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Abstract

The practical use of Bayesian Optimization (BO) in
engineering applications imposes special require-
ments: high sampling efficiency on the one hand
and finding a robust solution on the other hand. We
address the case of adversarial robustness, where all
parameters are controllable during the optimization
process, but a subset of them is uncontrollable or
even adversely perturbed at the time of application.
To this end, we develop an efficient information-
based acquisition function that we call Robust En-
tropy Search (RES). We empirically demonstrate
its benefits in experiments on synthetic and real-life
data. The results show that RES reliably finds robust
optima, outperforming state-of-the-art algorithms.

1 INTRODUCTION

Motivation Bayesian Optimization (BO) is a method for
optimizing black-box functions that are costly to evaluate. It
is used in various application domains, such as chemistry,
robotics, or engineering [Shields et al., 2021, Berkenkamp
et al., 2023, Lam et al., 2018]. The BO framework consists
of three ingredients: i) a Bayesian surrogate model of the un-
known black-box function, traditionally a Gaussian Process
(GP) regression model, ii) an acquisition function to specify
the next evaluation point based on the surrogate model, and
iii) the evaluation process of the black-box function. Two
fundamental properties that motivate the practical usage of
BO are a high sample efficiency (i.e., a fast convergence
regarding the number of function evaluations) and robust-
ness against noisy evaluations of the underlying black-box
function [Garnett, 2023, Shahriari et al., 2016].

The sample efficiency of BO depends heavily on the choice
of the acquisition function. One class of acquisition func-
tions are information-theoretic approaches, such as Entropy
Search (ES) [Hennig and Schuler, 2012], Predictive Entropy

Search [Hernández-Lobato et al., 2014], Max Value En-
tropy Search (MES) [Wang and Jegelka, 2017], Joint En-
tropy Search (JES) [Hvarfner et al., 2022], and 𝐻𝑙,𝐴-Entropy
Search [Neiswanger et al., 2022]. In all variations, the fol-
lowing evaluation point is chosen such that it maximizes
the information gain about the (unknown) global optimum.
This line of reasoning is more sample-efficient than that of
other acquisition functions, such as Expected Improvement
(EI) [Jones et al., 1998], Knowledge Gradient (KG) [Fra-
zier et al., 2008] or Upper Confidence Bounds (UCB)-based
[Srinivas et al., 2010] approaches but comes with higher
computational cost [Garnett, 2023].

While BO is intrinsically robust against observation noise,
as it is included into the surrogate model [Shahriari et al.,
2016, Garnett, 2023], engineering applications are often re-
quired to be adversarially robust. We face this requirement
using a setting with two kinds of parameters: parameters 𝒙
that are controllable during the optimization process and at
application time (controllable parameters) and parameters
𝜽 that are controllable during the optimization process but
externally affected at application time (uncontrollable pa-
rameters). A practical example of the latter set of parameters
are environmental parameters, such as temperature, air pres-
sure, or humidity, which are controllable in the lab but not
at application time. An adversarially robust solution solves
the following objective function:

𝒙★, 𝜽★ = arg min
𝒙

arg max
𝜽

𝑓 (𝒙, 𝜽) . (1)

It is an optimum of 𝑓 , which is minimal even under maximal
negative perturbation by the uncontrollable parameter 𝜽 .

We are the first to tackle this problem with a sample-efficient
information-theoretic acquisition function, Robust Entropy
Search (RES). Closest to our work are the approaches of
Bogunovic et al. [2018], who solve it by a UCB-based ap-
proach, and of Fröhlich et al. [2020], who treat the related
problem of mean-case robustness against input noise by an
information-theoretic approach.
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Contributions Our contributions can be summarized as
follows: First, we formulate the conditions for an optimum
being an adversarially robust one and integrate them into the
heart of the acquisition function - the probability distribution
over the function values conditioned on these requirements.
Subsequently, we delineate a step-by-step approach for prac-
tically applying this intermediate result within an acquisition
function. Lastly, we provide a rigorous empirical evalua-
tion of our approach, utilizing synthetic data and real-world
scenarios from robotics and engineering.

2 RELATED WORK

Over the years, the traditional BO setting for pure mini-
mization (see, e.g., [Shahriari et al., 2016, Garnett, 2023]
for overviews) was enhanced to match several robustness
requirements.

Prevalent is the treatment of input perturbations, i.e., input un-
certainty, via a mean measure [Fröhlich et al., 2020, Beland
and Nair, 2017, Nogueira et al., 2016, Iwazaki et al., 2021,
Oliveira et al., 2019, Qing et al., 2022, Toscano-Palmerin and
Frazier, 2018, 2022]: here, the objective is to minimize the ex-
pected value of an objective when the controllable parameters
are perturbed, so to find 𝒙★ = arg min𝒙 E𝜽∝𝑝 (𝜽 ) [ 𝑓 (𝒙 + 𝜽)].
As a result, these approaches are more likely to find a broad
instead of a narrow optimum.

In our work, we instead investigate a more conservative case:
adversarially robust optimization that finds a worst-case op-
timal solution 𝒙★ = arg min𝒙 max𝜽 𝑓 (𝒙, 𝜽). Bogunovic et al.
[2018] treated this case a special case of their groundbreak-
ing StableOpt algorithm that relies on the UCB approach
by Srinivas et al. [2010]. Superficially, adversarially robust
optimization was also treated by Weichert and Kister [2020]
who adopt Thompson Sampling, ES and KG for discrete 𝜽 .
Recently, Christianson and Gramacy [2023] introduced an
adversarially robust version of EI, dealing with a worst-case
perturbation of the input, thus searching for the special case
𝒙★ = arg min𝒙 max𝜽 𝑓 (𝒙 + 𝜽). In our approach, adding the
input parameters is just one possible special case.

A further extension of the adversarially robust problem set-
ting is distributionally robust optimization, where the goal is
to find an optimum that is robust to a distributional shift
within an uncertainty set 𝑈 of an uncontrollable param-
eter: 𝒙★ = arg min𝒙 sup𝑄∈𝑈 E𝜽∝𝑄 [ 𝑓 (𝒙, 𝜽)]. The work of
Kirschner et al. [2020] was the first approach to this problem
utilizing UCB until Husain et al. [2022], Tay et al. [2022],
Yang et al. [2023] developed further approaches. Although
these methods are related, they are not in the scope of our
work.

Only a few of the named approaches arise from the
information-based acquisition functions. There are the
method by Fröhlich et al. [2020] to treat input perturba-
tions and the one by Weichert and Kister [2020] to treat

adversarially robust entropy search for uncontrollable pa-
rameters from a discrete space. Our contribution extends the
existing research with an information-based adversarially
robust acquisition function.

3 BACKGROUND

Before we delve deeper into the derivation of the acquisition
function, we would like to revisit GPs and briefly explain
some basic properties of the adversarially robust optimum.

3.1 GAUSSIAN PROCESS REGRESSION

GP regression is a non-parametric method to model an un-
known function 𝑓 (𝒛) : Z ↦→ R by a distribution over func-
tions. The GP prior is defined such that any subset of func-
tion values is normally distributed with mean `0 (𝒛) and
covariance 𝑘 (𝒛, 𝒛′) for any 𝒛, 𝒛′ ∈ Z (w.l.o.g. we assume
`0 (𝒛) = 0 [Rasmussen and Williams, 2006]). Condition-
ing the prior on actual data 𝐷𝑡 = {(𝒛1, 𝑦1), . . . , (𝒛𝑡 , 𝑦𝑡 )},
where 𝒚 = 𝑓 (𝒛) + 𝜖 , 𝜖 ∼ N(0, 𝜎𝑛), the predictive posterior
distribution 𝑝( 𝑓 ) ∼ 𝐺𝑃(𝑚𝑡 , 𝑣𝑡 |𝐷𝑡 ) is given by

𝑚𝑡 (𝒛 |𝐷𝑡 ) = 𝒌 (𝒛)𝑇𝑲−1𝒚

𝑣𝑡 (𝒛 |𝐷𝑡 ) = 𝑘 (𝒛, 𝒛) − 𝒌 (𝒛)𝑇𝑲−1𝒌 (𝒛) ,
(2)

with [𝒌 (𝒛)]𝑖 = 𝑘 (𝒛, 𝒛𝑖), 𝑲𝑖, 𝑗 = 𝑘 (𝒛𝑖 , 𝒛 𝑗 ) + 𝛿𝑖 𝑗𝜎2
𝑛 , where 𝛿𝑖 𝑗

is the Kronecker delta, and [𝒚]𝑖 = 𝑦𝑖 .

GPs are common surrogate models in BO. Since we consider
a set of controllable parameters 𝒙 ∈ X = R𝑑𝑐 and a set of
uncontrollable parameters 𝜽 ∈ 𝛩 = R𝑑𝑢 , 𝒛 in the previous
definitions is replaced by the concatenation of 𝒙 and 𝜽, in
our caseZ = X ×𝛩.

3.2 PROPERTIES OF THE ROBUST OPTIMUM

The robust optimum (𝒙★, 𝜽★) has to fulfill two nested condi-
tions:

(a) Its function value is maximal in the direction of
the uncontrollable parameters 𝜽 , generating a maxi-
mizing function 𝑔(𝒙) = max𝜽 𝑓 (𝒙, 𝜽) and an argmax
function 𝒉(𝒙) = arg max𝜽 𝑓 (𝒙, 𝜽).

(b) The optimum minimizes the maximizing function
𝑔(𝒙). In consequence, the robust minimum is generally
neither the global maximum nor minimum, but there
generally exist function values of 𝑓 that are smaller
and function values of 𝑓 that are larger than the robust
optimum.

The difference between the optima is visualized as an exam-
ple in figure 1. Besides of the global robust optimum (♦), we
show the global maximum (▶), the global minimum (◁) and
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(a) objective function 𝑓 (𝒙, 𝜽).
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(b) maximizing function 𝑔(𝒙), derived from 𝑓 (𝒙, 𝜽).

Figure 1: Two-dimensional objective function 𝑓 (𝒙, 𝜽) and derived maximizing function 𝑔(𝒙) = max𝜽 𝑓 (𝒙, 𝜽). In the given
example, the location of the global robust optimum (♦) is ambiguous. The optima are neither the global maximum (▶), the
global minimum (◁) nor the smallest local min max point (•). The values of the argmax function 𝒉(𝒙) are rendered as a
white line in figure 1a. The function values at these points define the maximizing function 𝑔(𝒙), given in figure 1b.

the smallest local min max point (•) (Nash equilibrium). Nei-
ther of the latter optima corresponds to the robust optimum
that is sought.

4 ROBUST ENTROPY SEARCH

We propose the RES acquisition function that considers the
properties of the robust optimum by involving the noiseless
robust optimal value 𝑓★ = 𝑓 (𝒙★, 𝜽★), the argmax function
𝒉(𝒙) and its corresponding function values 𝑔(𝒙). Through-
out the section we call these three quantities, (𝒉, 𝑔, 𝑓★) 𝑓 that
all depend on 𝑓 , robustness characteristics.

4.1 METHODICAL IDEA

Like other information-based acquisition functions, see, e.g.,
MES [Wang and Jegelka, 2017] or JES [Hvarfner et al., 2022],
RES deduces the optimum by means of mutual information 𝐼

between the value 𝑦(𝒛) = 𝑓 (𝒛) +Y at the proposed location 𝒛
and some property of the optimum, in our case, the robustness
characteristics (𝒉, 𝑔, 𝑓★) 𝑓 . RES follows

𝛼𝑅𝐸𝑆 (𝒛) = 𝐼

(
(𝒛, 𝑦) ,

(
𝒉, 𝑔, 𝑓★

)
𝑓
|𝐷𝑡

)
= 𝐻 [𝑝 (𝑦 (𝒛) |𝐷𝑡 )]

− E(𝒉,𝑔, 𝑓★) 𝑓
[
𝐻

[
𝑝

(
𝑦 (𝒛) |

(
𝒉, 𝑔, 𝑓★

)
𝑓
, 𝐷𝑡

)] ]
≈ 𝐻 [𝑝 (𝑦 (𝒛) |𝐷𝑡 )]

− 1
𝐶

∑︁
𝑓𝑐∈F𝑐

𝐻

[
𝑝

(
𝑦 (𝒛) |

(
𝒉𝑐, 𝑔𝑐, 𝑓

★
𝑐

)
𝑓𝑐
, 𝐷𝑡

)]
,

(3)

where F𝑐 is a set of 𝐶 functions sampled from the actual GP
posterior 𝐺𝑃(𝑚𝑡 , 𝑣𝑡 |𝐷𝑡 ) for the purpose of approximation.
For each individual sample 𝑓𝑐 ∈ F𝑐, we find the corre-
sponding robustness characteristics (𝒉𝑐, 𝑔𝑐, 𝑓

★
𝑐 ) 𝑓𝑐 . As these

quantities follow a joint distribution, only one expectation is
taken.

As we not only involve 𝑓★ but also the argmax function 𝒉(𝒙)
and the maximizing function 𝑔(𝒙), the acquisition function
proposes points that are likely to reduce the uncertainty about
all robustness characteristics simultaneously.

The approximation of the conditional distribution
𝑝(𝑦(𝒛) |

(
𝒉𝑐, 𝑔𝑐, 𝑓

★
𝑐

)
𝑓𝑐
, 𝐷𝑡 ) lies at the center of the acquisi-

tion function. In a first step, we simplify it by approximating
noisy 𝑦 with 𝑓 , since the observation noise is additive and
can be added later when computing the entropy. Secondly,
we implement the conditions formulated in section 3.2 into
the conditional distribution. Therefore, we use indicator
functions denoted by 1{ ·} :

𝑝

(
𝑓 |

(
𝒉𝑐, 𝑔𝑐, 𝑓

★
𝑐

)
𝑓𝑐
, 𝐷𝑡 ,

)
∝

∫
d 𝑓 𝑝( 𝑓 |𝐷𝑡 ) · 1{ 𝑓 (𝒙,𝜽 )≤𝑔𝑐 (𝒙) }

· 1{ 𝑓★𝑐 ≤ 𝑓 (𝒙,𝒉𝑐 (𝒙) )≤𝑔𝑐 (𝒙) }

(4)

The first indicator function implements the requirement of
the optimum to be the maximum over the uncontrollable
parameters 𝜽 , referring to condition (a). By the second indi-
cator function, we aim to find the minimum of these maxima
by using the sampled optimum 𝑓★𝑐 as a lower bound on
the distribution of maximum function values, implementing
condition (b). Equation (4) is already a simplification and
approximation of the actual target in equation (3): Instead
of conditioning on the whole extreme functions 𝒉 and 𝑔, we
only condition on the values of these functions at (𝒙, 𝜽).

4.2 IMPLEMENTATION

Our approach relies on the efficient treatment of samples
from a GP and on the efficient calculation of the posterior
predictive distribution, conditioned on the robustness charac-
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teristics. We summarize all necessary implementation steps
in the following.

4.2.1 Efficient Treatment of Function Samples

To efficiently sample from the actual GP, we make use of the
Sparse Spectrum Gaussian Process (SSGP) approximation
by Lázaro-Gredilla et al. [2010], which offers the opportunity
to draw GP samples that have a closed analytical expression.
This is beneficial for our approach, as we have to find the ro-
bustness characteristics numerically. Samples formed by this
GP approximation are effectively optimized using gradient
descent methods as derivatives are also available.

The function samples are of the form 𝑓𝑐 (𝒛) = 𝒂𝑇𝝓(𝒛), with
weight vector 𝒂 and a vector of feature functions 𝝓(𝒛) ∈ R𝐹 ,
where 𝐹 is the number of feature functions. The elements 𝑖
of the feature vector 𝝓 are given by 𝜙𝑖 (𝒛) = cos

(
𝒘𝑇
𝑖
𝒛 + 𝑏𝑖

)
with 𝑏𝑖 ∼ 𝑈 (0, 2𝜋) and 𝒘𝑖 ∼ 𝑝(𝒘) ∝ 𝑠(𝒘) where 𝑠(𝒘)
is the Fourier dual of the covariance function 𝑘 . The ele-
ments of the weight vector 𝒂 follow a normal distribution
N

(
𝑨−1𝜱𝑇 𝒚, 𝜎2

𝑛𝑨
−1) , with 𝑨 = 𝜱𝑇𝜱 + 𝜎2

𝑛 𝐼, 𝜱𝑇 being
the matrix composed from the feature function evaluated
at the input data 𝜱𝑇 = [𝝓(𝒛1), . . . , 𝝓(𝒛𝑡 )], and 𝒚 being the
corresponding observed function values. The sampling of
functions therefore takes place in two steps: First, we draw
frequencies 𝒘𝑖 and phases 𝑏𝑖 to generate an unbiased approx-
imation of the covariance function [Rahimi and Recht, 2007].
We then draw as many weight vectors 𝒂 as function samples
are needed from the resulting normal distribution. The re-
sulting function samples can be evaluated cost-effectively by
simple matrix-vector multiplication. For more details, see,
e.g. the work of Lázaro-Gredilla et al. [2010] or Hernández-
Lobato et al. [2014].

To find the argmax function 𝒉𝑐 (𝒙) and maximum value
𝑔𝑐 (𝒙), a standard numerical solver, e.g. a gradient descent
method, is called on-the-fly. To find the robust optimum,
we implement a nested numerical solver that calculates the
actual maximum over the uncontrollable parameters at every
minimization step over the controllable ones.

4.2.2 Calculating the Conditioned Posterior
Probability Distribution

A key ingredient for RES is the calculation of the condi-
tional probability 𝑝( 𝑓 |

(
𝒉𝑐, 𝑔𝑐, 𝑓

★
𝑐

)
𝑓𝑐
, 𝐷𝑡 ) in equation (4).

As directly working on the function space is complex, we
take a three-step approach to approximate the conditioned
posterior probability distribution, inspired by the ideas of
Fröhlich et al. [2020] and Hoffman and Ghahramani [2015].
Our final approximation is normal-distributed, and we can
leverage the fact that the entropy of a normal distribution is
given analytically for calculating the acquisition function.

Step 1: Conditioning the GP at the training data points.
Instead of taking into account the whole GP on X ×𝛩,
we consider it only on a discrete subset of points from
X × 𝛩: the already evaluated training data points 𝐷𝑡 . We
enforce equation (4) to be true for all 𝒛𝑖 = (𝒙𝑖 , 𝜽𝑖) ∈
𝐷𝑡 . Therefore, after calculating the maximizing uncon-
trollable parameters 𝒉𝑐 (𝒙𝑖) and their corresponding func-
tion values 𝑔𝑐 (𝒙𝑖) = 𝑓𝑐 (𝒙𝑖 , 𝒉𝑐 (𝒙𝑖)), we condition 𝒇 =

[ 𝑓 (𝒛1), . . . , 𝑓 (𝒛𝑡 ), 𝑓 (𝒙1, 𝒉𝑐 (𝒙1)), . . . , 𝑓 (𝒙𝑡 , 𝒉𝑐 (𝒙𝑡 ))]𝑇 on
the robustness characteristics by Expectation Propagation
(EP) [Minka, 2001]:

𝑝

(
𝒇 |

(
𝒉𝑐 (𝒙), 𝑔𝑐 (𝒙), 𝑓★𝑐

)
𝑓𝑐
, 𝐷𝑡

)
∝ 𝑝 ( 𝒇 |𝐷𝑡 )

𝑡∏
𝑖=1

1{ 𝑓 (𝒙𝑖 ,𝜽𝑖 )≤𝑔𝑐 (𝒙𝑖 ) }

· 1{ 𝑓★𝑐 ≤ 𝑓 (𝒙𝑖 ,𝒉𝑐 (𝒙𝑖 ) )≤𝑔𝑐 (𝒙𝑖 ) }
(EP)≈: N(𝝁1, 𝜮1) .

(5)

We approximate by EP, because problems of the form of
equation (5) can only be solved analytically for lower di-
mensions [Rosenbaum, 1961, Ang and Chen, 2002]. EP has
been shown to efficiently approximate the required mea-
sures in a reasonable computation time [Fröhlich et al.,
2020, Gessner et al., 2020, Hennig and Schuler, 2012]. We
reuse the implementation for linearly constrained Gaussians
by Fröhlich et al. [2020], building on the work of Her-
brich [2005] and reformulate the indicator functions to
lower bounds 𝒍𝑏 =

[
0(1×𝑡 ) , 𝑓★(1×𝑡 )𝑐

]𝑇
and upper bounds

𝒖𝑏 = [𝑔𝑐 (𝒙1), . . . , 𝑔𝑐 (𝒙𝑡 ), 𝑔𝑐 (𝒙1), . . . , 𝑔𝑐 (𝒙𝑡 )]𝑇 to find the
approximation N(𝝁1, 𝜮1).

Step 2: Creating a predictive distribution for a new
location 𝒛. We obtain a predictive distribution by
marginalizing over the function values 𝒇 , using GP arith-
metic. Already looking ahead to step three, we pre-
dict at 𝒛 = [(𝒙, 𝜽), (𝒙, 𝒉𝑐 (𝒙))]𝑇 , receiving predictions
𝑝( 𝑓 (𝒛) |𝐷𝑡 , 𝒇 ) = N(𝝁 𝑓 , 𝜮 𝑓 ). We find

𝑝0 ( 𝑓 (𝒛) |
(
𝒉𝑐 (𝒙), 𝑔𝑐 (𝒙), 𝑓★𝑐

)
𝑓𝑐
, 𝐷𝑡 )

=

∫
𝑝( 𝒇 |

(
𝒉𝑐 (𝒙), 𝑔𝑐 (𝒙), 𝑓★𝑐

)
𝑓𝑐
, 𝐷𝑡 )

· 𝑝( 𝑓 (𝒛) |𝐷𝑡 , 𝒇 )d 𝒇

≈
∫
N(𝝁1, 𝜮1) · N (𝝁 𝑓 , 𝜮 𝑓 ) d 𝒇

≈ N( 𝑓 (𝒛) |𝑚0 (𝒛), 𝑣0 (𝒛)) .

(6)

The predictive distribution again follows a normal distribu-
tion.

Step 3: Conditioning the predictions. As we only re-
quired the robustness conditions to be true for the training
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(a) predictive distribution and sample before conditioning
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(b) predictive distribution after conditioning on the sample
𝑔𝑐 (𝑥) and the robust sample optimum 𝑓★𝑐

Figure 2: Predictive distributions (mean and one standard deviation) before and after conditioning for a single uncontrollable
parameter with two values \1 (blue) and \2 (orange). In this case, 𝒉𝑐 (𝒙) = \1 ∀ 𝒙 (blue) with the max function 𝑓𝑐 (𝒙, \1) =
𝑔𝑐 (𝒙) (black). While the predictive distribution 𝑓 (𝒙, \2) is only upper bounded by the sample 𝑔𝑐 (𝒙), 𝑓 (𝒙, \1) is upper
bounded by the sample 𝑔𝑐 (𝒙) and lower bounded by the optimum 𝑓★𝑐 (♦).

set 𝐷𝑡 in step 1, we now apply them to the predictions:

𝑝( 𝑓 (𝒛) |
(
𝒉𝑐 (𝒙), 𝑔𝑐 (𝒙), 𝑓★𝑐

)
𝑓𝑐
, 𝐷𝑡 )

= N( 𝑓 (𝒛) |𝑚0 (𝒛), 𝑣0 (𝒛)) · 1{ 𝑓 (𝒙,𝜽 )≤𝑔𝑐 (𝒙) }
· 1{ 𝑓★𝑐 ≤ 𝑓 (𝒙,𝒉𝑐 (𝒙) )≤𝑔𝑐 (𝒙) }

≈ N( 𝑓 (𝒛) |�̂�𝑞 (𝒛), �̂�𝑞 (𝒛))

(7)

For a single 𝒛, we find a bivariate doubly truncated Gaussian
with bounds as in step 1, for which the matching first and sec-
ond moments are known analytically [Ang and Chen, 2002]
and given in appendix A. From the matching moments, we
extract the ones corresponding to the original 𝒛 by indexing:
𝑚𝑞 (𝒛) = �̂�𝑞 (0) , 𝑣𝑞 (𝒛) = �̂�𝑞 (0,0) .

In figure 2, we show the effect of conditioning for a problem
with one discrete uncontrollable parameter 𝜽 = {\1, \2}
with two possible values. The worst-case function sample
𝑔𝑐 (𝒙) originates from the blue uncontrollable parameter
value \1. The resulting posterior predictive distribution is
changed as follows: on the one hand, all function values are
upper-bounded by the maximizing function sample; on the
other hand, the function values of 𝑓 (𝒙, \1) are additionally
lower-bounded by the sampled optimal value 𝑓★𝑐 .

4.2.3 Final formulation of the RES acquisition
function.

Given the final approximation (𝑚𝑞 (𝒛), 𝑣𝑞 (𝒛)), we formulate
the RES acquisition function as

𝛼RES (𝒛) =
1
2

log
(
(𝑣𝑡 (𝒛) |𝐷𝑡 ) + 𝜎2

𝑛

)
− 1

2𝐶
·

∑︁
𝑓𝑐∈F𝑐

log
((
𝑣𝑞 (𝒛) |

(
𝒉𝑐 (𝒙), 𝑔𝑐 (𝒙), 𝑓★𝑐

)
𝑓𝑐
, 𝐷𝑡

)
+ 𝜎2

𝑛

)
.

(8)

We summarize all necessary optimization steps in algo-
rithms 1 and 2. In each iteration 𝑡, an SSGP approximation
of the actual GP is calculated, and 𝐶 function samples are
drawn. The robust optima 𝑓★𝑐 are calculated for these sam-
ples. Then, the GP is conditioned on the resulting robustness
characteristics at the actual training data points. This step is
only performed once when optimizing the acquisition func-
tion. Afterward, creation of the predictive distribution and
conditioning at the new point 𝒛 is performed individually for
each 𝒛 that is called during optimization of the acquisition
function. Finally, we return the robust optimum of the actual
model’s predictive mean 𝑚𝑡 .

In appendix C.1.1, we provide results on the time complexity
of our algorithm for different combinations of discrete and
continuous variables. Overall, the runtime is governed by
the calculation of equation (6), with effects from calculating
the argmax function 𝒉𝑐 (𝒙) and the GP prediction to obtain
N(𝝁 𝑓 , 𝜮 𝑓 ).

Algorithm 1 Robust BO with RES acquisition function.
Input maximum number of iterations 𝑇 , space of control-

lable parameters X, space of uncontrollable parameters
𝛩, number of samples 𝐶, size of initial design 𝑀

Output robust optimum 𝒛★ = (𝒙★, 𝜽★)
1: 𝐷𝑀 ← {𝒛𝑖 , 𝒚𝑖}𝑀𝑖=1
2: for 𝑡 = 𝑀, . . . , 𝑀 + 𝑇 − 1 do
3: 𝐺𝑃(𝑚𝑡 (𝒛), 𝑣𝑡 (𝒛)) ← FitGP(𝐷𝑡 )
4: F𝑐 ← SampleGP(𝐺𝑃,𝐶) ⊲ Create SSGP, sample
5: F★

𝑐 ← ∅
6: for 𝑐 = 1, . . . , 𝐶 do
7: F★

𝑐 ← F★
𝑐 ∪ 𝑓★𝑐 = min𝒙∈X max𝜽∈𝛩 𝑓𝑐 (𝒙, 𝜽)

8: end for
9: 𝒛𝑡+1 ← arg max𝒛∈X×𝛩 𝛼𝑅𝐸𝑆 (𝒛, 𝐺𝑃, F𝑐, F★

𝑐 )
10: 𝒚𝑡+1 = 𝑓 (𝒛𝑡+1) + 𝜖, 𝐷𝑡+1 ← 𝐷𝑡 ∪ {𝒛𝑡+1, 𝒚𝑡+1}
11: end for
12: return (𝒙★, 𝜽★) ← arg min𝒙∈X arg max𝜽∈𝛩 𝑚𝑡 (𝒙, 𝜽)
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Algorithm 2 The RES acquisition function.
Input evaluation point 𝒛, GP 𝐺𝑃, function samples F𝑐, ro-

bust optima F★
𝑐

Output value of RES acquisition function
1: 𝐻 ← 0
2: for 𝑐 ∈ {1, . . . , 𝐶} do
3: if IsNotInitialized(𝛼𝑅𝐸𝑆) then
4: 𝝁1, 𝜮1 ← ApproximateEP(𝐺𝑃, 𝑓𝑐, 𝑓

★
𝑐 )

5: ⊲ sec. 3.2.2., step 1
6: end if
7: 𝒉𝑐 (𝒙) ← arg max𝜽∈𝛩 𝑓𝑐 (𝒙, 𝜽)
8: 𝑔𝑐 (𝒙) ← 𝑓𝑐 (𝒙, 𝒉𝑐 (𝒙))
9: 𝑣𝑞 (𝒛) ←

10: ConditionPosteriorVariance(𝝁1, 𝜮1, 𝒉𝑐, 𝑔𝑐)
11: ⊲ sec. 3.2.2, steps 2 & 3
12: 𝐻 ← 𝐻 + log(𝑣𝑞 (𝒛) + 𝜎2

𝑛)
13: end for
14: return 𝛼𝑅𝐸𝑆 ← 1

2 log(𝑣𝑡 (𝒛) + 𝜎2
𝑛) − 1

2𝐶𝐻

5 EXPERIMENTS

We conduct three types of experiments: in a preliminary
test, we estimate the general performance of the acquisi-
tion function and its dependency on the number of necessary
function samples𝐶 in a within-model comparison. Secondly,
we compare our algorithm with state-of-the-art benchmarks
on synthetic problems. Finally, two real-life problems are
treated: the calibration of parameters of a numerical simula-
tion, arising in an engineering task, and robust robot pushing,
an experiment formulated by Bogunovic et al. [2018].

We compare our approach, RES, to StableOpt [Bogunovic
et al., 2018] with different exploration constants

√
𝛽, and

with the non-robust acquisition functions MES [Wang and
Jegelka, 2017], UCB [Srinivas et al., 2010], KG [Frazier et al.,
2008], and with standard EI [Jones et al., 1998]. In RES, we
set the number of features 𝐹 = 500 for the SSGP. For MES,
we choose a value of a number of 100 sampled minima, and
the exploration parameter

√
𝛽 in UCB was set to a value

of 2. For KG, which was originally designed for discrete
spaces, we discretize the continuous space of dimensionality
𝑑conti. by a random grid of size 50𝑑conti. drawn from a uniform
distribution in each iteration and use a number of 32 function
samples. For StableOpt, based on the experiments in the
original publication, we apply constant exploration constants
from

√
𝛽 ∈ {1, 2, 4}.

For measuring performance, we use algorithm- and problem-
specific metrics. As RES evaluates at a location that raises the
knowledge about the optimum and not at a potential optimum
location, the optimum location is calculated at every itera-
tion as the robust optimum of the actual model mean 𝒛★𝑡 =

(𝒙★, 𝜽★) = arg min𝒙∈X arg max𝜽∈𝛩 𝑚𝑡 (𝒙, 𝜽). The other ap-
proaches evaluate locations that might be the optimum; for
them we assume 𝒛★𝑡 = (𝒙★, 𝜽★) = arg max𝒛∈X×𝛩 𝛼(𝒛 |𝐷𝑡 ).

Given these optima, we calculate regret measures. For prob-
lems with a discrete space of uncontrollable parameters 𝛩,
where 𝒉(𝒙) is cheap to calculate, we directly take into ac-
count our robustness requirement by evaluating the robust
regret | 𝑓 (𝒙★, 𝒉(𝒙★)) − 𝑓★ |. For problems with uncontrol-
lable parameters from a continuous space 𝛩, such as the
within-model comparison, 𝒉(𝒙) is hardly accessible. There-
fore, we use the inference/immediate regret | 𝑓 (𝒛★𝑡 ) − 𝑓★ | for
the evaluation of the RES acquisition function/the other ac-
quisition functions. Notably, the metrics are non-monotonic,
as the guess about the optimum can deteriorate with time.
However, using a monotonic measure like best regrets, i.e.,
specifying the regret of the best found optimum up to iter-
ation 𝑡 for each run, is not helpful for min max problems.
This is because pure minimization algorithms can find an
optimum close to the robust optimum at the beginning of
the optimization process and then converge to a non-robust
optimum. The use of best regrets obscures this behavior.

If not mentioned otherwise, we use a zero mean GP prior, and
a squared-exponential covariance function with automatic-
relevance detection 𝑘 (𝒛, 𝒛′) = 𝜎2

𝑣 exp
(
−0.5| |𝒛 − 𝒛′ | |2

𝑳−1

)
with 𝑳 = diag

[
𝑙2
𝑐1, . . . , 𝑙

2
𝑑𝑐
, 𝑙2

𝑢1, . . . , 𝑙
2
𝑑𝑢

]
.

Runtime results for representative experiments are given in
appendix C.1.2.

The code to conduct the experiments is built on open
source implementations of GPs [GPy, since 2012], BO
[Paleyes et al., 2023], SSGPs and EP [Fröhlich et al.,
2020] and publicly available at https://github.com/
fraunhofer-iais/Robust-Entropy-Search.

5.1 WITHIN-MODEL COMPARISON

For the within-model comparison, we follow the approach
of Hennig and Schuler [2012] to compare the acquisition
functions independently from the correct fit of the actual GP
model.

Therefore, we use a GP model with squared-exponential co-
variance function with signal variance 𝜎2

𝑓
= 1, a constant

lengthscale of 𝑙 = 0.1 in all dimensions and a noise variance
of 𝜎2

𝑛 = 0.001. For each of the 50 initializations, we draw
1000 random data points whose locations follow a uniform
distribution in [0, 1]2 and whose values are distributed ac-
cording to a normal distribution with zero mean and the
covariance according to the specified covariance function.
Given these points, we initialize a GP. Its predictive mean
is employed as the objective function for optimization, so
we deal with a two-dimensional continuous problem. The
motivating example in figure 1 is one of the resulting opti-
mization problems. For RES, we apply numbers of function
samples of 𝐶 ∈ {1, 5, 10, 30}.

In figure 3, we report the results of the experiments. As
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Figure 3: Regrets for the two-dimensional, continuous within-model comparison. We present the median and the upper and
lower quartiles for 50 GP mean functions. The number after the algorithm indicates the value of the hyperparameter (𝐶 for
RES and

√
𝛽 for StableOpt). The results indicate the failure of the non-robust methods as well as the fact that RES acquisition

function is slightly better than StableOpt with the advantage of being hyperparameter-free.

expected, the non-robust approaches are not able to find
the robust optima. For StableOpt, the performance on this
particular problem depends on the value of the exploration
parameter - (for the within-model comparison) the lower, the
better. Generally, our approach RES is better than StableOpt
and, advantageously, does not require setting a hyperparame-
ter. Additionally, the number of samples only slightly impacts
the performance of RES. Therefore, we set the number of
samples to 1 for all other experiments.

5.2 SYNTHETIC BENCHMARK FUNCTIONS

In the synthetic experiments, we measure the performance
of our approaches on problems with unknown hyperparame-
ters. Basically, we use variations of the Branin [Surjanovic
and Bingham, 2013], the Sinus + Linear [Fröhlich et al.,
2020], the Eggholder [Surjanovic and Bingham, 2013], the
Hartmann 3D [Surjanovic and Bingham, 2013], and the Syn-
thetic Polynomial [Bertsimas et al., 2010] functions. In these
originally non-robust optimization problems, we declare a
subset of dimensions as uncontrollable parameters 𝜽 and
then search for the robust optimum.

To reduce the computational effort, we discretize the space
of the uncontrollable parameters 𝛩 in all experiments. The
exact number of uncontrollable parameters is given below the
figures, as well as the problem’s dimensionality. Full details
and visualizations of the individual problems are given in
appendix B.

We run each algorithm with 50 initializations. For all prob-
lems, except from the Synthetic Polynomial where we fix the
hyperparameters, we optimize the hyperparameters of the
GP model in every iteration via maximum likelihood. The
noise hyperparameter 𝜎𝑛 is fixed to a value of 0.001 in all
problems.

In figure 4, we report the performance of all algorithms in
terms of the quartiles. The experiments show a superior per-

formance of RES over the other approaches, independent
from the dimensionality or the complexity of the problem
(e.g., the eggholder problem having a lot of local optima). In
some cases, algorithms oscillate between different optima,
i.e., for the StableOpt algorithm with

√
𝛽 = 4 in the Sinus

+ Linear problem and for the non-robust algorithms in the
Synthetic Polynomial. This is due to the very different values
of the max function 𝑔(𝒙) for different inputs 𝒙. Addition-
ally, the previously en par StableOpt algorithm struggles
with the fixed or unknown hyperparameters of the model.
This behavior was already reported for plain UCB in Hennig
and Schuler [2012] and seems to apply also for the robust
adaption. Also, due to the unknown hyperparameters, Sta-
bleOpt underlies the risk of too early exploitation. In these
cases, one of the local robust optima is preferred over the
global one, increasing the width of the distribution over re-
sults. Therefore, StableOpt often reaches better results in the
lower quantiles (if it examines the correct local optimum).
However, its median behavior is worse than that of our ap-
proach, as RES is forced to explore more globally as it has
to learn not only about the robust optimum but also about
the other robustness characteristics. This behavior becomes
particularly clear in the Sinus + Linear, the Eggholder and
the Hartmann problems.

In appendix C.1.3 we additionally provide results on the
robust regret over the runtime for the Branin function. RES
achieves a similar regret in the same time as StableOpt with
a significantly lower number of iterations.

5.3 REAL-LIFE BENCHMARK PROBLEMS

We treat two benchmark problems connected to applying
robust BO in real life.
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(b) Sinus + Linear (2 d., 𝒙: conti., |𝜽 | = 2)
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(d) Hartmann (3 d., |𝒙 | = 2500, |𝜽 | = 11)
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(e) Synthetic Polynomial (4 d., 𝒙: 2 d.,
conti., |𝜽 | = 12)
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Figure 4: Results of the experiments with synthetic functions. The marker after the name of the problem indicates the
dimensionality, the type of input space (continuous or discrete) and, if discrete, the number of discrete parameters. For
StableOpt, we give the value of the exploration constant

√
𝛽 after the algorithm name. Our approach, RES, with a number

samples of 𝐶 = 1, shows superior performance on nearly all problems.

5.3.1 Calibration of Finite Element Method
Simulation Parameters

In engineering disciplines, a lot of research and develop-
ment tasks involve the application of heavy simulations, e.g.,
simulations via Finite Element Method. These simulations
are typically taking minutes to months for execution. Never-
theless, they are advantageous over real-life experiments in
the lab, as they are often cheaper (they do not induce, e.g.,
material costs) and enable insights of multiple metrics at
each time step and many locations simultaneously. Unfortu-
nately, the approximation quality of simulations depends on
material parameters, which are typically unknown. These
parameters are not directly measurable and depend on exoge-
nous parameters, such as local temperature. Therefore, a set
of experiments is taken out at a range of different uncontrol-
lable parameters, and engineers use the result to calibrate the
simulations, i.e., to fit the unknown (controllable) material
parameters to approximate the experiments.

In our use case, we treat the calibration of simulation pa-
rameters of a deep drawing process, where one simulation
takes about 12 minutes on 16 cores of an Intel(R) Core(TM)
i9-10980XE processor. In deep drawing, a metal sheet is
placed on a die, held in place by a blank holder, and drawn
into a new shape by pressing a punch, see figure 5a. Ex-
perimentally, the force of the punch 𝐹punchex was measured
over time, varying the constant force of the blank-holder

𝐹holder ∈ {200, 300, 350} kN. The static coefficient of fric-
tion `𝐻 ∈ [0.1, 0.2] is treated as the controllable parame-
ter, which depends, as no lubrication is used, only on the
(unknown) surface quality of the die, punch, blank holder,
and the metal sheet. Exemplary experimental and simulated
force-time diagrams are shown in figure 5b. The optimization
objective is to minimize the maximum absolute difference be-
tween the experimental and simulated punch force, so we seek
to find `★

𝐻
= arg min`𝐻

max𝐹Holder |𝐹punchex − 𝐹punchsim | =
arg min`𝐻

max𝐹holder 𝑓 (`𝐻 , 𝐹Holder).

We run our optimization approach 30 times for 25 iterations
for the RES and the EI acquisition function, each with one
random sample for initialization. Hyperparameters of the
model are estimated in every iteration via maximum likeli-
hood. To find the robust optimum for comparison, we join
the data from all 750 evaluations, create a GP model, and
calculate the function value at the model’s optimum. Fig-
ure 5c shows the optimization results in terms of robust
regret: while EI soon finds some non-robust optimum, RES
finds a considerably better robust optimum already after ten
iterations. While more iterations would have been interesting
from a scientific perspective, the results were already suffi-
cient for the application side. The robust optimal coefficient
of friction `★

𝐻
is now used as a safe estimate for simulations

with unknown blank-holder force.
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Figure 5: Deep drawing: schematic illustration, force-time-diagrams and regret curves for simulations with different parameters.

5.3.2 Robust Robot Pushing

In appendix C.2, we provide results on the robust robot
pushing problem from Bogunovic et al. [2018] and find RES
again performing best.

6 CONCLUSION

We introduced a novel worst-case robust acquisition func-
tion for BO, RES. In a nutshell, this acquisition function
simultaneously maximizes the information gain about the
robust objective function 𝑔, the location of the robust objec-
tive function 𝒉, and the robust optimal value 𝑓★. In several
benchmark experiments, we demonstrate the superior effi-
ciency of our acquisition function and show its benefit in
two use cases from engineering and robotics.

7 LIMITATIONS AND FUTURE WORK

This paper’s main contribution is developing an innovative
information-theoretic acquisition function for adversarially
robust BO. When used with a sufficiently accurate model, it
produces impressive results. However, its performance relies
on the correctness of the model, which is not necessarily the
case for complex problems. A simple technique to detect a
poor model fit is via the 𝛾-exploit approach, used by Hvarfner
et al. [2022], where in each iteration, with probability 𝛾, the
actual optimum is evaluated. Unfortunately, this approach
detects but does not circumvent a poor model fit. There-
fore, we expect an even more significant improvement in
combination with automatic model selection methods, such
as those by Malkomes and Garnett [2018], Gardner et al.
[2017]. Especially the ability to discover additive structures
in the work of Gardner et al. [2017] promises to additionally
scale the approach to higher-dimensional spaces, thus being
a valuable enhancement.

Additionally, the derivation of regret bounds would likewise
be interesting, such as typically performed in UCB-based
approaches, such as the StableOpt algorithm [Bogunovic

et al., 2018]. For information-based acquisition functions,
we are only aware of the disputed [Takeno et al., 2022] regret
bounds for MES and its descendants [Wang and Jegelka,
2017, Belakaria et al., 2019]. An extension of the existing
work, considering the recent discussions and the robust set-
ting of our approach, is a challenging open problem.

For future work, we intend to adapt our algorithm to various
domains, such as the constrained [Gelbart et al., 2014, Gard-
ner et al., 2014], the multi-fidelity [Forrester et al., 2007],
and multi-objective [Swersky et al., 2013] setting.
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A APPROXIMATION OF BIVARIATE DOUBLY TRUNCATED GAUSSIAN

We closely follow the results of Ang and Chen [2002]. Let 𝒙 = (𝑥1, 𝑥2) ∼ N (0, 𝜮), with lower bounds 𝒍𝑏 =
[
𝑙𝑏1 𝑙𝑏2

]𝑇 and
upper bounds 𝒖𝑏 =

[
𝑢𝑏1 𝑢𝑏2

]𝑇 , and 𝜌 denote the correlation of the two variables.

Let the cumulative density be denoted by 𝐿

𝐿 ( 𝒍𝑏, 𝒖𝑏) =
∫ 𝑢𝑏1

𝑙𝑏1

∫ 𝑢𝑏2

𝑙𝑏2

𝑓𝒙 (𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 ,

with 𝑓𝒙 (𝑥1, 𝑥2) being the density function of 𝒙. 𝐿 can be evaluated numerically, e.g., using the method of Genz [1992].

For the moments, we find:

𝑚10 =
1
𝐿

[
𝜓(𝑙𝑏1 , 𝑢𝑏1 , 𝑙𝑏2 , 𝑢𝑏2 ) + 𝜌𝜓(𝑙𝑏1 , 𝑢𝑏1 , 𝑙𝑏2 , 𝑢𝑏2 )

]
(9)

𝑚20 =
1
𝐿

[
𝐿 + 𝜒(𝑙𝑏2 , 𝑢𝑏2 , 𝑙𝑏1 ) − 𝜒(𝑙𝑏2 , 𝑢𝑏2 , 𝑢𝑏1 ) + 𝜌2𝜒(𝑙𝑏1 , 𝑢𝑏1 , 𝑙𝑏2 ) − 𝜌2𝜒(𝑙𝑏1 , 𝑢𝑏1 , 𝑢𝑏2 )

]
(10)

𝑚11 =
1
𝐿

[
𝜌𝐿 + 𝜌𝛶(𝑙𝑏1 , 𝑢𝑏1 , 𝑙𝑏2 ) − 𝜌𝛶(𝑙𝑏1 , 𝑢𝑏1 , 𝑢𝑏2 ) + 𝜌𝛶(𝑙𝑏2 , 𝑢𝑏2 , 𝑙𝑏1 ) − 𝜌𝛶(𝑙𝑏2 , 𝑢𝑏2 , 𝑢𝑏1 )

+ 𝛬(𝑙𝑏1 , 𝑢𝑏1 , 𝑙𝑏2 ) − 𝛬(𝑙𝑏1 , 𝑢𝑏1 , 𝑢𝑏2 )
] (11)

with helper functions

𝜓(𝑙𝑏1 , 𝑢𝑏1 , 𝑙𝑏2 , 𝑢𝑏2 ) = 𝜙(𝑙𝑏1 )
[
𝛷

(
𝑢𝑏2 − 𝜌𝑙𝑏1√︁

1 − 𝜌2

)
−𝛷

(
𝑙𝑏2 − 𝜌𝑙𝑏1√︁

1 − 𝜌2

)]
− 𝜙(𝑢𝑏1 )

[
𝛷

(
𝑢𝑏2 − 𝜌𝑢𝑏1√︁

1 − 𝜌2

)
−𝛷

(
𝑙𝑏2 − 𝜌𝑢𝑏1√︁

1 − 𝜌2

)]
,

𝜒(𝑙𝑏2 , 𝑢𝑏2 , 𝑙𝑏1 ) = 𝑙𝑏1𝜙(𝑙𝑏1 )
[
𝛷

(
𝑢𝑏2 − 𝜌𝑙𝑏1√︁

1 − 𝜌2

)
−𝛷

(
𝑙𝑏2 − 𝜌𝑙𝑏1√︁

1 − 𝜌2

)]

+ 𝜌
√︁

1 − 𝜌2
√

2𝜋
(
1 + 𝜌2)

𝜙
©«
√︃
𝑙2
𝑏2
− 2𝜌𝑙𝑏2 𝑙𝑏1 + 𝑙2𝑏1√︁

1 − 𝜌2

ª®®¬ − 𝜙
©«
√︃
𝑢2
𝑏2
− 2𝜌𝑢𝑏2 𝑙𝑏1 + 𝑙2𝑏1√︁

1 − 𝜌2

ª®®¬
 ,

𝛶(𝑙𝑏2 , 𝑢𝑏2 , 𝑙𝑏1 ) = 𝑙𝑏1𝜙(𝑙𝑏1 )
[
𝛷

(
𝑢𝑏2 − 𝜌𝑙𝑏1√︁

1 − 𝜌2

)
−𝛷

(
𝑙𝑏2 − 𝜌𝑙𝑏1√︁

1 − 𝜌2

)]
,
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and

𝛬(𝑙𝑏2 , 𝑢𝑏2 , 𝑙𝑏1 ) =
√︁

1 − 𝜌2
√

2𝜋

𝜙
©«
√︃
𝑙2
𝑏2
− 2𝜌𝑙𝑏2 𝑙𝑏1 + 𝑙2𝑏1√︁

1 − 𝜌2

ª®®¬ − 𝜙
©«
√︃
𝑢2
𝑏2
− 2𝜌𝑢𝑏2 𝑙𝑏1 + 𝑙2𝑏1√︁

1 − 𝜌2

ª®®¬
 ,

where 𝜙 is the probability density function and 𝛷 is the cumulative density function of the standard normal N(0, 1).

The moments 𝑚01 and 𝑚02 are obtained by interchanging (𝑙𝑏1 , 𝑢𝑏1 ) and (𝑙𝑏2 , 𝑢𝑏2 ) in the formulae for 𝑚10 and 𝑚20.

Given these moments, we finally find the following approximating normal distributionN( �̂�, �̂�) with �̂� =
[
𝑚10 𝑚01

]𝑇 and

�̂� =

[
𝑚20 − 𝑚2

10 𝑚11 − 𝑚10𝑚01
𝑚11 − 𝑚10𝑚01 𝑚02 − 𝑚2

01

]
. From these, we extract 𝑚𝑞 = 𝑚10 and 𝑣𝑞 = 𝑚20 − 𝑚2

10.

B DETAILED DESCRIPTION OF EXPERIMENTS WITH SYNTHETIC BENCHMARK
FUNCTIONS

Branin Function The branin function is defined by

𝑓 (𝒙, 𝜽) = 𝑎(𝜽 − 𝑏𝒙2 + 𝑐𝒙 − 𝑟)2 + 𝑠(1 − 𝑡) cos(𝒙) + 𝑠 ,

with 𝑎 = 1, 𝑏 = 5.1/(4𝜋2), 𝑐 = 5/𝜋, 𝑟 = 6, 𝑠 = 10, and 𝑡 = 1/(8𝜋) and is defined on 𝑥 ∈ [−5, 10], \ ∈ [0, 15] [Surjanovic
and Bingham, 2013].

We use discrete values of the uncontrollable parameter \ ∈ {0.75, 1, . . . , 14, 14.25}, |𝛩 | = 20, and scale the input space to
[0, 1]2 and the output values to N(0, 1).

For optimization, the hyperparameters of the GP are bounded to 𝜎𝑣 ∈
[
10−5, 10

]
and 𝒍 ∈

[
10−5, 10

]2. The model is initialized
with a single random point from the domain. We run each algorithm with 50 different initializations for 50 iterations.

Figure 6a shows the original optimization problem with the 20 discrete values of the uncontrollable parameter as white
horizontal lines, the robust optimum and the global minimum. The maximizing function 𝑔(𝒙) = max𝜽 𝑓 (𝒙, 𝜽) is visualized
in figure 6b.
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(b) Robust Branin Function

Figure 6: Visualization of the robust variant of Branin Function. The global robust optimum is indicated by ♦, the global
minimum by ◁.

Sinus + Linear Function The sinus + linear function is defined by

𝑓 (𝒛) = sin (5𝒛2𝜋) + 0.5𝒛 ,

where 𝒛 = 𝒙 + 𝜽 with 𝑥 ∈ [0, 1] and \ ∈ {0.1, 0.05}. It was originally used by Fröhlich et al. [2020] with continuous
\ ∈ [−0.05, 0.05]. We opted for discretization for the sake of simplicity.
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Figure 7a visualizes the problem. Multiple local robust and non-robust optima exist, which are close to each other.

For optimization, the hyperparameters of the GP are bounded to 𝜎𝑣 ∈
[
10−5, 10

]
and 𝒍 ∈

[
10−5, 10

]2. The model is initialized
with a single random point from the domain. We run each algorithm with 50 different initializations for 60 iterations.

Hartmann Function Following Surjanovic and Bingham [2013], the three-dimensional Hartmann function is defined by

𝑓 (𝒛) =
4∑︁
𝑖=1

𝛼𝑖 exp ©«−
3∑︁
𝑗=1

𝐴𝑖 𝑗

(
𝑧 𝑗 − 𝑃𝑖 𝑗

)2ª®¬ ,
where 𝛼 =

[
1.0 1.2 3.0 3.2

]𝑇 , 𝑨 =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

 , 𝑷 = 10−4


3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 . It is defined on 𝒛 ∈ [0, 1]3. In

our experiments, we use the first two dimensions as controllable parameters 𝒙 on an equidistant grid of size 50×50 = 2500, and
use the third dimension as uncontrollable parameter \, which is discretized to values of {0.25, 0.3, . . . , 0.7, 0.75}, |𝛩 | = 11.

The maximizing function 𝑔(𝒙) = max𝜽 𝑓 (𝒙, 𝜽), the robust optimum and the global minimum are visualized in figure 7b.

For optimization, the hyperparameters of the GP are bounded to 𝜎𝑣 ∈
[
10−5, 10

]
and 𝒍 ∈

[
10−5, 10

]2. The model is initialized
with a single random point from the domain. We run each algorithm with 100 different initializations for 50 iterations.
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(b) Robust Hartmann 3d function

Figure 7: Visualization of robust Sinus + Linear and Hartmann function variants. The global robust optimum is indicated by
♦ and the global minimum by ◁.

Eggholder Function Following Surjanovic and Bingham [2013], the eggholder function is defined by

𝑓 (𝒙, 𝜽) = −(𝜽 + 47) sin

(√︂���𝜽 + 𝒙

2
+ 47

���) − 𝒙 sin
(√︁
|𝒙 − (𝜽 + 47) |

)
,

with 𝑥 ∈ [−512, 512], \ ∈ [−512, 512].

We use discrete values of the uncontrollable parameter \ ∈ {−512, 0, 185}, and scale the input space to [0, 1]2 and the output
values to zero mean and a variance of 1.

Figure 8a shows the original optimization problem with the three uncontrollable parameters as white horizontal lines, as well
as the robust optimum. The maximizing function 𝑔(𝒙) = max𝜽 𝑓 (𝒙, 𝜽) is visualized in figure 8b.

For optimization, the hyperparameters of the GP are bounded to 𝜎𝑣 ∈
[
10−5, 10

]
and 𝒍 ∈

[
10−5, 10

]2. The model is initialized
with a single random point from the domain. We run each algorithm with 50 different initializations for 80 iterations.
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(a) Eggholder Function
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Figure 8: Visualization of the robust variant of Eggholder Function. The global robust optimum is indicated by ♦, the global
minimum by ◁.

Synthetic Polynomial We adopt the synthetic polynomial, which has already been considered in multiple variations by
Bertsimas et al. [2010], Bogunovic et al. [2018], Fröhlich et al. [2020], Christianson and Gramacy [2023]. It is originally
defined by Bertsimas et al. [2010]:

𝑓 (𝒛) = 2𝒛6
1 − 12.2𝒛5

1 + 21.2𝒛4
1 + 6.2𝒛1 − 6.4𝒛3

1 − 4.7𝒛2
1

+𝒛6
2 − 11𝒛5

2 + 43.3𝒛4
2 − 10𝒛2 − 74.8𝒛3

2 + 56.9𝒛2
2

−4.1𝒛1𝒛2 − 0.1𝒛2
2𝒛

2
1 + 0.4𝒛2

2𝒛1 + 0.4𝒛2
1𝒛2

with 𝒛 =
[
𝒛1 𝒛2

]
. We choose 𝒙1 ∈ [−0.95, 3.2] and 𝒙2 ∈ [−0.45, 4.4], and 𝜽 in a circular neighborhood with radii

𝑟 ∈ {0, 0.5} and angles 𝛼 ∈ {0, 0.4𝜋, 0.8𝜋, 1.2𝜋, 1.6𝜋, 2𝜋}, so 𝒛 = 𝒙 + 𝜽 = 𝒙 + 𝑟
[
cos𝛼 sin𝛼

]
.

Figure 9a shows the original optimization problem (\ = 0). The maximizing function 𝑔(𝒙) = max𝜽 𝑓 (𝒙, 𝜽) is visualized in
figure 9b. The robust optimum is far from the non-disturbed one.
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(b) Robust Synthetic Polynomial

Figure 9: Visualization of the robust variant Synthetic Polynomial Problem. The global robust optimum is indicated by ♦, the
global minimum by ◁.

Similar to Bogunovic et al. [2018], we fix the hyperparameters to values found by maximum likelihood estimation using 500
randomly sampled points with function values below 15. The model is initialized with ten random points from the domain.
We run each algorithm with 100 different initializations for 100 iterations.
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C ADDITIONAL EXPERIMENT RESULTS

C.1 RUNTIME RESULTS

C.1.1 Time Complexity of Algorithm

To evaluate the time complexity of one iteration of RES, we have to consider the types of parameters, i.e. wether the
(un)controllable parameters are discrete or continuous. Therefore, we distinguish four cases: the case of fully discrete
parameters, the case of fully continuous parameters and the mixed ones.

For all of them, the calculation time is dominated by calculation of equation (6). Two aspects are influencing it: the
marginalization step, which is of order O

(
𝑁3) , with 𝑁 being the number of data points in 𝐷𝑡 , and the optimization procedure

to find the argmax function 𝒉𝑐 (𝒙) and the corresponding function value 𝑔𝑐 (𝒙), with a single prediction of the function
sample 𝑓𝑐 from a set of 𝐶 function samples, each with 𝐹 Fourier feature functions scaling with O

(
𝐹2) .

An additional aspect to take into account is the scaling of the different applied optimization procedures. We apply the
Nelder-Mead method, which (in the worst case of a nonconvex and nonsmooth function) scales with O

(
𝑑2

𝜓4

)
to reach a

required precision 𝜓 in dimensionality 𝑑 [Garmanjani and Vicente, 2013], the L-BFGS-B algorithm, which scales with
maximum order O (𝑑) per iteration [Zhu et al., 1997], and simple maximization of 𝑁𝑑 data points, being of O (𝑁𝑑). Given
these prerequisites, we can derive the complexity for all cases of parameter type combinations. In the following, we refer to
the dimensionality of the uncontrollable parameters as 𝑑𝑢, to the dimensionality of the controllable parameters as 𝑑𝑐, to the
number of uncontrollable parameters as 𝑁𝑢, and to the number of controllable parameters as 𝑁𝑐.

Fully continuous parameters. We search for the maximum of the acquisition function by multistart Nelder-Mead method
with 𝑁𝑅 restarts. In each Nelder-Mead iteration, we have to call multistart the L-BFGS-B optimizer with 𝑁𝑟 restarts and 𝑁𝑖

iterations. Therefore, we find a complexity of 𝑁𝑅O
(
(𝑑𝑐+𝑑𝑢 )2

𝜓4

)
𝐶

(
O

(
𝑁3) + 𝑁𝑟𝑁𝑖

(
O (𝑑𝑢) + O

(
𝐹2) ) ) .

Fully discrete parameters. In the fully discrete case, we have to evaluate all combinations of parameters and max-
imize afterward. For each controllable parameter, we have to find the maximizing value of the uncontrollable param-
eters. Therefore, we have to predict once and maximize 𝑁𝑐 times. Therefore, we find a complexity of O (𝑁𝑐𝑁𝑢) +
𝐶

(
O

(
𝑁3) + O (

𝐹2) + 𝑁𝑐O (𝑁𝑢)
)
.

Continuous controllable parameters and discrete uncontrollable parameters. In this case, we optimize the ac-
quisition function again via multistart Nelder-Mead method but find the maximizing uncontrollable parameters in the
discrete way. In each Nelder-Mead iteration, we have to maximize the function sample, and we find a complexity of
𝑁𝑅O

(
𝑑2
𝑐

𝜓4

)
𝐶

(
O

(
𝑁3) + O (

𝐹2) + O (𝑁𝑢)
)
.

Discrete controllable parameters and continuous controllable parameters. Even though we do not perform experiments
for this case, we provide the result for sake of completeness. Here, the outer optimization is performed in a discrete manner,
while the inner one is continuous, so the complexity scales with O (𝑁𝑐) + 𝑁𝑐

(
𝐶

(
O

(
𝑁3) + 𝑁𝑟𝑁𝑖

(
O (𝑑𝑢) + O

(
𝐹2) ) ) ) .

C.1.2 Practical Runtime Experiments

In tables 1, 2, and 3 we summarize the computation time of the algorithms for a fully continuous experiment (e.g., the
within-model comparison), for a fully discretized experiment (e.g., the discretized Hartmann function), and an experiment
that has a continuous space of controllable parameters X and a discrete space of uncontrollable parameters 𝛩, (e.g., the
Branin function). The measured runtime contains the initialization and the optimization of the acquisition function for one
iteration. For StableOpt, we include the runtime for all values of the exploration constant

√
𝛽. The experiments are taken out

on Intel Xeon Gold 5118 CPUs, using 12 cores in parallel, for the Branin function, we were able to apply 24 cores.

Overall, the runtime of our approach RES is between StableOpt and KG, with KG being faster on the Branin function, which
is due to it running on a small discrete space of controllable parameters X and RES on a continuous space of controllable
parameters X. We assume that the optimization of the RES acquisition function on the mixed space X × 𝛩 takes more
iterations than the optimization over its discrete version.
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Table 1: Runtime results for within model comparison. Results in seconds. ∗: KG algorithm runs on a discretized space of
50 × 50.

Quantile RES StableOpt MES KG∗ UCB EI
25 % 203.99 34.32 0.34 1197.04 0.12 0.17
50 % 232.97 44.92 0.39 1525.47 0.15 0.22
75 % 271.23 58.87 0.52 2043.63 0.24 0.39

Table 2: Runtime results for the fully discretized Hartmann function. Results in seconds.

Quantile RES StableOpt MES KG UCB EI
25 % 195.413 0.021 0.117 1199.908 0.021 0.022
50 % 199.438 0.026 0.125 2278.777 0.026 0.026
75 % 204.000 0.031 0.133 3848.871 0.031 0.031

Table 3: Runtime results for the Branin function. Results in seconds. ∗: KG algorithm runs on a discretized space of 50 × 1.

Quantile RES StableOpt MES KG∗ UCB EI
25 % 28.069 1.309 0.156 9.819 0.066 0.084
50 % 33.536 3.593 0.167 12.373 0.072 0.093
75 % 38.387 5.305 0.177 15.262 0.079 0.103

C.1.3 Performance over Runtime

In figure 10, we provide the robust regret over the runtime for the Branin function. Even though RES experiences a slow
start, it achieves a similar regret in the same time as StableOpt with a significantly lower number of iterations (as can be seen
from the experiment in the main part of the paper).
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Figure 10: Regret over runtime for the Branin Problem. RES reaches the same robust regret as StableOpt in a similar amount
of time.

C.2 RESULTS FOR ROBUST ROBOT PUSHING PROBLEM

We adopt the robust robot pushing problem from Bogunovic et al. [2018], which is based on the publicly available code1 of
the robot pushing objective by Wang and Jegelka [2017].

1https://github.com/zi-w/Max-value-Entropy-Search
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Figure 11: Results for robust robot pushing problem.

In the problem, a good pre-image for pushing an object to an unknown target location is sought. Precisely, there are two
different target locations, where the first is uniformly distributed over the domain and the second uniform over the 𝑙1-ball
centered at the first target location with radius 𝑟 = 2.0. Each evaluation calls a function 𝑓 (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑡 ) = 5 − 𝑑𝑒𝑛𝑑 , where
(𝑟𝑥 , 𝑟𝑦) ∈ [−5, 5]2 is the initial robot location, 𝑟𝑡 ∈ [1, 30] is the pushing duration and 𝑑𝑒𝑛𝑑 is the distance to the target
location.

We run the problem 30 times for 100 iterations, where each initialization consists of a randomly drawn pair of targets and
two starting positions, one for each target. We make a fully Bayesian treatment of the model hyperparameters, updated every
10th iteration. In figure 11, we report the robust regret: RES again shows a superior performance. The large discontinuities in
the curves are caused by hyperparameter re-estimation.
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