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Abstract

By relaxing conditions for “natural” structure learn-
ing algorithms, a family of constraint-based algo-
rithms containing all exact structure learning algo-
rithms under the faithfulness assumption, we de-
fine localised natural structure learning algorithms
(LoNS). We also provide a set of necessary and
sufficient assumptions for consistency of LoNS,
which can be thought of as a strict relaxation of the
restricted faithfulness assumption. We provide a
practical LoNS algorithm that runs in exponential
time, which is then compared with related exist-
ing structure learning algorithms, namely PC/SGS
and the relatively recent Sparsest Permutation al-
gorithm. Simulation studies are also provided.

1 INTRODUCTION

Inferring causal relationships has always been of great in-
terest in different fields, with some frameworks like poten-
tial outcomes and graphs gaining prominence amongst the
causality community. A main goal of graph-based causal
inference is causal discovery; given data, we would like to
uncover the underlying causal structure in the form of a true
causal graph, on which conventional graph-based causal
inference techniques hinge. We will mostly be concerned
with the setting of observational data only, such as when
interventional data in the form of randomised control trials
are unavailable, from which the true causal graph is recov-
erable up to its graphical separations. Current causal dis-
covery approaches can generally be categorised into score-
based approaches [Chickering, 2002] and constraint-based
approaches [Spirtes et al., 2000]. Here, we will mostly be
concerned with the latter.

Assumptions are needed for constraint-based approaches,
otherwise many causal structures representing the same data
may be obtained, resulting in vacuous causal statements.

Amongst these, the most common and widely known is
the faithfulness assumption, where every conditional in-
dependence in the data generating distribution is exactly
represented by the true causal graph [Zhang and Spirtes,
2008]; most constraint-based learning approaches such as
PC and SGS provably return the true causal graph up to its
graphical separations. However in practice and theory, the
condition can be too strong at times [Uhler et al., 2013].

Efforts to relax the faithfulness assumption include the
Sparsest Permutation (SP) algorithm by Raskutti and Uhler
[2018], which provably returns the graphical separations
of the true causal graph under strictly weaker assumption
than faithfulness, at the expense of factorial run time by
permuting the causal variables. Greedy approaches to speed
up the SP algorithm [Solus et al., 2021, Lam et al., 2022]
have been proposed, however these algorithms only return
the true causal graph under strictly stronger conditions than
SP.

Addressing this, Sadeghi and Soo [2022] proposed the class
of “natural” structure learning algorithms, which under the
faithfulness assumption, encompasses constraint-based ap-
proaches such as SGS/PC algorithms. In addition, natural
structure learning algorithms are also proven to return the
true causal graph up to graphical separations under well de-
fined assumptions that are shown to be strictly weaker than
faithfulness. Thus, the objective of this paper is as follows:
1.) To further weaken the consistency conditions by defining
a localised version of natural structure learning algorithms.
2.) To provide a practical algorithm of this type that works
under these conditions.

The structure of the paper will be as follows: Section 2 cov-
ers the relevant background, Section 3 covers the theory and
practical algorithm and Section 4 compares the algorithm
with related existing algorithms, PC and SP. All proofs will
be deferred to the supplementary material.

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:3345–3355.

mailto:<kai.teh.21@ucl.ac.uk>?Subject=Relaxation and construction of localised natural causal learning algorithms


2 BACKGROUND

2.1 GRAPHS

We first introduce the relevant concepts in graphical models,
as well as some existing results in literature. In this work,
unless noted otherwise, graphs will be implicitly assumed
to be a directed acyclic graph (DAG) that is a graph over
the set of nodes V = {1, ..., n}, with directed edges such
that there does not exist a sequence of directed edges from a
node to itself. We denote anG(C) as the set of nodes i ̸∈ C
such that there exists a sequence of directed edges from i to
some j ∈ C in G.

We denote A ⊥G B |C as graphical separation in graph G
between A,B given C, where A,B,C ⊆ V are disjoint; in
the case of DAGs, this can be understood as d-separation.
A set of random variables X = (X1, ..., Xn) with joint
distribution P is associated to the set of nodes V . We de-
note A⊥⊥ B |C as conditional independence of (Xi)i∈A and
(Xj)j∈B given (Xk)k∈C . We relate the two notions together
using Markov property:

Definition 1 (Markov property). A distribution P is Marko-
vian to G if A ⊥G B |C ⇒ A⊥⊥ B |C for all disjoint
A,B,C ⊆ V .

If we have the reverse implication as well, then we have
faithfulness:

Definition 2 (Faithfulness). A distribution P is faithful to G
if A ⊥G B |C ⇐⇒ A⊥⊥ B |C for all disjoint A,B,C ⊆
V .

Sadeghi [2017] has shown that P being faithful to DAG G
implies that P satisfies ordered upward stability and ordered
downward stability wrt G, defined in the case of DAGs, as
follows:

Definition 3.

1. (Ordered upward stability (OUS)). P satisfies or-
dered upward stability wrt G if for all i, j, k and
C ⊆ V \{i, j, k}, such that k ∈ anG(i, j), we have
i⊥⊥ j |C ⇒ i⊥⊥ j |C ∪ {k}.

2. (Ordered downward stability (ODS)). P satisfies or-
dered downward stability wrt G if for all i, j, k and
C ⊆ V \{i, j, k}, such that k ̸∈ anG(i, j, C), we have
i⊥⊥ j |C ∪ {k} ⇒ i⊥⊥ j |C.

If P is faithful to G, then from P we can recover the true
causal graph G up to its Markov equivalence class (MEC),
defined as the set of all graphs that imply the same graphical
separations.

Denote sk(G) to be the skeleton of graph G, formed by
removing all arrowheads from edges in G. A v-configuration

is a set of nodes i, k, j such that i and j are connected to
k, but i and j are not connected, and will be represented as
i ∼ k ∼ j. A v-configuration oriented as i −→ k ←− j is a
collider, otherwise the v-configuration is a non-collider.

Remark 1. Some authors allow nodes i and j of collider
i −→ k ←− j to be adjacent, but we do not. If i is not adjacent
to j, then i −→ k ←− j is sometimes called an unshielded
collider, but will simply be referred to as a collider here.

To relate sk(G) with distribution P , we define sk(P ) as
follows:

Definition 4 (sk(P )). Given a distribution P , the skeleton
sk(P ) is the undirected graph with node set V , such that for
all i, j ∈ V , the node i is adjacent to j if and only if there
does not exist any C ⊂ V \{i, j} such that i⊥⊥ j |C.

Note that sk(P ) is the output of the skeleton building step
of SGS/PC algorithm under faithfulness.

Definition 5 (Adjacency faithfulness). A distribution P is
adjacency faithful wrt graph G, if for all i, j ∈ V , we have:
i adjacent to j in G⇒ i ̸⊥⊥ j |C for all C ⊆ V \{i, j}.

Note that if P is adjacency faithful wrt G, then sk(P ) =
sk(G).

2.2 NATURAL STRUCTURE LEARNING
ALGORITHMS

Let P be Markovian to the true causal graph G0, then a
causal learning algorithm aims to recover the graph G0, up
to the MEC, in which case we say that the algorithm is
consistent. To relax the faithfulness assumption, Sadeghi
and Soo [2022] introduced natural structure learning algo-
rithms.

Definition 6 (Natural structure learning algorithm). An al-
gorithm that takes distribution P as input and outputs DAG
G(P ) is natural if:

1. sk(G(P )) = sk(P ).

2. P satisfies OUS and ODS wrt G(P ).

The following conditions on P and the true causal DAG
G0 ensure the consistency of natural structure learning al-
gorithms:

Definition 7 (V-stability). P is V-stable if for all v-
configurations i ∼ k ∼ j in sk(P ), and C ⊆ V \{i, j, k},
the independencies i⊥⊥ j |C and i⊥⊥ j |C ∪{k} cannot both
hold.

Remark 2. This is a definition on P itself, and is implied by
the well-known singleton transitive axiom, under adjacency
faithfulness.

3346



Proposition 1 (Theorems 14 and 25 of Sadeghi and Soo
[2022]). The graphs G(P ) and G0 are Markov equivalent
if the following holds:

1. P satisfies adjacency faithfulness wrt G0.

2. P satisfies ordered upward and downward stabilities
wrt G0.

3. P is V-stable.

Remark 3. In Sadeghi and Soo [2022], Condition 1 above
is given in terms of converse pairwise Markovian instead
of adjacency faithfulness, this is due to attempts in char-
acterising the consistency conditions in terms of structural
equation models (SEM). However, only the weaker adja-
cency faithfulness is needed and here we are focused on
relaxing conditions.

By Example 21 in Sadeghi and Soo [2022], it can be seen
that combined, these conditions are strictly weaker than
restricted faithfulness, which is the weakest known consis-
tency condition for SGS/PC [Raskutti and Uhler, 2018].

Under the faithfulness assumption, constraint-based struc-
ture learning algorithms are natural. However, it is unclear
whether these algorithms are still natural structure learning
algorithms once the faithfulness assumption is relax, and no
concrete algorithm is provided in Sadeghi and Soo [2022].
Thus, without assuming faithfulness, we aim to provide a
general concrete natural structure learning algorithm that
relaxes the consistency conditions in Proposition 1.

As usual in constraint-based causal learning, we assume the
availability of a conditional independence oracle—given a
probability distribution P , we can determine with certainty
whether conditional independence statements are true. In
practice, conditional independence statements need to be
estimated from the data using methods such as HSIC testing
[Gretton et al., 2007], and is shown to be in general, a hard
problem [Shah and Peters, 2020].

3 THEORY AND METHODS

Here, we present our relaxation of the theory of natural
structure learning algorithms and the practical algorithm.

3.1 THEORY

Definition 8 (V-OUS and collider-stability). A distribution
P is V-OUS and collider-stable wrt DAG G if for all v-
configuration i ∼ k ∼ j in G:

1. (V-Ordered upward stability (V-OUS)). If i ∼ k ∼ j is
a non-collider, then for all C ⊆ V \{i, j, k}, we have
i⊥⊥ j |C ⇒ i⊥⊥ j |C ∪ {k}.

2. (Collider-stability). If i −→ k ←− j, then there exists
C ′ ⊆ V \{i, j, k} such that i⊥⊥ j |C ′.

Collider-stability is related to orientation faithfulness, which
states that the graph is faithful up to v-configurations in the
graph [Ramsey et al., 2006]. However collider-stability is
much weaker, even than the Markovian assumption.

Proposition 2 (Collider-stable is very weak). If P is Marko-
vian to G, then P is collider-stable wrt G.

V-OUS and collider-stability can be seen as local versions
of ordered stabilities for the purposes of learning DAGs. In
the case of DAGs, V-OUS can be seen as a relaxation of
OUS since the implication i⊥⊥ j |C ⇒ i⊥⊥ j |C ∪ {k} in
Definition 8 only has to hold for i, j, k that are non-colliders
in G. Likewise, collider-stable is implied by ODS and can
be seen as a relaxation.

Definition 9 (Localised Natural Structure learning (LoNS)
algorithm). An algorithm that takes input distribution P ,
and outputs G(P ) is localised natural if:

1. sk(P ) = sk(G(P )).

2. P is V-OUS and collider-stable wrt G(P ).

Note that the above is the same with natural structure learn-
ing algorithms, just that one of the requirements is relaxed,
namely Condition 2 in Definition 9. Thus, just like natu-
ral structure learning algorithms, all constraint-based algo-
rithms that work under faithfulness are localised natural.

To characterise all DAGs that could be the output of a LoNS
algorithm, we introduce the following orientation rule:

Definition 10 (V-OUS and collider-stable orientation rule
wrt P ). A V-OUS and collider-stable orientation rule wrt P
is defined as an assignment of v-configurations i ∼ k ∼ j
in sk(P ) into colliders and non-colliders as follows:

1. If i⊥⊥ j |C and i̸⊥⊥ j |C ∪ {k} for some C ⊆
V \{i, j, k}, then assign i ∼ k ∼ j to be a collider.

2. If for all C such that i⊥⊥ j |C, we have k ∈ C, then
assign i ∼ k ∼ j to be a non-collider.

A DAG G is said to satisfy the V-OUS and collider-stable
orientation rule wrt P , if G satisfies:

1. sk(P ) = sk(G).

2. For all v-configurations i ∼ k ∼ j in G, via the orien-
tation rule in Definition 10,

if i ∼ k ∼ j is assigned to be a collider or
non-collider, then i ∼ k ∼ j is a collider or
non-collider, respectively in G.

We have the following characterisation:

Proposition 3 (Characterisation). The DAG G satisfies the
V-OUS and collider-stable orientation rule wrt P , if and
only if P satisfies:
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1. sk(P ) = sk(G).

2. P is V-OUS and collider-stable wrt G.

We can now apply the V-OUS and collider-stable orientation
rule wrt P to assign the v-configurations in sk(P ). Note that
the assignment may be incomplete, in the sense that some
v-configurations may not satisfy either of the conditions
in Definition 10 and are therefore unassigned. Modified
V-stability is then defined as when this ambiguity can be
resolved using the constraint that the graph is a DAG, as
illustrated in Figure 1.

Definition 11 (Modified V-stability). A distribution P is
modified V-stable, if the v-configurations of DAGs that sat-
isfy the V-OUS and collider-stable orientation rule wrt P is
unique.

Figure 1: Different assigned sk(P ). Label N , C,U denotes
the v-configuration that is assigned to be a non-collider,
collider and unassigned, respectively. In a), the unassigned
v-configuration 4 ∼ 3 ∼ 2 is constrained to be a collider
due to acylicity of a DAG. In b), from lack of bidirectedness
in a DAG, unassigned v-configuration 1 ∼ 2 ∼ 3 is con-
strained to be a non-collider. In c), since there exists DAGs
such that v-configuration 2 ∼ 3 ∼ 4 can be either a collider
or a non-collider, this ambiguity cannot be resolved.
P is modified V-stable if, after orienting sk(P ) via the V-
OUS and collider-stable orientation rule wrt P , the unas-
signed v-configurations in sk(P ) can be resolved using
DAG constraints, as in a) and b).

Under V-stability, all v-configurations in sk(P ) must sat-
isfy either of the conditions in Definition 10, leaving no
v-configurations in sk(P ) unassigned. Thus, V-stability im-
plies modified V-stability.

Remark 4. Combined with Proposition 3, we have the
following equivalent notion of modified V-stability: all DAGs
G to which P satisfies:

1. sk(P ) = sk(G).

2. P is V-OUS and collider-stable wrt G.

are Markov equivalent.

We have the following, for the true causal graph G0:

Theorem 1 (Sufficient and necessary consistency conditions
for LoNS). LoNS algorithms are consistent if and only if:

1. P satisfies adjacency faithfulness wrt G0.

2. P is V-OUS and collider-stable wrt G0.

3. P is modified V-stable.

The following example shows that even when combined
with P being adjacency faithful and V-OUS and collider-
stable wrt G0, V-stability of P need not be implied:

Example 1. Let G0 be 1 −→ 2 −→ 3 ←− 4, and P induces
all the conditional independence implied from the Markov
property wrt G0 in addition to 1⊥⊥ 3.

The v-configuration 2 ∼ 3 ∼ 4 in sk(P ) satisfies 2⊥⊥ 4 and
2̸⊥⊥ 4 | 3, then after 2 ∼ 3 ∼ 4 is assigned as a collider,
this constraints 1 ∼ 2 ∼ 3 to be a non-collider. Thus P is
modified V-stable. Adjacency faithfulness is obvious.

Since we have 1⊥⊥ 3 and 1⊥⊥ 3 | 2, we have that P is not
V-stable, but V-OUS holds since 1⊥⊥ 3 | {2, 4}.

Thus the conditions in Theorem 1 is strictly weaker than
those in Proposition 1, which is already weaker than re-
stricted faithfulness, and we will see in Section 4 that these
conditions are different to the sufficient and necessary con-
ditions of SP.

3.1.1 Realising and Interpreting the V-OUS Condition

V-OUS is implied by faithfulness. Here, without assuming
faithfulness, we discuss cases in which the V-OUS property
can still arise, and provide basic interpretations.

Proposition 4 (Conditional exchangability and composition
imply V-OUS). Let P satisfy:

1. (Composition property). For all disjoint i, j, k, C,
the following holds: i⊥⊥ j |C & i⊥⊥ k |C ⇒
i⊥⊥ {j, k} |C.

2. (Conditional exchangability). For all non-collider v-
configuration i ∼ k ∼ j in G0, the marginal distri-
bution of P on {i, j, k} conditioned on V \{i, j, k} is
exchangable.

Then P satisfies V-OUS wrt G0.

The composition property allows the deduction of joint in-
dependence from pairwise independence, and is satisfied
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by some common distributions such as Gaussians. The ex-
changability assumption is commonly made when nodes
are indistinguishable from one another, such as in Bayesian
theory.

The V-OUS assumption can be interpreted as a prevention
of Simpson’s paradox on non-collider v-configuration i ∼
k ∼ j, since all conditional independencies of i and j are
preserved when conditioning on k.

3.2 CONSTRUCTION OF A LONS ALGORITHM

Having described the LoNS algorithms, we provide a
pseudocode of such an algorithm:

Algorithm 1 Modified V-stable Localised Natural Structure
Learning (Me-LoNS)
Input: Probability distribution P
Output: DAG G(P )

1: Construct sk(P ).
2: Apply the V-OUS and collider-stable orientation rule

wrt P to assign v-configurations in sk(P ).
3: Solve for a DAG G(P ) having skeleton sk(P ) and sat-

isfy the assignment of v-configurations. If no solution
exists, return error.

4: return G(P ).

Remark 5. Generally, Me-LoNS differs from PC [Spirtes
et al., 2000] only in determining whether v-configurations
in sk(P ) is a collider.

Since we have to check conditional independence statements
of all subsets, the algorithm have exponential time complex-
ity which is comparable to the skeleton building step of PC,
and is a big improvement compared to the factorial running
time of SP.

Since the running time of greedy versions of SP based on
depth-first search [Solus et al., 2021, Lam et al., 2022] are
generally dependent on the depth parameter, it is not obvious
whether the running time of Me-LoNS is an improvement.

Note that Me-LoNS outputs a DAG, and since in the ob-
servational causal learning setting we are interested in the
corresponding MEC, we can always convert the DAG into
CP-DAG which is a graphical object uniquely representing
a MEC, for example via the dag2cpdag function in the
causal-learn Python package [Zheng et al., 2024].

Proposition 5 (Me-LoNS is a LoNS algorithm). Me-LoNS
is a LoNS algorithm if and only if there exists a DAG G to
which P satisfies the following:

1. sk(P ) = sk(G).

2. P is V-OUS and collider-stable wrt G.

The consistency conditions of Me-LoNS is then given in
Theorem 1. Note that modified V-stability of input distribu-
tion P ensures that the output of Me-LoNS is unique up to
MEC.

Remark 6. The orientation rule of Me-LoNS is similar to
conservative PC (CPC) [Ramsey et al., 2006] in the sense
that:

1. Both assign non-colliders similarly.

2. Both allow for ambiguous or unassigned v-
configurations.

3. Both have a criterion when the consistency condition
relating distribution P and true causal graph G0 is
violated; if Me-LoNS errors, there is no DAG that sat-
isfies the conditions in Proposition 5 (by applying the
characterisation in Proposition 3).

However, Me-LoNS relaxes the restricted-faithfulness condi-
tion of CPC by orienting colliders differently.

4 SIMULATION AND THEORETICAL
COMPARISONS

We will compare the consistency conditions of Me-LoNS
to some existing constraint-based causal learning algo-
rithms both theoretically and via simulations using the
causal-learn package [Zheng et al., 2024] in Python.
Me-LoNS is implemented via the following steps:

1. Use the same skeleton discovery function as PC.

2. Make a new orientation function based on the new
orientation rule.

3. Use the scipy.optimize package to solve the
DAG search problem.

We will be using mixed linear integer programming with a
constant objective to solve Step 3 of Me-LoNS. In addition
to the layered network (LN) formulation from Manzour et al.
[2021], we introduce additional constraints from Step 2 of
Me-LoNS as follows:

zik = zjk = 1 ∀i ∼ k ∼ j ∈ C
zik + zjk ≤ 1 ∀i ∼ k ∼ j ∈ N

where zij = 1 if i −→ j, and zij = 0 if i ←− j, and C,N
the set of v-configurations in sk(P ) that are assigned to be
colliders and non-colliders respectively by the V-OUS and
collider-stable orientation rule wrt P in Step 2 of Me-LoNS.

Within each comparison, we will simulate data from the
same structural equation model (SEM), with correspond-
ing causal graph G0 to obtain a total of 1,000,000 samples.
These samples are then subdivided into 100 test units of
10,000 samples each. From these 100 tests, we compare
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the percentage of tests the algorithms return the consis-
tent output (output is Markov equivalent to G0). Whenever
conditional independence testing is needed, the fisherz
conditional independence test from the package is used
throughout with a significance of 0.05. To test for Markov
equivalence of the true causal graph G0 and the output graph
of the algorithm, the mec_check function is used.

Remark 7. Although Me-LoNS is deterministic, due to
conditional independence testing being used in simulations,
the simulation output is non-deterministic. The simulations
aim to investigate how well the theoretical results (stated
purely in conditional independencies) hold up under the
randomness of conditional independence testing.

4.1 COMPARISON TO THE PC ALGORITHM

Me-LoNS strictly generalises PC, as in the following:

Proposition 6 (Me-LoNS strictly generalises PC). If P is
V-stable, then the outputs of both PC and Me-LoNS are
Markov equivalent. Furthermore, there exist distribution P
and true causal graph G0, such that Me-LoNS is consistent
but not PC.

Remark 8. In general, PC outputs a representative of a
MEC (CP-DAG). Proposition 6 states that under V-stability,
Me-LoNS returns a DAG that is of the MEC represented
by the CP-DAG output of PC regardless of violations of
consistency conditions.

ϵi
i.i.d.∼ N(0, 1), i = 1, 2, 3, 4

X1 = ϵ1

X2 = ϵ2

X3 = −6X1 + 2X2 + ϵ3

X4 = 3X1 + 4X2 + ϵ4 (1)

G0

X3

X1

X4

X2

Figure 2: SEM 1 corresponds to the DAG G0.

Table 1: Percentage of simulations from SEM 1 that the
algorithm returns a consistent output.

PC Me-LoNS

8% 90%

To illustrate Proposition 6, we compare Me-LoNS with the
PC algorithm from the package using the definiteMaxP
orientation rule which orients only definite colliders and
definite non-colliders (thus in this setting, PC coincides
with CPC). The input distribution P will be induced by
SEM 1, having all the conditional independencies implied
by the Markovian property wrt G0 in Figure 2, in addition
to X1 ⊥⊥ X2 | {X3, X4}.

PC fails to identify the colliders in Figure 2, due to violation
of orientation faithfulness. This is reflected in Table 1.

4.2 COMPARISON TO SPARSEST PERMUTATION
(SP) ALGORITHM

The Sparsest Markov Representation (SMR) assumption is
the sufficient and necessary consistency condition for SP
[Raskutti and Uhler, 2018], and it is strictly different to the
consistency conditions of Me-LoNS in Theorem 1, as the
following example shows:

Example 2 (Me-LoNS and SP are different/incomparable).
(SMR, but not conditions in Theorem 1). Consider the exam-
ple from Raskutti and Uhler [2018]. Let G0 be the following:

X1

X2

X3

X4

and P implies the conditional independencies X1 ⊥⊥ X3 |X2

and X2 ⊥⊥ X4 | {X1, X3} and X1 ⊥⊥ X2 |X4. It can be seen
that SMR holds, but adjacency faithfulness is violated.

(Conditions in Theorem 1, but not SMR). Consider the graph
G0 in Figure 3, with P implying the conditional independen-
cies X2 ⊥⊥ X3 and X1 ⊥⊥ X3 and X2 ⊥⊥ X3 | {X1, X4}. Here,
adjacency faithfulness holds. V-OUS holds since there are
no non-colliders to check in G0, and modified V-stability of
P also holds since V-stability of P holds.

P is Markovian to both G0 and G′ where G′ differs from G0

by flipping the edge X2 −→ X4. G0 and G′ are both sparsest
Markovian graphs to P , but are not Markov equivalent, thus
SMR does not hold.

Note that this counter-example hinges on the fact that
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singleton transitivity of P does not hold otherwise we would
have X2 ⊥⊥ X4 |X1 or X3 ⊥⊥ X4 ⊥⊥ X1, violating adjacency
faithfulness, thus P cannot be Gaussian.

ϵi, ϕj
i.i.d.∼ Bern( 12 ), i = 1, . . . , 4, j = 1, . . . , 5

X1 = (ϕ1, ϕ2, ϵ1)

X2 = (X1
1 , ϕ3, ϵ2)

X3 = (ϕ4, ϕ5, ϵ3)

X4 = (X1
1 +X1

3 , X
1
2 +X2

3 , X
2
2 , ϵ4) (2)

Here the + in the structural assignment of X4 in SEM 2
denotes regular addition, and Xj

i denotes the j-th entry from
the left of Xi.

G0

X2

X1

X4

X3

Figure 3: SEM 2 corresponds to the DAG G0.

Remark 9. In the supplementary material, X1 ⊥⊥ X3 |X2

and X2 ⊥⊥ X3 |X1 are not needed for the example, and is
merely a byproduct from the construction of SEM 2.

Since greedy versions of the SP algorithm have stronger
consistency conditions, Example 2 shows that Me-LoNS
is a viable alternative to all greedy variants of SP since
Me-LoNS works under different conditions.

To illustrate the incomparability of Me-LoNS and SP from
Example 2, we compare Me-LoNS to the implementation
of SP in the package, greedy relaxation of sparsest permu-
tation (GRaSP) Lam et al. [2022]. The input distribution
P will be induced by SEM 2, having all the conditional
independencies in Example 2 in addition to X2 ⊥⊥ X3 |X1

and X1 ⊥⊥ X3 |X2.

Remark 10. GRaSP cannot differentiate the direction of
edge X2 −→ X4 in Figure 3, thus it returns a consistent
output about half the time, as shown in Table 2. In the case
of G0 being comprised of n disconnected components, with
each component being the G0 in Figure 3, GRaSP will then
return a consistent output about 1

2n of the time.

Table 2: Percentage of simulations from SEM 2 that the
algorithm returns a consistent output.

GRaSP Me-LoNS

56% 94%

5 CONCLUSION AND FUTURE WORK

The contributions of this paper can be summarised in Figure
4:

The proposed Me-LoNS algorithm has the following desir-
able properties:

1. It is a strict generalisation the PC algorithm, and is
consistent under strictly different conditions than SP.

2. It has exponential run time which is comparable to the
skeleton building step of SGS.

Hence, Me-LoNS provides another option for an algorithm
that is consistent strictly beyond faithfulness, but runs in
exponential time which is better than the factorial running
time of SP algorithm [Raskutti and Uhler, 2018]. Although
there exist speed-ups of the SP algorithm, such as ones
based on greedy search like GRaSP used in the Section 4,
these algorithms are faster at the cost of stronger consistency
conditions [Solus et al., 2021, Lam et al., 2022].

Note that the work done is focused on DAGs, it may be
possible to extend the work done to ancestral graphs, which
represents causal systems with latent variables, since the
notion of ordered upward and downward stabilities are well
defined for anterial graphs in general [Sadeghi, 2017].
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A PROOFS

We will use the following well known results:

Proposition 7 ([Lauritzen, 1996]). If P is Markovian to G, then P is pairwise Markovian to G; that is, for every non-adjacent
i, j, we have i⊥⊥ j | anG(i, j).

Proposition 8 ([Verma and Pearl, 1990]). The DAGs G1 and G2 are Markov equivalent if and only if:

1. sk(G1) = sk(G2).

2. The set of colliders in G1 coincides with the set of colliders in G2.

Proposition 9 ([Ramsey et al., 2006]). sk(P ) = sk(G) if and only if P is adjacency faithful wrt G.

Proof of Proposition 2. Let i, k, j be a collider in the DAG G. Since P is Markovian to G, we have that i⊥⊥ j | anG(i, j) by
the pairwise Markov property in Proposition 7, and by acyclicity of G, we have k ̸∈ anG(i, j).

Proof of Proposition 3.
If: Let P be V-OUS and collider-stable wrt G. Since sk(P ) = sk(G), it suffices to show Item 2 that, for v-configurations
i ∼ k ∼ j in sk(P ) = sk(G), we have:

1. If i ∼ k ∼ j is assigned to be a collider, then if i ∼ k ∼ j is a non-collider in G, V-OUS is violated.

2. Likewise if i ∼ k ∼ j is assigned to be a non-collider k ∈ C, then if i ∼ k ∼ j is a collider in G, collider-stability is
violated.

Note that this is due to the orientation rules in Definition 10 being negations of the V-OUS and collider-stability property.
Thus G satisfies the orientation rule wrt P .

Only if: Let G satisfy the V-OUS and collider-stable orientation rules wrt P . Since then for v-configurations i ∼ k ∼ j in
G: From Item 2, we have the following breakdown:

1. Let i ∼ k ∼ j is a collider in G. It is easy to verify that in both cases, where it is assigned as a collider or remains
unassigned, that i ∼ k ∼ j is collider-stable wrt G.

2. Let i ∼ k ∼ j be a non-collider in G.

(a) If i ∼ k ∼ j is assigned as a non-collider, then i ∼ k ∼ j is V-OUS wrt G.
(b) Let i ∼ k ∼ j be unassigned, and C ⊆ V \{i, j, k}. If i⊥⊥ j |C, then we must also have i⊥⊥ j |C ∪{k}, otherwise

i ∼ k ∼ j would have been assigned to be a collider. Hence i ∼ k ∼ j is V-OUS wrt G.

Thus P is V-OUS and collider-stable wrt G, and sk(P ) = sk(G) follows from Item 1.
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To show Theorem 1, we first show Remark 4:

Proof of Remark 4. By Proposition 3 we see that P being modified V-stable is equivalent to: DAGs G to which P satisfies
sk(P ) = sk(G), and V-OUS and collider-stable wrt have unique v-configurations. This is equivalent to all such DAGs are
Markov equivalent by Proposition 8.

Proposition 10. Let G1 and G2 be Markov equivalent DAGs, with the same distribution P . If P is V-OUS and collider-stable
wrt G1, then P is V-OUS and collider-stable wrt G2.

Proof. By Proposition 8, sk(G1) = sk(G2) and the v-configurations and colliders in G1 and G2 coincide. Since P is the
same for both G1 and G2, P is V-OUS and collider-stable wrt G2 by virtue that it is for G1.

Proof of Theorem 1. Denote the output of the algorithm by G(P ).
If: Since P is adjacency faithful wrt G0, by Proposition 9 and definition of LoNS, sk(P ) = sk(G) = sk(G(P )). P is also
V-OUS and collider-stable wrt both G0 and G(P ), thus G0 is Markov equivalent to G(P ) by Remark 4.
Only if: Let G(P ) and G0 be Markov equivalent.

1. (Adjacency faithfulness). By Proposition 8, and since G(P ) is Markov equivalent to G0, we have that sk(P ) =
sk(G(P )) = sk(G0), and by Proposition 9, adjacency faithfulness follows.

2. (V-OUS and collider-stable). Since P is V-OUS and collider-stable wrt G(P ), by Proposition 10, P is V-OUS and
collider-stable wrt G0.

3. (Modified V-stability). Appealing to Remark 4, we note that any DAG satisfying the conditions in the remark is the
output of a LoNS algorithm; thus by assumption, these DAGS are Markov equivalent to G0.

To show Proposition 4, we use the following from Sadeghi [2020]:

Proposition 11 ([Sadeghi, 2020]). If P is exchangable, then P satisfying composition is equivalent to P satisfying upward
stability; that is, for all i, j, k ∈ V , we have i⊥⊥ j |C ⇒ i⊥⊥ j |C ∪ {k}.

Proof of Proposition 4. For non-collider i ∼ k ∼ j in G, exchangability of the marginal {i, j, k} given C ⊆ V \{i, j, k}
follows from conditional exchangability. Combined with Proposition 11 and composition, the marginal of {i, j, k} conditional
on any C ⊆ V \{i, j, k} is upward-stable, thus implying V-OUS.

Proof of Proposition 5.
If: Since there exists a DAG G to which P satisfies V-OUS and collider-stability and sk(P ) = sk(G), Proposition 3
guarantees that a DAG that satisfies the V-OUS and collider-stable orientation rule wrt P exists, and will be returned by
Step-3 of Me-LoNS, again by Proposition 3, P will be adajcency faithful and V-OUS and collider-stable wrt this output.

Only if: If there does not exist a DAG G to which P satisfies V-OUS and collider-stability and sk(P ) = sk(G), by
Proposition 3, there is no DAG that satisfies the V-OUS and collider-stable orientation rule wrt P , thus Step 3 of Me-LoNS
errors.

Proof of Proposition 6.

1. (Me-LoNS generalises PC under V-stability). Under V-stability of P , the V-OUS and collider-stable orientation rule
wrt P for assigning colliders becomes the following: for i ∼ k ∼ j in sk(P ), we have

∃C ⊆ V \{i, j, k} i⊥⊥ j |C & i̸⊥⊥ j |C ∪ {k} ⇐⇒ ∃C ⊆ V \{i, j, k} i⊥⊥ j |C.

Note that the RHS is the negation of the V-OUS and collider-stable orientation rule wrt P when assigning a non-collider,
thus the orientation rules reduce to the following:

(a) If k ∈ C for all C such that i⊥⊥ j |C, then assign i ∼ k ∼ j to be a non-collider (unchanged).
(b) Otherwise, assign i ∼ k ∼ j to be a collider.

This is the same as in PC.
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2. (Me-LoNS works but not PC). Consider SEM 1, which gives the graph G0 in Figure 2 with the set of conditional
independencies being X1 ⊥⊥ X2 and X1 ⊥⊥ X2 | {X3, X4} and X3 ⊥⊥ X4 | {X1, X2}. Thus we see that the V-OUS-
collider-stable orientation rule orients all the v-configurations correctly, but PC orients the collider X1 −→ X3 ←− X2 as
a non-collider.
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