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Abstract

Bayesian deep learning (BDL) is an emerging field
that combines the strong function approximation
power of deep learning with the uncertainty mod-
eling capabilities of Bayesian methods. In addition
to those virtues, however, there are accompanying
issues brought by such a combination to the clas-
sical parameter-space variational inference, such
as the nonmeaningful priors, intricate posteriors,
and possible pathologies. In this paper, we propose
a new function-space variational inference solu-
tion called Functional Wasserstein Bridge Infer-
ence (FWBI), which can assign meaningful func-
tional priors and obtain well-behaved posterior.
Specifically, we develop a Wasserstein distance-
based bridge to avoid the potential pathological
behaviors of Kullback–Leibler (KL) divergence
between stochastic processes that arise in most ex-
isting functional variational inference approaches.
The derived functional variational objective is well-
defined and proved to be a lower bound of the
model evidence. We demonstrate the improved pre-
dictive performance and better uncertainty quan-
tification of our FWBI on several tasks compared
with various parameter-space and function-space
variational methods.

1 INTRODUCTION

In past decades, Bayesian deep learning (BDL) approaches
[Blundell et al., 2015, Gal, 2016, Wilson and Izmailov,
2020] have shown success in combining the strong pre-
dictive performance of deep learning models with the prin-
cipled uncertainty estimation of Bayesian inference. They
have been recognized as an effective and irreplaceable tool
for a wide range of tasks, such as the uncertainty formulation
in per-pixel semantic segmentation [Kendall and Gal, 2017],

risk-sensitive reinforcement learning [Depeweg et al., 2018],
and safety-critical medical diagnosis and diabetic detection
[Filos et al., 2019, Band et al., 2022].

Even though impressive progress has been made, the ap-
plication of Bayesian deep learning has not achieved out-
standing performance in some tasks compared with their
non-Bayesian counterparts [Ovadia et al., 2019, Foong et al.,
2019, Farquhar et al., 2020]. This phenomenon can proba-
bly be attributed to at least two unresolved issues in their
parameter-space inference. Firstly, it is difficult to incor-
porate meaningful prior information about the unknown
function into the inference procedure. The widely used in-
dependent and identically distributed Gaussian priors for
model parameters are not always applicable for that, be-
cause the samples of such priors over parameters tend to be
horizontally linear and lead to pathologies for deep models
[Duvenaud et al., 2014, Matthews et al., 2018, Tran et al.,
2020] (we visualize this problem in Appendix A for the
self-contained purpose). Moreover, the effects of the given
priors on posterior inference and further on the resulting
distributions over functions are unclear and hard to control
owing to the complex architecture and non-linearity of the
models [Ma and Hernández-Lobato, 2021, Fortuin et al.,
2021, Wild et al., 2022].

To avoid these issues, there has been increasing attention to
performing Bayesian inference in function space instead of
parameter space [Ma et al., 2019, Rudner et al., 2020, 2022a,
Pielok et al., 2023]. In such an inference framework, the
distributions of function mappings defined by models are
treated as probability measures in function space induced by
the distributions over model parameters, and then the varia-
tional objective is defined in terms of the distributions over
functions directly. In this situation, one can take advantage
of more informative stochastic process priors, such as the
classic Gaussian Processes (GPs), which can easily encode
prior knowledge about function properties (e.g., periodicity
and smoothness) through corresponding kernel functions. In
order to approximate posterior distributions over functions,
existing function-space inference methods [Sun et al., 2019]
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explicitly build and minimize the divergence or distance
between the true posterior and the variational posterior pro-
cesses and develop a tractable estimate procedure for the
functional variational objective.

Like parameter-space variational methods, function-space
inference methods mostly use the Kullback–Leibler (KL)
divergence as the measure of dissimilarity. However, such
KL divergence for distributions over infinite-dimensional
functions may be infinite [Burt et al., 2020], leading to the
ill-defined variational objective. Specifically, as a key to the
definition of KL divergence between probability measures,
the existence of Radon-Nikodym derivatives between the
prior and the variational approximate posterior must satisfy
that the latter is absolutely continuous with respect to the
former [Matthews et al., 2016, Burt et al., 2020], which may
not be satisfied in some situations. For example, the KL
divergence between distributions over functions generated
from two Bayesian neural networks with different network
structures can be infinite [Ma and Hernández-Lobato, 2021].

In this work, we investigate a new functional variational
inference method using a Wasserstein bridge as a dissimilar-
ity measure for distributions called Functional Wasserstein
Bridge Inference (FWBI), which can avoid the limitations
of KL divergence for distributions over functions. Our main
contributions are as follows:

• We propose a new Bayesian inference framework in
function space to avoid the limitations of parameter-
space mean-field variational inference, such as the diffi-
culties of defining meaningful priors and uncontrolled
pathologies from over-parametrization.

• We propose a variational objective in terms of distribu-
tions over functions based on the Wasserstein bridge as
the alternative for KL divergence between probability
measures. We prove that our objective function is a
lower bound of the model evidence and therefore is a
well-defined objective for Bayesian inference.

• We evaluate the proposed method by comparing it
against competing parameter-space and function-space
inference approaches on several tasks to demonstrate
its highly predictive performance and reliable uncer-
tainty estimation.

2 PRELIMINARIES

Consider a supervised learning task with dataset D =
{(xi, yi)}ni=1 = {XD,YD}, where xi ∈ X ⊆ Rd are
the training inputs and yi ∈ Y ⊆ Rc denote the correspond-
ing targets. Let f(·;w) : X → Y be a function mapping
defined by an arbitrary machine learning model with model
parameters w. For example, f can be the function mapping
given by a Bayesian neural network (BNN), which is one of
the most representative BDL models. BNNs are stochastic

neural networks, and their parameters (weights) are mul-
tivariate random variables resulting in a random function
f(·;w), that is, a stochastic process. When evaluated at fi-
nite marginal points X in the input domain, f(X;w) turns
into a multivariate random variable.

Parameter-space variational inference BDL models are
usually trained with Bayesian inference by placing prior dis-
tributions over model parameters, such as p0(w) is the prior
distribution for random network weights in BNNs defined
on a probability space (Ω,A, P ). Given the training data
{XD,YD} and a proper likelihood p(YD|XD,w) evalu-
ated with the training set, the posterior of weights then can
be inferred as p(w|D) ∝ p0(w)p(YD|XD,w). However,
due to the non-linear nature of the function mapping f in
terms of random w, the marginal integration required in
solving the posterior over weights is intractable for any prac-
tical dimension. Variational inference [Wainwright et al.,
2008] is one of the most popular approximation approaches
to convert the problem of estimating the posterior distri-
bution into a tractable optimization problem. The goal of
variational inference is to fit an approximate posterior distri-
bution q(w;θq) parametrized by θq from a tractable varia-
tional family by minimizing the KL divergence between it
and the true posterior as minq(w;θq)KL[q(w;θq)∥p(w|D)],
which is equivalent to maximizing the evidence lower bound
(ELBO) as follows:

Lq(w;θq) :=Eq(w;θq) [log p(YD | XD,w;θq)]

−KL[q(w;θq)∥p0(w)].
(1)

Function-space variational inference The core idea of
function-space variational inference is to view a Bayesian
deep learning model as a distribution of functions. The ran-
dom function mapping (product measurable) defined on
the function space H (Polish space) via a BDL model is
given by f(·;w) : X × Ω→ Y , which is A measurable for
every x ∈ X . Let p0(f) be the prior distribution over the
stochastic functions. Like Bayesian inference in parameter
space, the main goal is to infer the posterior over functions
p(f |D) combined with the likelihood p(YD | f(XD)) eval-
uated at the training data D = {XD,YD}. However, it
would be intractable for most stochastic processes. For ex-
ample, as for BNNs, p0(f) is the prior distribution over
functions induced by the prior distribution over random net-
work weights p0(w), and there is no explicit probability
form for it. Similar to parameter-space variational inference,
the variational objective in function space can be denoted
as minq(f ;θq)KL[q(f ;θq)∥p(f |D)], where q(f ;θq) is the
variational posterior over functions induced by the varia-
tional posterior over parameters. The functional ELBO, as
the variational objective function in function space to be
maximized, is

LKL
q(f ;θq)

:=Eq(f ;θq) [log p(YD | f(XD;θq))]

−KL[q(f ;θq)∥p0(f)],
(2)
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where one can effectively incorporate prior information
about the task via the p0(f) in the KL term during the
optimization. For estimation of the above functional ELBO,
the following three issues need to be carefully considered:

• The first one concerns the validity of the definition of
the objective function. In order to guarantee the ex-
istence of the Radon-Nikodym derivative in the KL
divergence between two distributions over functions, it
is necessary to satisfy that q(f ;θq) is absolutely con-
tinuous with respect to p0(f). Specifically, for q(f ;θq)
and p0(f) generated from the same function map-
ping with different parameter distributions, such as
the same neural network structure for BNNs, it should
satisfy KL[q(w;θq)∥p0(w)] ≤ ∞ to guarantee that
KL[q(f ;θq)∥p0(f)] ≤ ∞ according to the strong data
processing inequality[Polyanskiy and Wu, 2017] as
KL[q(f ;θq)∥p0(f)] ≤ KL[q(w;θq)∥p0(w)].

• The second issue concerns the implicit probability den-
sity functions for q(f ;θq) and p0(f). Note that since
H is an infinite-dimensional function space, p0(f) and
q(f ;θq) are not actually the probability density func-
tions with respect to the Lebesgue measure, but the
probability measures over H. Even for the marginal
multivariate random vector p0(f(X)) and q(f(X;θq))
at finite input points X, the explicit probability density
functions are intractable for some stochastic processes,
e.g., BNNs and other non-linear models.

• The third problem is the effective and efficient esti-
mation of the KL divergence between two stochastic
processes. To solve the intractable infinite-dimensional
KL divergence between distributions over functions,
Sun et al. [2019] proved that

KL[q(f ;θq)∥p0(f)]
= sup

n∈N,X∈Xn

KL[q(f(X;θq))∥p0(f(X))], (3)

where Xn = ∪{X ∈ Xn|Xn ∈ Rn}. In other words,
the functional KL divergence is equivalent to the supre-
mum of all KL divergence over marginal finite mea-
surement points. Unfortunately, there is no analytical
way to obtain such supremum in practical optimization.

3 OUR METHOD

The main obstacle in existing function-space variational in-
ference is the definition and estimation issues regarding the
KL divergence between distributions over functions. In this
section, we propose a novel Wasserstein distance-based vari-
ational objective to avoid the limitations of KL divergence
and improve approximation inference in function space. We
first propose a two-step variational method via a functional
prior and a bridging distribution to approximate the poste-
rior indirectly. In the first step, we distill a functional prior

by fitting a bridging distribution over functions. In the sec-
ond step, we form a new ELBO by matching the variational
posterior and the bridging distribution in parameter space
using the 2-Wasserstein distance as a surrogate for the KL
divergence. Then, we further propose an integrated varia-
tional objective to jointly optimize the bridging distribution
and the variational posterior.

3.1 FUNCTIONAL PRIOR INDUCED
VARIATIONAL INFERENCE

Suppose a random function mapping f(·;w) : X×Rk → Y
parametrized by random w ∈ Rk is defined by a BDL
model. The main variational objective is to obtain the ap-
proximate posterior q(f ;θq) induced by the variational pos-
terior over parameters q(w;θq). Let g(·;wb) be a latent
random function with parameters wb ∈ Rk and p(g;θb) de-
notes a bridging distribution over functions induced by the
distribution over model parameters p(wb;θb). Assume that
p(g;θb) and q(f ;θq) are generated from the same function
structure with different parametric distributions (e.g., same
BNNs structure with different distributions over weights).

Distilling a functional prior using a bridging distribution
over functions. Considering that GPs are well-developed
priors in function space that are known to be interpretable
and are able to incorporate prior knowledge about the pre-
diction task in hand, we can assign a GP prior denoted by
p0(f) ∼ GP(m,K) for random f . Due to the intractable
KL divergence between the GP prior and the non-GP vari-
ational posterior in the functional ELBO [Rudner et al.,
2022a], we firstly distill the GP prior to the bridging dis-
tribution over functions by minimizing the 1-Wasserstein
distance between p(g;θb) and p0(f) [Tran et al., 2022] with
the dual form as follows:

W1(p(g;θb), p0(f)) = sup
∥ϕ∥≤1

Ex∼p(g;θb)ϕ(x)−Ey∼p0
ϕ(y).

(4)
Specifically, we solve the above 1-Wasserstein distance
on finite randomly sampled measurement points XM

det
=

[x1, . . . ,xM ]
T as W1(p(g(XM;θb)), p0(f(XM))) in

practice due to the infinite-dimensional nature of random
functions. The 1-Wasserstein distance between distributions
over functions is now reduced to that over multivariate ran-
dom variables. The specific form is as follows:

W1(p(g(XM;θb)), p0(f(XM))) =

supEXM

[
Ep(g;θb)ϕ(g(XM))− Ep0ϕ(f(XM))

]
,

(5)
where ϕ is a 1-Lipschitz continuous function. g(XM) and
f(XM) are corresponding function values evaluated at
XM, respectively. It can be seen that this approximated
computation procedure is based entirely on sampling, so
it can still be performed smoothly even without the closed
form of p(g;θb). At the same time, the functional prior-
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induced bridging distribution over parameters is denoted as
p(wb;θb

∗), where θb
∗ = argminθb

W1(p(g;θb), p0(f)).
It is worth noting that this distillation procedure could be
applied to any prior distributions over functions as long as
their random function samples are available.

Matching the variational posterior and the bridging dis-
tribution in parameter space. The main idea of this infer-
ence method is to force distribution over functions q(f ;θq)
and p(g;θb) to share the same function structures. That is,
once the optimal functional prior-induced bridging distribu-
tion over parameters p(wb;θb

∗) is obtained from the above
distilling process by fitting p0(f) to p(g;θb), θb∗ is frozen
and p(wb;θb

∗) is used in the regularization term of ELBO
to the variational q(w;θq) as

Lq(w;θq) =Eq(w;θq) [log p(YD | XD,w;θq)]

− λW2(q(w;θq), p(wb;θb
∗)),

(6)

where W2(q(w;θq), p(wb;θb
∗)) is the 2-Wasserstein dis-

tance between the approximate posterior q(w;θq) and the
bridging distribution over parameters p(wb;θb

∗), λ is a
hyperparameter. Suppose q(w;θq) and p(wb;θb) are two
Gaussian distributions, then W2(q(w;θq), p(wb;θb

∗)) has
an analytical solution as

W2(q(w;θq), p(wb;θb
∗)) =

∥µq − µ∗
b∥

2
2 + trace

(
Σq +Σ∗

b − 2
(
Σ1/2

q Σ∗
bΣ

1/2
q

)1/2
)
,

(7)
where θq := {µq,Σq},θb∗ := {µ∗

b ,Σ
∗
b} are respective

mean and covariance matrices. We call this improved vari-
ational inference approach based on the functional prior
the Functional Prior-induced Variational Inference (FPi-
VI). Note that although Gaussian Wasserstein Inference
(GWI) proposed by Wild et al. [2022] also adopted the
2-Wasserstein distance in its functional variational infer-
ence, ours is different because Equation 7 is actually in the
parameter-space since we have already distilled a parameter-
space counterpart of the functional prior but the one in GWI
is in function space. On the surface, the function-space 2-
Wasserstein distance used in GWI is more straightforward
and reasonable, but it has a restriction since they have to
use a GP posterior and its mean function is parameterized
by a deterministic neural network to approximate the BNN
posterior, and such restriction would lose the strong capa-
bility of BNN on uncertainty modeling. Our method does
not have such restriction and our optimization target is still
the BNN posterior. A pseudocode of FPi-VI is presented in
Algorithm 1 in Appendix B.

3.2 FUNCTIONAL WASSERSTEIN BRIDGE
INFERENCE

Due to the isotropy of the 1-Wasserstein distance, there will
be an infinite number of candidate p(wb;θb

∗) with the ex-
actly same distance to a given functional prior, and FPi-VI

just randomly picks one from all candidates in the first dis-
tilling step. Such randomness brings large fluctuations to
the following inference performance (see Appendix E.1).
Therefore, we further treat parameters of bridging distribu-
tions θb as parameters that need to be optimized together
with variational posterior parameters to obtain a more robust
solution. Since there is no analytical solution to estimate
the functional distance (e.g., KL divergence and Wasser-
stein distance) directly between the functional prior and
variational posterior over functions for all but extremely
simple distributions such as GPs, our key ingredient is to
build a Wasserstein bridge to decompose such functional
distance into a parameter-space 2-Wasserstein distance and
a function-space 1-Wasserstein distance at the same time in
optimization as

WB(q(f ;θq), p0(f)) =λ1W2(q(w;θq), p(wb;θb))

+ λ2W1 (p(g;θb), p0(f)) ,
(8)

where p(wb;θb) is the bridging distribution over param-
eters, p(g;θb) is the bridging distribution over functions
induced by p(wb;θb), θq and θb are the respective stochas-
tic parameters of the approximate variational posterior and
bridging distribution which would be optimized jointly, and
λ1, λ2 are two hyperparameters.

Based on the above Wasserstein bridge, we propose a varia-
tional objective in function space called Functional Wasser-
stein Bridge Inference (FWBI) and derive a practical algo-
rithm to obtain the optimal {θq∗,θb∗} as:

argmin
θq,θb

−Eq(f ;θq) [log p(YD | f(XD;θq))]

+WB(q(f ;θq), p0(f))

= argmin
θq,θb

− 1

M

∑
(x,y)∈B

Eq(f ;θq) [log p(y | f(x;µq,Σq))]

+ λ1W2(q(w;µq,Σq), p(wb;µb,Σb))

+ λ2W1 (p(g(XM;µb,Σb)), p0(f(XM))) ,
(9)

where B = {xj , yj}Mj=1 is the mini-batch of the training
data {XD,YD} applied to the likelihood term, w and wb

can be reparameterized as w = µq +Σq ⊙ ϵ, wb = µb +
Σb⊙ ϵ respectively with random noisy ϵ under the Gaussian
assumption, and XM denotes the finite measurement set
from the input space for the estimation of 1-Wasserstein
distance in function space.

Proposition 1 The functional variational objective derived
from FWBI based on the Wasserstein bridge is a lower
bound of the model evidence.

The above proposition shows that our variational objective
of FWBI is a lower bound of the model evidence, which
indicates it is a well-defined objective for Bayesian infer-
ence. The proof is based on the law of cosines for the KL
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divergence and Talagrand inequality of probability measures
(please see Appendix C for more details).

Although the 1-Wasserstein distance used in Equation (9)
could link GP prior with functional bridging distribution, we
found that it is weak on the higher-order moments matching
in practice. To preserve the uncertainty knowledge encoded
in the functional prior, we propose the following enhanced
version of the 1-Wasserstein distance with an additional
second-order moment matching term as

W̃1 (p(g;θb), p0(f)) =W1 (p(g;θb), p0(f))

+M2 (p(g;θb), p0(f)) ,
(10)

where M2 (p(g;θb), p0(f)) is a second-order moment
matching term as |var(p(g;θb)) − var(p0(f))|. We use
this enhanced 1-Wasserstein distance in the Wasserstein
bridge of FWBI in practice. The pseudocode for FWBI is
shown in Algorithm 2 in Appendix B.

Different from most functional variational inference ap-
proaches [Sun et al., 2019, Ma and Hernández-Lobato, 2021,
Rudner et al., 2022a] that perform variational optimization
directly on the approximate posterior over functions, the pro-
posed FWBI treats the bridging distribution over functions
induced by distributions over parameters as an intermedi-
ate variable to link the variational posterior and functional
prior. Specifically, FWBI distills a functional prior by the
bridging distribution over functions p(g;θb) induced by
p(wb;θb) via the enhanced 1-Wasserstein distance with an
additional second-order matching term and matches varia-
tional posterior q(w;θq) and p(wb;θb) by minimizing the
2-Wasserstein distance simultaneously.

The main advantages of FWBI are as follows: i) in gen-
eral parameter-space mean-field variational inference, it is
common to use an i.i.d Gaussian prior assumption for dis-
tributions over parameters [Blundell et al., 2015], while
FWBI can assign a more interpretable functional prior and
incorporate meaningful information about the task into infer-
ence process; ii) FWBI utilizes the well-defined Wasserstein
distance-based Wasserstein bridge to regularize parameters
of variational posterior with a functional prior, which can
circumvent the limitation of functional KL divergence used
in most function-space approximate inference methods [Sun
et al., 2019] and can quantify uncertainty more accurately
with a second-order moment matching term in the enhanced
1-Wasserstein distance. Once the optimal θq∗ is obtained,
the posterior predictive distribution is obtained by the fol-
lowing integration process and can be estimated through
Monte Carlo sampling:

q(y∗|x∗) =

∫
p(y∗|f(x∗;θq

∗))q(f(x∗;θq
∗))df(x∗;θq

∗)

≈ 1

S

S∑
j=1

p(y∗|f(x∗;w(j))),

(11)
where w(j) ∼ N (µ∗

q ,Σ
∗
q),θq

∗ := {µ∗
q ,Σ

∗
q}.

4 RELATED WORKS

Based on the variational inference methods in parameter
spaces, there is an increasing number of works focusing
on the function-space variational approaches for various
BDL models such as BNNs, and their applications on a
range of machine learning tasks where predictive uncertainty
quantification is crucial [Benjamin et al., 2019, Titsias et al.,
2019, Pan et al., 2020, Rudner et al., 2022b].

Variational inference in parameter spaces. Parameter-
space variational methods are widely used for approximat-
ing posterior of weights in BNNs. It is Hinton and Van Camp
[1993] first used variational inference in BNNs. Barber and
Bishop [1998] replaced a fully factorized Gaussian assump-
tion for variational posterior with a full rank Gaussian to
model correlations between weights. Then Graves [2011]
proposed a sub-sampling technique to approximate the ex-
pected log-likelihood by Monte Carlo integration. To im-
prove this work, Blundell et al. [2015] developed an algo-
rithm for variational inference called Bayes by Backprop
(BBB) based on the reparameterization trick, which could
yield an unbiased gradient estimator of ELBO w.r.t model
parameters.

Variational inference in function spaces. Due to the lim-
itations of parameter-space variational inference, such as
the intractability of specifying meaningful priors, Sun et al.
[2019] proposed a kind of functional ELBO to match a
GP prior and the variational posterior over functions for
BNNs via a spectral Stein gradient estimator designed for
implicit distributions [Shi et al., 2018]. However, the KL
divergence between stochastic processes involved in the
functional ELBO may be ill-defined for a wide class of
distributions and further leads to an invalid variational ob-
jective [Burt et al., 2020]. At the same time, Wang et al.
[2019] proposed a particle optimization variational infer-
ence method in function spaces for posterior approximation
in BNNs. Rudner et al. [2020, 2022a] pointed out that the
supremum of marginal KL divergence over finite measure-
ment sets cannot be solved analytically for the estimation of
functional KL divergence. They proposed to approximate
the distributions over functions as Gaussian via the lineariza-
tion of their mean parameters and derived a tractable and
well-defined variational objective since the functional prior
and variational posterior are two BNNs that share the same
network structures. Ma and Hernández-Lobato [2021] ran-
domized the number of finite measurement points to derive
an alternative grid-functional KL divergence, which can
avoid some limitations of KL divergence between stochas-
tic processes. However, all these methods are based on
KL divergence. Considering the potential weaknesses of
KL divergence, there are some recent works trying to use
Wasserstein distance [Kantorovich, 1960, Villani, 2003] to
replace KL divergence. Tran et al. [2020] proposed to match
a BNN prior to a GP prior by minimizing the 1-Wasserstein
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distance to obtain more interpretable functional priors in
BNNs. However, they used stochastic gradient Hamiltonian
Monte Carlo (SGHMC) rather than variational inference
to approximate the posterior. In contrast, our work uses an
enhanced 1-Wasserstein distance with an additional second-
order moment matching term to preserve the uncertainty
better in the distilling between the functional prior and the
bridging distribution, then develops a functional variational
objective for posterior approximation based on the proposed
Wasserstein bridge. Wild et al. [2022] built a functional vari-
ational objective called GWI where the functional prior and
posterior are both Gaussian measures, and the dissimilarity
measure was chosen to be the 2-Wasserstein distance. How-
ever, the critical GP components make it less applicable
to general non-GP scenarios. In contrast, our FWBI is not
restricted to any distributional assumptions: the variational
posterior and prior over functions can be any reasonable
stochastic process for the specific tasks.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the predictive performance and
uncertainty quantification of FWBI on several tasks, includ-
ing 1-D extrapolation toy examples, multivariate regression
on UCI datasets, contextual bandits, and image classifica-
tion tasks. We compare FWBI to several well-established
parameter-space and function-space variational inference
approaches.

5.1 EXTRAPOLATION ILLUSTRATIVE
EXAMPLES

Learning polynomial curves Consider an 1-D oscilla-
tion curve from the polynomial function: y = sin(3πx) +
0.3 cos(9πx)+0.5 sin(7πx)+ϵ with noise ϵ ∼ N (0, 0.52).
There are 20 randomly sampled observation points, half of
which are sampled from the interval [−0.75,−0.25], and
the other half are from [0.25, 0.75]. For parameter-space
variational inference comparison, we choose BBB [Blundell
et al., 2015] using KL divergence for distributions over pa-
rameters, denoted by KLBBB, and a 2-Wasserstein distance
alternative version called WBBB. For functional methods,
we compare with the benchmark functional BNNs (FBNN)
proposed by Sun et al. [2019]. For FWBI and FBNN, we use
the same GP prior with three different kinds of kernels: RBF
kernel, Matern kernel, and Linear kernel (not suitable for
modelling polynomial oscillatory curves). Results are shown
in Figure 1, the leftmost column shows that the two para-
metric inference methods, KLBBB and WBBB, fail to fit
the target function, while the two function-space approaches
exhibit better predictive performance. For FWBI and FBNN,
we first pre-train the GP prior to obtaining a more informa-
tive functional prior. Figures 1(f) and 1(g) show that FWBI
is able to recover the key polynomial characteristic of the

curve in observation range and provide strong uncertainty in
the unseen region of input space with appropriate RBF ker-
nel and Matern kernel. On the other hand, the mismatched
Linear kernel in Figure 1(h) expresses a certain trend of error
linearity, which indicates FWBI can effectively utilize func-
tional prior information in the inference process. In contrast,
FBNN under-fit the curve severely in both observations and
non-observations with RBF kernel and Matern kernel, while
results from the inappropriate Linear kernel are a little better.
FBNN is less responsive to different kernel information and
performs poorly in uncertainty estimation. See Appendix
E.2 for more baseline results. Appendix E.3 shows detailed
comparisons of posteriors of GPs and FWBI. The calibration
curves for all methods are shown in Appendix E.4.

Learning periodic curves One of the main advantages of
FWBI is the ability to encode a variety of prior knowledge
into the posterior inference process by utilizing rich func-
tional priors (e.g., through the kernel functions of GP priors).
In this experiment, we consider using GPs as the functional
prior to fit a periodic curve: y(x) = sin(x) + 0.1x+ ϵ, ϵ ∼
N (0, 0.5). 30 observations are randomly sampled from
[−7.5,−5]∪[−2.5, 2.5]∪[5, 7.5]. To demonstrate the effects
of different priors on posterior inference, we use three dif-
ferent kernel functions: Periodic kernel, Matern kernel, and
Linear kernel (not suitable for modelling periodic curves)
in corresponding three different GP priors, respectively. For
comparison, we also consider the parameter-space varia-
tional inference method KLBBB [Blundell et al., 2015]
using i.i.d. Gaussian prior for model parameters, which is
intractable to incorporate periodic prior knowledge. The
results are shown in Figure 2. As shown in Figure 2(a) and
2(b), it is obvious that FWBI has a strong capacity to recover
the key periodic characteristics of the true function and pro-
vide accurate uncertainty estimation utilizing appropriate
GP priors. GP prior with periodic kernel generates a little bit
better and smoother posterior results than that with Matern
kernel. On the other hand, Figure 2(c) illustrates that mis-
matched Linear kernel incorporated in the prior knowledge
could destroy posterior inference. In contrast, parameter-
space KLBBB in the rightmost Figure 2(d) fails to fit the
periodic trend, which is closely related to the inability to
encode the correct prior knowledge in the parameter space.
For more analysis of the impact of functional properties of
priors (smoothness and noise) on FWBI, see Appendix E.6.

5.2 MULTIVARIATE REGRESSION ON UCI
DATASETS

In this experiment, we evaluate our method for multivariate
regression tasks on benchmark UCI datasets to demonstrate
the predictive performance of FWBI. Table 1 shows the
average results of root mean square error (RMSE). All three
functional inference methods consistently provide better
results than parameter-space approaches, which could re-
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Figure 1: Learning polynomial curves. The green line is the ground true function, and the blue lines correspond to mean
approximate posterior predictions. Black dots denote 20 training points; shadow areas represent the predictive standard
deviations. The leftmost column shows two parameter-space methods, and the other three columns are the results of
functional approaches based on GP priors with three different kernels. For more details, see Appendix D.
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Figure 2: Learning periodic curve with different GP priors. We consider three different kernel functions: the Periodic kernel,
the Matern kernel, and the Linear kernel. See Appendix E.5 for more details about convergence of FWBI.

flect the advantages of function-space variational inference.
Furthermore, our FWBI significantly outperforms all other
functional models and shows efficient running performance
(see Appendix E.8).

5.3 CONTEXTUAL BANDITS

Reliable uncertainty estimation is crucial for downstream
tasks such as contextual bandit problems, where the agent
gradually learns the model by observing a context repeatedly
and choosing the optimal action in dynamic environments.
In these scenarios, it is important to balance the exploration
and exploitation during the optimization. Thompson sam-
pling [Thompson, 1933, Russo and Van Roy, 2016] is a
widely used algorithm for strategy exploration in contextual
bandits. In this section, we evaluate the ability of FWBI
to guide exploration on the UCI Mushroom dataset, which
includes 8124 instances, and each mushroom has 22 fea-

tures and is identified as edible or poisonous. The agent can
observe these mushroom features as the context and choose
either to eat or reject a mushroom to maximize the reward.
We consider three different reward patterns: for the action
of eating a mushroom, if the mushroom is edible, the agent
will receive a reward of 5. Conversely, if the mushroom is
poisonous, the agent will receive a reward of -35 with prob-
abilities 0.4, 0.5, and 0.6, respectively, for three different
patterns; otherwise, a reward of 5. On the other hand, if the
agent decides to take the action of rejecting a mushroom, it
will receive a reward of 0.

Suppose an oracle will always choose to eat an edible mush-
room (and receive a reward of 5) and not to eat the poi-
sonous mushroom. We take the cumulative regrets with
respect to the reward achieved by the oracle to measure the
exploration-exploitation ability of an agent. We concatenate
the mushroom context and the action chosen by the agent
as model input, and the corresponding reward received is
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Table 1: The table shows the results of average RMSE for multivariate regression on UCI datasets. We split each dataset
randomly into 90% training data and 10% test data, and this process is repeated 10 times to ensure validity. We perform the
paired-sample t-test for the results from FWBI and the results from other methods and get p < .001. See Appendix E.7 for
results of the test negative log-likelihood (NLL).

Dataset FWBI GWI FBNN WBBB KLBBB
Yacht 1.303±0.112 2.198 ± 0.083 1.523 ± 0.075 2.328 ± 0.091 2.131 ± 0.085
Boston 1.531±0.055 1.742 ± 0.046 1.683 ± 0.122 2.306 ± 0.102 1.919 ± 0.074
Concrete 1.144±0.057 1.297 ± 0.053 1.274 ± 0.049 2.131 ± 0.068 1.784 ± 0.063
Wine 1.242±0.056 1.680 ± 0.064 1.528 ± 0.053 2.253 ± 0.071 1.857 ± 0.069
Kin8nm 1.093±0.014 1.188 ± 0.015 1.447 ± 0.069 2.134 ± 0.029 1.787 ± 0.027
Protein 1.195±0.006 1.333 ± 0.007 1.503 ± 0.025 2.188 ± 0.012 1.795 ± 0.010
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Figure 3: Comparisons of cumulative regrets for FWBI, KLBBB, WBBB, FBNN, GWI on the Mushroom contextual bandit
task. Lower represents better performance.

Table 2: Image classification and OOD detection performance.

MNIST FMNIST CIFAR10
Model Accuracy OOD-AUC Accuracy OOD-AUC Accuracy OOD-AUC
FWBI 96.51 ± 0.00 0.962 ± 0.01 86.01 ± 0.00 0.838 ± 0.01 47.93 ± 0.01 0.618 ± 0.03
GWI 95.40 ± 0.00 0.858 ± 0.05 85.43 ± 0.00 0.394 ± 0.04 44.78 ± 0.01 0.635 ± 0.02
FBNN 96.09 ± 0.00 0.801 ± 0.07 85.64 ± 0.00 0.814 ± 0.02 46.29 ± 0.01 0.612 ± 0.03
WBBB 96.16 ± 0.00 0.869 ± 0.03 85.57 ± 0.00 0.819 ± 0.01 45.76 ± 0.01 0.606 ± 0.03
KLBBB 96.26 ± 0.00 0.868 ± 0.03 85.71 ± 0.00 0.829 ± 0.02 46.20 ± 0.00 0.606 ± 0.02

the model output. We follow the hyperparameter settings
by Blundell et al. [2015]. The cumulative regrets of all 5
parameter-space and function-space variational inference
methods for 3 reward patterns are shown in Figure 3. FWBI
performs better than other inference methods in all three re-
ward modes, which indicates that FWBI can provide reliable
uncertainty estimation in such decision-making scenarios.

5.4 CLASSIFICATION AND OOD DETECTION

We evaluate the scalability of FWBI via image classifica-
tion tasks with high-dimensional inputs. We assess the in-
distribution predictive performance and out-of-distribution
(OOD) detection ability on MNIST, FashionMNIST[Xiao
et al., 2017] and CIFAR-10[Krizhevsky et al., 2009]. For
all functional methods, we use the same GP prior with RBF
kernel. We report the test accuracy for predictive perfor-
mance and the area under the curve (AUC) of OOD detec-

tion pairs FashionMNIST/MNIST, MNIST/FashionMNIST
and CIFAR10/SVNH based on predictive entropies in Table
2. Our FWBI consistently outperforms all parameter-space
and function-space baselines for classification accuracy and
performs competitively in OOD detection (Appendix E.9).

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new function-space variational
inference method termed Functional Wasserstein Bridge
Inference (FWBI). It optimizes a Wasserstein bridge-based
functional variational objective as the surrogate to the possi-
ble problematic KL divergence between stochastic processes
involved in most existing functional variational inference.
We proved the functional variational objective derived from
FWBI is a lower bound of the model evidence. Empiri-
cally, we demonstrated that FWBI could leverage various
functional priors to yield high predictive performance and
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principled uncertainty quantification. On these premises, our
future work will focus on the theoretical comparison with
other Bayesian approximation methods and the application
on more complex BDL models, such as Bayesian deep en-
sembles, and on more task scenarios, such as active learning
and Bayesian optimization.
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A FURTHER BACKGROUND

Pathologies for parameter-space priors As in Figure 4, we show the function samples generated from three BNNs with
Gaussian prior N (0, 1) over network weights. It is obvious that as the depth increases, the function samples tend to be more
horizontal, which can lead to a problematic posterior inference.
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Figure 4: Function samples from three fully connected BNNs with different network architectures: there are 2, 4, and 8
hidden layers, respectively, and each layer has 50 units. The prior distribution for weights is N (0, 1) and the activation is
tanh.

Wasserstein distance The Wasserstein distance [Kantorovich, 1960, Villani, 2003] is a rigorously defined distance metric
on probability measures satisfying non-negativity, symmetry and triangular inequality [Panaretos and Zemel, 2019] that was
originally proposed for the optimal transport problem and has become popular in the machine learning community in recent
years [Arjovsky et al., 2017]. Suppose (P, ∥ · ∥) is a Polish space, the p-Wasserstein distance between probability measures
µ, ν ∈ (P, ∥ · ∥) is defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
P×P

∥x− y∥p dγ(x, y)
)1/p

, (12)

where Γ(µ, ν) is the set of joint measures or coupling γ with marginals µ and ν on P × P .

The law of cosines for the KL divergence For two probability measures p and q ∈ (P, ∥ · ∥), the law of cosines for the
KL divergence between p and q is defined as [Belavkin, 2013]:

KL[p∥q] = KL[p∥r] + KL[r∥q]−
∫

log
dq(x)

dr(x)
[dp(x)− dr(x)]

= KL[p∥r]−KL[q∥r]−
∫

log
dq(x)

dr(x)
[dp(x)− dq(x)].

(13)

3802

mailto:<mengjing.wu@student.uts.edu.au>?Subject=Your UAI 2024 paper


where r is the reference measure. Consider the 1-Wasserstein distance between p and q as

W1(p, q) := sup{Ep{f} − Eq{g} : f(x)− g(y) ≤ c(x, y)}. (14)

Suppose real function f(x) and g(x) satisfying additional constraints:

βf(x) = ∇KL[p∥r] = log
dp(x)

dr(x)
, β ≥ 0 (15)

αg(x) = ∇KL[q∥r] = log
dq(x)

dr(x)
, α ≥ 0 (16)

Thus, βf and αg are the gradients of divergence KL[p∥r], KL[q∥r] respectively, and this means that probability measures
p, q have the following exponential representations:

dp(x) = eβf(x)−κ[βf ]dr(x) (17)

dq(x) = eαg(x)−κ[αg]dr(x) (18)

where κ[(·)] = log
∫
e(·)dr(x) is the normalizing constant.

d

dβ
κ[βf ] = Ep{f}, KL[p∥r] = βEp{f} − κ[βf ] (19)

d

dα
κ[αg] = Eq{g}, KL[q∥r] = αEq{g} − κ[αg] (20)

Substituting these formulate into (13) we obtain

KL[p∥q] = βEp{f} − αEq{g} − (κ[βf ]− κ[αg])− α

∫
g(x)[dp(x)− dq(x)] (21)

According to the Theoreom 2 in Belavkin [2018], assume that Lagrange multipliers α = β = 1, then have

KL[p∥q] = Ep{f} − Eq{g} − (κ[f ]− κ[g])−
∫

g(x)[dp(x)− dq(x)]

= W1(p, q)− (κ[f ]− κ[g])−
∫

g(x)[dp(x)− dq(x)]

(22)

Talagrand inequality As proved by Otto and Villani [2000], the probability measure q satisfies a Talagrand inequality
with constant ρ if for all probability measure p, absolutely continuous w.r.t. q, with finite moments of order 2,

W1(p, q) ≤W2(p, q) ≤

√
2KL[p∥q]

ρ
(23)

where the first inequality can be proved by the Cauchy-Schwarz inequality.

B PSEUDOCODE OF FPI-VI AND FWBI

C PROOF OF THEORETICAL RESULTS

To analyze the theoretical properties of FWBI for posterior variational inference, we further derive a corresponding functional
variational objective as follows:

LW := E [log p(YD | f(XD;θq))]− λ1W2(q(f ;θq), p(g;θb))− λ2W1 (p(g;θb), p0(f)) , (24)

where q(f ;θq) is the variational distribution over functions induced by approximate posterior q(w;θq).
W2(q(f ;θq), p(g;θb)) is calculated by corresponding W2(q(w;θq), p(wb;θb)). As a variational Bayesian objective,
it is worthwhile to explore whether this new variational objective based on the Wasserstein bridge is still a lower bound
of the log marginal likelihood. Based on the law of cosines for the KL divergence and Talagrand inequality of probability
measures (Appendix A), we derive the following Proposition 1:
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Algorithm 1 Functional Prior-induced Variational Inference (FPi-VI)

Require: Dataset D = {XD,YD}, minibatch B = {xj , yj}Mj=1 ⊂ D, functional prior p0(f)
1: Initialise w ∼ N (0, 1), wb ∼ N (0, 1), reparameterize w = µq + Σq ⊙ ϵ, wb = µb + Σb ⊙ ϵ with ϵ ∼ N (0, 1),

θq := {µq,Σq},θb := {µb,Σb}
2: while θb not converged do
3: draw measurement set XM randomly from input domain
4: draw functional prior functions f(XM) ∼ p0(f) at XM
5: draw bridging distribution functions g(XM) ∼ p(g;θb) at XM
6: calculate W1 (p(g(XM;µb,Σb)), p0(f(XM))) using Equation 5
7: θb ← Optimizer(θb, W1)
8: end while
9: Froze θb

∗ := {µ∗
b ,Σ

∗
b}

10: while θq not converged do
11: calculate L = − 1

M

∑
(x,y)∈B Eq(w;θq) [log p(y | x,w;θq)] + λW2(q(w;θq), p(wb;θb

∗)) using Equation 7
12: θq ← Optimizer(θq , L)
13: end while

Algorithm 2 Functional Wasserstein Bridge Inference (FWBI)

Require: Dataset D = {XD,YD}, minibatch B = {xj , yj}Mj=1 ⊂ D, functional prior p0(f)
1: Initialise w ∼ N (0, 1), wb ∼ N (0, 1), reparameterize w = µq + Σq ⊙ ϵ, wb = µb + Σb ⊙ ϵ with ϵ ∼ N (0, 1),

θq := {µq,Σq},θb := {µb,Σb}
2: while θb, θq not converged do
3: draw measurement set XM randomly from input domain
4: draw functional prior functions f(XM) ∼ p0(f) at XM
5: draw bridging distribution functions g(XM) ∼ p(g;θb) at XM
6: L = − 1

M

∑
(x,y)∈B Eq(f ;θq) [log p(y | f(x;µq,Σq))] + λ1W2(q(w;µq,Σq), p(wb;µb,Σb)) +

λ2W1 (p(g(XM;µb,Σb)), p0(f(XM))) + λ3M2 (p(g(XM;µb,Σb)), p0(f(XM)))
7: θb, θq ← Optimizer(θb, θq , L)
8: end while
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Proposition 1 For the functional variational objective LW derived from FWBI based on the Wasserstein bridge, we have

log p(D) ≥ LW

where log p(D) is the log model evidence.

Proof. Since the 1-Wasserstein distance is not greater than the 2-Wasserstein distance between two probability measures
based on the Cauchy-Schwarz inequality, assume that λ1 = λ2 = 1, we first have:

LW := E[log p(YD | f(XD;θq)]− λ1W2(q(f ;θq), p(g;θb))− λ2W1(p(g;θb), p0(f))

≤ E[log p(YD | f(XD;θq)]− λ1(KL[q(f ;θq)∥p(g;θb)] +
∫

g1(f)[dq(f ;θq)− dp(g;θb)])−

λ2(KL[p(g;θb)∥p0(f)] +
∫

g2(f)[dp(g;θb)− dp0(f)])

= E[log p(YD | f(XD;θq)]− (λ1(KL[q(f ;θq)∥p(g;θb)]) + λ2(KL[p(g;θb)∥p0(f)]))−

(λ1

∫
g1(f)[dq(f ;θq)− dp(g;θb)] + λ2

∫
g2(f)[dp(g;θb)− dp0(f)])

= E[log p(YD | f(XD;θq)]−KL[q(f ;θq)∥p0(f)]− (

∫
log

dp0(f)

dp(g;θb)
[dq(f ;θq)− dp(g;θb)]+∫

log
dp(g;θb)

dr(f)
[dq(f ;θq)− dp(g;θb)] +

∫
log

dp0(f)

dr(f)
[dp(g;θb)− dp0(f)])

= E[log p(YD | f(XD;θq)]−KL[q(f ;θq)∥p0(f)]− (

∫
log

dp0(f)

dr(f)
[dq(f ;θq)− dp(g;θb)]+∫

log
dp0(f)

dr(f)
[dp(g;θb)− dp0(f)])

= E[log p(YD | f(XD;θq)]−KL[q(f ;θq)∥p0(f)]−
∫

log
dp0(f)

dr(f)
[dq(f ;θq)− dp0(f)]

= LKL −
∫

log
dp0(f)

dr(f)
[dq(f ;θq)− dp0(f)]

= LKL −
∫

log
dp0(f)

−dq(f ;θq)
[dq(f ;θq)− dp0(f)]

= LKL − (KL[q(f ;θq)∥p0(f)] + KL[p0(f)∥q(f ;θq)])
≤ LKL

≤ log p(D)

(25)

where we assume that the reference measure dr(f) = −dq(f ;θq) in the law of cosines for the KL divergence.

Proposition 1 shows that LW is a valid variational objective function since it is a lower bound of the model evidence.

D EXPERIMENTAL SETTING

Polynomial curve extrapolation In this experiment, we use 2× 100 fully connected tanh BNNs as variational posteriors
for all models. The functional GP priors are pre-trained on the 20 training points for 10000 epochs. We also use 40 inducing
points for the sampling of marginal measurement points in FWBI, FBNN and GWI from [−1, 1]. All methods are trained for
10000 epochs.

Periodic curve extrapolationIn this experiment, we use 2× 100 fully connected tanh BNNs as variational posteriors for all
models. The functional GP priors are pre-trained on the 30 training points for 10000 epochs. The marginal measurement set
for FWBI is randomly sampled from all observations together with 30 inducing points randomly sampled from [−10, 10].
All inference methods are trained for 10000 epochs.

Multivariate regression on UCI datasets We choose BNNs posteriors with two hidden layers (input-10-10-output). The
GP prior uses RBF kernel and is pre-trained on the test dataset for 100 epochs. The number of iterations for all models is
2000.
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Figure 5: Explanation for potential sub-optimal solution in FPi-VI.

Contextual bandits The variational posteriors are fully connected tanh BNNs with two hidden layers (input-100-100-output)
and the GP prior is pre-trained on 1000 randomly sampled points from training data. ALL models are trained using the
last 4096 input-output tuples in the training buffer with a batch size of 64 and training frequency 64 for each iteration. All
inference methods are trained for 10000 epochs.

Classification and OOD detection For all models in this experiment, the variational posteriors are fully connected BNNs
with 2 hidden layers, each with 800 units. The functional prior is a Dirichlet-based GP designed for classification tasks
Milios et al. [2018] and is pre-trained on test dataset for 500 epochs. ALL inference methods are trained for 600 epochs and
the batchsize is 125.

E FURTHER RESULTS

E.1 DEMONSTRATION FOR POTENTIAL SUB-OPTIMAL FPI-VI

Due to the isotropy of the 1-Wasserstein distance, there will be an infinite number of candidate p(wb;θb
∗) with exactly the

same distance to a given functional prior, and FPi-VI just randomly picks one from all candidates in the first distilling step
as shown in Figure 5(e). Such randomness brings large fluctuations to the following inference performance. To show such a
problem, we first train FWBI on a 1-D toy example (results are shown in Figure 5(d)), the output distance of the learned
bridging distribution to the GP prior is evaluated and denoted as d = 0.0800. Then, we use the 1-Wasserstein distance as the
loss to (randomly) find another three p(wb;θb

∗) with the same distance d to the GP prior1, and we run the second step of
FPi-VI using the three p(wb;θb

∗) respectively. The results are plotted in Figures 5(a), 5(b) and 5(c). We can observe that 1)
the performances of all models are significantly different even though their bridging distributions all have the same distance
to the prior, which demonstrates that the first step of FPi-VI is with large fluctuations may harm the final posterior inference;
2) FWBI is much better than the other three, which shows that FWBI could automatically learn a reasonably good bridging
distribution from the infinite number of candidates.
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Figure 6: More baseline results for polynomial extrapolation example.

E.2 MORE BASELINE RESULTS FOR TOY EXAMPLE

Figure 6 shows more baseline results for the toy example. Figure 6(a), 6(b) and 6(c) are the approximate posteriors of GWI
[Wild et al., 2022] using three different kernels corresponding to which used in Figure 1. And Figure 6(d) is the mean of
samples from MCMC posterior using Langevin dynamics and 6(e) is the posterior from Laplace approximationDaxberger
et al. [2021]. Compared to these baseline results, FWBI still shows a stronger ability to recover the main trend of the target
function and more accurate uncertainty estimation in the unseen region.

E.3 DETAILED COMPARISONS WITH GP POSTERIORS FOR TOY EXAMPLE

In this section, we give a detailed comparison between the FWBI posterior and the GP posterior. We first pre-trained GP
priors with the Matern kernel and the RBF kernel on 20 training data points, and the results for the corresponding GP
posteriors and FWBI posteriors are given in Figure 7. In Figure 7(a), the GP posterior shows excessive uncertainty in the
well-fitted training region, which is barely distinguishable from the uncertainty in the unseen region. In contrast, our model
is able to achieve more reasonable uncertainty estimates. As shown in Figure 7(c) for FWBI posterior, in the well-fitted
intervals [−0.75,−0.25] and [0.25, 0.75] containing training points, the uncertainty is significantly smaller than that in the
three regions without data. For the results corresponding to the RBF kernel in Figure 7(b) and 7(d), both models show good
uncertainty estimation at the same time, however, our FWBI posterior demonstrates better fitting ability, e.g., in the middle
unseen region [−0.25, 0.25], our model better recovers the trend of the objective function.

E.4 CALIBRATION CURVES FOR TOY EXAMPLES

Referring to the calibration curve for regression tasks in Kuleshov et al. [2018], it can measure how well the predicted
probabilities match the observed frequencies. As shown in Figure 8, we plot calibration curves of all methods for two toy
examples, where the horizontal and vertical coordinates are the predicted cumulative distribution function (CDF) and the
empirical CDF, respectively. The 45-degree diagonal line represents the perfect calibration, where we can see that our FWBI
shows the most superior calibration.

1In the implementation, we allow a small variation to it as d+ ϵ where ϵ < 0.001
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Figure 7: Comparisons of posteriors of GP and FWBI.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted CDF

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

Predicted CDF vs Empirical CDF
KLBNN
WBNN
FWBI
GWI
FBNN

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Predicted CDF

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

Predicted CDF vs Empirical CDF
KLBNN
WBNN
FWBI
GWI
FBNN

(b)

Figure 8: Calibration curves for two toy examples. The gray dashed line is the perfect calibration.

E.5 CONVERGENCES OF WASSERSTEIN BRIDGE IN FWBI

The convergence processes of 1-Wasserstein distance and 2-Wasserstein of FWBI in two toy examples are shown in Figure
9 and Figure 10. We can see that both the 1-Wasserstein distance and 2-Wasserstein in our Wasserstein Bridge converge very
quickly.
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Figure 9: Convergence of Wasserstein bridge in the training of FWBI for polynomial extrapolation.

E.6 IMPACT OF FUNCTIONAL PROPERTIES OF PRIOR ON FWBI

In this section, we analyze the impact of functional properties (smoothness and noise) of prior on FWBI posterior. Consider
a 1-D periodic function: y = 2 ∗ sin(4x) + ϵ with noise ϵ ∼ N (0, 0.01), and randomly sample 20 training points from this
function within [−2,−0.5] ∪ [0.5, 2]. Firstly, we fit a GP with Matern kernel as the prior using these training data. Since the
Matern kernel has a parameter ν used to control the smoothness of the functions from GP, we use ν to simulate different
prior smoothness. The results are shown in Figure 11, where Figure 11(a) and 11(b) are the results from the unsmoothed
(ν = 0.5) and smoothed (ν = 2.5) GP priors, respectively. The corresponding FWBI posteriors are shown in Figures 11(c)
and 11(d), where we can see the smoothness of the prior has some effects on the resulting posteriors, e.g., the prediction
curves in 11(d) on the interval [0.75, 1.5] are smoother than those of 11(c).

Then, we investigate the impact of prior noise on the posteriors by adding different GP noises to the pre-trained GP prior
(with periodic kernel). Specifically, we consider two situations: GP noises with fixed 0 mean and varying variances, and GP
noises with fixed variance and varying means, respectively. The results are shown in Figures 12 and 13, where the left column
shows several GP priors with different injected noises, and the right column shows the corresponding FWBI posteriors. We
can observe that: 1) when the mean of noises is fixed, there are significant effects from varying variances (from 0.5 to 3).
The larger noise variance tends to destroy the predictive accuracy of the training data region and the predictive uncertainty
also increases noticeably with the increasing noise variance; 2) when the variance of noises is fixed, varying means (from
0.3 to 3) only have little effect on the region with training data, but destroy the prediction on the non-data regions. The larger
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Figure 10: Convergence of Wasserstein bridge in the training of FWBI for periodic extrapolation.

Table 3: The table shows the average test NLL on several UCI regression tasks. We split each dataset randomly into 90% of
training data and 10% of test data. This process is repeated 10 times to ensure validity.

Dataset FWBI GWI FBNN WBBB KLBBB
Yacht -0.994±0.956 0.112 ± 0.757 -0.770 ± 0.869 2.856 ± 0.186 2.512 ± 0.161
Boston 0.473 ± 0.306 -1.043 ± 0.681 -1.193±0.763 2.656 ± 0.179 2.066 ± 0.115
Concrete -0.254 ± 0.206 -0.684 ± 0.492 -1.001±0.520 2.838 ± 0.152 2.614 ± 0.166
Wine 0.347±0.114 0.700 ± 0.159 0.524 ± 0.137 2.843 ± 0.147 2.148 ± 0.125
Kin8nm -1.499 ± 0.149 -2.604±0.237 -2.445 ± 0.622 2.823 ± 0.066 2.614 ± 0.071
Protein -2.252±0.319 -1.575 ± 0.229 -1.486 ± 0.238 2.744 ± 0.026 2.222 ± 0.020

changed means would lead to worse prediction.

E.7 NLL RESULTS FOR UCI REGRESSIONS

Table 3 shows the average test negative log likelihood (NLL) results on UCI regression tasks. FWBI still shows competitive
performance compared to other weight-space and function-space variational methods.
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Figure 11: The effect of the prior smoothness on FWBI posterior.

Table 4: Running time comparison on Boston and Protein dataset.

Run time(s) FWBI GWI FBNN WBBB KLBBB
Boston 22.25 ± 1.5000 16.00 ± 1.000 200.67 ± 6.351 8.33 ± 0.577 8.33 ± 0.577
Protein 134.250 ± 3.5000 472.67 ± 0.577 318.33 ± 5.774 8.00 ± 0.000 8.00 ± 1.000

E.8 RUNNING TIME COMPARISON FOR UCI REGRESSIONS

In order to compare the efficiency between FWBI and other inference approaches, we provide the running time comparisons
on the small Boston dataset and the large Protein dataset in multivariate regression tasks. The Boston dataset has 455 training
points with 13-dimensional features, while there are 41157 training points with 9 input dimensions in the larger Protein
dataset. The GPU running time for all 2000 training epochs of each method is shown in Table 4.

We can see that in a small Boston dataset, the running time of FWBI is similar to parameter-space WBBB and KLBBB, and
FWBI is nearly 10 times faster than FBNN. And for the large Protein dataset, the running time of FBNN and GWI is 2-4×
higher than FWBI, which indicates that FWBI is very efficient. Additionally, the convergence processes of training loss for
all methods are shown in Figure 14, FWBI shows significant advantages in terms of both convergence speed and stability.

E.9 ROC FOR OOD DETECTION IN CLASSIFICATION TASKS

Figure 15 shows the receiver operating characteristic curve (ROC) for all methods on OOD detection in image classification
tasks. The closer the curve is to the upper left corner, the stronger the OOD detection capability. Our FWBI performs
competitively in all three datasets.
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Figure 12: The effect of the prior noise with fixed mean on FWBI posterior (subtitles represent the injected noise). The top
row is the naive GP prior and the corresponding FWBI posterior. The left column is the GP priors with different injected GP
noises, and the right column is the corresponding FWBI posteriors.

E.10 WASSERSTEIN DISTANCE VS. KL DIVERGENCE

We first define a Gaussian mixture model (GMM) as our target distribution,

p(x) = 0.1 ∗ N
(
x;

[
0
0

]
,

[
2 0
0 2

])
+ 0.2 ∗ N

(
x;

[
20
20

]
,

[
3 0
0 3

])
+ 0.7 ∗ N

(
x;

[
−10
20

]
,

[
1 0
0 1.5

])
(26)
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Figure 13: The effect of the prior noise with fixed variance on FWBI posterior (subtitles represent the injected noise). The
top row is the naive GP prior and the corresponding FWBI posterior. The left column is the GP priors with different injected
GP noises, and the right column is the corresponding FWBI posteriors.

where three components are included with corresponding weights. The log-likelihood contour field is plotted in Figure 16.
We then use a Gaussian distribution

q(x) = 0.1 ∗ N
(
x;µ,

[
5 0
0 5

])
(27)

to approximate the above-defined GMM distribution, where µ is the mean parameter that needs to be optimized. Finally, we
use KL divergence (KL[q||p]) and Wasserstein distance (W1(q, p)) as the loss function to optimize µ, respectively. All other
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Figure 14: Convergence of training loss for multivariate regression tasks. The top row is the results for the Boston dataset,
and the bottom row is the results for the Protein dataset.
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(a) ROC (MNIST)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

KLBBB
WBBB
FWBI
GWI
FBNN

(b) ROC (FMNIST)
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(c) ROC (CIFAR-10)

Figure 15: Receiver operating characteristic curve (ROC) for out-of-distribution detection.

hyperparameters are the same for all, like optimizer, steps, and learning rates.

The results are shown in Figure 16, where we set two different initializations (Figures 16(a) and 16(d)). We can see that

• KL divergence is sensitive to initialization. For different initializations, there are two different results (Figures 16(c)
and 16(f)) from KL divergence. In contrast, the results from Wasserstein distance (Figures 16(b) and 16(e)) are the
same under different initializations.

• Wasserstein could jump out of the local optimum and move close to the global optimal mode (which is the up-left
corner one with the darkest colour in Figure 16).

F NOTATION TABLE

Table 5 is the notation table to demonstrate the notation used in this paper.
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Figure 16: Approximation results from different loss. The background contour field is a Gaussian mixture with three
components.

Table 5: Notation table

Notation Meanings
D = {XD,YD} Training dataset

X ⊆ Rd (d-dimensional) input space
Y ⊆ Rc (c-dimensional) output space

X Finite marginal points
XM Finite measurement points

w ∈ Rk Random model parameters for a BDL model (e.g., network weights of a BNN)
wb ∈ Rk Random model parameters for a latent function
f(·;w) Random function mapping defined by a BDL model (e.g., a BNN) parameterized

by w
g(·;wb) Random latent function parameterized by wb

θq = {µq,Σq} Parameters for variational distribution
θb = {µb,Σb} Parameters for bridging distribution

p0(w) Prior distribution over model parameters (e.g., prior over weights in a BNN)
p(w|D) Posterior over model parameters (e.g., posterior over weights in a BNN)
q(w;θq) Variational posterior over model parameters (e.g., variational posterior over

weights in a BNN)
p(wb;θb) Bridging distribution over parameters
p0(f) Prior distribution over random functions
p(f |D) Posterior over functions
q(f ;θq) Variational posterior over functions
p(g;θb) Bridging distribution over functions
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