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Abstract

Stochastic differential equations (SDEs) have been
shown recently to characterize well the dynamics
of training machine learning models with SGD.
When the generalization error of the SDE approxi-
mation closely aligns with that of SGD in expecta-
tion, it provides two opportunities for understand-
ing better the generalization behaviour of SGD
through its SDE approximation. Firstly, viewing
SGD as full-batch gradient descent with Gaus-
sian gradient noise allows us to obtain trajectory-
based generalization bound using the information-
theoretic bound from Xu and Raginsky [2017].
Secondly, assuming mild conditions, we estimate
the steady-state weight distribution of SDE and
use information-theoretic bounds from Xu and
Raginsky [2017] and Negrea et al. [2019] to es-
tablish terminal-state-based generalization bounds.
Our proposed bounds have some advantages, no-
tably the trajectory-based bound outperforms re-
sults in Wang and Mao [2022], and the terminal-
state-based bound exhibits a fast decay rate com-
parable to stability-based bounds.

1 INTRODUCTION

Modern deep neural networks trained with SGD and
its variants have achieved surprising successes: the over-
parametrized networks often contain more parameters than
the size of training dataset, and yet are capable of generaliz-
ing well on the testing set; this contrasts the traditional wis-
dom in statistical learning that suggests such high-capacity
models will overfit the training data and fail on the unseen
data [Zhang et al., 2017]. Intense recent efforts have been
spent to explain this peculiar phenomenon via investigating
the properties of SGD [Arpit et al., 2017, Bartlett et al.,
2017, Neyshabur et al., 2017, Arora et al., 2019], and the

current understanding is still far from being complete. For
example, neural tangent kernel (NTK)-based generalization
bounds of SGD normally require the width of network to be
sufficiently large (or even go to infinite) [Arora et al., 2019],
and the stability-based bounds of SGD have a poorly de-
pendence on an intractable Lipschitz constant [Hardt et al.,
2016, Bassily et al., 2020].

Recently, information-theoretic generalization bounds have
been developed to analyze the expected generalization er-
ror of a learning algorithm. The main advantage of such
bounds is that they are not only distribution-dependent, but
also algorithm-dependent, making them an ideal tool for
studying the generalization behaviour of models trained
with a specific algorithm, such as SGD. The concept of
mutual information (MI)-based bounds can be traced back
to [Catoni, 2007, Section 1.3.1], where it is discussed how
the prior distribution that minimizes the expected KL com-
plexity term in a PAC-Bayesian (PAC-Bayes) bound can
transform the KL term into the MI term. This idea has re-
cently been popularized by [Russo and Zou, 2016, 2019,
Xu and Raginsky, 2017], and further strengthened by addi-
tional techniques [Asadi et al., 2018, Negrea et al., 2019,
Bu et al., 2019, Steinke and Zakynthinou, 2020, Haghi-
fam et al., 2020, Wang et al., 2021b]. Particularly, Negrea
et al. [2019] derive MI-based bounds by developing a PAC-
Bayes-like bounding technique, which upper-bounds the
generalization error in terms of the KL divergence between
the posterior distribution of learned model parameter given
by a learning algorithm with respect to any data-dependent
prior distribution. It is remarkable that the application of
these information-theoretic techniques usually requires the
learning algorithm to be an iterative noisy algorithm, such
as stochastic gradient Langevin dynamics (SGLD) [Ragin-
sky et al., 2017, Pensia et al., 2018], so as to avoid the MI
bounds becoming infinity, and can not be directly applied
to SGD. While it is feasible to adopt similar techniques
from the PAC-Bayes bounds in Lotfi et al. [2022] to analyze
SGD, in order to study the generalization of SGD using
methods akin to those for SGLD, Neu et al. [2021] and
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(a) VGG on (small) SVHN (b) VGG on CIFAR10 (c) ResNet on CIFAR10 (d) ResNet on CIFAR100

Figure 1: Performance of VGG-11 and ResNet-18 trained with SGD and SDE.

Wang and Mao [2022] develop generalization bounds for
SGD via constructing an auxiliary iterative noisy process.
However, identifying an optimal auxiliary process is dif-
ficult, and arbitrary choices may not provide meaningful
insights into the generalization of SGD, see Appendix A.1
for more discussions.

Recent research has suggested that the SGD dynamics can
be well approximated by using stochastic differential equa-
tions (SDEs), where the gradient signal in SGD is regarded
as the full-batch gradient perturbed with an additive Gaus-
sian noise. Specifically, Mandt et al. [2017] and Jastrzębski
et al. [2017] model this gradient noise drawn from a Gaus-
sian distribution with a fixed covariance matrix, thereby
viewing SGD as performing variational inference. Zhu et al.
[2019], Wu et al. [2020], Xie et al. [2021a], and Xie et al.
[2021b] further model the gradient noise as dependent of the
current weight parameter and the training data. Moreover,
Li et al. [2017, 2019] and Wu et al. [2020] prove that when
the learning rate is sufficiently small, the SDE trajectories
are theoretically close to those of SGD (cf. Lemma A.1).
More recently, Li et al. [2021] has demonstrated that the
SDE approximation well characterizes the optimization and
generalization behavior of SGD without requiring small
learning rates.

In this work, we also empirically verify the consistency be-
tween the dynamics of SGD and its associated discrete SDE
(cf. Eq. (5)). As illustrated in Figure 1, the strong agreement
in their performance suggests that, despite the potential
presence of non-Gaussian components in the SGD gradient
noise, analyzing its SDE through a Gaussian approximation
suffices for exploring SGD’s generalization behavior. Fur-
thermore, under the SDE formalism of SGD, SGD becomes
an iterative noisy algorithm, on which the aforementioned
information-theoretic bounding techniques can directly ap-
ply. In particular, we summarize our contributions below.

• We obtain a generalization bound (cf. Theorem 3.1) in the
form of a summation over training steps of a quantity that
involves both the sensitivity of the full-batch gradient to
the variation of the training set and the covariance of the
gradient noise (which makes the SGD gradient deviate
from the full-batch gradient). We also give a tighter bound
in Theorem 3.2, where the generalization performance of

SGD depends on the alignment of the population gradi-
ent covariance and the batch gradient covariance. These
bounds highlight the significance of (the trace of) the
gradient noise covariance in the generalization ability of
SGD.

• In addition to the time-dependent trajectory-based bounds,
we also provide time-independent (or asymptotic) bounds
by some mild assumptions. Specifically, based on previ-
ous information-theoretic bounds, we obtain generaliza-
tion bounds in terms of the KL divergence between the
steady-state weight distribution of SGD with respect to a
distribution-dependent prior distribution (by Lemma 2.1)
or data-dependent prior distribution (by Lemma 2.2). The
former gives us a bound based on the alignment between
the weight covariance matrix for each individual local min-
imum and the weight covariance matrix for the average of
local minima (cf. Theorem 4.1). Under mild assumptions,
we can estimate the steady-state weight distribution of
SDE (cf. Lemma 4.1), leading to a variant of Theorem 4.1
(cf. Corollary 4.1) and a norm-based bound (cf. Corol-
lary 4.2). Additionally, we obtain a stability-based like
bound by Lemma 2.2 (cf. Theorem 4.2), with the notable
omission of the Lipschitz constant in other stability-based
bounds. Since stability-based bounds often achieve fast
decay rates, e.g., O(1/n), Theorem 4.2 provides theoreti-
cal advantages compared with other information-theoretic
bounds, as it can attain the same rate of decay as the
stability-based bound. Comparing to the first family of
bounds (i.e., trajectory-based bounds), the second family
of bounds directly upper-bound the generalization error
via the terminal state, which avoids summing over training
steps; these bounds can be tighter when the steady-state
estimates are accurate. On the other hand, not relying on
the steady-state estimates and the approximating assump-
tions they base upon is arguably an advantage of the first
family.

• We empirically analyze key components within the de-
rived bounds for both algorithms. Our empirical findings
reveal that these components for SGD and SDE align re-
markably well, further validating the effectiveness of our
bounds for assessing the generalization of SGD. More-
over, we provide numerical validation of the presented
bounds and demonstrate that our trajectory-based bound
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is tighter than the result in Wang and Mao [2022]. Ad-
ditionally, compared with norm-based bounds, we show
that the terminal-state-based bound that integrates the ge-
ometric properties of local minima can better characterize
generalization.

2 PRELIMINARY

Notation The distribution of a random variable X is de-
noted by PX (or QX ), and the conditional distribution of
X given Y is denoted by PX|Y . When conditioning on a
specific realization y, we use the shorthand PX|Y=y or sim-
ply PX|y . Denote by EX expectation over X ∼ PX , and by
EX|Y=y (or Ey

X ) expectation over X ∼ PX|Y=y. We may
omit the subscript of the expectation when there is no ambi-
guity. The KL divergence of probability distribution Q with
respect to P is denoted by DKL(Q||P ). The mutual informa-
tion (MI) between random variables X and Y is denoted by
I(X;Y ), and the conditional mutual information between
X and Y given Z is denoted by I(X;Y |Z). In addition, for
a matrix A ∈ Rd×d, we let tr {A} denote the trace of A and
we use tr {logA} to indicate

∑d
k=1 logAk,k.

Expected Generalization Error Let Z be the instance
space and let µ be an unknown distribution on Z , spec-
ifying the random variable Z. We let W ⊆ Rd be the
space of hypotheses. In the information-theoretic analysis
framework, there is a training sample S = {Zi}ni=1 drawn
i.i.d. from µ and a stochastic learning algorithm A takes
the training sample S as its input and outputs a hypoth-
esis W ∈ W according to some conditional distribution
QW |S . Given a loss function ℓ : W × Z → R+, where
ℓ(w, z) measures the “unfitness” or “error” of any z ∈ Z
with respect to a hypothesis w ∈ W . The goal of learn-
ing is to find a hypothesis w that minimizes the population
risk, and for any w ∈ W , the population risk is defined
as Lµ(w) ≜ EZ∼µ[ℓ(w,Z)]. In practice, since µ is only
partially accessible via the sample S, we instead turn to use
the empirical risk, defined as LS(w) ≜ 1

n

∑n
i=1 ℓ(w,Zi).

Then, the expected generalization error of A is defined as
Eµ(A) ≜ EW,S [Lµ(W )− LS(W )], where the expectation
is taken over (S,W ) ∼ µn ⊗QW |S .

Throughout this paper, we assume that ℓ is differentiable
almost everywhere with respect to w. In addition, we will
denote ℓ(w,Zi) by ℓi when there is no ambiguity.

SGD and SDE At each time step t, given the current state
Wt−1 = wt−1, let Bt be a random subset that is drawn
uniformly from {1, 2, . . . , n} and |Bt| = b is the batch
size. Let G̃t ≜ 1

b

∑
i∈Bt

∇ℓ(wt−1, Zi) be the mini-batch
gradient. The SGD updating rule with learning rate η is then

Wt = wt−1 − ηG̃t. (1)

The full batch gradient is Gt ≜ 1
n

∑n
i=1 ∇ℓi. It follows that

Wt = wt−1 − ηGt + ηVt, (2)

where Vt ≜ Gt− G̃t is the mini-batch gradient noise. Since
EBt

[Vt] = 0, G̃t is an unbiased estimator of the full batch
gradient Gt. Moreover, the single-draw (i.e. b = 1) SGD
gradient noise covariance (GNC) and the mini-batch GNC
are Σt =

1
n

∑n
i=1 ∇ℓi∇ℓTi −GtG

T
t and Ct =

n−b
b(n−1)Σt,

respectively. If n ≫ b, then Ct = 1/bΣt. Notice that Σt (or
Ct) is state-dependent, i.e. it depends on wt−1. If t is not
specified, we use Σw (or Cw) to represent its dependence
on w. In addition, the population GNC at time t is

Σµ
t ≜EZ

[
∇ℓ(wt−1, Z)∇ℓ(wt−1, Z)T

]
− EZ [∇ℓ(wt−1, Z)]EZ

[
∇ℓ(wt−1, Z)T

]
. (3)

We assume that the initial parameter W0 is independent of
all other random variables, and SGD stops after T updates,
outputting WT as the learned parameter.

We now approximate Vt up to its second moment, e.g.,
Vt ∼ N (0, Ct), then we have the following continuous-
time evolution, i.e. Itô SDE:

dω = −∇LS(ω)dt+ [ηCω]
1
2 dθt, (4)

where Cω is the GNC at ω and θt is a Wiener process.
Furthermore, the Euler-Maruyama discretization, as the
simplest approximation scheme to Itô SDE in Eq. (4), is

Wt = wt−1 − ηGt + ηC
1/2
t Nt, (5)

where Nt ∼ N (0, Id) is the standard Gaussian random
variable.

Validation of SDE It is important to understand how ac-
curate is the SDE in Eq. (4) for approximating the SGD
process in Eq. (1). Previous research, such as [Li et al.,
2017, 2019], has provided theoretical evidence supporting
the idea that SDE can approximate SGD in a “weak sense”.
That is, the SDE processes closely mimic the original SGD
processes, not on an individual sample path basis, but rather
in terms of their distributions (see Lemma A.1 for a formal
result).

Additionally, concerning the validation of the discretization
of SDE in Eq. (5), Wu et al. [2020, Theorem 2] has proved
that Eq. (5) is an order 1 strong approximation to SDE in
Eq. (4). Moreover, we direct interested readers to the com-
prehensive investigations carried out by [Wu et al., 2020, Li
et al., 2021], where the authors empirically verify that SGD
and Eq. (5) can achieve the similar testing performance in
the deep learning scenarios, suggesting that non-Gaussian
noise may not be essential to SGD performance. In other
words, studying Eq. (5) is arguably sufficient to understand
generalization properties of SGD. In Figure 1, we also em-
pirically verify the approximation of Eq. (5), and show that
it can effectively capture the behavior of SGD.
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Two Information-Theoretic Bounds The original
information-theoretic bound in Xu and Raginsky [2017] is
a sample-based MI bound, whose main component is the
mutual information between the output W and the entire
input sample S. This result is given as follows:

Lemma 2.1 (Xu and Raginsky [2017, Theorem 1.]). As-
sume the loss ℓ(w,Z) is R-subgaussian1 for any w ∈ W ,
then

|Eµ(A)| ≤
√

2R2

n
I(W ;S).

This bound is further refined to a data-dependent prior based
bound. Following the setup in Negrea et al. [2019], let J
be a random subset uniformly drawn from {1, . . . , n} and
|J | = m > b. Let SJ = {Zi}i∈J . Typically, we choose
m = n− 1, then the following result is known.

Lemma 2.2 (Negrea et al. [2019, Theorem 2.5]). Let QW |S
be the posterior distribution of W given the training sample
S, and let PW |SJ

be the posterior distribution of W given
the training sample SJ . Assume the loss ℓ(w,Z) is bounded
in [0,M ], then for any PW |SJ

,

Eµ(A) ≤ M√
2
ES,J

√
DKL(QW |S ||PW |SJ

).

Note that J is drawn before the training starts and is inde-
pendent of {Wt}Tt=0. We use the subset SJ to conduct a
parallel SGD training process based on the same algorithm
A (e.g. SGD) to obtain a data-dependent prior (PW |SJ

).
When m = n− 1, we call this prior process the leave-one-
out (LOO) prior.

3 GENERALIZATION BOUNDS VIA
FULL TRAJECTORIES

We now discuss the generalization of SGD under the approx-
imation of Eq. (5). We first unroll the terminal parameters’
mutual information I(WT ;S) to the full trajectories’ mutual
information via the lemma below.

Lemma 3.1. The MI term in Lemma 2.1 is upper bounded
by I(WT ;S) ≤

∑T
t=1 I(−Gt + C

1/2
t Nt;S|Wt−1).

This lemma can be proved by recurrently applying the data
processing inequality (DPI) and chain rule of the mutual
information [Polyanskiy and Wu, 2019].

Define Ĝt = −Gt + C
1/2
t Nt. Let QĜt|s,wt−1

and
QĜt|wt−1

be the conditional and marginal distributions fully

1A random variable X is R-subgaussian if for any ρ ∈ R,
logE exp (ρ (X − EX)) ≤ ρ2R2/2. Note that a bounded loss is
guaranteed to be subgaussian.

characterized by the algorithm, respectively. In addition,
let PĜt|wt−1

be any prior distribution of Ĝt, satisfying
DKL(QĜt|s,wt−1

||PĜt|wt−1
) < ∞. we first have the fol-

lowing lemma.

Lemma 3.2. For any time step t, we have I(Ĝt;S|Wt−1) =

EWt−1

[
infPĜt|Wt−1

EWt−1

S

[
DKL(QĜt|S,Wt−1

||PĜt|Wt−1
)
]]

,
where the infimum is achieved when the prior distribution
PĜt|wt−1

= QĜt|wt−1
.

Lemma 3.2 suggests that every choice of the prior PĜt|Wt−1

gives rise to an upper bound of the MI of interest via
I(Ĝt;S|Wt−1) ≤ E

[
DKL(QĜt|S,Wt−1

||PĜt|Wt−1
)
]
. The

closer is PĜt|Wt−1
to QĜt|Wt−1

, the tighter is the bound.
As the simplest choice, we will first choose an isotropic
Gaussian prior, PĜt|wt−1

= N (g̃t, σ
2
t Id) (where both g̃t

and σt are only allowed to depend on Wt−1), and optimize
the KL divergence in Lemma 3.2 over σt for a fixed g̃t. The
following result is obtained.

Theorem 3.1. Under the conditions of Lemma 2.1 and
assume Ct is a positive-definite matrix. For any t ∈ [T ], let
g̃t be any constant vector for a given wt−1, then

Eµ(A) ≤

√√√√R2

n

T∑
t=1

EWt−1

[
d log

h1(Wt−1)

d
− h2(Wt−1)

]
,

(6)

where h1(w) = Ew
S

[
||Gt − g̃t||2 + tr {Ct}

]
and h2(w) =

Ew
S [tr {logCt}].

Furthermore, if g̃t = EZ [∇ℓ(wt−1, Z)], then h1(w) =
1
b tr {Σ

µ
t }.

Notice that g̃t is any reference “gradient” independent of
S, then the first term in h1(Wt−1), ||Gt − g̃t||2, charac-
terizes the sensitivity of the full-batch gradient to some
variation of the training set S, while the second term in
h1(Wt−1), i.e. tr {Ct}, reflects the gradient noise magni-
tude induced by the mini-batch based training. For example,
if g̃t = EZ [∇ℓ(wt−1, Z)], then Ewt−1

S

[
||Gt − g̃t||2

]
is the

variance of the gradient sample mean, and such g̃t will even-
tually convert h1(Wt−1) to the population GNC, namely
h1(Wt−1) =

1
b tr {Σ

µ
t }.

Moreover, if we simply let g̃t = 0, then Theorem 3.1
indicates that one can control the generalization perfor-
mance via controlling the gradient norm along the entire
training trajectories, e.g., if we further let b = 1, then
h1(Wt−1) =

1
n

∑n
i=1 ||∇ℓi||2. This is consistent with the

existing practice, for example, applying gradient clipping
[Wang and Mao, 2022, Geiping et al., 2022] and gradient
penalty [Jastrzebski et al., 2021, Barrett and Dherin, 2021,
Smith et al., 2021, Geiping et al., 2022] as regularization
techniques to improve generalization.
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As a by-product, we recover previous information-theoretic
bounds for the Gradient Langevin dynamics (GLD) with
noise distribution N (0, η2Id) below.

Corollary 3.1. If Ct = Id, then

Eµ(A) ≤

√√√√R2d

n

T∑
t=1

EWt−1
log
(
EWt−1

S ||Gt − g̃t||2/d+ 1
)
.

Note that the bound in Corollary 3.1 can recover the bound
in Neu et al. [2021, Proposition 3.] by using the inequality
log(x+ 1) ≤ x. Furthermore, it can also recover the bound
in Pensia et al. [2018] because we use a state-dependent
quantity Ewt−1

S

[
||Gt − g̃t||2

]
, which is smaller than the

global Lipschitz constant used in Pensia et al. [2018].

While choosing the isotropic Gaussian prior is common in
the GLD or SGLD setting, given that we already know Ct

is an anisotropic covariance, one can select an anisotropic
prior to better incorporate the geometric structure in the prior
distribution. A natural choice of the covariance is a scaled
population GNC, namely c̃tΣ

µ
t , where c̃t is some positive

state-dependent scaling factor. Let g̃t = EZ [∇ℓ(wt−1, Z)]
be the state-dependent mean. By optimizing over ct, we
have the bound below.

Theorem 3.2. Under the conditions of Lemma 2.1 and
assume Ct and Σµ

t are positive-definite matrices, then

Eµ(A) ≤

√√√√R2

n

T∑
t=1

EWt−1,S

[
tr

{
log

Σµ
t C

−1
t

b

}]
.

Remark 3.1. If we let the diagonal element of Σµ
t in di-

mension k be αt(k) and let the corresponding diagonal
element of Σt be βt(k), and assume n ≫ b (so Σt = bCt),
then tr

{
log(Σµ

t C
−1
t /b)

}
=
∑d

k=1 log
αt(k)
βt(k)

. Thus, The-
orem 3.2 implies that a favorable alignment between the
diagonal values of Σt and Σµ

t will positively impact gener-
alization performance. In other words, the perfect alignment
of these two matrices indicates that SGD is insensitive to
the randomness of S. Recall the key quantity in Lemma 2.1,
I(W ;S), which also measures the dependence of W with
the randomness of S, the term Σµ

t Σ
−1
t conveys a similar

intuition in this context.

Compared with Theorem 3.1 under the same choice of
g̃t, we notice that the main difference is that the term
tr {log(Σµ

t /b)}, instead of d log(tr {Σµ
t }/bd), appears in

the bound of Theorem 3.2. The following lemma demon-
strates that Theorem 3.2 is tighter than the bound in Theo-
rem 3.1.

Lemma 3.3. For any t, we have tr
{
log

Σµ
t

b

}
≤d log

tr{Σµ
t }

bd ,
with the equality holds when all the diagonal elements in
Σµ

t have the same value, i.e. αt(1) = αt(2) = · · · = αt(d).

The trajectory-based bounds in Theorem 3.1 and Theo-
rem 3.2 emphasize the significance of gradient-related infor-
mation along entire trajectories, including metrics such as
gradient norm and gradient covariance alignment, in com-
prehending the generalization dynamics of understanding
the generalization of SGD. In Figure 2, we visually show
that these key gradient-based measures during SDE training
closely mirror the dynamics observed in SGD.

Notably, these trajectory-based information-theoretic
bounds are time-dependent, indicating that these bounds
may grow with the training iteration number T , unless the
gradient norm becomes negligible at some point during
training. While the stability-based bounds for GD/SGD are
also time-dependent [Hardt et al., 2016, Bassily et al., 2020]
(in the convex learning case), the learning rate in these
bounds helps mitigate the growth of T . However, the learn-
ing rate does not appear in our trajectory-based information-
theoretic bounds, making the dependency on T even worse.

Note that Wang et al. [2021b] uses the strong data process-
ing inequality to reduce this deficiency, but the bound still
increases with T . To tackle this weakness, we will invoke
some asymptotic SDE results on the terminal parameters of
the algorithm, which will give us a crisp way to characterize
the expected generalization gap without decomposing the
mutual information.

4 GENERALIZATION BOUNDS VIA
TERMINAL STATE

In this section, we directly upper-bound the generalization
error by the properties of the terminal state instead of us-
ing the full training trajectory information. Particularly, we
will first use the stationary distribution of weights at the
end of training as QWT |S . To overcome the explicit time-
dependence present in the bounds discussed in Section 3,
one has to introduce additional assumptions, with these
assumptions being the inherent cost. For example, an im-
portant approximation used in this section is the quadratic
approximation of the loss. Specifically, let w∗

s be a local
minimum for a given training sample S = s, when w is
close to w∗

s , we can use a second-order Taylor expansion to
approximate the value of the loss at w,

Ls(w) = Ls(w
∗
s) +

1

2
(w − w∗

s)
THw∗

s
(w − w∗

s). (7)

where Hw∗
s

is the Hessian matrix of s at w∗. Note that in
this case, when wt → w∗

s , we have Gt = ∇Ls(wt) =
Hw∗

s
(wt − w∗

s). Our remaining analysis assumes the valid-
ity of Eq. (7).

In view of Eq. (7), a classical result by Mandt et al.
[2017] shows that the posterior distribution QW |s around
w∗

s is a Gaussian distribution N (w∗
s ,Λw∗

s
), where Λw∗ ≜

E
[
(W − w∗)(W − w∗)T

]
is the covariance of the station-
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(a) VGG on (small) SVHN (b) VGG on CIFAR10 (c) ResNet on CIFAR10 (d) ResNet on CIFAR100

Figure 2: Gradient-related quantities of SGD or its discrete SDE approximation. In (d), since per-sample gradient is
ill-defined when BatchNormalization is used, we do not track tr

{
log
(
Σ−1

t Σµ
t

)}
.

(a) VGG on (small) SVHN (b) VGG on CIFAR10 (c) ResNet on CIFAR10 (d) ResNet on CIFAR100

Figure 3: Hessian-related quantities of SGD or its discrete SDE approximation.

ary distribution (see Appendix A.3 for an elaboration). Fur-
thermore, in the context of nonconvex learning, such as
deep learning, where multiple local minima exist, we have
multiple w∗

s for a give S = s. Therefore, it is necessary
to treat the local minimum itself as a random variable
for a fixed s, denoted as W ∗

s ∼ QW∗
s |s. In this case, we

have QW |s,w∗
s
= N (w∗

s ,Λw∗
s
) and the posterior distribu-

tion QW |s = Es
W∗

s

[
N (W ∗

s ,ΛW∗
s
)
]

should be a mixture of
Gaussian distributions.

In addition, recall that I(WT ;S) =
infPWT

ESDKL(QWT |S ||PWT
) where PWT

= QWT

achieves the infimum. Here, the oracle prior
QWT

= ES,W∗
S

[
N (W ∗

S ,ΛW∗
S
)
]

is also a mixture of
Gaussian distributions. From a technical standpoint,
given that the KL divergence between two mixtures
of Gaussian distributions does not have a closed-form
expression, we turn to analyze its upper bound, namely
infPWT

ES,W∗
S
DKL(QWT |S,W∗

S
||PWT

). When each s has
only one local minimum, I(W ;S) reaches this upper bound.

We are ready to give the terminal-state-based bounds.

Theorem 4.1. Let w∗
µ = E [W ∗

S ] be the expected ERM

solution and let Λw∗
µ
= E

[(
WT − w∗

µ

) (
WT − w∗

µ

)T]
be

its corresponding stationary covariance, then

Eµ(A) ≤ R√
2n

√
ES,W∗

S

[
tr
{
log
(
Λ−1
W∗

S
Λw∗

µ

)}]
.

This result bears resemblance to Theorem 3.2 since both in-
volve the alignment between a population covariance matrix
and a sample (or batch) covariance matrix.

Note that Λw∗
µ
=E

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T]
+E
[
ΛW∗

S

]
.

By Jensen’s inequality, we can move the expectation
over W ∗

s inside the logarithmic function. Additionally,
if EW∗

s

[
Λ−1
W∗

s
E
[
ΛW∗

s

]]
is close to the identity matrix—

especially evident in scenarios where each s has only
one minimum, as in convex learning—we obtain the

upper bound O
(√

E
[
d2M
(
W ∗

S , w
∗
µ; ΛW∗

S

)]
/n
)
, where

dM (x, y; Σ) ≜
√
(x− y)TΣ−1(x− y) is the Mahalanobis

distance. Intuitively, this quantity measures the sensitivity
of a local minimum to the combined randomness introduced
by both the algorithm and the training sample, relative to its
local geometry.

In practice, one can estimate Λw∗
µ

and Λw∗
s

by repeatedly
conducting training processes and storing numerous check-
points at the end of each training run. This is still much
easier than estimating I(W ;S) directly. As an alternative
strategy, one may leverage the analytical expression avail-
able for Λw∗

s
. Mandt et al. [2017] provides such analysis

and give a equation to solve for Λw∗
s
. However, the result

in Mandt et al. [2017] relies on the unrealistic small learn-
ing rate, and the GNC in their analysis is regarded as a
state-independent covariance matrix. To overcome these
limitations, we give the following result under a quadratic
approximation of the loss, which is refined from Liu et al.
[2021, Theorem 1] by using the state-dependent GNC.

Lemma 4.1. In the long term limit, we have Λw∗Hw∗ +
Hw∗Λw∗ −ηHw∗Λw∗Hw∗ = ηCT . Moreover, consider the
following conditions:

(i) Hw∗Λw∗ = Λw∗Hw∗ ;
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(ii) H−1
w∗ ΣT = Id;

(iii) 2
η ≫ λ1, where λ1 is the top-1 eigenvalue of Hw∗ .

Then, given (i), we have Λw∗ =
[
Hw∗

(
2
η Id−Hw∗

)]−1

CT ;

given (i-ii), we have Λw∗ = ( 2η Id −Hw∗)−1; given (i-iii),
we have Λw∗ = η

2b Id.

Notably, all the conditions in Lemma 4.1 are only discussed
in the context of the terminal state of SGD training. Regard-
ing the condition (ii), as being widely used in the literature
[Jastrzębski et al., 2017, Zhu et al., 2019, Li et al., 2020,
Xie et al., 2021a,b, Liu et al., 2021], Hessian is proportional
to the GNC near local minima when the loss is the negative
log likelihood, i.e. cross-entropy loss. To see this, when
wt → w∗, we have Σw∗ = 1

n

∑n
i=1 ∇ℓi∇ℓTi − GtG

T
t ≈

1
n

∑n
i=1 ∇ℓi∇ℓTi = Fw∗ , where Fw∗ is the Fisher infor-

mation matrix (FIM). This approximation is true because
gradient noise dominates over gradient mean near local min-
ima. Moreover, FIM is close to the Hessian near local min-
ima with the log-loss [Pawitan, 2001, Chapter 8], namely,
Fw∗ ≈ Hw∗ . Let n ≫ b, we have Hw∗ ≈ Σw∗ = bCw∗ .
Consequently, when ΣT is sufficiently close to Σw∗ , con-
dition (ii) is satisfied. It’s important to note that the debate
surrounding Hw∗ ≈ Fw∗ arises when the loss function de-
viates from cross-entropy [Ziyin et al., 2022].

For condition (iii), the initial learning rate is typically set
at a high value, and this condition may not be satisfied
until the learning rate undergoes decay in the later stages of
SGD training. This observation is evident in Figure 4a-4b,
where the condition becomes easily met at the terminal state
following the learning rate decay. Moreover, the interplay
between 2

η and λ1 is extensively explored in the context of
the edge of stability [Wu et al., 2018, Cohen et al., 2021,
Arora et al., 2022], which suggests that during the training of
GD, λ1 approaches 2

η and hovers just above it in the “edge of
stability” regime. In the context of Theorem 4.1, as indicated
by Lemma 4.1, the diagonal elements of Λw∗

s
tend to be

close to zero before reaching the “edge of stability” regime,
the bound presented in Theorem 4.1 diverges to infinity.
This, as a by-product, provides an alternative explanation
to the failure mode of I(W ;S) → ∞ in the deterministic
algorithm (e.g., GD with a fixed initialization).

The following results can be obtained by combining Theo-
rem 4.1 and Lemma 4.1.

Corollary 4.1. Under (i,iii) in Lemma 4.1, then

Eµ(A) ≤ R
√
nη

√
E
[
tr
{
log
([

Hw∗C−1
T

]
Λw∗

µ

)}]
.

Corollary 4.2. Under (i-iii) in Lemma 4.1, then

Eµ(A) ≤

√
dR2

n
log

(
2b

ηd
E||W ∗

S − w∗
µ||2 + 1

)
.

By log(x+1) ≤ x, the bound in Corollary 4.2 is dimension-
independent if the weight norm does not grow with d.
Furthermore, the information-theoretic bound becomes
a norm-based bound in Corollary 4.2, which is widely
studied in the generalization literature [Bartlett et al., 2017,
Neyshabur et al., 2018]. In fact, w∗

µ can be replaced by any
data-independent vector, for example, the initialization, w0

(see Corollary D.1). In this case, the corresponding bound
suggests that generalization performance can be charac-
terized by the “distance from initialization”, namely, given
that SGD achieves satisfactory performance on the training
data, a shorter distance from the initialization tends to yield
better generalization. Nagarajan and Kolter [2019a] also
derived a “distance from initialization” based generalization
bound by using Rademacher complexity, and Hu et al.
[2020] use “distance from initialization” as a regularizer
to improve the generalization performance on noisy data.

In the sequel, we use the data-dependent prior bound,
namely, Lemma 2.2, to derive new results.

Theorem 4.2. Let PWT |SJ=sj = N (W ∗
sj ,Λ(W

∗
sj )) where

W ∗
sj is the local minimum found by the LOO training. Under

the same conditions in Lemma 2.2 and (i-iii) in Lemma 4.1,
assuming Λ(W ∗

sj ) = Λ(W ∗
s ) for a given s, then

Eµ(A) ≤ ES,J

√
M2b

2η
ES,J
W∗

S ,W∗
SJ

||W ∗
S −W ∗

SJ
||2.

This bound implies a strong connection between gener-
alization and the algorithmic stability exhibited by SGD.
Specifically, if the hypothesis output does not change much
(in the squared L2 distance sense) upon the removal of a
single training instance, the algorithm is likely to gener-
alize effectively. In fact, ES,J

W∗
S ,W∗

SJ

||W ∗
S −W ∗

SJ
||2 can be

regarded as an average version of squared argument sta-
bility [Liu et al., 2017]. Moreover, stability-based bounds
often demonstrate a fast decay rate in the convex learning
cases [Hardt et al., 2016, Bassily et al., 2020]. It is worth
noting that if argument stability achieves the fast rate, e.g.,
sups,j ||w∗

s − w∗
sj || ≤ O(1/n), then Theorem 4.2 can also

achieve the same rate. In addition, note that the stability-
based bound usually contains a Lipshitz constant, while the
bound in Theorem 4.2 discards such undesired constant.

Ideally, to estimate the distance of ||w∗
s − w∗

sj ||
2, one can

use the influence function [Hampel, 1974, Cook and Weis-
berg, 1982, Koh and Liang, 2017], namely w∗

sj − w∗
s ≈

1
nH

−1
W∗

s
∇ℓ(w∗

s , zi), where i is the instance index that is not
selected in j. However, for deep neural network training,
the approximation made by influence function is often erro-
neous [Basu et al., 2021]. While this presents a challenge, it
motivates further refinement, seeking to enhance the practi-
cal application of Theorem 4.2 in deep learning.

The main generalization bounds obtained in this paper are
summarized in Table 1. In the remainder of this paper, we
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Figure 4: (a-b,e-f) The dynamics of η/2 − λ1. Note that learning rate decays by 0.1 at the 40, 000th and the 60, 000th

iteration. (c-d,g-h) The distance of current model parameters from its initialization.

Table 1: Comparison of the results in this work

Bounds Remarks
Trajectory-based Bounds. Pros: less assumptions, can track training dynamics; Cro: Time-Dependent

Theorem 3.1 O
(√

d
n
E
[
log h1

d
− h2

d

])
Isotropic covariance for Gaussian prior

Corollary 3.1 O
(√

d
n

∑T
t=1 Elog

(
E||Gt−g̃t||2

d
+ 1
))

Bound for langevin dynamic; tighter than Neu et al. [2021, Prop. 3.]

Theorem 3.2 O

(√
1
n

∑T
t=1 E

[
tr
{
log

Σ
µ
t C−1

t
b

}])
Population GNC for prior; tighter than Thm. 3.1

Terminal-State-based Bounds. Pro: time-indepedent; Cro: more assumptions, cannot track training dynamics

Theorem 4.1 O
(√

1
n
E
[
tr
{
log
(
Λ−1

W∗
S
Λw∗

µ

)}])
General result; hard to measure in practice

Corollary 4.1 O
(√

1
nη

E
[
tr
{
log
([

Hw∗C−1
T

]
Λw∗

µ

)}])
Under conditions: Hw∗Λw∗ = Λw∗Hw∗ and Hw∗ΣT = Id

Corollary 4.2 O
(√

d
n
log
(

b
ηd

E||W ∗
S − ŵ||2 + 1

))
ŵ is flexible; 2

η
≫ λ1; other conditions same as Cor. 4.1

Theorem 4.2 O
(
E
√

M2b
η

E||W ∗
S −W ∗

SJ
||2
)

Bounded loss; Λ(W ∗
sj ) = Λ(W ∗

s ); other conditions same as Cor. 4.2

will empirically verify our theoretical results.

5 EMPIRICAL STUDY

In this section, we present some empirical results including
tracking training dynamics of SGD and SDE, along with the
estimation of several obtained generalization bounds.

Implementation and Hyperparameters The implemen-
tation in this paper is on PyTorch [Paszke et al., 2019], and
all the experiments are carried out on NVIDIA Tesla V100
GPUs (32 GB). Most experiment settings follow Wu et al.
[2020], and the code is also based their implementation,
which is available at: https://github.com/uuujf/MultiNoise.
For CIFAR 10, the initial learning rates used for VGG-11
and ResNet-18 are 0.01 and 0.1, respectively. For SVHN,

the initial learning rate is 0.05. For CIFAR100, the initial
learning rate is 0.1. The learning rate is then decayed by 0.1
at iteration 40, 000 and 60, 000. If not stated otherwise, the
batch size of SGD is 100.

SGD and SDE Training Dynamics We implement the
SDE training by following the same algorithm given in [Wu
et al., 2020, Algorithm 1]. Our experiments involved train-
ing a VGG-11 architecture without BatchNormalization on
a subset of SVHN (containing 25k training images) and
CIFAR10. Additionally, we trained a ResNet-18 on both
CIFAR10 and CIFAR100. Data augmentation is only used
in the experiments related to CIFAR100. We ran each ex-
periment for ten different random seed, maintaining a fixed
initialization of the model parameters. Further details about
the experimental setup can be found in Wu et al. [2020].
The results are depicted in Figure 1. As mentioned earlier,
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(a) VGG on (small) SVHN (b) VGG on CIFAR10 (c) VGG on (small) SVHN (d) VGG on CIFAR10

Figure 5: Estimated trajectory-based bound and terminal-state based bound, with R excluded. Zoomed-in figures of
generalization error are given in Figure 6 in Appendix.

SDE exhibits a performance dynamics akin to that of SGD,
reinforcing the similarities in their training behaviors.

Evolution of Key Quantities for SGD and SDE We
show ||Gt||2 and tr

{
log
(
Σ−1

t Σµ

)}
in Figure 2. Recogniz-

ing the computational challenges associated with computing
tr
{
log
(
Σ−1

t Σµ

)}
, we opted to draw estimates based on

100 training and 100 testing samples. Notably, both SGD
and SDE exhibit similar behaviors in these gradient-based
metrics. It is noteworthy that despite the absence of the
learning rate in the trajectory-based bounds, we observed
that modifications to the learning rate at the 40, 000th and
60, 000th steps had discernible effects on these gradient-
based quantities. Additionally, in Figure 3, we examine the
trace of the Hessian and its largest eigenvalue during train-
ing, leveraging the PyHessian library [Yao et al., 2020].
Note that we still use only 100 training data to estimate the
Hession for efficiency. Notice that the Hessian-related quan-
tities of SGD and SDE are nearly perfectly matched in the
terminal state of training. Furthermore, Figures 4c-4d illus-
trate the “distance to initialization”, revealing a consistent
trend shared by both SGD and SDE.

Bound Comparison We vary the size of the training sam-
ple and empirically estimate several of our bounds in Fig-
ure 5, with the subgaussian variance proxy R excluded for
simplicity. Thus, the estimated values in Figure 5 don’t
accurately represent the true order of the bounds. Despite
the general unbounded nature of cross-entropy loss, com-
mon training strategies, such as proper weight initialization,
training techniques, and appropriate learning rate selection,
ensure that the cross-entropy loss remains bounded in prac-
tice. Therefore, it is reasonable to assume subgaussian be-
havior of the cross-entropy loss under SGD training. In
Figure 5a-5b, we compare our Theorem 3.2 with Wang and
Mao [2022, Theorem 2]. Since both bounds incorporate the
same R, the results in Figures5a to 5b show that our Theo-
rem 3.2 outperforms Wang and Mao [2022, Theorem2]. This
aligns with expectations (see Appendix A.1 for additional
discussions), considering that the isotropic Gaussian used
in the auxiliary weight process of Wang and Mao [2022,
Theorem 2] is suboptimal, as demonstrated in Lemma 3.3.
Moreover, Figures 5c to 5d hint that norm-based bounds

Corollary 4.2 (and Corollary D.1) exhibit growth with n,
which are also observed in Nagarajan and Kolter [2019b].
In contrast, Corollary 4.1 effectively captures the trend of
generalization error, emphasizing the significance of the
geometric properties of local minima. Additionally, while
trajectory-based bounds may appear tighter, terminal-state-
based bounds seem to have a faster decay rate.

6 OTHER RELATED LITERATURE

Recently, Simsekli et al. [2019], Nguyen et al. [2019], Sim-
sekli et al. [2020], Meng et al. [2020], Gurbuzbalaban et al.
[2021], and Gurbuzbalaban et al. [2021] challenge the tra-
ditional assumption that gradient noise is a Gaussian and
argue that the noise is heavy-tailed (e.g., Lévy noise). In
contrast, Xie et al. [2021a] and Li et al. [2021] claim that
non-Gaussian noise is not essential to SGD performance,
and SDE with Gaussian gradient noise can well characterize
the behavior of SGD. They also argue that the empirical
evidence shown in Simsekli et al. [2019] relies on a hidden
strong assumption that gradient noise is isotropic and each
dimension has the same distribution. For other works on
SGD and SDE, see [Hoffer et al., 2017, Xing et al., 2018,
Panigrahi et al., 2019, Wu et al., 2020, Zhu et al., 2019, Li
et al., 2020, Ziyin et al., 2022].

In addition, there are some generalization bounds using frac-
tal dimensions [Simsekli et al., 2020, Camuto et al., 2021,
Dupuis et al., 2023], which are also trajectory-based gen-
eralization bounds. Notably, Dupuis et al. [2023] improves
previous works by removing the Lipschitz continuity as-
sumption, yet direct comparison of our results with theirs
remains challenging. Specifically, one notable difference is
that in both Section 3 and Section 4 of our work, we provide
in-expectation generalization bounds, while they present
high-probability generalization guarantees, which require
additional developments for comparison. Moreover, some
key components in their bounds are not directly comparable
to our gradient noise covariance or Hessian-based quantities,
such as their upper and lower box-counting dimensions. On
one hand, we believe our results have several advantages.
For instance, while the boundedness of loss is essential in
their work, we can relax it to a sub-Gaussian condition in
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ours. Additionally, our bound is easier to estimate for more
complex models. On the other hand, their utilization of in-
trinsic dimension in the analysis is inspiring and may be
possible to incorporate into our analysis for obtaining better
results.

7 LIMITATIONS AND FUTURE WORKS

While our current work exhibits certain limitations, such
as the requirement of positive definiteness for Ct in our
trajectory-based bounds, it’s worth noting that recent stud-
ies [Frankle and Carbin, 2019, Li et al., 2018, Gur-Ari et al.,
2018, Larsen et al., 2022] indicate that many parameters
in deep neural networks might be dispensable without af-
fecting generalization. This implies that GD/SGD could
potentially occur in a subspace of Rd termed the “intrinsic
dimension” dint. Defining Ct within this invertible subspace,
utilizing dint, could potentially overcome our current limi-
tations. Theoretical characterization of intrinsic dimension,
however, remains an open problem, and further exploration
in this direction is poised to significantly improve our work.
In addition, there are also some other promising directions
for further improving this work, for example, via using other
posterior and prior covariance instead of steady-state covari-
ance (e.g., we also give one in Theorem E.1 in Appendix),
and via extending the similar analytical approach used in
this work to other optimizer (e.g., Adam, Adagrad, etc.).
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A ADDITIONAL BACKGROUND

A.1 INFORMATION-THEORETIC BOUNDS FOR SGD

Recently, [Neu et al., 2021, Wang and Mao, 2022] apply information-theoretic analysis to the generalization of models
trained with SGD by invoking an auxiliary weight process (AWP). We now denote this auxiliary weight process by AAWP .
Let ASGD be the original algorithm of SGD, [Neu et al., 2021, Wang and Mao, 2022] obtain generalization bounds by the
following construction,

Eµ (ASGD) =Eµ (ASGD) + Eµ (AAWP )− Eµ (AAWP )

≤O

(√
I(WAWP;S)

n

)
︸ ︷︷ ︸

Lemma 2.1

+ |Eµ (ASGD)− Eµ (AAWP )|︸ ︷︷ ︸
residual term

, (8)

where WAWP is the output hypothesis by AAWP .

Notably, it remains uncertain whether the residual term is sufficiently small for the information-theoretic bounds of AAWP

to yield meaningful insights into SGD. Although there exists an optimal AAWP that tightens the bound in Eq. (8), finding
such an optimal AAWP beyond the isotropic Gaussian noise covariance case is challenging. It’s worth noting that Wang and
Mao [2022] provides an optimal bound for the time-invariant isotropic Gaussian noise case. Nevertheless, our empirical
results, as illustrated in Figure 5, demonstrate that the bounds presented in this paper outperform the isotropic Gaussian
noise case.

In this paper, we do not attempt to find an optimal AAWP , but instead, we invoke the SDE approximation (i.e. Eq. (5)),
denoted as ASDE . Formally,

Eµ (ASGD) =Eµ (ASGD) + Eµ (ASDE)− Eµ (ASDE)

≤O

(√
I(WSDE;S)

n

)
︸ ︷︷ ︸

Lemma 2.1

+ |Eµ (ASGD)− Eµ (ASDE)|︸ ︷︷ ︸
residual term

, (9)

where WSDE is the output hypothesis by ASDE .

Empirical evidence from [Wu et al., 2020, Li et al., 2021] and our Figure 1 suggests that the residual term in Eq. (9) is small.
This observation motivates our investigation into the generalization of SGD using the information-theoretic bounds of SDE
directly.
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A.2 THEORETICAL VALIDATION OF SDE

To theoretically assess the validation of SDE in approximating SGD, two essential technical definitions are necessary.

Definition A.1 (Test Functions). Let F denote the set of continuous functions (Rd → R) with polynomial growth, i.e. if ∀
f ∈ F , there exists constants K,κ > 0 s.t. |f(x)| < K(1 + |x|κ) for all x ∈ R.

Definition A.2 (Order−α weak approximation). Let η ∈ (0, 1), T > 0 and N = ⌊T/η⌋. Let F be the set of test Functions.
We say that the SDE in Eq. (4) is an order α weak approximation of the SGD in Eq. (1) if for every f ∈ F , there exists
C > 0, independent of η, s.t. for all k = 0, 1, . . . , N ,

|E [f(ωkη)]− E [f(Wk)]| ≤ Cηα.

Below is a classical result.

Lemma A.1 (Li et al. [2017, Theorem 1]). Assume ∇ℓ is Lipschitz continuous, has at most linear asymptotic growth and
has sufficiently high derivatives belonging to F , then SDE in Eq. (4) is an order 1 weak approximation of the SGD in Eq. (1).
Or equivalently, for every f ∈ F , there exists C > 0, independent of η, s.t. maxk=0,1,...,N |E [f(ωkη)]− E [f(Wk)]| ≤ Cη.

This theorem suggests that SGD and SDE closely track each other when they result in similar distributions of outcomes,
such as the returned hypothesis W . In addition, the closeness of distributions is formulated through expectations of suitable
classes of test functions, as defined in Definition A.1. As mentioned in Li et al. [2021], of particular interest for machine
learning are test functions like generalization error Eµ, which may not adhere to formal conditions such as differentiability
assumed in classical theory but are still valuable for experimental use. Other typical choices of test functions includes weight
norm, gradient norm, and the trace of noise covariance.

A.3 GAUSSIAN DISTRIBUTION AROUND LOCAL MINIMUM

A multi-dimensional Ornstein-Uhlenbeck process is defined as

dxt = −Hxtdt+Bdθt, (10)

where xt ∈ Rd, H, B are d× d matrices and θt is an d-dimensional Wiener process.

Denote the density function of xt as P (x, t), then the corresponding Fokker-Planck equation describes the evolution of
P (x, t):

∂P (x, t)

∂t
=

d∑
i=1

d∑
j=1

∂

∂xi

P (x, t)

d∑
j=1

Hi,jxj

+

d∑
i=1

d∑
j=1

Di,j
∂2P (x, t)

∂xi∂xj
,

where D = BBT/2.

Moreover, if H is positive define, then a stationary solution of P is given by [Freidlin and Wentzell, 2012]:

P (x) =
1√

(2π)
d
det (Σ)

exp

(
−1

2
xTΣ−1x

)
, (11)

where Σ = E
[
xxT

]
is the covariance matrix of x.

When w is close to any local minimum w∗, we can use a second-order Taylor expansion to approximate the value of the loss
at w,

Ls(w) ≈ Ls(w
∗) +

1

2
(w − w∗)THw∗(w − w∗). (12)

In this case, when wt → w∗, we have Gt = ∇Ls(wt) = Hw∗ (wt − w∗). Recall Eq. (2), then

wt =wt−1 − ηGt + ηVt = wt−1 − ηHw∗ (wt−1 − w∗) + ηVt.
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Let W ′
t ≜ Wt − w∗ and recall Eq (10), we thus have the Ornstein-Uhlenbeck process for xt = W ′

t as

dW ′
t = −ηHw∗W ′

tdt+ η
√

Ctdθt. (13)

By Eq. (11), we have

P (W ′) ∝ exp

(
−1

2
W ′TΛ−1

w∗W ′
)
.

Consequently, the stationary distribution of W for a given w∗ is N (w∗,Λw∗).

For discrete case, we have

w′
t =(Id − ηHw∗)w′

t−1 + ηVt

=(Id − ηHw∗)
2
w′

t−2 + η ((Id − ηHw∗)Vt−1 + Vt)

...

=H̄tw′
0 + η

t∑
i=0

H̄iVt−i,

where H̄ = Id−ηHw∗ . Notably, when t is sufficiently large, then the first term is negligible, especially with a small learning
rate, we have w′

t = wt − w∗ = η
∑t

i=0 H̄
iVt−i. When Ct does not change in the long time limit, then W ′

t is the weighted
sum of independent Gaussian random variables, which follows a Gaussian distribution, namely wt ∼ N (w∗,Λw∗). We
refer readers to [Liu et al., 2021, Theorem 1-2.] for a relaxed analysis in the discrete case.

B SOME USEFUL FACTS

We present the variational representation of mutual information below.

Lemma B.1 (Polyanskiy and Wu [2019, Corollary 3.1.]). For two random variables X and Y , we have

I(X;Y ) = inf
P

EX

[
DKL(QY |X ||P )

]
,

where the infimum is achieved at P = QY .

The following lemma is inspired by the classic Log-sum inequality in Cover and Thomas [2012, Theorem 2.7.1].

Lemma B.2. For non-negative numbers {ai}ni=1 and {bi}ni=1,

n∑
i=1

bi log
ai
bi

≤

(
n∑

i=1

bi

)
log

∑n
i=1 ai∑n
i=1 bi

,

with equality if and only if ai

bi
= const.

Proof. Since log is a concave function, according to Jensen’s inequality, we have
n∑

i=1

αi log(xi) ≤ log(

n∑
i=1

αixi),

where
∑n

i=1 αi = 1.

Let αi =
bi∑n
i=1 bi

and xi =
ai

bi
, and plugging them into the inequality above, we have

n∑
i=1

bi∑n
i=1 bi

log(
ai
bi
) ≤ log

(
n∑

i=1

bi∑n
i=1 bi

ai
bi

)
= log

(∑n
i=1 ai∑n
i=1 bi

)
,

which implies
n∑

i=1

bi log(
ai
bi
) ≤

(
n∑

i=1

bi

)
log

(∑n
i=1 ai∑n
i=1 bi

)
.

This completes the proof.

3529



Below is the KL divergence between two Gaussian distributions p = N (µp,Σp) and q = N (µq,Σq), where µp, µq ∈ Rd

and Σp,Σq ∈ Rd×d.

DKL(p||q) =
1

2

[
log

det(Σq)

det(Σp)
− d+ (µp − µq)

TΣ−1
q (µp − µq) + tr

{
Σ−1

q Σp

}]
. (14)

C OMITTED PROOFS AND ADDITIONAL RESULTS IN SECTION 3

C.1 PROOF OF LEMMA 3.1

Proof. Recall the SDE approximation of SGD, i.e., Eq (5), we then have,

I(WT ;S) = I(WT−1 − ηGT + ηC
1/2
T NT ;S)

≤ I(WT−1,−ηGT + ηC
1/2
T NT ;S) (15)

= I(WT−1;S) + I(−ηGT + ηC
1/2
T NT ;S|WT−1) (16)

...

≤
T∑

t=1

I(−ηGt + ηC
1/2
t Nt;S|Wt−1)

=

T∑
t=1

I(−Gt + C
1/2
t Nt;S|Wt−1).

where Eq. (15) is by the data processing inequality (e.g., Z − (X,Y )− (X + Y ) form a markov chain then I(X + Y, Z) ≤
I(X,Y ;Z)), Eq. (16) is by the chain rule of the mutual information, and learning rate η is dropped since mutual information
is scale-invariant.

C.2 PROOF OF LEMMA 3.2

Proof. For any t ∈ [T ], similar to the proof of Lemma B.1 in Polyanskiy and Wu [2019]:

I(−Gt + C
1/2
t Nt;S|Wt−1 = wt−1)

= Ewt−1

S

[
DKL(QĜt|wt−1,S

||QĜt|wt−1
)
]

= Ewt−1

S

[
DKL(QĜt|wt−1,S

||PĜt|wt−1
)−DKL(QĜt|wt−1

||PĜt|wt−1
)
]

≤ Ewt−1

S

[
DKL(QĜt|wt−1,S

||PĜt|wt−1
)
]
, (17)

where Eq. (17) is due to the fact that KL divergence is non-negative, and the equality holds when PĜt|wt−1
= QĜt|wt−1

for
Wt−1 = wt−1.

Thus, we conclude that

I(Ĝt;S|Wt−1 = wt−1) = inf
PĜt|wt−1

Ewt−1

S

[
DKL(QĜt|wt−1,S

||PĜt|wt−1
)
]
.

Taking expectation over Wt−1 for both side above, we have

I(Ĝt;S|Wt−1) = EWt−1

[
inf

PĜt|Wt−1

EWt−1

S

[
DKL(QĜt|Wt−1,S

||PĜt|Wt−1
)
]]

.

This completes the proof.
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C.3 PROOF OF THEOREM 3.1

Proof. We first prove Eq. (6). Recall Lemma 3.2 and assume Ct is a positive-definite matrix, for any t ∈ [T ], we have

I(−Gt + C
1/2
t Nt;S|Wt−1 = wt−1)

≤ inf
g̃t,σt

Ewt−1

S

[
DKL(Q−Gt+C

1/2
t Nt|wt−1,S

||P−g̃t+σtNt|wt−1
)
]

= inf
g̃t,σt

Ewt−1

S

[
1

2

[
log

det(σ2
t Id)

det(Ct)
− d+

1

σ2
t

((Gt − g̃t)
TI−1

d (Gt − g̃t)) +
1

σ2
t

tr
{
I−1
d Ct

}]]
(18)

=
1

2
inf
g̃t,σt

Ewt−1

S

[
1

σ2
t

(
||Gt − g̃t||2 + tr {Ct}

)
+ d log σ2

t − d− tr {logCt}
]
, (19)

where Eq. (18) is by Eq. (14), Eq. (19) is due to the fact that log det(Ct) = tr{logCt} when Ct is positive definite.

Recall that h1(w) = Ew
S

[
||Gt − g̃t||2 + tr {Ct}

]
and h2(w) = Ew

S [tr {logCt}], then we have

1

2
inf
g̃t,σt

1

σ2
t

Ewt−1

S

[
||Gt − g̃t||2 + tr {Ct}

]
+ d log σ2

t − d− Ewt−1

S [tr {logCt}]

≤ 1

2
inf
σt>0

1

σ2
t

h1(wt−1) + d log σ2
t − d− h2(wt−1)

=
1

2
d log

h1(wt−1)

d
− 1

2
h2(wt−1),

where we fix an arbitrary g̃t and use the optimal σ∗ =
√

h1(wt−1)
d .

Plugging everything into Lemma 3.1 and Lemma 2.1 will obtain Eq. (6).

We then prove the second part. Let g̃t = EZ [∇ℓ(wt−1, Z)], then

h1(Wt−1) =EWt−1

S

[
||Gt − g̃t||2 + tr {Ct}

]
=EWt−1

S

[
tr
{
(Gt − g̃t)((Gt − g̃t)

T
}]

+ tr
{
EWt−1

S [Ct]
}

=
1

n
tr {Σµ

t }+
n− b

b(n− 1)
tr
{
EWt−1

S [Σt]
}

(20)

=
1

n
tr {Σµ

t }+
n− b

bn
tr {Σµ

t } (21)

=
1

b
tr {Σµ

t } ,

where Eq. (20) is by ES

[
(Gt − g̃t)((Gt − g̃t)

T
]
= 1

nΣ
µ
t for a given Wt−1 = wt−1 and Ct =

n−b
b(n−1)Σt, and Eq. (21) is by

ES [Σt] =
n−1
n Σµ

t . This completes the proof.

C.4 PROOF OF COROLLARY 3.1

Proof. Let Ct = Id, by Theorem 3.1,

Eµ(A) ≤

√√√√√R2

n

T∑
t=1

dEWt−1

log EWt−1

S

[
||Gt − g̃t||2 + tr {Ct}

]
d

− EWt−1,S [tr {logCt}]

=

√√√√√R2

n

T∑
t=1

dEWt−1

log EWt−1

S

[
||Gt − g̃t||2

]
d

+ 1

.
This completes the proof.
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C.5 PROOF OF THEOREM 3.2

Proof. Recall Lemma 3.2, we have

I(−Gt + C
1/2
t Nt;S|Wt−1 = wt−1)

≤ inf
c̃t

Ewt−1

S

[
DKL(QĜt|wt−1,S

||PĜt|wt−1
)
]

= inf
c̃t

Ewt−1

S

[
1

2

[
log

det(c̃tΣ
µ
t )

det(Ct)
− d+

1

c̃t
((Gt − g̃t)

T (Σµ
t )

−1
(Gt − g̃t)) +

1

c̃t
tr
{
(Σµ

t )
−1

Ct

}]]
=
1

2
inf
c̃t

1

c̃t
tr
{
(Σµ

t )
−1 Ewt−1

S

[
(Gt − g̃t)((Gt − g̃t)

T
]}

+
1

c̃t
tr
{
(Σµ

t )
−1 Ewt−1

S [Ct]
}
+ tr

{
log Σµ

t − Ewt−1

S [logCt]
}
+ d log c̃t − d

=
1

2
inf
c̃t

1

c̃tn
tr
{
(Σµ

t )
−1

Σµ
t

}
+

n− b

c̃tbn
tr
{
(Σµ

t )
−1

Σµ
t

}
+ tr

{
log Σµ

t − Ewt−1

S [logCt]
}
+ d log c̃t − d (22)

=
1

2
inf
c̃t

d

c̃tn
+

(n− b)d

c̃tbn
+ tr

{
log Σµ

t − Ewt−1

S [logCt]
}
+ d log c̃t − d

=
1

2
inf
c̃t

d

bc̃t
+ d log c̃t + tr

{
log Σµ

t − Ewt−1

S [logCt]
}
− d

=
d

2
log

1

b
+

1

2
tr
{
log Σµ

t − Ewt−1

S [logCt]
}
,

where the last equality hold when c̃∗t = 1/b and Eq. (22) is by

Ewt−1

S

[
(Gt − g̃t)((Gt − g̃t)

T
]
=

1

n
Σµ

t , and

Ewt−1

S [Ct] =
n− b

b(n− 1)
Ewt−1

S [Σt] =
n− b

b(n− 1)

n− 1

n
Σµ

t =
n− b

bn
Σµ

t .

This completes the proof.

C.6 PROOF OF LEMMA 3.3

Proof. Let the diagonal element of Σµ
t /b in dimension k be ak, then

d∑
k=1

log ak ≤ (

d∑
k=1

1) · log (
d∑

k=1

ak)/(

d∑
k=1

1) = d log(tr {Σµ
t }/bd),

where we invoke Lemma B.2.

This completes the proof.

C.7 ADDITIONAL RESULT VIA DATA-DEPENDENT PRIOR

With the same spirit of Lemma 3.1, to apply Lemma 2.2 to iterative algorithms, we also need the lemma below, which using
the full training trajectories KL divergence to upper bound the final output KL divergence.

Lemma C.1 (Negrea et al. [2019, Proposition 2.6.]). Assume that PW0
= QW0

, then DKL(PWT
||QWT

) ≤∑T
t=1 EW0:t−1

[
DKL(PWt|W0:t−1

||QWt|W0:t−1
)
]
.

Let GJt ≜ ∇LSJ
(Wt−1), the SDE approximation of this prior updating is defined as:

Wt = Wt−1 − ηGJt + ηC
1
2

JtNt,
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where CJt =
1
b

(
1
m

∑
i∈J ∇ℓi∇ℓTi −GJtG

T
Jt

)
is the gradient noise covariance of the prior process. In this case, the prior

distribution PGJt|W0:t−1
will be an anisotropic Gaussian distribution. We also assume n ≫ b, then Ct =

1
bΣt.

We denote the difference between Gt and GJt by

ξt ≜ GJt −Gt.

To see the relationship between ξt, CJt and Ct, we present a useful lemma below.

Lemma C.2. If m = n− 1, then the following two equations hold,

E
[
ξtξ

T
t

]
=

b

(n− 1)2
Ct, E [CJt] =

n(n− 2)

(n− 1)2
Ct,

where the expectation is taken over J .

Instead of using Lemma 2.2, we invoke the following result which is a simple extension of [Negrea et al., 2019, Theorem 2.5].

Lemma C.3 ([Wang et al., 2021a, Theorem 1.]). Assume the loss ℓ(w,Z) is bounded in [0,M ], the expected generalization
gap is bounded by

Eµ(A) ≤ M√
2
ES,J

√
DKL(PW |SJ

||QW |S)

Comparison with the work of Wang et al. [2021a] Wang et al. [2021a] studies the algorithm of SGD with anisotropic
noise, while our SDE analysis focuses on GD with anisotropic noise. This means that the discrete gradient noise arising
from mini-batch sampling still exists in their analyzed algorithm, whereas the gradient noise is fully modeled as Gaussian in
our Section A.1. Moreover, Wang et al. [2021a] uses matrix analysis tools to optimize the prior distribution. A significant
distinction lies in their optimization analysis, which relies on the assumption that the trace of gradient noise covariance
remains unchanged during training (see Constriant 1 in their paper). Additionally, their final optimal posterior covariance is
derived based on the assumption that the posterior distribution of W is invariant to the data index, see Assumption 1 in their
paper. In contrast, our Section A.1 avoids making these assumptions and demonstrates the superiority of population gradient
noise covariance (GNC) in Lemma 3.3, by invoking a variant of the log-sum inequality. In summary, our proof is simpler
and more straightforward, while Wang et al. [2021a] makes a stronger claim about the optimality of population GNC based
on their additional assumptions.

As introduced in Wang et al. [2021a], the subsequent analysis based on the data-dependent prior bound will rely on an
additional assumption.

Assumption 1. When m = n− 1, given dataset S = s, the distribution PWt|J,SJ
is invariant of J .

In Wang et al. [2021a], authors mention that in practice, n is usually very large, so this assumption hints that changing one
instance in SJ will not make PWt|J,SJ

be too different.

We are now in a position to state the following theorem.

Theorem C.1. Assume the loss ℓ(w,Z) is bounded in [0,M ] and Assumption 1 hold,the expected generalization gap of
SGD is bounded by

Eµ(A) ≤ ES


√√√√M2

T∑
t=1

EWt−1

[(
(b− 1)d

(n− 1)2
+ tr

{
EJ

[
logCtC

−1
Jt

]})].
Proof. By Lemma C.3 and Lemma C.1, we have

Eµ(A) ≤ES,J


√√√√R′2

2

T∑
t=1

EW0:t−1|S,J
[
DKL(PWt|W0:t−1,SJ

||QWt|W0:t−1,S)
]

≤ES


√√√√R′2

2

T∑
t=1

EW0:t−1|S,J
[
EJ

[
DKL(PWt|W0:t−1,SJ

||QWt|W0:t−1,S)
]], (23)
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where Eq. (23) is by Jensen’s inequality and Assumption 1.

Recall Σt =
1
n

∑n
i=1 ∇ℓ(Wt−1, Zi)∇ℓ(Wt−1, Zi)

T −∇LS(Wt−1)∇LS(Wt−1)
T and Ct =

1
bΣt.

By the KL divergence between two Gaussian distributions, for any t ∈ [T ], we have

EJ

[
DKL(PWt|W0:t−1,SJ

||QWt|W0:t−1,S)
]

= EJ

[
1

2

(
ξTt C−1

t ξt + log
det(Ct)

det(CJt)
+ tr{C−1

t CJt} − d

)]
(24)

=
1

2

(
tr{C−1

t EJ

[
ξtξ

T
t

]
}+ EJ

[
log

det(Ct)

det(CJt)

]
+ EJ

[
tr{C−1

t CJt}
]
− d

)
=

1

2

(
1

(n− 1)2
tr{C−1

t Σt}+ EJ

[
log

det(Ct)

det(CJt)

]
+ EJ

[
tr{C−1

t CJt}
]
− d

)
(25)

=
1

2

(
b

(n− 1)2
tr{Σ−1

t Σt}+ EJ

[
log

det(Ct)

det(CJt)

]
+ tr{C−1

t EJ [CJt]} − d

)
=

1

2

(
bd

(n− 1)2
+

n(n− 2)d

(n− 1)2
− d+ tr{logCt − EJ [logCJt]}

)
(26)

=
1

2

(
(b− 1)d

(n− 1)2
+ tr{logCt − EJ [logCJt]}

)
where Eq. (25) and Eq. (26) are by Lemma C.2. This concludes the proof.

Remark C.1. If the bound in Negrea et al. [2019] is used, then the first term in Eq. (24) is ξTt C−1
Jt ξt, where both CJt and

ξt dependent on J , making the bound difficult to analyze.

The effect of tr{logCt} on the magnitude of the bound can be decreased by the tr{EJ logCJt}. If we further consider
Taylor expansion of the function logCJt around EJ [CJt], we have a well-known approximation

E [logCJt] ≈ logE [CJt]−Var(CJt)/(2E2[CJt]).

Thus, recall Lemma C.2, the difference between tr{logCt} and tr{EJ logCJt} would become:

log (1 + 1/(n2 − 2n)) + Var(CJt)/(2E2[CJt]).

Thus, the generalization gap should be characterized by the second term above.

When n → ∞, the first term will converges to zero, and for the second term, E2[CJt] will converge to a constant by Lemma
C.2, and then the bound is Var(CJt) will also converges to zero.

D OMITTED PROOFS, ADDITIONAL RESULTS AND DISCUSSIONS IN SECTION 4

In fact, this section provides a PAC-Bayes type analysis. The connection between information-theoretic bounds and
PAC-Bays bounds have already been discussed in many previous works [Bassily et al., 2018, Hellström and Durisi,
2020, Alquier, 2021]. Roughly speaking, the most significant component of a PAC-Bayes bound is the KL divergence
between the posterior distribution of a randomized algorithm output and a prior distribution, i.e. DKL(QWT |S ||PN ) for
some prior PN . In essence, information-theoretic bounds can be view as having the same spirit. For concreteness, in
Lemma 2.1, I(WT ;S) = ES [DKL(QWT |S ||PWT

)], in which case the marginal PWT
is used as a prior of the algorithm

output. Furthermore, by using Lemma B.1, we have I(WT ;S) ≤ infPN
ES [DKL(QWT |S ||PN )]. Hence, Lemma 2.1 can be

regarded as a PAC-Bayes bound with the optimal prior. In addition, the PAC-Bayes framework is usually used to provide a
high-probability bound, while information-theoretic analysis is applied to bounding the expected generalization error. In this
sense, information-theoretic framework is closer to another concept called MAC-Bayes [Grunwald et al., 2021].

D.1 PROOF OF LEMMA 4.1

Proof. Recall Gt = ∇Ls(wt) = Hw∗ (wt − w∗). and Eq. (2), then

wt =wt−1 − ηGt + ηVt

=wt−1 − ηHw∗ (wt−1 − w∗) + ηVt.
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Let W ′
t ≜ Wt − w∗. Thus, as T → ∞,

EW ′
T

[
W ′

TW
′
T
T
]

=EW ′
T−1,VT

[(
W ′

T−1 − ηHw∗W ′
T−1 + ηVt

) (
W ′

T−1 − ηHw∗W ′
T−1 + ηVt

)T]
=EW ′

T−1

[
W ′

T−1W
′T
T−1 − ηHw∗W ′

T−1W
′T
T−1 − ηW ′

T−1W
′T
T−1Hw∗ + η2Hw∗W ′

T−1W
′T
T−1Hw∗

]
+ η2EVT

[
VTVT

T
]
,

where the last equation is by EwT−1

VT
[VT ] = 0.

Recall that EVT

[
VTVT

T
]
= CT and notice that EW ′

T

[
W ′

TW
′
T
T
]
= EW ′

T−1

[
W ′

T−1W
′
T−1

T
]
= Λw∗ when T → ∞ (i.e.

ergodicity), we have
Λw∗Hw∗ +Hw∗Λw∗ − ηHw∗Λw∗Hw∗ = ηCT .

Furthermore, if Hw∗ and Λw∗ commute, namely Λw∗Hw∗ = Hw∗Λw∗ , we have

[Hw∗ (2Id − ηHw∗)] Λw∗ = ηCT ,

which will give use Λw∗ = η [Hw∗ (2Id − ηHw∗)]
−1

CT .

This completes the proof.

D.2 THEOREM D.1: A GENERAL BOUND

The following bound can be easily proved by using Eq. (14).

Theorem D.1. Under the same conditions in Lemma 2.1 and Lemma 4.1, then for any PWT
= N

(
w̃, Λ̃

)
, where w̃ and Λ̃

are independent of S, we have

Eµ(A) ≤

√√√√√R2

2n
inf
w̃,Λ̃

ES,W∗
S

log det
(
Λ̃
)

det
(
ΛW∗

S

) + tr
{
Λ̃−1ΛW∗

S
− Id

}
+ d2M

(
W ∗

S , w̃; Λ̃
),

where dM (x, y; Σ) ≜
√

(x− y)TΣ−1(x− y) is the Mahalanobis distance.

D.3 PROOF OF THEOREM 4.1

Proof. Let PWT
= N

(
w∗

µ,Λw∗
µ

)
, then

ES,W∗
S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

) + tr
{
Λ−1
w∗

µ
ΛW∗

S
− Id

}
+
(
W ∗

S − w∗
µ

)T
Λ−1
w∗

µ

(
W ∗

S − w∗
µ

)
=ES,W∗

S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

) + tr
{
Λ−1
w∗

µ
ΛW∗

S
− Id

}
+ tr

{
Λ−1
w∗

µ

(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T}
=ES,W∗

S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

)
+ tr

{
Λ−1
w∗

µ
ES,W∗

S

[
ΛW∗

S

]
− Id + Λ−1

w∗
µ
EW∗

S

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T]}
. (27)

Denote Σ̃µ ≜ ES,W∗
S

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T]
= EW∗

S

[
W ∗

SW
∗
S
T
]
− w∗

µw
∗
µ
T.
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Notice that

ES,W∗
S

[
ΛW∗

S

]
=ES,W∗

S ,WT

[
(WT −W ∗

S) (WT −W ∗
S)

T
]

=EWT

[
WTWT

T
]
− EW∗

S

[
W ∗

SW
∗
S
T
]

=EWT

[
WTWT

T
]
− w∗

µw
∗
µ
T −

(
EW∗

S

[
W ∗

SW
∗
S
T
]
− w∗

µw
∗
µ
T
)

=Λw∗
µ
− Σ̃µ.

Therefore,

tr
{
Λ−1
w∗

µ
ES,W∗

S

[
ΛW∗

S

]
− Id + Λ−1

w∗
µ
EW∗

S

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T]}
=tr

{
Λ−1
w∗

µ
ES,W∗

S

[
ΛW∗

S

]
− Λ−1

w∗
µ
Λw∗

µ
+ Λ−1

w∗
µ
EW∗

S

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T]}
=tr

{
Λ−1
w∗

µ

(
ES,W∗

S

[
ΛW∗

S

]
− Λw∗

µ
+ Σ̃µ

)}
=0.

Plugging this into Eq. (27), we have

ES,W∗
S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

) + tr
{
Λ−1
w∗

µ
ΛW∗

S
− Id

}
+
(
W ∗

S − w∗
µ

)T
Λ−1
w∗

µ

(
W ∗

S − w∗
µ

)
= ES,W∗

S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

)
 = ES,W∗

S

[
tr
{
log
(
Λ−1
W∗

S
Λw∗

µ

)}]
.

Finally, applying Theorem D.1 will conclude the proof.

D.4 PROOF OF COROLLARY 4.1

Proof. The proof is straightforward by plugging Λw∗ =
[
Hw∗

(
2
η Id

)]−1

CT in Theorem 4.1.

D.5 PROOF OF COROLLARY 4.2

Proof. By Lemma B.2, it’s easy to obtain the following bound according to Theorem 4.1.

Eµ(A) ≤

√√√√R2d

2n
log

(
E
[
d2M
(
W ∗

S , w
∗
µ;E

[
ΛW∗

S

])]
d

+ 1

)
+ E

[
tr
{
log
(
Λ−1
W∗

S
E
[
ΛW∗

S

])}]
.

Then, plugging ΛW∗
S
= η

2b Id will conclude the proof.

D.6 COROLLARY D.1: DISTANCE TO INITIALIZATION

Corollary D.1. Under (i-iii) in Lemma 4.1, then Eµ(A) ≤
√

dR2

n log
(

2b
ηdE||W

∗
S −W0||2 + 1

)
.
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Proof. Notice that I(WT ;S) ≤ ESDKL(QWT |S ||PWT
) holds for any σ > 0, then for a given w̃, we have

I(WT ;S) = inf
PWT

ES

[
DKL(QWT |S ||PWT

)
]

≤ inf
σ

ES

[
DKL(PW∗

S+
√

η
2bN,W∗

S |S ||Pw̃+σN )
]

(28)

= inf
σ

ES,W∗
S

[
DKL(PW∗

S+
√

η
2bN,|S,W∗

S
||Pw̃+σN )

]
= inf

σ

1

2
ES,W∗

S

[
1

σ2
(W ∗

S − w̃)T(W ∗
S − w̃) + log

σ2d

(η/2b)d
+ tr{ η

2bσ2
Id} − d

]
=

1

2
inf
σ

1

σ2
ES,W∗

S

[
||W ∗

S − w̃||2 + ηd

2b

]
+ d log σ2 + d log

2b

η
− d

=
1

2
d log

(
2b

ηd
ES,W∗

S

[
||W ∗

S − w̃||2
]
+ 1

)
, (29)

where Eq. (28) is by the chain rule of KL divergence, and the optimal σ∗ =
√
ES,W∗

S

[
||W ∗

S − w̃||2/d+ η
2b

]
. Let w̃ = W0

will conclude the proof.

Additionally, Corollary D.1 can be used to recover a trajectory-based bound.

Corollary D.2. Let WT = W ∗
s , w̃ = 0 and W.L.O.G, assume W0 = 0, then

Eµ(A) ≤

√√√√dR2

n
log

(
4bTη

d

T∑
t=1

E [||Gt||2 + tr{Ct}] + 1

)
,

Remark D.1. In Theorem 3.1, let g̃ = 0 and by applying Jensen’s inequality, we could also let the summation and factor T
move inside the square root. Then the most different part in Corollary D.2 is that A2(t) is now removed from the bound.

Proof. When W0 = 0, we notice that

WT =

T∑
t=1

−ηGt + ηNCt
,

where NCt
= C

1/2
t Nt.

Thus,

||WT ||2 = ||
T∑

t=1

−ηGt + ηNCt ||2 ≤ 2Tη2
T∑

t=1

||Gt||2 + ||NCt ||2

Let w̃ = 0, recall the bound in Corollary D.1 and plugging the inequality above, we have

Eµ(A) ≤

√
R2

n
d log

(
2b

ηd
ES,WT

[||WT − w̃||2] + 1

)

≤

√√√√dR2

n
log

(
4bTη/dES,W0:T−1,NC0:t−1

[
T∑

t=1

||Gt||2 + ||NCt
||2
]
+ 1

)

=

√√√√dR2

n
log

(
4bTη

d

T∑
t=1

ES,Wt−1
[||Gt||2 + tr{Ct}] + 1

)

This concludes the proof.
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D.7 PROOF OF THEOREM 4.2

Proof. Let PWT |SJ=sj = N (W ∗
sj ,

η
2b Id), then

DKL(QWT |S=s||PWT |SJ=sj ) = DKL(QW∗
s +

√
η
2bN |S=s

||P
W∗

sj
+
√

η
2bN |SJ=sj

)

≤ DKL(QW∗
s +

√
η
2bN,W∗

s |S=s
||P

W∗
sj

+
√

η
2bN,W∗

sj
|SJ=sj

) (30)

= EW∗
s ,W∗

sj

[
DKL(QW∗

s +
√

η
2bN |W∗

s ,S=s
||P

W∗
sj

+
√

η
2bN |W∗

sj
,SJ=sj

)

]
= EW∗

s ,W∗
sj

[
b

η
||W ∗

s −W ∗
sj ||

2

]
, (31)

where Eq. (30) is by the chain rule of KL divergence. Plugging the Eq. (31) into Lemma 2.2 will obtain the final result.

D.8 ADDITIONAL EMPIRICAL RESULTS
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Figure 6: Zoomed-in of generalization error.
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Figure 7: Estimated trajectory-based bound and terminal-state based bound, with R excluded. Models trained on CIFAR 10.

E ADDITIONAL RESULT: INVERSE POPULATION FIM AS BOTH POSTERIOR AND
PRIOR COVARIANCE

Inspired by some previous works of [Achille et al., 2019, Harutyunyan et al., 2021, Wang et al., 2022], we can also select
the inverse population Fisher information matrix Fµ

w∗ = EZ

[
∇ℓ(w∗, Z)∇ℓ(w∗, Z)T

]
as the posterior covariance. Then,

the following theorem is obtained.

Theorem E.1. Under the same conditions in Theorem 4.2, and assume the distribution PW∗
SJ

|SJ
is invariant of J , then

Eµ(A) ≤ M

2n
ES

[√
ES
W∗

S

[
tr{H−1

W∗
S
Fµ
W∗

S
}
]]

.
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Remark E.1. Notice that Fµ
W∗

S
≈ Hµ

W∗
S
≈ Σµ(W ∗

S) near minima [Pawitan, 2001, Chapter 8], then tr{H−1
W∗

S
Σµ(W ∗

S)} is
very close to the Takeuchi Information Criterion [Takeuchi, 1976]. In addition, our bound in Theorem E.1 is similar to Singh
et al. [2022, Theorem 3.] with the same convergence rate, although strictly speaking, their result is not a generalization
bound. Moreover, as also pointed out in Singh et al. [2022], here H−1

W∗
S

is evaluated on the training sample, unlike other
works that evaluates the inverse Hessian on the testing sample (e.g., Thomas et al. [2020]).

The invariance assumption is also used in Wang et al. [2021a]. In practice, n is usually very large, when m = n− 1, this
assumption indicates that replacing one instance in sj will not make PW∗

sj
|sj be too different.

Proof of Theorem E.1. We now use (Fµ
W∗

S
)−1 as both the posterior and prior covariance (again, we assume Fµ

W∗
S
≈ Fµ

W∗
Sj

for any j), then

Eµ(A) ≤ES

[√
M2

4
ES
J,W∗

S ,W∗
SJ

[(
W ∗

S −W ∗
SJ

)
Fµ
W∗

S

(
W ∗

S −W ∗
SJ

)T]]

=
M

2n
ES

[√
ES
W∗

S ,W∗
Sj

[
tr
{
Fµ
W∗

S
H−1

W∗
S
H−1

W∗
S
EJ [∇ℓ(W ∗

S , Zi)∇ℓ(W ∗
S , Zi)T]

}]]
=
M

2n
ES

[√
ES
W∗

S

[
tr
{
Fµ
W∗

S
H−1

W∗
S

}]]
,

which completes the proof.
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