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Abstract

Instrumental variables (IVs) are a popular and pow-
erful tool for estimating causal effects in the pres-
ence of unobserved confounding. However, classi-
cal approaches rely on strong assumptions such as
the exclusion criterion, which states that instrumen-
tal effects must be entirely mediated by treatments.
This assumption often fails in practice. When IV
methods are improperly applied to data that do not
meet the exclusion criterion, estimated causal ef-
fects may be badly biased. In this work, we propose
a novel solution that provides partial identification
in linear systems given a set of leaky instruments,
which are allowed to violate the exclusion criterion
to some limited degree. We derive a convex op-
timization objective that provides provably sharp
bounds on the average treatment effect under some
common forms of information leakage, and imple-
ment inference procedures to quantify the uncer-
tainty of resulting estimates. We demonstrate our
method in a set of experiments with simulated data,
where it performs favorably against the state of the
art. An accompanying R package, leakyIV, is
available from CRAN.

1 INTRODUCTION

Estimating causal effects from observational data can be
challenging when treatments are not randomly assigned.
While the task is doable under some structural assumptions
[Rubin, 2005, Shpitser and Pearl, 2008, Pearl, 2009], most
methods require access to data on potential confounders.
This access cannot be generally guaranteed, since confound-
ing variables may be unknown or difficult to measure. One
common strategy for identifying causal effects under unob-
served confounding relies on instrumental variables (IVs)
[Wright, 1928, Bowden and Turkington, 1984, Angrist et al.,
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Figure 1: Causal diagram with treatment X , outcome Y , un-
observed confounder U (shaded), and candidate instruments
Z1, . . . , ZdZ . Dashed edges suggest possible violations of
the exclusion criterion. Edges among Z are allowed, but
omitted for simplicity.

1996], which have a direct effect on the treatment but only an
indirect effect on outcomes. For instance, single nucleotide
polymorphisms (SNPs) often serve as IVs in genetic epi-
demiology, where they may be used to investigate the impact
of phenotypes (e.g., cholesterol levels) on health outcomes
(e.g., cancer) in Mendelian randomization studies [Smith
and Ebrahim, 2004, Didelez and Sheehan, 2007, Lawlor
et al., 2008].

The IV model relies on three core conditions, formally
defined in Sect. 2. Informally, we may describe IVs as
variables that are (A1) relevant, i.e. associated with the
treatment; (A2) unconfounded, i.e. independent of common
causes between treatment and outcome; and (A3) exclu-
sive, i.e. only affect outcomes through the treatment. Under
some restrictions on structural equations, IVs can be used
to recover causal effects despite the presence of unobserved
confounding. Popular IV methods include two-stage least
squares [Angrist and Imbens, 1995], as well as nonpara-
metric extensions based on conditional moment restrictions
[Newey and Powell, 2003, Newey, 2013, Bennett et al.,
2019] and more recent works exploiting kernel regression
[Singh et al., 2019, Muandet et al., 2020, Zhang et al., 2023]
and neural networks [Hartford et al., 2017, Xu et al., 2021,
Saengkyongam et al., 2022].
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Of the three core conditions that characterize the IV setup,
only (A1) can be immediately evaluated via observables.
(A2) fails if the latent confounder between treatment and
outcome is also a parent of some proposed IV(s). To con-
tinue with the Mendelian randomization example, this issue
can arise when nearby variants are correlated, a phenomenon
known as linkage disequilibrium [Reich et al., 2001]. (A3)
fails if the proposed IV is a direct cause of the outcome (see
Fig. 1). This can happen with complex traits in genetics,
where one gene affects multiple seemingly unrelated sys-
tems through a process called horizontal pleiotropy [Solovi-
eff et al., 2013]. If IV methods are naïvely applied in either
case, resulting inferences can be severely biased [Vander-
Weele et al., 2014].

Since valid IVs may be impossible to identify a priori, sev-
eral authors in recent years have proposed methods to es-
timate causal effects given just a set of candidate IVs (see
Sect. 5). Details vary, but the goal is almost always to re-
cover point estimates for the average treatment effect (ATE),
possibly with associated confidence or credible intervals. We
set a strictly more general target, relaxing (A3) to recover
nontrivial bounds on this parameter, i.e. to partially identify
the ATE. There is a long tradition of analytic and Bayesian
methods for partial identification in IV models [Manski,
1990, Chickering and Pearl, 1996, Balke and Pearl, 1997],
as well as more recent works that exploit the flexibility of
stochastic gradient descent [Kallus and Zhou, 2020, Kilber-
tus et al., 2020, Hu et al., 2021]. Generally, a set of valid IVs
is presumed—although some authors have considered the
case where a single instrument is allowed to have a small
effect on the outcome [Ramsahai, 2012, Conley et al., 2012,
Silva and Evans, 2016].

We propose a novel procedure for bounding causal effects
in settings where the exclusion criterion (A3) may not hold.
Our method takes a set of leaky instruments, which are
permitted to violate (A3) to some limited degree, and uses
them to minimize confounding effects on the causal pathway
of interest. Focusing on linear structural equation models
(SEMs), we derive partial identifiability conditions for the
ATE with access to leaky instruments, and use them to for-
mulate a convex optimization objective. Resulting bounds
are provably sharp—that is, they cannot be improved with-
out further assumptions—and practically useful, providing
causal information in many settings where classical methods
fail. Finally, we propose a statistical test for exclusion and
implement a generic bootstrapping procedure with coverage
guarantees for estimated bounds.

The rest of this paper is structured as follows. We introduce
the leaky IV model in Sect. 2. We present formal results
in Sect. 3 and experimental results in Sect. 4. Following a
review of related work in Sect. 5, we discuss limitations and
generalizations of our method in Sect. 6. We conclude in
Sect. 7 with a summary and future directions.
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Figure 2: Causal diagram of the SEM described by Eqs. 1-3.
Edge weights correspond to linear coefficients, while unob-
served confounding effects are represented by the bidirected
edge connecting ϵx and ϵy. The dashed edge from Z to Y
denotes possible violations of (A3).

2 PROBLEM SETUP

Notation. We denote individual variables with capital
italic letters (e.g., X) and bundled sets of variables in
boldface capital italics (e.g., Z = {Zj}dZj=1). We use
square brackets to indicate set enumeration, e.g. [dZ ] =
{1, . . . , dZ}. Parameters are symbolized as Greek letters,
with boldface for vectors (e.g., β) and boldface capitals for
matrices (e.g., Σ).

Standard notation for (co)variances can sometimes be con-
fusing. Here we use the capital Σ for any such quadratic
expectation, regardless of whether it is a scalar, vector, or
matrix—the subscripts will contain all the necessary infor-
mation as to its dimensions. For instance, we write Σxy for
Cov(X,Y ) (as opposed to σxy) and Σxx for Var(X) (as
opposed to σ2

x). As a convenient byproduct, the notation
generalizes more naturally to vector-valued variables.

The Leaky IV Setting. Consider a linear SEM with treat-
ment X ∈ R, outcome Y ∈ R, and a set of candidate IVs
Z ∈ RdZ . Assume that all variables have mean 0 and fi-
nite variance. Data are generated according to the following
process (see Fig. 2):

X = β ·Z + ϵx (1)
Y = γ ·Z + θX + ϵy (2)

Σϵϵ =

[
η2x ρηxηy

ρηxηy η2y

]
, (3)

where θ ∈ R and β,γ ∈ RdZ are linear weights; and
ϵx, ϵy ∈ R are residuals with mean 0, standard deviations
ηx, ηy ≥ 0, and correlation ρ ∈ [−1, 1]. This latter parame-
ter ρ quantifies the magnitude and direction of unobserved
confounding. To better interpret results, we assume all Z’s
are on roughly the same scale (e.g., standardized to unit
variance). We make no further assumptions about the dis-
tribution of Z. Our goal is to bound θ, which denotes the
average treatment effect (ATE) of X on Y .
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In the classical nonparametric IV setting, we have a set of
unobserved confounders U ∈ RdU with direct effects on
both X and Y . Then Z is a set of valid instruments if and
only if the following conditions are satisfied:1

(A1) Relevance: Z⊥̸⊥X
(A2) No confounding: Z ⊥⊥U
(A3) Exclusion criterion: Z ⊥⊥Y | {X,U}.

Adapting these assumptions to a linear SEM, we posit that
U is a parent of both noise variables satisfying ϵx⊥⊥ ϵy | U
and equate (conditional) independence with (conditional)
covariance of zero. Under these conditions, we may com-
pute treatment effects via two-stage least squares (2SLS)
[Bowden and Turkington, 1984]. For this procedure, we
solve Eq. 1 with ordinary least squares (OLS) and substitute
fitted values from this model for X in Eq. 2, which is in turn
solved via OLS. The resulting θ̂2SLS is our ATE estimate.
Note that (A3) implies that ∥γ∥ = 0, since in this case each
Zj ∈ Z receives zero weight in Eq. 2.

We relax the exclusion criterion and consider two modified
variants using scalar or vector-valued thresholds.

(A3′s) Scalar τ -exclusion: ∥γ∥p ≤ τ
(A3′v) Vector τ -exclusion: ∀j ∈ [dZ ] : |γj | ≤ τj .

That is, we allow Z to have some direct effect on Y but
restrict this influence either by placing an upper bound on
the Lp-norm of the γ coefficients (scalar-valued τ ) or by
placing separate thresholds on the magnitude of each indi-
vidual coefficient (vector-valued τ ). We derive sharp ATE
bounds for both cases, as well as a closed form solution
under (A3′s) when p = 2.

We call variables that satisfy (A1), (A2), and either form
of τ -exclusion leaky instruments. These features are techni-
cally observed confounders (at least those with nonzero γ
coefficients). Were it not for the unobserved confounding in-
duced by ρ, causal effects could be calculated by integrating
over Z, as in the backdoor adjustment [Pearl, 2009, Ch. 3.3].
Unfortunately, this option is unavailable when ρ ̸= 0. By
exploiting known leakage threshold(s), however, we show
how to recover sharp bounds on the ATE.

Unlike other methods designed to accommodate potential
violations of the exclusion criterion (see Sect. 5), we do not
assume that some proportion of candidate IVs are valid, or
that biases introduced by direct links from Z to Y cancel
out. On the contrary, we explicitly allow for a dense set
of nonzero γ weights, provided they satisfy some form of
τ -exclusion. As our experiments below demonstrate, this
method naturally accommodates sparse γ vectors without
presuming them upfront.

1The “exogeneity” assumption in econometrics is sometimes
equated with (A2), and sometimes with the conjunction of (A2)
and (A3) (see, e.g., [Wooldridge, 2019, Ch. 15]). We avoid all talk
of exogeneity to avoid confusion.

3 THEORY

In this section, we show how to partially identify the ATE
under bounded violations of the exclusion criterion and
propose methods for statistical inference.

3.1 SCALAR τ -EXCLUSION

We begin with a scalar threshold on information leakage
from Z to Y . As a first pass, we may formalize our objective
as follows:

min/max
β,γ,θ,ηx,ηy,ρ

θ

s.t. ΣM = Σ,

ηx ≥ 0, ηy ≥ 0,−1 ≤ ρ ≤ 1, ∥γ∥p ≤ τ,

where Σ is the observational covariance matrix of
{X,Y,Z} and ΣM is the model covariance matrix implied
by Eqs. 1, 2 and 3.

Though technically correct, this formulation is unneces-
sarily complex. It suggests a potentially high-dimensional
constrained optimization problem that is not obviously
amenable to polynomial programming techniques. To sim-
plify it, we provisionally assume access to the population
covariance matrix Σ. (We discuss methods for estimating
these parameters in Sect. 3.3.) This allows us to solve di-
rectly for β and η2x:

β = Σ−1
zz ·Σzx, η2x = Σxx − β ·Σxz.

With these parameters fixed, the remaining coefficients θ,γ
are rendered deterministic functions of ρ, with some special
care for the non-negativity constraint on ηy. To see this, it
helps to define the scalars:

κxx := Σxx −Σxz ·Σ−1
zz ·Σzx = η2x

κxy := Σxy −Σxz ·Σ−1
zz ·Σzy

κyy := Σyy −Σyz ·Σ−1
zz ·Σzy

These terms correspond, respectively, to the conditional
variance of X given Z (κxx), the conditional covariance of
X and Y given Z (κxy), and the conditional variance of
Y given Z (κyy). Thus, by the Cauchy-Schwarz inequality,
κxxκyy ≥ κ2xy. With these definitions in hand, we are now
ready to characterize the relationship between ρ and θ. (See
Appx. A for all proofs.)

Lemma 1 (ATE as a function of confounding). There is a
bijective, strictly decreasing function f : [−1, 1] 7→ R that
maps values of the confounding coefficient ρ to the ATE θ:

θ = f(ρ) := κ−1
xx

(
κxy −

√
κxxκyy − κ2xy tan

(
arcsin(ρ)

))
.

This function takes the shape of a rotated sigmoid (see
Fig. 3A). Note that when ρ = 0, there is no unobserved
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Figure 3: Example curves illustrating the relationships be-
tween parameters in the leaky IV model. (A) A ρ-θ curve
maps the relationship between latent confounding and causal
effects. (B) A θ-∥γ∥2 curve maps the relationship between
causal effects and information leakage. Shading represents
95% confidence intervals estimated via the bootstrap.

confounding and θ can simply be estimated by OLS (if
∥γ∥ = 0) or backdoor adjustment on Z (if ∥γ∥ > 0).

Because strong confounding induces extreme values of θ,
more informative bounds on the ATE can be derived if
subject matter knowledge allows us to truncate the range of
ρ. This is precisely what (A3′s) achieves, although the exact
form of this truncation depends on our choice of norm. To
see how τ -exclusion restricts ρ’s range, we must spell out
the relationship between the ATE and leaky weights γ.

Lemma 2 (Leakage as a function of ATE). There is a sur-
jective function gp : R 7→ R≥0 that maps values of the ATE
θ to the Lp norm of the leakage weights γ:

∥γ∥p = gp(θ) := ∥α− θβ∥p,

where α := Σ−1
zz ·Σzy represents the expected weights of

an OLS regression of Y on Z.

For the special case of p = 2, this function is quadratic (see
Fig. 3B). Recall that the Lp norm is convex for all p ≥ 1 and
strictly convex for p ∈ (1,∞). Though everywhere differ-
entiable for p ∈ [2,∞), the norm may be non-differentiable
at countably many points for p ∈ [1, 2).

The leakage threshold τ defines a feasible region of possible
models. While we presume that this parameter is provided
upfront (more on this in Sect. 6), it cannot be made arbi-
trarily small in the leaky IV setting. Specifically, the lower
bound corresponds to particular values of θ and ρ.

Lemma 3 (Minimum leakage as a function of ATE). The
minimum degree of leakage consistent with the data can be
obtained by solving the following linear regression task in
Lp space:

θ̌p := argmin
θ∈R

gp(θ).

In the special case of p = 2, the optimum is given by the
standard OLS estimator θ̌2 = (β · β)−1β · α. Though

closed form solutions are not available for arbitrary p—even
in the well-studied case of p = 1 [Pollard, 1991, Portnoy
and Koenker, 1997, Chen et al., 2008]—the value is easily
computed via numerical methods. Note that θ̌p is unique
for any strictly convex Lp norm, but may form a compact
interval for p ∈ {1,∞}.

Next, we find the corresponding value(s) of ρ.

Lemma 4 (Minimum leakage as a function of confounding).
Define hp := gp ◦ f , such that hp : [−1, 1] 7→ R≥0 maps
values of ρ to ∥γ∥p. For any θ̌p (either a unique solution or
any point on the compact interval of solutions), hp achieves
its minimum at:

ρ̌p := argmin
ρ∈[−1,1]

hp(ρ) = f−1(θ̌p)

= sin

(
arctan

(
κxy − θ̌pκxx√
κxxκyy − κ2xy

))
.

Lemmas 3 and 4 provide an essential criterion for partial
identification in the leaky IV model. Define τ̌p := gp(θ̌p) =
hp(ρ̌p). (Observe that this value is unique even when θ̌p and
ρ̌p are not.) Let θ∗ denote the true ATE, with correspond-
ing leakage weights γ∗ = α − θ∗β and oracle threshold
τ∗p := ∥γ∗∥p, so named because it quantifies the precise
(and unidentifiable) amount of information leakage from
Z to Y in the true data generating process. These mini-
mum and oracle thresholds fully characterize identifiability
conditions in the leaky IV model.

Theorem 1 (Identifiability). Assume Eqs. 1, 2, and 3 and
assumptions (A1), (A2), and (A3′s) hold for some p ≥ 1.
Then ATE bounds are:

• undefined for all τ < τ̌p;
• identifiable but invalid for all τ ∈ [τ̌p, τ

∗
p ); and

• identifiable and valid for all τ ≥ τ∗p .

Moreover, the true ATE is identifiable iff τ∗p = τ̌p and gp
attains a unique minimum, in which case θ∗ = θ̌p.

The three-partition of threshold space implied by Thm. 1 is
visualized in Fig. 4 for p = 2, where we see how bounds go
from nonexistent (grey striped region) to small but erroneous
(red shaded region), only becoming valid above the oracle
threshold τ∗2 . Note that the perpendicular lines ∥γ∥p = τ∗p
and θ = θ∗ intersect at a point on the leakage curve. This
illustrates that valid bounds in the leaky IV model are not
generally symmetric about θ∗. In fact, for p ∈ (1,∞) and
τ∗p > τ̌p, the true ATE θ∗ will coincide with one extremum
of the partial identification interval at τ = τ∗p .

The identifiability conditions of Thm. 1 have an immediate
consequence for the classic linear IV model, which is a
special case of our leaky IV model with τ = 0.
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Figure 4: Minimum and oracle leakage values impose a
three-partition of the threshold space. Below τ̌2, we have
the infeasible region (grey striped area), where no configura-
tion of latent parameters satisfies our structural constraints.
Between τ̌2 and τ∗2 , we have the error region (red area),
where bounds are identifiable but invalid. Above τ∗2 , we
have the valid region (rest of the plot), where bounds are
guaranteed to contain the true ATE θ∗, represented by the
vertical blue line.

Corollary 1.1. Under the assumptions of Thm. 1, the ex-
clusion criterion (A3) holds iff τ∗p = τ̌p = 0, in which case
θ∗ = θ̌2 = θ2SLS.

As we will see in the sequel, this constraint has falsifiable
consequences that can motivate the use of the leaky IV
approach in practice.

We now reformulate our optimization task:

min/max
ρ∈[−1,1]

θ s.t. hp(ρ) = τ.

This is a straightforward one-dimensional objective where
all structural constraints have been absorbed into a single
function hp. We now have all the ingredients in place to
state our main result.

Theorem 2 (ATE bounds). Assume the conditions of Thm. 1
hold for some τ ≥ τ∗p . Then for any ρ̌p (either a unique solu-
tion or any point on the compact interval of solutions), there
exist unique min/max values of the confounding coefficient
consistent with the posited information leakage:

ρ−τ,p := min
ρ∈[−1,ρ̌p]

ρ s.t. hp(ρ) = τ

ρ+τ,p := max
ρ∈[ρ̌p,1]

ρ s.t. hp(ρ) = τ.

Plugging these values into f produces valid and sharp ATE
bounds:

θ−τ,p = f(ρ+τ,p), θ+τ,p = f(ρ−τ,p).

Analytic solutions are generally intractable for p ̸= 2. How-
ever, Thm. 2 guarantees the existence and uniqueness of
valid, sharp ATE bounds in the leaky IV model for any
p ≥ 1. These values can be readily computed with numeri-
cal methods, e.g. linear programming techniques [Bertsimas

and Tsitsiklis, 1997]. For the L2 case, we derive the follow-
ing solution in closed form.

Corollary 2.1. Under the assumptions of Thm. 2 with p =
2, min/max ATE values are given by:

θ̌2 ± (β · β)−1
√
(β · β) (τ2 −α ·α) + (α · β)2.

3.2 VECTOR τ -EXCLUSION

Our scalar τ -exclusion criterion is somewhat crude, as it
applies a single threshold on a summary statistic of all γ
weights. In many cases, however, background knowledge
may license a more fine-grained approach that applies sepa-
rate thresholds either to individual candidate instruments or
groups thereof. For instance, in a Mendelian randomization
study, we may partition SNPs by chromosome, exploiting
biological knowledge to permit more or less leakage as we
move across the genome. Alternatively, we may impose
the restriction that our Z variables should be more “rele-
vant” than “leaky”, with each βj coefficient exceeding the
corresponding γj in absolute value.

These considerations inspire a more heterogeneous relax-
ation of the exclusion criterion characterized by (A3′v),
which we refer to as vector τ -exclusion. Fortunately, the
solution in this case follows naturally from our previous
analysis. Suppose that all thresholds are strictly positive, i.e.
that ∥τ∥0 = dZ . Then we simply perform a linear transfor-
mation of all candidate instruments, scaling them by their
respective leakage thresholds to create modified variables
Z̃j := Zj/τj . Let τ+ := [1, 1, τ ] denote an augmented
threshold vector of length 2 + dZ , with dummy entries for
X and Y . Then, we define a square transformation matrix
T with entries Tij := 1/(τ+i τ

+
j ) and update our covariance

parameters:

Σ̃ := T ⊙Σ,

where ⊙ denotes the Hadamard product (i.e., entrywise
multiplication). Plugging this matrix into the equations of
Sect. 3.1 produces transformed linear weights α̃, β̃, γ̃. Vec-
tor τ -exclusion can now be rewritten as:

(A3′v2) Vector τ -exclusion: ∥γ̃∥∞ ≤ 1.

All previous results go through just the same, including
identifiability conditions (Thm. 1) and optimal ATE bounds
(Thm. 2).

This strategy will need to be modified if we wish to impose
τj = 0 for some j ∈ [dZ ]—i.e., to treat some variable(s) as
valid IVs that satisfy the classical exclusion criterion. Let
S0 ⊂ [dZ ] pick out all and only those features such that
τj = 0, with complementary subset S1 := [dZ ]\S0. Then
for each j ∈ S0, we set the corresponding entry in τ+ to
1 in our construction of the transition matrix T to avoid
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division by zero, and update the formula for γ̃ to reflect the
reduced degrees of freedom:

γ̃j =

{
0, if j ∈ S0;

α̃j − θβ̃j , otherwise,

for all j ∈ [dZ ]. We modify the definitions of gp, hp, and
τ∗p to restrict their range to just those j ∈ S1. Now (A3′v2)
applies and produces sharp bounds, as desired.

3.3 INFERENCE

Thm. 2 provides an exact solution with the population covari-
ance matrix Σ. In practice, of course, all parameters must
be estimated from finite data. We generally take the sample
covariance matrix Σ̂ as our plug-in estimator, but many al-
ternatives are possible. Numerous Bayesian [Leonard and
Hsu, 1992, Daniels and Kass, 1999, Gelman et al., 2014,
Ch. 3.6] and penalized likelihood [Schäfer and Strimmer,
2005, Warton, 2008, Won et al., 2012] methods have been
proposed for this task, or the closely related task of estimat-
ing a regularized precision matrix [Friedman et al., 2007,
Cai et al., 2011, Mazumder and Hastie, 2012]. Several of
these options are implemented in our accompanying soft-
ware package. These alternatives may be especially attrac-
tive in high-dimensional settings with a large number of
leaky IVs to ensure a positive definite Σ̂.

We use a variety of estimators in our experiments below
and augment the procedure with inference techniques. First,
we describe a parametric test of the exclusion criterion, as
foreshadowed by Corollary 1.1. In the linear IV model with
dZ ≥ 2, it is well known [Kuroki and Cai, 2005, Chen et al.,
2014, Silva and Shimizu, 2017] that exclusion imposes a set
of so-called tetrad constraints on covariance parameters of
the form:

ΣzjyΣzkx −ΣzjxΣzky = 0.

If this holds for all nonidentical pairs of candidate instru-
ments j, k ∈ [dZ ], then α,β vectors are parallel and in-
formation leakage goes to zero. Define the dZ × 2 matrix
Λ := [Σzx,Σzy]. Then our test statistic is ψ := det(Λ ·Λ)
and our null hypothesis is H0 : ψ = 0, which is necessary
and sufficient for τ̌p = 0.

We propose to test H0 via Monte Carlo, estimating θ̂2SLS

on the original data and creating a null covariance matrix
Σ0 by replacing Σ̂zy with Σ0

zy := Σ̂zxθ̂
2SLS. We assume

that samples are distributed according to some PΣ ∈ P ,
where P denotes a family of distributions parameterized by
a covariance matrix Σ—obvious examples include multi-
variate Gaussian and t-distributions, although alternatives
such as multivariate binomial or Poisson distributions are
also viable [Krummenauer, 1998, Jiang et al., 2021]. So
long as we can sample data under fixed values of Σ, we can
perform the following test.

Theorem 3 (Exclusion test). Let Dn = {xi, yi, zi}ni=1 be
a dataset generated according to the conditions of Thm. 1,
with Dn ∼ PΣ, dZ ≥ 2, and sample estimate ψ̂n. Construct
a null covariance matrix Σ0 as detailed above. Draw B
synthetic datasets of size n, D0

n,(b) ∼ PΣ0 , and record the
test statistic ψ0

n,(b) for all b ∈ [B]. Then as n,B → ∞, the
following is an asymptotically valid p-value against H0:

pMC =
#
{
b : ψ0

(b) ≥ ψ̂n
}
+ 1

B + 1
.

Thm. 3 describes a frequentist method for testing the exclu-
sion criterion in linear IV models. Sufficiently small values
of pMC can motivate a leaky approach, as 2SLS results in
biased ATE estimates when (A3) fails. Note that τ̌p = 0 is
a necessary but insufficient condition for exclusion, which
additionally requires that τ∗p = 0. A minimum possible leak-
age of zero provides no evidence that the true leakage is in
fact zero.

Next, we introduce a nonparametric bootstrapping pro-
cedure [Efron, 1979] to quantify the uncertainty of ATE
bounds. Specifically, we draw B many datasets of size n by
sampling with replacement from the input data and estimate
the covariance matrix Σ̂(b) for each b ∈ [B]. Our target pa-
rameters are (θ−, θ+)∗τ,p, i.e. the bounds we would expect
from a partial identification oracle (henceforth a Σ-oracle)
with knowledge of the population covariance matrix for
observed variables {X,Y,Z}. Note that even with access
to the true Σ, τ∗p and θ∗ remain unidentifiable, and so we
distinguish between Σ-oracles and oracles tout court, who
are additionally omniscient with respect to latent parameters
and therefore able to point identify the ATE. By contrast,
with τ ∈ [τ̌p, τ

∗
p ), a Σ-oracle will produce invalid bounds

that lie in the error region of Fig. 4 (see Thm. 1).

Since τ̌p depends on the data, it is possible that some boot-
straps may violate the partial identifiability criterion τ ≥ τ̌p,
especially if the sample size is small and/or the selected
threshold is close to the true leakage minimum as deter-
mined by a Σ-oracle. Our estimator is undefined when the
feasible region is empty, so we discard any offending boot-
straps. As τ̌p can be estimated on the full dataset upfront,
this issue may be mitigated by selecting a threshold suffi-
ciently high above this value. The procedure comes with the
following coverage guarantee.

Theorem 4 (Coverage). Let Dn = {xi, yi, zi}ni=1 be a
dataset generated according to the conditions of Thm. 1.
Draw B samples with replacement from Dn, subject to τ ≥
τ̌p,(b) for all b ∈ [B]. For a given ⋄ ∈ {−,+} and level
α ∈ (0, 1), we construct the confidence interval Ĉn =
[q̂l, q̂u] as follows. Let q̂l be the lth smallest value of the
bootstrap distribution for θ̂⋄τ,p, with l = ⌈(B + 1)(α/2)⌉.
Let q̂u be the uth smallest value of the same set, with u =
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Figure 5: Comparison against various methods at a range of
values for the confounding coefficient ρ, SNR for Y , and
number of candidate instruments dZ . The horizontal black
line at θ = 1 represents the true ATE θ∗.

⌈(B + 1)(1− α/2)⌉. Then as n,B → ∞, we have:

P
(
θ⋄∗τ,p ∈ Ĉn

)
≥ 1− α.

We can smooth the bootstraps with kernel density estimation
(see Sect. 4) or use a Bayesian bootstrap to get an approxi-
mate posterior distribution [Rubin, 1981]. Either way, Thm.
4 provides a template for testing claims about whether, for
instance, zero lies above or below the partial identification
interval with high probability.

4 EXPERIMENTS

For full details of all simulation experiments, see Appx. B.
Code for reproducing all results and figures can be found
on our dedicated GitHub repository.2 In this section, we use
p = 2 throughout and estimate all covariance parameters
via maximum likelihood.

For our benchmark experiments, we generate data according
to Eqs. 1-3 with the following process:

Z ∼ N (0,Σzz) β ∼ N (0, 1)

γ ∼ N (0, 1)× ζ ϵx, ϵy ∼ N (0,Σϵϵ),

and fixed Σyy = 10. The scaling factor ζ and residual
variance parameters η2x, η

2
y are chosen to ensure that the

signal-to-noise ratio (SNR) of Eqs. 1 and 2 are fixed at the
desired level (for details, see Appx. B.2). We simulate data
from the leaky IV model under a range of hyperparameters:

• Dimensionality dZ is selected from {5, 10}.
• The covariance matrix Σzz is either diagonal or

Toeplitz with autocorrelation 0.5. In either case, we
set marginal variance to 1/dZ for each Z.

• The confounding coefficient ρ is selected from
{−0.9,−0.8, . . . , 0.9}.

2https://github.com/dswatson/leakyIV.

• The SNR for X is selected from {0.5, 1, 2}.
• The SNR for Y is selected from {0.5, 1, 2}.

Taking the Cartesian product of all these hyperparameters
generates a grid of 684 unique simulation configurations.
We hold the sparsity of γ fixed at 0.2 and set the true ATE
θ∗ to 1 across all experiments.

Point Estimators. We present the mean and standard de-
viation of ATE estimates for a range of methods, computed
across 50 runs of n = 1000. For our own own approach,
LeakyIV, we set τ = 1.1τ∗2 and shade the interval between
our mean estimates for (θ̂−, θ̂+)τ,2. We benchmark against
two classic methods—the backdoor adjustment and 2SLS—
as an illustrative baseline. We also compare our results to
two methods designed for causal inference with some in-
valid instruments: sisVIVE, which performs implicit feature
selection via an L1 penalty on the candidate IVs [Kang et al.,
2016]; and mode-based estimation (MBE), which treats in-
valid instruments as outliers that can be ignored using robust
inference techniques [Hartwig et al., 2017]. We refer readers
to the original papers for details on each.

Results for Σzz = Toeplitz, SNRX = 2 are presented in Fig.
5. (Results are broadly similar for alternative simulations;
see Appx. B.1.) We find that the backdoor adjustment is
systematically biased downward for ρ < 0 and upward for
ρ > 0, exactly as theory predicts. In most cases, confound-
ing effects on either end of the x-axis are sufficiently strong
to send the curve beyond the limits of our estimated partial
identification interval. Alternative methods designed for the
IV setting fare better, but still behave somewhat erratically.
MBE in particular appears prone to occasional bursts of
uncertainty, especially under extreme confounding.

By contrast, our bounds contain the true ATE in 683 out
of 684 settings, or 99.85% of the time. Moreover, they are
generally informative, capturing the true direction of causal
effects in over half of all trials despite a relatively weak
signal from the exposure X . Our bounds are clearly cor-
related with results from IV point estimators, but whereas
competitors tend to overstate their confidence—bouncing
between positive and negative causal effects multiple times
in each panel—our bounds almost never stray so far as to
miss the true ATE.

Bayesian Methods. An alternative family of methods for
modeling latent parameters in the IV setting is based on
Bayesian inference [Shapland et al., 2019, Bucur et al.,
2020, Gkatzionis et al., 2021]. The goal in this approach is
to estimate a posterior distribution for θ, with partial iden-
tification bounds given by the upper and lower α-quantiles
of the credible interval. Rather than compare against some
off the shelf method that does not explicitly encode our τ -
exclusion criterion, we design a Markov chain Monte Carlo
(MCMC) sampler to model causal effects in the leaky IV
setting (for details, see Appx. B.3). Due to the computa-
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Figure 6: Comparison against a Bayesian model at a range
of values for the confounding coefficient ρ. Histograms rep-
resent 2000 samples from a posterior distribution estimated
via MCMC. The solid blue line denotes the true ATE, while
the dashed red lines indicate LeakyIV bounds.

tional demands of MCMC sampling, we focus on the case
where dZ = 5,Σzz is diagonal, and the SNR for both X
and Y is 2, varying only ρ across a range of six possible
values.

Results are presented in Fig. 6, featuring 2000 draws from
the estimated posterior distribution for θ. The blue line de-
notes the true ATE θ∗ = 1, while red dashed lines indi-
cate bounds estimated by LeakyIV. We observe that even
with uninformative priors on all linear parameters and just
n = 1000 observations, the posterior tends to concen-
trate around a biased estimate, occasionally even placing
some of the density outside our partial identification in-
terval. Bayesian methods struggle in this setting because
every solution in the feasible region has the same likelihood,
which makes posteriors especially sensitive to the choice of
prior distribution. Moreover, these methods do not decouple
bounds on the causal parameter from the causal parameter
itself. Any claims that posterior quantiles can be interpreted
as “bounds” are either (i) a direct consequence of the prior;
or (ii) heuristics that may be impossible to interpret outside
the infinite data limit with an uninformative prior. Of course,
this defeats the purpose of having priors on parameters in
the first place.

Power. We run a series of power simulations to evalu-
ate the sensitivity of our Monte Carlo exclusion test. With
dZ = 5, θ∗ = 1, diagonal Σzz , and fixed SNR = 2 for both
X and Y , we vary the sample size n ∈ {500, 1000, 2000}
and effect size τ̌2 ∈ {0, 0.1, . . . , 1} under six values of
confounding ρ. We compute p-values using B = 2000 repli-
cates and reject H0 at level α = 0.1. Empirical rejection
rates are recorded over 500 runs (see Fig. 7). We find that
type I error is controlled at the target level across all simu-
lations, while power steadily increases with greater effect
size, as expected. At n = 2000, we attain 95% power in all
settings.
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Figure 7: Power curves for the Monte Carlo exclusion test at
varying values of the confounding coefficient ρ and sample
size n. Shading denotes standard errors. The horizontal
dashed red line denotes the target level α = 0.1.

Coverage. Under the simulation settings of the Bayesian
benchmark experiment, we evaluate nominal coverage using
three bootstrap variants: the standard empirical distribution,
a smoothed kernel estimate, and a Gaussian approximation.
We generate 500 unique datasets for each setting and run
2000 bootstraps with fixed level α = 0.1. Results are pre-
sented in Fig. 8. Empirical coverage is very close to the
nominal 90% target in all settings, with a minimum of 0.886.
The target level is always within a standard error of the
mean across all trials. Though performance is similar for
all three estimators, the Gaussian approximation appears
slightly more conservative on average.

5 RELATED WORK

Violations of the exclusion restriction are well-documented
in genetics [Hemani et al., 2018] and econometrics
[Berkowitz et al., 2008]. One strategy for estimating causal
effects in such settings is to permit a large number of po-
tentially invalid instruments under the assumption that their
average bias will tend to zero in the limit [Bowden et al.,
2015, Kolesár et al., 2015]. With weak monotonicity con-
straints, these approaches can also provide nonparametric
bounds on local average treatment effects [Flores and Flores-
Lagunes, 2013].

Another family of methods starts from the assumption that
some proportion of candidate instruments are valid and uses
statistical procedures to focus on just those variables that
satisfy (A1)-(A3). This can be achieved, for instance, via
goodness of fit tests [Chu et al., 2001]; L1-penalized regres-
sion for feature selection [Kang et al., 2016, Guo et al., 2018,
Windmeijer et al., 2019]; independence tests for collider bias
[Kang et al., 2020]; or modal validity assumptions in linear
[Hartwig et al., 2017] and nonlinear [Hartford et al., 2021]
IV models. Alternatively, data from multiple instruments
can be pooled into a single variable using dimensionality

3696



ρ = −0.75 ρ = −0.5 ρ = −0.25 ρ = 0.25 ρ = 0.5 ρ = 0.75

Low
er

U
pper

Standard KDE Gaussian Standard KDE Gaussian Standard KDE Gaussian Standard KDE Gaussian Standard KDE Gaussian Standard KDE Gaussian

0.850

0.875

0.900

0.925

0.950

0.850

0.875

0.900

0.925

0.950

Bootstrap Estimator

C
ov

er
ag

e

Figure 8: Empirical coverage of LeakyIV using three boot-
strap estimators. Whiskers denote standard errors. The hori-
zontal dashed red line denotes the nominal target of 90%.

reduction techniques [Kuang et al., 2020].

There is a substantial literature on Bayesian approaches
to causal inference in IV settings. Lenkoski et al. [2014]
use Bayesian model averaging to select IVs based on the
strength of their association with the treatment, as codified
by the relevance criterion (A1). Shapland et al. [2019] ex-
tend this method to account for linkage disequilibrium in
Mendelian randomization experiments, which violate the no
confounding condition (A2). More recently, several authors
have proposed spike-and-slab priors to select genetic vari-
ants in the face of horizontal pleiotropy [Bucur et al., 2020,
Gkatzionis et al., 2021], thereby addressing (A3).

Conley et al. [2012] propose ATE bounding methods given
various kinds of prior information on leaky coefficients γ,
including a range restriction and a (non-uniform) prior dis-
tribution. For the former, they return a union of confidence
intervals resulting from a grid of possible values for γ. This
method scales exponentially with dZ and is potentially con-
servative as grid resolution grows finer. By contrast, our
convex optimization approach is an efficient one-shot proce-
dure that provides provably sharp bounds—in closed form,
for the L2 case. Their Bayesian proposal is similar to the
method we compare against in Fig. 6.

The literature on tetrad constraints in linear SEMs goes
back over a century [Spearman, 1904], although the method
was revived and refined following the publication of Spirtes
et al. [2000]’s tetrad representation theorem. Our exclusion
test builds on generalized results developed by numerous
authors [Shafer et al., 1995, Sullivant et al., 2010, Spirtes,
2013], although we are to our knowledge the first to propose
a Monte Carlo inference procedure for testing such claims.

Partial identification intervals for counterfactual quantities
can be computed exactly for discrete variables by formu-
lating the problem as a polynomial program [Zhang et al.,
2022, Duarte et al., 2023]. Though continuous data can al-
ways in principle be discretized with arbitrary precision, this
quickly becomes intractable in the response function frame-
work, as it leads to an exponential explosion of parameters.

Some continuous alternatives have been proposed with ap-
plications to IV models [Kilbertus et al., 2020, Hu et al.,
2021, Padh et al., 2023]. However, the neural architectures
underlying these models can be notoriously unstable, and
are ill-suited to the linear SEM setting, which is standard in
much biological and econometric research.

6 DISCUSSION

We have limited our analysis in this paper to linear SEMs.
Though such linear models remain popular in many applica-
tions, it is well known that real-world systems often involve
nonlinear dependencies between variables. To generalize
the concept of leaky instruments, we could reformulate τ -
exclusion to place an upper bound on the conditional mutual
information:

(A3′′) Generalized τ -Exclusion: I(Z;Y | X,U) ≤ τ .

Alternatively, (A3′′) could place a bound on the gap between
p(y | x,u) and p(y | x,u, z) using some appropriate mea-
sure such as the Wasserstein distance or the KL-divergence.
For binary X,Y, Z, Ramsahai [2012] and Silva and Evans
[2016] represented this as a difference in expectations
|E[Y | Z = 1, do(x)] − E[Y | Z = 0, do(x)]| ≤ τz . Ex-
tensions to vector-valued variants are conceptually straight-
forward. Estimating these quantities is more difficult than
computing linear coefficients, but could help extend our
approach to a wider class of data generating processes.

We have assumed in this paper that treatment effects are ho-
mogeneous throughout the population. However, a great
deal of recent literature in causal machine learning has
focused on heterogeneous treatment effects, where poten-
tial outcomes are presumed to vary as a function of pre-
treatment covariates [Chernozhukov et al., 2018, Künzel
et al., 2019, Nie and Wager, 2021]. Some authors have
brought this framework into IV models, showing that tighter
ATE bounds are possible with the help of observed con-
founders [Cai et al., 2007, Hartford et al., 2021, Levis et al.,
2023]. Future work will consider conditional bounding
methods, where extrema for θ may depend on instruments
and/or other features causally antecedent to X .

A final note is that our method relies on user specification
of the hyperparameter τ . Ill-chosen thresholds may lead to
issues, either in the form of overly conservative bounds (if τ
is too high) or no bounds at all (if τ is below the minimum
consistent with the data). In the worst case, invalid bounds
will result from selecting a threshold that is high enough
to satisfy the partial identification criterion but underesti-
mates the true value of ∥γ∥p. However, we emphasize that
τ -exclusion is a strictly weaker assumption than the classical
exclusion criterion (A3), which is widely applied—rightly
or wrongly—in IV analyses. In many cases, setting τ = 0—
i.e., assuming perfectly exclusive instrumental variables—is
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an essentially arbitrary choice, and a tempting one given the
veneer of certainty provided by obtaining a point estimate
for the ATE. If nothing else, we hope to make practition-
ers think twice before falling back on this familiar default.
Background knowledge is regularly used to guide hyper-
parameter selection, and it is reasonable to assume that in
many applications practitioners will have an a priori sense
of how much information leakage is likely between Z and
Y . In particular, we can interpret this as a type of sensi-
tivity analysis that asks how large τ can be such that the
bounds exclude zero or effects of particular magnitude, and
inquire with a practitioner whether larger values of τ are
scientifically plausible.

7 CONCLUSION

We have presented a novel procedure for bounding causal
effects in linear SEMs with unobserved confounding. By
relaxing the exclusion criterion associated with the classical
IV design, which often fails in many practical settings, our
approach extends to a wide range of problems in genetic
epidemiology, econometrics, and beyond. We introduce the
notion of leaky instruments, which exert a limited direct
effect on outcomes, and derive partial identifiability condi-
tions for the ATE under minimal assumptions. Resulting
bounds are sharp and practical, providing causal information
in many cases where classical methods fail. We propose a
Monte Carlo test that can falsify the exclusion criterion and
a bootstrapping subroutine that guarantees asymptotic cov-
erage at the target level. Future work will extend our results
to multidimensional treatments, conditional bounding prob-
lems, and nonlinear systems, where alternative optimization
strategies based on stochastic gradient descent may be re-
quired.
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A PROOFS

A.1 PROOF OF LEMMAS 1 AND 2

Consider Eqs. 1, 2, and 3, which define our model. Evaluating the product of X and Z gives a relationship between
covariances:

XZ = β ·ZZ + ϵxZ

Σxz = β ·Σzz.

Solving for β gives

β = Σxz ·Σ−1
zz . (4)

Likewise, the product of X with itself gives

XX = β ·ZX + 2β ·Zϵx + ϵ2x

Σxx = β ·Σzx + η2x.

Using (4) and solving for η2x gives

η2x = Σxx −Σxz ·Σ−1
zz ·Σzx

η2x = κxx.

The product of Y and Z gives

YZ = γ ·ZZ + θXZ + ϵyZ

Σyz = γ ·Σzz + θΣxz.

Solving for γ gives

γ = Σ−1
zz ·

(
Σzy − θΣzx

)
.

Taking the norm and using the definitions of α,β, we recover Lemma 2:

∥γ∥p = gp(θ) := ∥α− θβ∥p. (5)

The product of Y and X gives

Y X = θXX + γ ·ZX + ϵyX

Σyx = θΣxx + γ ·Σzx + ρηxηy.

Using (5) and solving for ρηxηy gives

ρηxηy = Σyx − θΣxx −
(
Σyz − θΣxz

)
·Σ−1

zz ·Σzx

ρηxηy = κxy − θκxx. (6)

Rearranging for η2y gives

η2y =

(
κxy − θκxx

)2
ρ2η2x

. (7)
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The product of Y with itself gives

Y Y = θXY + γ ·ZY + ϵyY

Σyy = θΣxy + γ ·Σzy + θρηxηy + η2y.

Using (5), (6), and (7) gives

Σyy = θΣxy +
(
Σyz − θΣxz

)
·Σ−1

zz ·Σzy

+ θ
(
κxy − θκxx

)
+

(
κxy − θκxx

)2
ρ2η2x

.

Combining the Σs into κs,

κyy = θκxy + θ
(
κxy − θκxx

)
+

(
κxy − θκxx

)2
ρ2η2x

,

collecting powers of θ,

κyy −
κ2xy
κxxρ2

= 2θκxy

(
1− 1

ρ2

)
− θ2κxx

(
1− 1

ρ2

)
,

and massaging the ρs and κxxs around, we have

κyy −
κ2
xy

κxxρ2

1− 1
ρ2

= 2θκxy − θ2κxx

ρ2κyyκxx − κ2xy
ρ2 − 1

= 2θκxxκxy − θ2κ2xx.

Solving this quadratic for θκxx gives the solutions

θκxx = κxy ±

√
κ2xy −

κ2xy − ρ2κyyκxx

1− ρ2
.

As ρ > 0 corresponds to the lower solution for θ (and vice versa), we have

θ =
1

κxx

(
κxy − ρ

√
κxxκyy − κ2xy

1− ρ2

)
.

Exploiting the identity tan
(
arcsin(x)

)
= x/

√
1− x2 for x ∈ [−1, 1], we derive the result stated in Lemma 1:

θ = f(ρ) = κ−1
xx

(
κxy −

√
κxxκyy − κ2xy tan

(
arcsin(ρ)

))
.

A.2 PROOF OF LEMMA 3

We can think of the data covariance as constraining γ to lie in a 1-dimensional linear subspace α− θβ. (Recall that α,β
are deterministic functions of Σ.) As α · β may not equal zero in general, the resulting Lp norm cannot be made arbitrarily
small. Of course, computing the norm-minimizing coefficient is the definition of a linear regression task. Call the solution to
this problem θ̌p (where the index indicates optimization with respect to the Lp norm). Since partial identification is only
possible if information leakage exceeds the theoretical minimum consistent with the data covariance, we may define this
lower bound as τ̌p := g(θ̌p).

A.3 PROOF OF LEMMA 4

Recall that f gives θ as a function of ρ, while gp gives ∥γ∥p as a function of θ. We define hp := gp ◦ f as a map from the
confounding coefficient ρ to the information leakage ∥γ∥p. As hp is a continuous function with a compact domain, the
extreme value theorem guarantees that a minimum exists. Moreover, since f is bijective, we know by Lemma 3 that our
target value ρ̌p must represent the inverse of f evaluated at θ̌p. Setting f to θ̌p and solving for ρ, we derive the expression.
We can now equivalently characterize the minimum leakage parameter as τ̌p := hp(ρ̌p).
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A.4 PROOF OF THM. 1

Thm. 1 provides identifiability criteria for the leaky IV model. In the first part of the theorem, we describe a three-partition of
the threshold space in terms of the theoretical leakage minimum τ̌p and the oracle value τ∗p . We claim that the identifiability
and validity of ATE bounds are fully characterized by where τ falls in relation to these parameters. Next, we show that point
identification is possible if and only if latent parameters align in a specific way.

Take partial identifiability criteria first. The task of bounding the ATE in the leaky IV model amounts to finding the min/max
values of θ that satisfy:

gp(θ) = τ. (8)

In other words, we fit a horizontal line ∥γ∥p = τ across the function gp and report min/max points of intersection. Recall
that τ̌p is defined as the minimum of this function. Thus when τ falls below τ̌p, it is clear that there is no intersection between
these two curves, and Eq. 8 has no solution. This is our sole partial identifiability criterion: provided all our structural
assumptions hold, ATE bounds are well-defined if and only if τ ≥ τ̌p. Below this minimum leakage point lies the infeasible
region.

But just because bounds are identifiable does not mean that they are valid. Suppose (for now) that the oracle threshold τ∗p
strictly exceeds the theoretical minimum, and recall the definition:

τ∗p := ∥γ∗∥p = gp(θ
∗),

where θ∗,γ∗ denote the true unobservable parameters. By the convexity of the norm, the solutions to Eq. 8 for any
τ ∈ [τ̌p, τ

∗
p ) will fail to capture the true ATE, as the resulting horizontal line lies below the point (∥γ∗∥p, θ∗). Even a

Σ-oracle—who, recall, has access to the population covariance matrix but not the latent parameters θ∗,γ∗—will return
invalid bounds if queried with a threshold in this half-closed interval. For this reason, we call this band the error region.

With a threshold at or above the oracle value τ∗p , solutions to Eq. 8 are finally guaranteed to contain the true ATE θ∗. This
once again follows by convexity of gp. Resulting bounds grow increasingly conservative with τ . This valid region for all
τ ≥ τ∗p completes our three-partition of the threshold space.

We have thus far assumed that the oracle threshold strictly exceeds the theoretical minimum, but these parameters may
coincide. If τ∗p = τ̌p, then the error region is empty and all identifiable bounds are valid. Moreover, if gp attains a unique
minimum—as it must for all strictly convex norms, i.e. p ∈ (1,∞)—then there exists just a single solution to Eq. 8 for
τ = τ∗p = τ̌p. In this case, lower and upper bounds for the ATE coincide and the causal parameter is point identified as
θ∗ = θ̌p. Note that this fortuitous circumstance occurs with Lebesgue measure zero, as it imposes a nontrivial polynomial
constraint on covariance parameters [Okamoto, 1973].

A.5 PROOF OF COROLLARY 1.1

Under Eq. 2 and the exclusion criterion (A3), we must have that τ = τ∗p = 0. Since 0 ≤ τ̌p ≤ τ∗p , it follows that
τ = τ∗p = τ̌p = 0. This is a special case of the point identifiability result of Thm. 1. Define

X̂ := E[X | Z] = β ·Z,

which represents the expected result of the first OLS regression. Then the 2SLS solution can be written as the ratio:

θ2SLS :=
Σx̂y

Σx̂x̂

=
Σzx ·Σzy

Σzx ·Σzx
.

Exploiting the definitions α := Σ−1
zz ·Σzy and β := Σ−1

zz ·Σzx, we have:

θ̌2 = (β · β)−1β ·α

=
(Σ−1

zz ·Σzx) · (Σ−1
zz ·Σzy)

(Σ−1
zz ·Σzx) · (Σ−1

zz ·Σzx)

=
Σzx ·Σzy

Σzx ·Σzx

= θ2SLS.
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Table 1: Contingency table of settings to consider for Thm. 2. Note that under non-strict convexity, an interval solution for
ρ̌p is possible but not necessary; likewise, under non-strict leakage inequality, τ∗p = τ̌p is possible but not necessary.

Convexity of Lp norm

Inequality Strict Non-strict

Strict Unique ρ̌p, τ∗p > τ̌p Interval ρ̌p, τ∗p > τ̌p
Non-strict Unique ρ̌p, τ∗p = τ̌p Interval ρ̌p, τ∗p = τ̌p

A.6 PROOF OF THM. 2

We assume that partial identifiability criteria are met (see Thm. 1). Recall that θ is a bijective function of ρ (see Lemma
1). To compute valid, sharp ATE bounds, it is therefore sufficient to show that there exist unique minimum and maximum
values of ρ such that hp(ρ) = τ . Call these ρ−τ,p and ρ+τ,p, respectively. (Since the function f is strictly decreasing, it maps
the former to θ+ and the latter to θ−.) The advantage of working in ρ-space rather than θ-space is that the confounding
coefficient is guaranteed to lie on a compact interval that is independent of the data, namely [−1, 1].

Recall that the Lp norm is convex for all p ≥ 1 and strictly convex for p ∈ (1,∞). Also, by definition, we have that
τ∗p ≥ τ̌p. Thus we have four possibilities to consider, with strict and non-strict variants of both convexity and the leakage
inequality (see Table 1). Non-strict convexity raises complications due to the potential for plateaus in the Lp norm; non-strict
inequality raises complications if true and minimum leakage parameters coincide. We will show that ρ−τ,p and ρ+τ,p are
uniquely identified in all four settings.

Start with the simplest case, in which both the convexity and inequality are strict. In this setting, we have exactly two
solutions to the equation hp(ρ) = τ , one on either side of ρ̌p, which is the unique minimizer of hp. Thus one solution lies on
the interval [−1, ρ̌p], and another on [ρ̌p, 1].3 This establishes the existence and uniqueness of ρ−τ,p and ρ+τ,p.

Now consider the case where hp is strictly convex but the true leakage coincides with the theoretical minimum (lower left
quadrant of Table 1). In this case, we have just a single solution to the equation hp(ρ) = τ , namely ρ̌p. This implies that
ρ̌p = ρ−τ,p = ρ+τ,p.

Greater care is required when hp is not strictly convex, as we can no longer assume the uniqueness of ρ̌p or that hp(ρ) = τ
has at most two solutions. However, when no unique minimum exists for a convex function with a compact domain, the
set of minimizing solutions forms a compact interval. (This follows from the extreme value theorem.) Consider the setting
where the leakage inequality is strict but no single value of ρ minimizes hp (upper right quadrant of Table 1). We can select
any value from the compact interval ρ̌p and use this to partition [−1, 1], since strict inequality guarantees that any solution
must intersect with hp above its minimum. Still, we may have have uncountably many solutions to the equation hp(ρ) = τ
if τ aligns with a plateau in the norm on one or both sides of ρ̌p. Convexity guarantees that we will have at most two sets of
solutions, one on either side of the minimum. Call these intervals ρ0 and ρ1. Since both are closed, each contains a unique
min/max. Our target parameters are therefore identified by taking the extreme values of each, i.e. setting ρ−τ,p = min ρ0 and
ρ+τ,p = max ρ1.

Finally, consider the case where neither the convexity of the Lp norm nor the leakage inequality is strict (lower right
quadrant of Table 1). This is arguably simpler than the setting with strict inequality and non-strict convexity, since we have
just a single compact interval of solutions at ρ̌p. Our target parameters in this case are identified via ρ−τ,p = min ρ̌p and
ρ+τ,p = max ρ̌p.

A.7 PROOF OF COROLLARY 2.1

To find ATE bounds with an L2 threshold on information leakage, we invoke Lemma 2 and find that leakage is quadratic in
θ:

∥γ∥22 = ∥β∥22 θ2 − 2α · β θ + ∥α∥22.

3In fact, when τ∗
p > τ̌p, we know that ρ̌p is not a viable solution, and so we can replace the closed intervals with half-open intervals

[−1, ρ̌p) and (ρ̌p, 1]. Since this is not the case when τ∗
p = τ̌p, we stick with closed intervals throughout for greater generality.
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We set τ = ∥γ∥2 and solve for θ using the quadratic formula:

θ =
2α · β ±

√
(2α · β)2 − 4∥β∥22

(
∥α∥22 − τ2

)
2∥β∥22

.

Observe that the first summand reduces to the norm-minimizing ATE value identified in Lemma 3:

2α · β
2∥β∥22

= (β · β)−1 β ·α =: θ̌2.

Some light simplifications and rearrangements renders the final expression:

θ̌2 ± (β · β)−1
√
(β · β) (τ2 −α ·α) + (α · β)2 .

A.8 PROOF OF THM. 3

Let M be the space of all models satisfying our structural constraints—Eqs. 1, 2, 3 and assumptions (A1), (A2), and
(A3′s)—for some fixed distribution family P and dZ ≥ 2. (Recall that (A3′s) is consistent with the classic exclusion criterion
(A3) under τ = 0.) We partition M into null and alternative classes M0,M1 depending on whether the models in each
satisfy H0 : ψ = 0. We reiterate that this condition is necessary but not sufficient to guarantee (A3). Each dataset Dn is
sampled from some fixed but unknown PΣ that belongs to either M0 or M1.

For every PΣ ∈ M, there exists some nearest null neighbor Q∗
Σ ∈ M0 (not necessarily unique) satisfying

Q∗
Σ := argmin

QΣ∈M0

DKL(PΣ || QΣ).

Of course, when PΣ ∈ M0, we have PΣ = Q∗
Σ and the KL-divergence goes to zero. Let fψ : Rn×(2+dZ) 7→ R≥0 be a

function from input data to corresponding test statistics ψ. (The bounded range follows from the fact that all entries in the
matrix Λ · Λ are non-negative.) Let Dn be a dataset sampled from PΣ, and let GΣ

n be the sampling distribution of ψ at
sample size n, i.e. ψ̂n = fψ(Dn) ∼ GΣ

n for any Dn ∼ PΣ. We denote the corresponding null distribution as GΣ0

n , which
represents the sampling distribution of ψ under H0 at sample size n, i.e. ψ0

n = fψ(D0
n) ∼ GΣ0

n , for null datasets D0
n ∼ Q∗

Σ.

To establish that pMC is an asymptotically valid p-value against H0, it suffices to show that the Monte Carlo null distribution
ĜΣ0

n converges to GΣ0

n . This follows from the validity of our procedure for constructing the null covariance matrix Σ0,
which involves the minimum perturbation required to guarantee H0. Specifically, we impose a linear dependence between
covariance vectors Σzx and Σzy using the scaling factor θ̂2SLS. Thus Σ0 satisfies ψ = 0 by construction. Moreover, since
this is achieved by changing as few parameters as possible by as little as possible, there exists no nearer neighbor to PΣ

within M0 than the resulting distribution, which therefore satisfies our definition of Q∗
Σ.

We assume access to some method for sampling from Q∗
Σ, e.g. via N (0,Σ0) if P is the family of mean-zero multivariate

Gaussians. We draw B many datasets of size n from Q∗
Σ and record resulting test statistics to generate the synthetic null

distribution ĜΣ0
n . Convergence is assured when pMC is uniformly distributed under H0. Let cα(Dn) denote the critical value

at type I error rate α for dataset Dn, such that, under H0, the rejection region of statistics

Rα(Dn) =
{
ψn : ψn ≥ cα(Dn)

}
integrates to α. Rejection regions are nested for our one-sided test, i.e. Rα ⊂ Rα′ if α < α′. Thus cα(Dn) represents the
1− α quantile of the null distribution GΣ0

n . We reject H0 if pMC ≤ α, resulting in the identity:

pMC = pMC(Dn) = inf
{
α : ψn ∈ Rα(Dn)

}
.

Then for all α ∈ (0, 1), we have

PDn∼Q∗
Σ

(
ψn ∈ Rα(Dn)

)
= α,

which implies that:

PDn∼Q∗
Σ

(
pMC(Dn) ≤ u

)
= u

for all u ∈ [0, 1] [Lehmann and Romano, 2005]. In other words, pMC is uniformly distributed under H0, as desired, and
the Monte Carlo null distribution has converged on the target GΣ0

n . We add one to the numerator and denominator as a
necessary finite sample adjustment.
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Figure 9: Complete results for the benchmark experiment against point estimators in Sect. 4. The top two rows uses a
diagonal covariance matrix; the bottom two use a Toeplitz covariance matrix. For each value of SNRX , we consider three
unique values of SNRY (simply labelled SNR within the facet grid).

A.9 PROOF OF THM. 4

It may not be immediately clear that bootstrapping is appropriate for ATE bounds. After all, it is well known that the
bootstrap cannot provide a valid sampling distribution for fixed order statistics such as ranks, or a target parameter that lies
on the boundary of the parameter space [Andrews, 2000]. But though we refer to our bounds as “min” and “max” solutions,
that does not mean they are calculated via fixed order statistics. On the contrary, each represents a continuous solution to a
differentiable optimization task, not the smallest or largest element in a discrete set. The only boundary condition for our
target parameters is θ− ≤ θ+, which automatically holds under the partial identifiability criterion τ ≥ τ̌p. As our estimator
is undefined for samples that violate the criterion, our sampling distribution is always conditioned on this event.

In general, any statistic that is a differentiable function of sample moments admits an Edgeworth expansion and can therefore
have its distribution consistently estimated via bootstrap resampling [Hall, 1992, Davison and Hinkley, 1997]. Recall
that our ATE bounds represent the intersection of (a) a τ -feasible region that is fixed a priori; and (b) the Lp norm of
γ = α − θβ, where the latter two vectors are defined as dot products of covariance parameters. Resulting bounds vary
smoothly under resampling, since α and β are differentiable with respect to Σ. Though more generalized relaxations of the
exclusion criterion may introduce discontinuities or other issues, our formulation of τ -exclusion poses no such difficulties.
The resulting bootstrap distributions are asymptotically valid and practically useful, providing statistical inference without
any parametric assumptions.

Of course, it is perfectly possible that some bootstrap samples may have to be discarded if the intersection of regions (a) and
(b) is empty. In such cases, we simply restrict attention to those bootstraps that satisfy the partial identifiability criterion
τ > τ̌p, which should represent a non-negligible proportion of all bootstraps if the inequality is satisfied in the original
dataset. This procedure is akin to sampling under a feasibility condition, and requires no extra steps to maintain bootstrap
consistency, as in Andrews [2000] or Ramsahai and Lauritzen [2011].

B EXPERIMENTS

B.1 BENCHMARKS

We implement the backdoor adjustment via simple linear regression. Similarly, the 2SLS estimator is computed using
OLS. We use the CRAN implementation of sisVIVE. R code for MBE was provided by the authors. Results of benchmark
experiments for all simulation configurations are presented in Fig. 9.
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B.2 INTERPRETING THE SCALES OF STRUCTURAL PARAMETERS

In our experiments, we fix the true causal effect θ∗ = 1 and tune the signal-to-noise ratios (SNRs) for X and Y , denoted
here as SNRX and SNRY respectively. We show that these quantities, coupled with the variance Σyy, the magnitude
of β and the instruments covariance matrix Σzz , uniquely define the magnitude of the remaining structural parameters
(γ,Σyy, ηx, ηy) at a given level of confounding ρ, when the directions (γ,β) are randomized. The choice to tune the
dimensionless parameters SNRX and SNRY provides a more interpretable grid search than we would have if we were
to vary the structural parameters directly. This is especially true given that the directions of the vector-valued structural
parameters—randomized in our experiments and exponentially hard to search through in a high-dZ setting—play a crucial
role in the effect in the proportions of each observable’s variance explained by each causal effect.

In our setting, β and γ are randomized through β = β̃ and γ = ζγ̃, where the components β̃i and γ̃i, i ∈ [dZ ] are drawn
identically and independently (iid) from the the standard normal distribution. We show that ηx, ηy, ζ,Σxx are uniquely
determined through the equations for the variances,

Σxx = β̃ ·Σzz · β̃ + η2x,

Σyy = ζ2γ̃ ·Σzz · γ̃ + θ2Σxx + 2θζγ̃ ·Σzz · β̃ + 2θηxηyρ+ η2y,

and the signal-to-noise ratios,

SNRX :=
β ·Σzz · β

η2x
=

1

η2x
β̃ ·Σzz · β̃,

SNRY :=
γ ·Σzz · γ + θ2Σxx + 2θγ ·Σzz · β

2θηxηyρ+ η2y
=

Σyy

η2y + 2θρηxηy
− 1.

Note that “noise” is any contribution involving the unobserved confounding Σϵϵ. In a certain sense, the definition of SNRx
is ambiguous in our setting because η2x = κxx can be determined from generated data. We stress our choice of the definition
here: if we took η2x to be “signal” then SNRX would be infinite.

We solve these four coupled quadratic equations for the remaining parameters ηx, ηy, ζ,Σxx. They have unique solutions if
we demand each of these scaling factor and the standard deviations ηx, ηy to be positive. We choose to write the solutions to
these equations in the following form:

ηx =

√
Axx

SNRX
, (9)

Σxx =
SNRX + 1

SNRX
, (10)

ηy = θρηx

(
−1 +

√
1 +

Σyy

1 + SNRY

)
, (11)

ζ =
θAyy
Axy

−1 +

√√√√1 +
Axy

Ayy
2θ2

(
Σyy

1 + 1
SNRY

− θ2Σxx

) , (12)

where

Axx := β̃ ·Σzz · β̃,
Axy := β̃ ·Σzz · γ̃,
Ayy := γ̃ ·Σzz · γ̃.

Notice that the term in the brackets in the equation for ζ is the signal due to τ -exclusion, i.e., the residual signal not solely
due to θ. This term is, therefore, always greater than 1, so ζ is always greater than 0. Notice also that these equations are
more general than in our particular experimental setting since we have left θ = θ∗, Σzz and Σyy to be decided.

Inputting the above solutions, in order, to a data generating process allows us to tune these terms by specifying the signal-
to-noise ratios. As a final note, one may be interested in studying asymptotic regimes in which the variance of X or Y is
dominated either by signal or noise. These equations, or equations very similar to these, allow for the rigorous study of
linear models in such regimes through asymptotic expansions with respect to the SNRs.
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B.3 BAYESIAN BASELINE

One of our choices of a method to compare against ours is a full-likelihood Gaussian model with Bayesian posteriors with a
bounded L2 norm on γ.

Assume all variables follow a joint multivariate zero-mean Gaussian distribution. Recall that that Z are candidate instruments,
X is the treatment, Y is the outcome.

Let γ be the coefficients of Z in the equation for Y , and τ is such that ||γ||2 ≤ τ . We will encode γ as

γ := b×
√
κ× τ

||b||22
,

where κ ∈ [0, 1] is another (redundant) parameter, and b is the free parameter vector of the same dimensionality as γ. The
interpretation is that κ × τ is the norm of γ, and b is a direction vector. This provides a direct comparison against our
constrained optimization method, as both methods are capable of directly using information about the norm of γ and we
will below put an uniform prior on κ.

Assuming Z below is a row vector, the model is:

Z ∼ MVN(0,Σzz)
X = β ·Z + ϵx
Y = γ ·ZθX + ϵy

(ϵx, ϵy) ∼ MVN(0,Σϵϵ),

where Σzz and Σϵϵ are generic positive definite matrices, and MVN means multivariate Gaussian distribution. The
parameter set Θ is {β, κ, b, θ,Σzz,Σϵϵ}.

In what follows, we will consider only the independent candidate instruments case

Σzz :=

η2z1 0 0 . . . 0
0 η2z2 0 . . . 0
0 0 0 . . . η2zdZ

 ,
and parameterize Σϵϵ as

Σϵϵ :=

[
η2x ρηxηy

ρηxηy η2y

]
,

for ρ ∈ [−1, 1]. The independence assumption on Z is merely to simplify our sampler code.

Priors are defined as follows:

κ ∼ U(0, 1)
β ∼ MVN(0, I × vβ)
b ∼ MVN(0, I × vb)
θ ∼ N(0, vθ)

η2zi ∼ logN(lµz
, lvz ), for i = 1, 2, . . . , nZ

η2x ∼ logN(lµx , lvx)
η2y ∼ logN(lµy , lvy )
ρ ∼ U(−1, 1)

where I is the identity matrix of corresponding dimensionality, U is the uniform distribution on the unit interval, and logN
denotes the log-normal distribution. Remaining symbols vβ , vb, vθ, lµz

, lvz , lµx
, lvx , lµy

, and lvy are hyperparameters.

Given a dataset D with each of its n rows denoting a data point, the sufficient statistic for this model is

S := D ·D.
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The model covariance matrix Σ(Θ) is given by

Σ(Θ)zz := Σzz

Σ(Θ)zx := Σzzβ
Σ(Θ)xx := β ·Σzz · β + η2x
Σ(Θ)xy := Σ(Θ)zx · γ + η2x × θ + ηxy
Σ(Θ)zy := Σzz · γ +Σ(Θ)zx × θ
Σ(Θ)yy := γ ·Σzz · γ + 2× γ · Σzx(Θ)× θ+

θ2 × Σ(Θ)xx + 2× θ × nxy + η2y.

Given that, the log-likelihood function is

L(Θ) := −0.5× trace(Σ(Θ)−1S)− 0.5× n× log(|Σ(Θ)|),

where the columns/rows of S are sorted in the same way as the columns/rows of Σ(Θ). We use a plain random walk
Metropolis-Hastings method to sample from the posterior of this distribution. We implement the uniform priors by the
encoding κ := Φ(Wκ), where Φ(·) is the standard Gaussian cdf and Wκ is a standard Gaussian random variable to be
sampled. Likewise, ρ := 2× Φ(Wρ)− 1.

B.3.1 Usage

Like MASSIVE [Bucur et al., 2020], this is a full Bayesian approach that returns a full posterior on θ. Unlike MASSIVE,
which is designed for soft sparsity constraints, our prior on γ is on a Gaussian distributed disc with the radius being given a
uniform prior on [0, τ ] so that it is the closer match to the principle behind our hard constrained optimization method.

For a comparison to take place, we translate the posterior distribution over θ as “bounds”. More precisely, let qθα be the
α-th quantile of the posterior distribution of θ. A “lower bound” here is taken to mean the [−∞, qθα ] interval, although it is
not explicitly made to “capture” the population lower bound with probability α. That can only happen in a heuristic sense,
as the full Bayesian approach is oblivious to non-identifiability issues and has no sense what a “population lower bound”
should be. For joint “capturing” of lower and upper bounds, we suggest [−∞, qθα/2

] along with [qθ1−α/2
,+∞].

Like MASSIVE, the posterior on θ never converges to a single point in the limit of the infinite data, and any entropy left
in that case is a consequence of the prior. If the prior is informative, it is entirely possible for the posterior to exclude
the true θ even if it perfectly fits the population distribution. If the prior is uninformative, the limiting posterior support
should coincide with the feasible region obtained by plugging in the population covariance matrix, although any curvature
of this posterior within its support is an artefact of the prior. However, with finite data, there is no clear way of separating
entropy due to probabilistic uncertainty from entropy due to unidentifiability. Any claims that tails of this distribution have a
correspondence to partial identifiability results is an ill-posed heuristic at best.
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