
images coming from 1014 patients.

Ensembles. The ensembles are built using a ResNet50 [He et al., 2016]. The ResNet50 model has a fully connected
last layer of 4 units and a softmax function to generate probabilities for 4 classes. The output of the ensemble is generated
by averaging over the outputs of the individual ensemble members. We use Adam [Kingma and Ba, 2015] to train each
model with a cross entropy loss for 40 epochs with a learning rate of 0.001 and a batch size of 50. All models are evaluated
on a separate test set.

Accuracy-Rejection Curves

We train 5 ResNets on the PET/CT image data set. We use Adam [Kingma and Ba, 2015] to train each model with a cross
entropy loss for 40 epochs with a learning rate of 0.001 and a batch size of 50. The ARCs are then generated using the test
set.
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C ADDITIONAL RESULTS

In this section, we report on experiments that we perform in addition to the ones presented in the main paper.

C.1 LABEL-WISE UNCERTAINTIES

Figure 4 presents additional medical images with the highest total, aleatoric, and epistemic uncertainties. Similarly, Figure 5
showcases images with the highest total, aleatoric, and epistemic uncertainties for the MNIST data set.
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Figure 4: Medical image examples with highest total (top), aleatoric (middle) and epistemic uncertainties (bottom) along
with their corresponding label-wise uncertainties, ground truth class and predicted class.
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Figure 5: MNIST instances with highest total (top), aleatoric (middle), and epistemic uncertainties (bottom) along with their
corresponding label-wise uncertainties.
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C.2 ACCURACY-REJECTION CURVES

We train an ensemble of 5 neural networks on the data sets using the setup outlined in Section B. Figure 6 shows the
accuracy-rejection curves for the medical data and the FMNIST data set. The accuracies are reported as the mean over five
runs and the standard deviation is depicted by the shaded area.
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(a) PET/CT (TU)
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(b) FMNIST (TU)
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(c) PET/CT (AU)
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(d) FMNIST (AU)
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(e) PET/CT (EU)
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Figure 6: Accuracy-rejection curves on PET/CT (left) and FMNIST (right).

We observe results consistent with those presented in the main paper. The label-wise measures exhibit behavior very similar
to the usual entropy measures, with most measures increasing monotonically.
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C.3 HOLDOUT EXPERIMENTS

Experimental Details

Data sets. We perform experiments on CIFAR10 and FMNIST data sets with corresponding train-test splits. We only use
pre-processing for the CIFAR10 data set. Each image is normalized using the mean and standard deviation per channel of
the training set. Additionally, the training images are cropped randomly (while adding 4 pixels of padding on every border
and randomly flipped horizontally).

Ensemble. The ensembles are built using two base models: a Convolutional Neural Network (CNN) and a ResNet18 [He
et al., 2016]. The CNN has two convolutional layers followed by two fully connect layers. The convolutional layers have
32 and 64 filters of 5 by 5 and the fully connected layers have 512 and 10 neurons, respectively. The layers have ReLU
activations and the last layer uses a softmax function to output probabilities. The ResNet18 model has a fully connected
last layer of 10 units and a softmax function to generate probabilities for 10 classes. The output of the ensemble is generated
by averaging over the outputs of the individual ensemble members.

Experiments. For the CIFAR10 data set, we train the ensemble for 20 epochs on a small subset of the train data (10% of
the initial train data, the other 90% is reserved as holdout). To prevent class imbalance, we remove instances with the highest
EU class (EU per class is computed by first calculating the label-wise EU for all instances using the variance-based EU
measure, and then averaging over instances from the same class) from the train data, and add the same amount of holdout
data (from the class, which was identified after the initial 20 epochs training as highest EU class). Although the amount of
data for each class remains the same across epochs, the learner is progressively exposed to a broader range of examples from
the class with highest EU. In other words, the approach effectively increases the total number of observations the learner
encounters from that class over time without leading to class imbalance. This step is repeated for 20 epochs of continued
learning to ensure the model is trained on a diverse set of examples. Finally, we compare the epistemic uncertainty (of both
the class with highest EU and the average of all other classes) before and after giving the learner access to more data from
the class with highest EU. We follow the same procedure for the FMNIST dataset (see executed configurations).

Executed configurations:

(i) For the CIFAR10 data set:

– The experiment was run with 20 epochs of initial training and 20 epochs of continued training.
– A hold-out rate of 90% was applied, indicating that a large portion of the data was initially withheld.
– The experiment was repeated for 5 runs.

(ii) For the FMNIST data set:

– The experiment was run with 5 epochs of initial training and 5 epochs of continued training.
– A hold-out rate of 99.5% was used, indicating that a large portion of the data was initially withheld.
– The experiment was repeated for 5 runs.

Experimental Results

In Table 2 we present both the absolute and relative changes in the EU values for each dataset. Additionally, we include the
changes in EU for other classes, with the average being reported. For comparison purposes, we also provide the absolute and
relative changes in EU for the class experiencing the second-largest reduction in the EU values ("Next highest drop").

FMNIST CIFAR10

Max. EU class Other classes Next highest drop Max. EU class Other classes Next highest drop

Absolute 0.0070 ± 0.0006 0.0018 ± 0.0000 0.0029 ± 0.0000 0.0057 ± 0.0011 0.0023 ± 0.0000 0.0031 ± 0.0000
Relative 0.7934 ± 0.0616 0.3872 ± 0.0000 0.5619 ± 0.0000 0.5815 ± 0.0304 0.3682 ± 0.0000 0.4630 ± 0.0000

Table 2: Absolute and relative changes in EU.
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(a) CIFAR10 data set.

(b) FMNIST data set.

Figure 7: ECDF of class with maximal EU (left) and ECDF of other classes (right).

Figure 7 shows the empirical cumulative distribution function (ECDF), averaged over 5 runs of the experiment for the EU
values that we observe. On the left we see the ECDF for the class that we identified as having the "highest EU" after the
initial training, and on the right the averaged ECDF of the "other classes".

Conclusion. We conclude that providing the learner with more data from the highest EU class decreases EU for this class
the most. While EU for other classes will not remain necessarily constant, it is also important to note that EU is also not
increasing for other classes.
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