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Abstract

The challenge in learning abstract concepts from
images in an unsupervised fashion lies in the re-
quired integration of visual perception and gener-
alizable relational reasoning. Moreover, the unsu-
pervised nature of this task makes it necessary for
human users to be able to understand a model’s
learned concepts and potentially revise false behav-
iors. To tackle both the generalizability and inter-
pretability constraints of visual concept learning,
we propose Pix2Code, a framework that extends
program synthesis to visual relational reasoning
by utilizing the abilities of both explicit, compo-
sitional symbolic and implicit neural representa-
tions. This is achieved by retrieving object repre-
sentations from images and synthesizing relational
concepts as λ-calculus programs. We evaluate the
diverse properties of Pix2Code on the challenging
reasoning domains, Kandinsky Patterns, and CURI,
testing its ability to identify compositional visual
concepts that generalize to novel data and con-
cept configurations. Particularly, in stark contrast
to neural approaches, we show that Pix2Code’s
representations remain human interpretable and
can easily be revised for improved performance.

1 INTRODUCTION

Humans possess the ability to identify recurring concepts in
their daily lives, e.g., a driver can identify when pedestrians
have the priority independent of the number of pedestrians
or other changing properties of the traffic. However, learn-
ing such visual concepts, particularly without supervision,
still poses a major challenge for machine learning (ML)
models. This is notably due to the diversity of visual scenes
(cf. Fig. 1), but also the immense space of possible con-
cepts that can be arbitrarily composed of many subconcepts.

Tr
ai

n 
Ta

sk
s

Positive
examples

Negative 
examples

and

..
.

...

Learning
concepts

All objects 
are spherical

other objects 
are spherical

Revising
concepts

There is one 
green object

There is one 
green object

U
ns

ee
n 

Ta
sk Reusing 

concepts

There is one 
cylinder

I

Inspecting
concepts

Figure 1: Interpretable visual concept learning: learning
concepts from few images that can generalize to unseen
examples and unseen concepts, such that human users can
inspect and potentially revise suboptimal learned concepts.

Moreover, it remains necessary for human users to be able
to inspect the learned concepts and revise potential errors
or shortcuts before deployment of such learning systems,
particularly in unsupervised learning settings.

Current ML approaches (e.g., [Santoro et al., 2017]) that
tackle this challenging task still have issues, e.g., with detect-
ing visual concepts based on object relations as well as gen-
eralizing in few-shot learning scenarios (cf. [Stabinger et al.,
2021] for a survey). [Kim et al., 2018] propose an approach
that generalizes to unseen image samples of a concept, but
not to unseen concepts. Vedantam et al. [2021], on the other
hand, show promising results in terms of generalization to
unseen concepts, however, the authors neglect to investigate
other forms of generalization, e.g., when the number of ob-
jects in an image is increased. Moreover, the nature of the
implicit neural representations make the learned concepts
opaque for human users and impractical to revise.
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An orthogonal research field that incorporates generaliza-
tion, inspectability and revisability for concept learning in
general is program synthesis, where knowledge is learned
in the form of explicit programs. Not only do programs
allow to extrapolate to novel, unseen inputs regardless of
the number of objects, but their compositional nature is par-
ticularly useful for learning to reuse existing knowledge in
new ways [Ellis et al., 2021, Stengel-Eskin et al., 2024],
particularly in symbolic list processing and text editing set-
tings [Balog et al., 2017, Ellis et al., 2021]. In addition, even
the longest programs are readable for human users [Cam-
bronero et al., 2023], thereby offering an inherent form of
interpretability. Lastly, program synthesis approaches offer
easy human revision [Trivedi et al., 2021] such as rewriting
or updating the programs. Despite all of this, program syn-
thesis approaches have not been utilized to learn complex
visual concepts from raw images up to now, likely due to the
difficulty of mapping images to symbolic representations.

This work introduces Pix2Code, a neuro-symbolic frame-
work for generalizable, inspectable and revisable visual con-
cept learning. Using both neural and program synthesis
components, Pix2Code integrates the power of neural repre-
sentations with the generalizability and readability of pro-
gram representations. During inference, Pix2Code extracts
symbolic object representations from raw image inputs uses
these to synthesize λ-calculus programs, that serve as con-
cept classifiers (i.e., “Do novel images contain this con-
cept?”), but also as inherent interpretations of these concepts.
Pix2Code learns to abstract visual concepts by training both
a generative program library and a program recognition
model based on wake-sleep learning. In our evaluations, we
investigate the advantages of Pix2Code in terms of general-
ization, e.g., for novel concept combinations, but also extend
the evaluation setting of previous works to entity general-
ization, i.e., generalizing to novel instances of a concept.
Lastly, we show that the retrieved concept representations
of Pix2Code are inspectable and can easily be revised in
case of confounded or suboptimal behavior.1

Overall we make the following contributions:

(i) We frame visual concept learning in the context of pro-
gram synthesis in our Pix2Code framework.

(ii) Pix2Code learns visual concept representations that are
generalizable to unseen concepts.

(iii) We effectively revise the learned representations via
human guidance to mitigate suboptimal behavior.

(iv) We identify limitations with respect to concept gener-
ality in the existing concept learning benchmarks and
show how this can be alleviated via Pix2Code.

Let us now provide a formal description of our Pix2Code
framework, its inference, learning, and revision processes.
Next, we move on to experimental evaluations and conclude
after presenting related works.

1Code and data available at github.com/ml-research/pix2code.

2 PIX2CODE

In our work, we consider learning visual concepts, i.e., gen-
eral ideas that are fundamental to the understanding of a vi-
sual scene (cf. Fig. 1). The goal of the Pix2Code framework
is to discover such concepts in a generalizable, interpretable,
and revisable manner. This is achieved by combining differ-
entiable token-based object representations with program
synthesis such that concepts are represented as programs.

Formally, we consider a set of images X . For an image,
x ∈ X , if a concept, c, is appearing in the image, we de-
note c ⊂ x. Following the setup of Vedantam et al. [2021],
we consider the goal of identifying a specific concept, c,
from a positive subset of X , X+ := {x+i }Ni=1, and a neg-
ative set X− := {x−i }Mi=1. Thus, the goal is to obtain a
model, fΘ (parameterized by Θ) which proposes a concept,
fΘ(X

+, X−) = c, that separatesX+ fromX−, i.e., it must
hold that ∀x+i ∈ X+, c ⊂ x+i and ∀x−i ∈ X−, c ̸⊂ x−i .
An overview of how Pix2Code achieves this is shown in
Fig. 2. Let us provide a step-by-step description of this, be-
ginning with Pix2Code’s inference, followed by its training
and revision procedures.

Concept learning as a program synthesis task. To obtain
visual concepts (e.g., all objects are spheres) from an image,
the first step of the Pix2Code framework is to cast the above
problem of unsupervised concept learning into a suitable
program synthesis setting. For that, we recast the initial task
(that consists of the tuple of a positive and negative image
set, cf. Fig. 1), {X+, X−}, to a binary classification task:

T := {(xi, yi)}N+M
i=1 , (1)

where xi ∈ {X+} with yi = 1 for i ∈ {0, ..., N}, and
xi ∈ {X−} with yi = 0 for i ∈ {N + 1, ..., N +M}.

Transforming images to symbolic object representations.
Visual concepts are based on objects, their attributes and
relations. A necessary first step for performing visual con-
cept learning is therefore to identify relevant objects from
an image and extract corresponding object representations.
Moreover, in order to perform visual concept learning via
program synthesis, we specifically require symbolic object
representations. Given a pretrained object extraction model,
hψ , Pix2Code extracts a set of discrete representations, Oi,
from an image xi that contains Ki objects:

Oi := hψ(xi) = {oj}Ki
j=1. (2)

Each object representation, oj ∈ Oi, corresponds to a se-
quence of tokens: oj := [xmin, ymin, xmax, ymax, a1, ..., aC ],
that includes the object’s bounding box coordinates,
[xmin, ymin, xmax, ymax] ∈ N4, as well as relevant object prop-
erties [a1, ..., aC ] ∈ NC . For notation reasons, we here con-
sider that all objects in our images possess attributes from
the same amount of categories, C ∈ N, e.g., size, shape,
color, and material for the objects of Fig. 1. Moreover, each
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Figure 2: The Pix2Code architecture. Objects with bounding box and attribute information are extracted from each positive
and negative image example of a visual concept. These representations are converted into a binary classification formulation.
The program synthesis component searches for programs to solve each task. This search is based on a probabilistic library
that is learned and enhanced during training by frequently used program parts. The result of the search is the visual concept
of the image in form of an executable program that can be translated into a corresponding natural language statement.

category contains a finite number of possible attribute instan-
tiations, i.e., ∀k ∈ [1, ..., C], ak ∈ {1, ..., dk} with dk ∈ N,
e.g., sphere, cube and cylinder for the shape category or red,
blue, green, yellow, etc. for the color category. Conclusively,
the object extractor, h, extracts a set of symbolic object rep-
resentations. The original input is transformed via the two
previous steps to obtain the following task representation:

T̄ := hψ(X
+, X−) = {(Oi, yi)}N+M

i=1 . (3)

Synthesizing programs from object representations.
Having obtained symbolic representations of the input
task, we now move on to learning abstract programs via
Pix2Code’s program synthesis module, gL,ϕ. This consists
of two components: a library of learned primitives, L, and
a code model, qϕ, which predicts the most likely primi-
tives of L given a task. For describing the inference pro-
cedure, we consider that L and qϕ result from an already
trained framework. Specifically, L contains base primitives
(e.g., forall, eq?) as well as learned program primitives (e.g.,
same shape), represented as reusable functional programs
L := [p0, ..., pB ]. Each primitive, pj , possesses a specific
arity mj ∈ N (i.e., number of input variables). With L as
vocabulary, the code model qϕ proposes the most likely prim-
itives given a task T̄ . Thus, during an enumerative search,
qϕ is used to synthesize the most likely program P which
encodes the concept separating the examples of T̄ .

During the enumerative search, programs are constructed by
sampling primitives from qϕ. For an efficient search, beam

search is used in order to extend only the most likely partial
programs under qϕ. At step τ , we denote the concept (in
form of an incomplete program) as Pτ and the primitive
selected to extend it as p∗τ . Specifically, given task T̄ and the
current partial program Pτ−1, the code model qϕ provides a
distribution over the next primitives:

∀pj ∈ L : qϕ(T̄ , Pτ−1, pj) = ρτ (pj) ∈ [0, 1]. (4)

From this distribution, p∗τ is sampled and added to the cur-
rent program, i.e., Pτ = Pτ−1 ⊗ p∗τ , where ⊗ corresponds
to placing p∗τ within Pτ . The search starts with an initial
program as an empty set, i.e., P0 = {}. A partial program
is complete when the variables of each p∗τ are set, i.e., each
variable of p∗τ has been substituted with a primitive of arity
zero or the variable itself is a primitive with set variables.
This final step is denoted as τ̂ . Finally, at the end of the
search the most likely program Pτ̂ is obtained, such that

gL,ϕ(T̄ ) = Pτ̂ =: P. (5)

The resulting program is a composition of primitives, i.e.,
P = p∗0 ⊗ p∗1 ⊗ ... ⊗ p∗τ̂ . In the example illustrated in
Fig. 2, the retrieved program is P = λ (x) ⊗ forall ⊗
same_shape ⊗ sphere ⊗ x, which checks whether all
objects in the image have a spherical shape. Conclusively,
the overall inference procedure of Pix2Code is:

c := P = gL,ϕ(hψ(X
+, X−)). (6)
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Lastly, we note that the final concept, represented as a pro-
gram P , serves two important purposes. P can be used to
(i) classify unseen images (cf. Suppl. A and Fig. 7) and at
the same time to (ii) provide a transparent procedure of this
classification, thus directly serving as an explanation.

Learning programs from images. To train Pix2Code, we
need to optimize each of its parameters Θ := {ψ,L, ϕ}.
In our evaluations, we differentiate between optimizing the
parameter set of the object extractor, ψ, and jointly optimiz-
ing the library L and parameter set of the code model, ϕ,
which both represent parameters of the program synthesis
model. The training of the object extractor is independent
and can, in principle, be done in an unsupervised manner
[Delfosse et al., 2023c]. We here follow the procedure of
Chen et al. [2022]. However, instead of detecting one class
per object as in the original work, we detect C classes per
object (one for each attribute category). Specifically, given a
training image x with K objects and C attribute categories,
the corresponding object sequences are ŷ := {ôj}Kj=1, with
ôj = (x̂jmin, ŷ

j
min, x̂

j
max, ŷ

j
max, â

j
1, ..., â

j
C). The object extrac-

tor, h, is trained to optimize the maximum-likelihood loss
(argmaxψ LL(ŷ, hψ(x))) via gradient descent. In this way,
h is optimized to identify multiple attributes per object. Fur-
ther details are provided in Suppl. A.

On the other hand, the library and the code model of the
program synthesis component are jointly optimized based
on the probabilistic approach of Ellis et al. [2023] and the
wake-sleep algorithm of Hinton et al. [1995]. Specifically,
L and qϕ bootstrap each other. L initially contains only base
primitives, i.e., the domain specific language (DSL), and is
parametrized by µ, that corresponds to the prior probability
of each primitive (initialized uniformly). For a training task
T̄i ∈ T̄train, a set Πi = {P is}Ss=1 of programs is sampled
from Lµ (wake phase), where S ∈ N denotes the number
of maximum considered programs per task. The retrieved
programs are used to train qϕ (sleep phase), following:

L = ET̄i∼T̄train

[
log qϕ(argmax

P i
s∈Πi

p(P is | T̄i, Lµ))

]
. (7)

Moreover, Pix2Code uses a dreaming phase in which new
task-program pairs are created, i.e., new object-centric data
and programs are generated to additionally train qϕ follow-
ing Eq. 7. Lµ is optimized using programs sampled from
the updated qϕ. For this, S programs for each task are sam-
pled via q: Ptrain = {qϕ(T̄i)|∀T̄i ∈ T̄train}. With this set of
sampled programs, the probability of the library primitives
are updated via maximum a posteriori estimation. Further,
frequently used program parts within Ptrain are identified and
added to L to improve its objective function (cf. Suppl. A
and Ellis et al. [2023] for further details).

Revising latent concept representations. Pix2Code inte-
grates interpretable and accessible components and latent

representations that allow human users to identify and re-
vise potentially suboptimal model behavior (e.g., overfitting,
confounding [Schramowski et al., 2020] or other forms of
shortcut learning [Geirhos et al., 2020]).

This work mainly differentiates between the following revi-
sion possibilities: (i) removing possibly undesirable primi-
tives from L, (ii) adding relevant, yet previously undiscov-
ered primitives to L and (iii) modifying existing primitives
in L. This last form of revision can be further subdivided
into (iii-a) modifying the explicit program representation
of a primitive or (iii-b) finetuning qϕ to reweight the prob-
abilities of specific primitives in L, e.g., via one of the
loss-based approaches of eXplanatory Interactive Learning
(XIL) [Schramowski et al., 2020, Friedrich et al., 2023].

3 EXPERIMENTAL EVALUATION

In our experimental evaluations, we show how Pix2Code
uses programs to discover complex visual patterns from few
examples in an interpretable and revisable manner. Overall,
our evaluations aim to answer the following questions:

(Q1) Is Pix2Code able to learn abstract visual concepts?

(Q2) Can Pix2Code learn concepts that generalize to unseen
combinations of concept components?

(Q3) Can these concepts generalize to inputs with unseen
number of objects?

(Q4) Are the concept representations interpretable?

(Q5) Can Pix2Code be revised to correct for suboptimal
behavior?

(Q6) Can Pix2Code abstract concepts from real-world data?

3.1 EXPERIMENTAL SETUP

We here provide setup details to allow for reproducibility.

Data. For evaluating Pix2Code, we create an ex-
tensive dataset from the Kandinsky Patterns frame-
work [Holzinger et al., 2019] called RelKP, that contains
images of 2D objects (depicted in Fig. 8), with the attributes
color, shape and size. The images embed patterns such as
"there are two pairs of objects with the same shape", similar
to Shindo et al. [2023a] (for further details, cf. Suppl. C.1).
We further use the CURI dataset [Vedantam et al., 2021],
containing images of 3D objects (illustrated in Fig. 1), with
the attributes color, shape, size and material. CURI is de-
signed to test compositional generalization. It contains 8
different concept splits, which are based on specific proper-
ties. For each split, concepts with these properties occur only
in the test sets and not in the training sets (cf. Suppl. C.2 for
more details). For both datasets, the images are grouped by
abstract visual concepts, which are based on the objects’ at-
tributes and relations between them. For each concept there
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is a task that contains at least one support and one query
set, each holding positive and negative image examples of
the concept. The objective is to recognize the underlying
concept from the support set and, based on that, classify the
examples from the query set correctly. The datasets contain
training tasks and held-out test tasks. To reduce the compu-
tational burden, we randomly select a subset of 100 training
concepts from each CURI split; however, we evaluate on the
full, original test concepts of each split. For investigating
entity generalization (Q3) and confounding behavior (Q5),
we introduce extensions of CURI. These contain images
created via the data generator framework of Stammer et al.
[2021] (cf. Suppl. D.5 and cf. Suppl. D.7). Finally, to eval-
uate real-world concepts we created a small set of abstract
concepts based on the popular MS COCO dataset [Lin et al.,
2014] (cf. Suppl. D.9).

Models. In our evaluations, we compare the performance of
our neuro-symbolic Pix2Code approach to the purely neural
model of Vedantam et al. [2021], here referred to as CURI-B,
and provide further details in Suppl. B. The model of Vedan-
tam et al. [2021] was introduced with 4 different pooling
alternatives. We report performances of the best perform-
ing alternative (cf. Tab. 9 for a detailed comparison). For
Pix2Code, we base the pretrained object extraction on the
approach of Chen et al. [2022] to transform the input images
into sequences of natural numbers (representing the objects
and their attributes (cf. Tab. 6)) and the program synthesis
component on the approach of Ellis et al. [2023]. We utilize
a domain specific language (DSL) that operates on the spe-
cific object representations, and that contains base program
primitives, e.g., functions like forall and logical operators
and and or (cf. Tab. 7 and Suppl. A for details). The pro-
gram synthesis component is pretrained on the ground truth
object representations (denoted as schema input). However,
unless noted otherwise, it receives the neurally extracted
object representations during evaluations. Notably, whereas
CURI-B must be optimized on both the support and query
examples of a task, Pix2Code is only optimized based on
the support examples.

Metrics. We evaluate both models’ accuracies on the query
sets of the test tasks, each averaged over 3 seeded reruns.
Since RelKP and CURI contain more negative examples,
we provide class balanced accuracies (i.e., mean between
accuracies on the positive set and the negative one) over all
test tasks. Since Pix2Code uses an enumerative search to
retrieve programs that solve test tasks, it may occur that no
program is found that solves the task within the preset search
time. In this case, we assume a random accuracy for the
corresponding test task (i.e., 50%), to appropriately compare
to the neural baseline model (which always produces an
output). We thus differentiate between the class accuracy
with random guessing for not found programs, denoted as
“Acc@all”, from the mean accuracy specifically only of the
found programs, denoted as “Acc@solved”.

Table 1: Mean test accuracy on Kandinsky and CURI con-
cepts with iid train test splits.

Dataset CURI-B Pix2Code
Acc@all

Pix2Code
Acc@solved

RelKP 59.69 ±0.83 90.05 ±0.80 92.93 ±0.98

CURI (iid) 66.68 ±1.50 71.54 ±1.15 81.75 ±3.12

Table 2: Mean accuracy (with std) for meta-test tasks of
CURI splits reported individually and as the median (with
median absolute deviation) over all splits.

CURI
(Splits) CURI-B Pix2Code

Acc@all
Pix2Code

Acc@solved

Boolean 67.86 ±1.21 78.93 ±1.14 91.05 ±2.33

Counting 62.19 ±2.44 55.52 ±2.14 65.73 ±2.19

Extrinsic 72.56 ±0.40 78.31 ±1.60 88.23 ±1.70

Intrinsic 67.85 ±2.50 87.35 ±3.21 92.09 ±0.40

Bind.(color) 69.89 ±1.54 79.03 ±2.26 87.14 ±2.27

Composition 67.63 ±0.53 74.82 ±0.10 86.51 ±0.98

Bind.(shape) 66.35 ±0.36 74.37 ±2.40 87.14 ±2.27

Complexity 65.24 ±0.14 72.37 ±0.51 77.43 ±0.35

Median 67.74±0.87 76.57±1.87 87.14±1.95

3.2 EVALUATIONS

Let us now verify if Pix2Code can learn abstract visual inter-
pretable concept representations, useful for solving logically
challenging tasks from both synthetic and real world data,
and can easily generalize to novel situations or be revised.

Learning visual concepts (Q1). We first investigate
whether Pix2Code can learn visual concepts that allow to
separate positive from negative images. Specifically, we
evaluate Pix2Code and the (neural) CURI-B algorithm on
the RelKP and CURI datasets. For these evaluations, we
assume independent and identically distributed (iid) training
and test task sets. This stands in contrast to more struc-
tured, curriculum-like task splits of later evaluations. Fo-
cusing first on the two left columns of Tab. 1, we observe
that Pix2Code largely outperforms the neural baseline over
both datasets, even when assuming random performance for
test tasks for which no program is found. The accuracy of
only the found test tasks (80.93% solved tasks over both
datasets cf. Tab. 13) in the right-most column of Tab. 1 is
significantly higher on every task. Thus, when Pix2Code
discovers relevant concepts these provide considerably im-
proved generalization to unseen image samples of the same
task, which motivates for further investigation on the visual
concepts generalization. We refer to Fig. 6 for visualization
of Pix2Code’s learned concept library. Overall, our results
indicate that visual concept learning via our program synthe-
sis based Pix2Code represents a competitive alternative to
purely neural based approaches (cf. Tab. 12 for ablations).
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Table 3: Class balanced accuracy on AllCubes-N and
AllMetalOneGray-N for CURI-B and Pix2Code.

Dataset CURI-B Pix2Code

AllCubes-CURI 77.19 ±6.56 100.00 ±0.00

AllCubes-5 70.33 ±5.25 100.00 ±0.00

AllCubes-8 57.83 ±6.20 100.00 ±0.00

AllCubes-10 56.00 ±5.61 100.00 ±0.00

AllMetalOneGray-CURI 60.00 ±3.33 96.94 ±4.32

AllMetalOneGray-5 52.50 ±3.54 100.00 ±0.00

AllMetalOneGray-8 52.17 ±3.06 89.00 ±15.56

AllMetalOneGray-10 54.17 ±4.25 89.17 ±15.32

In the following, we focus on the generalization perfor-
mances of the evaluated models. We distinguish between
two forms of generalization: the ability of a model to reuse
previously acquired concepts for composing novel concepts
(denoted as compositional generalization) and the ability
of an extracted representation to generalize to an unseen
number of objects (denoted as entity generalization). While
the first focuses more on the generalizability of the learn-
ing components, the second focuses on the generalizability
of the concept representations themselves. Let us begin by
investigating compositional generalization.

Generalizing to novel combinations of known concepts
(Q2). We focus these evaluations on the 8 original compo-
sitional concept splits of the CURI dataset (in contrast to
the previous iid splits), which were specifically designed
for investigating compositional generalization in concept
learning. We provide both models’ accuracies in Tab. 2, of
each concept split individually, and the median performance
over all splits. We observe that in 7 out of 8 CURI splits,
Pix2Code greatly outperforms the CURI-B model in terms
of generalizing to unseen combinations of concepts (also
seen in the median accuracy over all splits). Notably, the
counting split appears to be more challenging for Pix2Code,
but this can easily be revised, as we show in later evaluations.
A possible reason for the overall performance ascendancy
of our approach is that CURI-B must learn an individual
concept representation for each novel composition, while
the modular nature of Pix2Code’s programs allows for easy
combinations of existing knowledge to form novel repre-
sentations. Conclusively, we answer Q2 affirmatively and
conclude that Pix2Code possess better generalization abili-
ties to unseen concept compositions over the neural baseline
(cf. Tab. 15 for ablations).

Generalizing to variable number of objects (Q3). Let us
now move on to the second form of generalizabilty, i.e., en-
tity generalization. While the setup of CURI is valuable for
testing the compositional generalization ability of a model,
it is insufficient for testing the entity generalizability of
its learned concept representations. To investigate Q3, we
first need to extend the initial CURI dataset accordingly.
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Figure 3: Test examples of AllCubes-5 (left), AllCubes-
8 (middle) and AllCubes-10 (right) sets. Positive images
contain only cubes, while negative images possess all cubes
but one cylinder or sphere.

To this end, we select 2 arbitrary concepts from CURI’s
original tasks, "all objects are cubes" and "all objects are
metal and one is gray", and increase the number of objects
in the corresponding test images2 and investigate how well
a model can classify these as (still) representing the origi-
nal concept. Specifically, we create 3 data sets for each of
these two concepts with respectively 5, 8 and 10 objects in
the test scenes. We refer to these data sets as AllCubes-N
and AllMetalOneGray-N , where N ∈ {5, 8, 10}, and to the
original CURI images with “-CURI”. We provide example
images of AllCubes-N in Fig. 3. Each dataset contains 100
positive image examples and 100 negative ones. We refer to
these CURI variations as CURI-EG.

As these investigations focus on concept generalization, we
revert to using CURI-B and Pix2Code models that were
trained with schema input to avoid image encoding noise.
These models are trained on the CURI iid split (cf. Tab. 17)
and evaluated on the CURI-EG test sets. Our results, pro-
vided in Tab. 3, show that even with few more objects in the
test data set the accuracy of CURI-B drops significantly. In
contrast, the performance of Pix2Code stays solid at 100%
for the AllCubes-N sets. For every AllMetalOneGray-N ,
Pix2Code significantly outperforms CURI, though in 1 out
of 3 seeds Pix2Code did not find the “perfect” concept rep-
resentation, but one that is overfitting to the support images.
This illustrates that programs alone do not overcome subop-
timal behaviors such as overfitting. In the next evaluations,
we will focus on identifying and revising such behavior.

Overall, these evaluations indicate that the concept repre-
sentations of Pix2Code can generalize well to inputs with
unseen number of objects, answering Q3 affirmatively. The
results particularly highlight the importance of entity gener-
alization as a relevant aspect of concept learning validation
that neither the evaluations of Tab. 1 nor Tab. 2 could reveal.
Moreover, CURI-B’s performance in Tab. 3 raises questions
concerning the generalizability of its concepts.

2The original CURI images contain between 2 and 5 objects
for both the training and test splits.
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Table 4: Pix2Code’s concepts are transparent programs and can be brought to natural language by LLMs. Examples
of original CURI concepts (left), corresponding Pix2Code’s program representations (middle) and (right) natural language
translations from an LLM (here gpt-4-turbo). We have grouped related concepts and provide syntax highlighting for easier
comparison. All programs achieve 100% accuracy on the CURI test scenes.

Original Concept Retrieved Program GPT4 Natural Language Translation

All objects are cyan (λ (x) ((λ (y z) (forall (λ (u) (eq? (index y u)
z)))) color cyan x))

"All objects are cyan in color."

All objects are cubes (λ (x) ((λ (y z) (forall (λ (u) (eq? (index y u)
z)))) shape cube x))

"All objects are cubes."

All objects are purple and
all objects are spheres

(λ (x) (and ((λ (y z) (forall (λ (u) (eq? (index
y u) z)))) shape sphere x) ((λ (v w) (forall (λ
(a) (eq? (index v a) w)))) color purple x)))

"All objects are spheres and all objects
are purple."

All objects are brown or all
objects are cubes

(λ (x) (or ((λ (y z) (forall (λ (u) (eq? (index y
u) z)))) shape cube x) ((λ (v w) (forall (λ (a)
(eq? (index v a) w)))) color brown x)))

"All objects are either cubes or all ob-
jects are brown."

All objects are small and
there exists a purple object

(λ (x) (and ((λ (y z) (forall (λ (u) (eq? (index
y u) z)))) size small x) (exists (λ (v) ((λ (w a
b) (eq? (index b w) a)) v purple color)) x)))

"All objects are small in size, and there
is at least one purple object."

There are three gray objects (λ (x) (eq? ((λ (y) (count (map (λ (z) ((λ (u v)
(index u v)) color z)) y))) x gray) 3))

"There are three objects that are gray."

There exists an arbitrary ob-
ject and there exist three
other objects that are blue

(λ (x) (gt? ((λ (y) (count (map (λ (z) ((λ (u v)
(index u v)) color z)) y))) x blue) 2))

"There are more than two objects that
are blue in color."

Interpreting Pix2Code’s concept representations (Q4).
Although our previous results suggest that Pix2Code’s pro-
grams are more generalizable, Pix2Code can provide sub-
optimal programs (cf. results on AllMetalOneGray) when
overfitting or learning shortcuts. However, a considerable
advantage of Pix2Code is the readable nature of its pro-
gram representations, which allows human users to under-
stand and thus detect such suboptimal behaviors. This stands
in stark contrast to the opaque concept representations of
purely neural approaches such as CURI-B.

We exhibit Pix2Code’s transparency in Tab. 4, where we
present program solutions for a collection of test tasks from
the CURI dataset. The leftmost column describes the target
underlying concepts (with increasing complexity over the
rows). The middle column presents Pix2Code’s correspond-
ing concept representations. Although these programs are
written as λ-calculus (which may appear difficult to dis-
cern for novices), they possess a straightforward reading
procedure with definite variables and operations semantics
(provided in Tab. 7). For example, the first program of Tab. 4
reads as follows: the program takes an input list of objects
x and applies the function λ (y z), parameterized by color
and cyan, to x. This function applies forall with a predicate
function λ (u) on each object. The specific predicate func-
tion tests if the color attribute of the object representation
equals cyan. Overall, the program returns true if and only if
all objects in x are of color cyan.

Furthermore, large language models can help to translate
Pix2Code’s λ-calculus programs into natural language state-
ments. We exemplify this in the right-most column of Tab. 4
based on gpt-4-turbo [OpenAI, 2023] (cf. Suppl. D.6 for
prompting details). In principle, other LLMs can be used
as well (as we show in Tab. 18). These can help human
users to further understand Pix2Code’s proposed concepts.
Thus, although the λ-calculus structure of Pix2Code’s pro-
gram representations can present a challenge for novice
λ-calculus users, they present a readable and executable
knowledge representation and can be translated by LLMs.
This provides an affirmative answer to Q4.

Mitigating Confounders (Q5). Once a user has identi-
fied suboptimal behavior in an AI model, it remains im-
portant that they can revise it [Teso and Kersting, 2019,
Schramowski et al., 2020], e.g., to ensure trust between
model and human. In our last evaluations, we investigate the
revisability of Pix2Code’s representations and showcase the
first two revision forms of Sec. 2: (i) removing primitives
from and (ii) adding primitives to Pix2Code’s library.

Pix2Code can be affected by shortcut learning. This is exem-
plified by the last concept of Tab. 4. For this task, there is no
negative example that contains only 3 blue objects, and thus
the retrieved program obtains a perfect accuracy while di-
verging from the intended concept. Further, “Confounding”
can occur when unknown spurious correlations, absent from
the query images, appear in the support set images. In this
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Figure 4: Class balanced accuracies after revising Pix2Code
by removing suboptimal primitives from L on the con-
founded CURI-Hans set (left) and by adding helpful primi-
tives to L in the counting split of CURI (right). Pix2Code
+XIL indicates the revised models.

case, Pix2Code’s detected programs might classify the sup-
port images based on these features and thus fail to apply to
the unconfounded query data. We demonstrate this via a con-
founded task Tconf, using the concept “all objects are metal
and there exists one cube”. In the support set, all objects are
cyan (confounding feature), irrespective of the actual un-
derlying concept. In the query set, however, objects possess
varying colors. We train Pix2Code on a set of 8 original tasks
from the CURI dataset and evaluate on such a confounded
test task (cf. Suppl. D for details). We refer to this data split
as CURI-Hans and provide test query accuracy results of
Pix2Code and CURI-B in Fig. 4 (left). Both approaches are
strongly influenced by the confounder, as indicated by the
low query set accuracy (in contrast to the CURI iid base
accuracy of Tab. 12), though for Pix2Code this effect is
slightly reduced. We can now, however, easily mitigate the
behavior of the Pix2Code model by removing the library
primitives for color and cyan, as well as abstracted func-
tions that use these. The revised model (“Pix2Code +XIL”)
reaches 100% test accuracy. It thus appears to ignore the
confounder and capture the true concept.

Revising Pix2Code to Count (Q5). Another possibility of
revising Pix2Code’s representations is via the addition of
relevant library elements. For example, Pix2Code could lack
some relevant DSL primitives such that it can only find short-
cut based programs for some concepts. Upon inspection of
Pix2Code’s concept representations, a user may, however,
identify the missing concepts and add these. To test this
scenario, we revert to the Counting split of CURI, for which
Pix2Code had obtained low test accuracy (cf. Tab. 2 and
Tab. 15). As the concepts from this test set all contain some
form of counting operations the low test accuracy indicates
that Pix2Code was not able to properly capture the basic
concept of “counting”. We, therefore, formulate program
primitives that count the number of occurrences for each
existing attribute (cf. Suppl. D for details) and add these
primitives to the library of the trained Pix2Code model of
Counting. The test accuracy of the revised model (Pix2Code

"Exists person and exists dog"

positive example negative example

Figure 5: Examples of the concept "Exists person and exists
dog" based on the COCO dataset.

Table 5: Accuracy of programs synthesized by Pix2Code
for concepts in the MS COCO dataset. For each concept,
25 example images were provided and the programs were
evaluated on 100 test images.

COCO Concept Pix2Code

Exists dog 0.8938

Exists cat 0.9211

Exists dog and exists person 0.9286

Exists dog or cat 0.9324

There are 3 persons 0.6813

+ XIL) nearly jumps to 90% in Fig. 4 (right). Conclusively,
Pix2Code allows for easy revision of its programs to over-
come suboptimal behavior, answering Q5 affirmatively.

Extending Pix2Code to Real-World Images (Q6). In our
previous evaluations, we observed that Pix2Code performs
impressively at detecting abstract concepts in synthetic data
sets. In our last evaluation, we investigate Pix2Code’s po-
tential for discovering abstract concepts also in real-world
image scenarios. Applying Pix2Code to this setting requires
that the object extractor has to detect more visually complex
objects and the program synthesis module has to find pat-
terns in more complex input representations (more details in
Suppl. D.9). We illustrate this setting based on concepts that
are contained in the MS COCO dataset [Lin et al., 2014],
e.g., concepts like "There exists a dog" and "There exists
a dog or there exists a cat" (cf. Suppl. D.9). In Tab. 5 we
provide the accuracy of Pix2Code’s learned concepts. We
observe that Pix2Code’s learned programs result in high test
set accuracies suggesting that indeed Pix2Code is able to
synthesize programs for these real-world concepts. We fur-
ther refer to Suppl. D.9 for additional discussions, e.g., the
influence of noisy object perception. Overall, these results
suggest that Pix2Code can abstract concepts from real-world
images. We thus answer Q6 affirmatively.

In summary, our evaluations provide evidence of the advan-
tages of utilizing the power of program synthesis for visual
concept learning via Pix2Code, in terms of generalizability,
interpretability, and revisability.
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4 RELATED WORK

Pix2Code is closely related to several lines of research,
among which program synthesis and concept extraction
from images are the closest.

Program Synthesis. There has been a recent interest in the
task of program synthesis within the realm of machine learn-
ing [Chen et al., 2018, Nye et al., 2020, Odena et al., 2021].
Program synthesis has been looked at from various points
of view such as neuro-symbolic AI [Parisotto et al., 2017,
Bhatia et al., 2018], lifelong learning [Valkov et al., 2018]
and interactive machine learning [Zhang et al., 2020, Fer-
dowsifard et al., 2021]. The various application domains for
program synthesis include videos [Sun et al., 2018, Le Mo-
ing et al., 2021], images [Laich et al., 2020, Ellis et al.,
2021] and text [Ellis et al., 2019, Desai et al., 2016]. There
are several methods that develop program synthesis libraries
focused on visual reasoning, such as LILO [Grand et al.,
2023], ROAP [Tang and Ellis, 2023] and DreamCoder [Ellis
et al., 2023]. The biggest drawback of these approaches is
the lack of generalization and the process of revision of the
learned concepts which Pix2Code addresses.

Interpretable (Relational) Concepts Learned from Im-
ages. The Neuro-Symbolic Concept Learner of Mao et al.
[2019] learns visual concepts from images without any ex-
plicit supervision. Whereas Stammer et al. [2022] learns
single object-based visual concepts via weak supervision.
Lime-Aleph [Rabold et al., 2020] combines the explain-
able AI method of Lime [Ribeiro et al., 2016] with the
classical inductive logic programming system Aleph [Srini-
vasan, 2001]. The method learns explainable relational con-
cepts on the blocksworld domain. Recently, Shindo et al.
[2023a] proposed αILP, a neuro-symbolic framework that
can learn generalized rules from complex visual scenes.
The advantage of αILP is that it uses differentiable induc-
tive language programming where the logic programs are
learned using gradient descent. This was further extended
in NEUMANN [Shindo et al., 2023b] where a graph-based
differentiable forward reasoner is used for more efficient
reasoning framework.

Delfosse et al. [2023b] integrate α-ILP in reinforcement
learning agents. The value of interpretable relational con-
cepts was further evidenced in the context of reinforce-
ment learning by Delfosse et al. [2024], though both works
require prior relational functions. Such interpretable RL
agents can also be translated into tree programs [Kohler
et al., 2024]. However, these RL applications do not learn
to extract concepts, but assume their extraction (using e.g.
OCAtari [Delfosse et al., 2023a]). Instead, one could inte-
grate Pix2Code into concept bottleneck RL agents. Lastly,
[Webb et al., 2023, Kerg et al., 2022, Vaishnav and Serre,
2023] focus on purely neural object-centric approaches for
learning relational concepts, which, however, lack the ability
to inspect and revise the model’s concepts.

5 CONCLUSION

In this work, we propose Pix2Code, a neuro-symbolic frame-
work for generalizable, inspectable, and revisable visual
concept learning. It captures and reuses concepts as pro-
gram primitives to compose new concepts, thereby making
Pix2Code generalizable to unseen tasks. Our evaluations
show that Pix2Code’s generalization is especially effective
when the number of objects in the visual scene increases, in
stark contrast to the neural baseline. Moreover, we show em-
pirically that Pix2Code’s learned concepts are interpretable
and can be revised via human guidance.

λ-calculus programs are interpretable but not very natural
to humans and can become quite nested for more complex
programs. Handling this via a more general program synthe-
sis framework is a natural next step. Integrating the natural
language interpretations as part of the training procedure by
labeling the learned library primitives with semantic descrip-
tions is another important direction, but also further, pursue
applying Pix2Code to more natural images and relations.
Additionally, in our evaluations, we have focused on the
first two revision procedures of Pix2Code as these represent
the more fundamental interactions that a user can perform.
We suspect the third type of revision procedure should be
a straightforward combination of the two investigated ones
or, otherwise, an application of standard XIL approaches.
However, future investigations should confirm this. Finally,
making the program synthesis component less dependent
on the quality of the extracted object representations by al-
lowing probabilistic inputs for the programs can make the
Pix2Code framework more widely applicable.
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Supplementary Materials

In the following, the interested reader can find details on evaluations and corresponding information.

A PIX2CODE DETAILS

A.1 OBJECT REPRESENTATIONS.

Initially, the approach of [Chen et al., 2022] was developed to detect each object in an image and provide one class label
to these. We modify this setting by training the model to predict multiple attributes per object. Hereby, each attribute is
treated individually and is provided its own bounding box coordinates. The dynamic nature of the output of Pix2Seq allows
to predict the same bounding box multiple times with another attribute class with just one prediction. In Pix2Code, to
retrieve the symbolic representations O from such a sequence of detected attributes, the attributes are combined based
on their corresponding bounding boxes. For this, the values of the bounding box are compared with a tolerance of 7 to
compensate for model errors, and similar bounding boxes get aggregated. Attribute labels associated with bounding boxes
of one aggregation belong to the same object.

The object extractor of Pix2Code was independently trained for 50 epochs. We used the same hyperparameters as Chen
et al. [2022] with ResNet50 as backbone but decreased the learning rate to 0.0003 and the learning rate of the backbone to
0.00003 and use a batch size of 8. We finetuned a pre-trained version of Pix2Seq3 on respectively 2000 random images of
Kandinsky Patterns and CLEVR images. Both image sets have two to ten objects in their scenes. We report the different
mean Average Precision (AP) values for both data sets on five different seeds in Tab. 6 on RelKP and CLEVR Johnson et al.
[2017] images.

The metric mAP calculates mean Average Precision values for ten different Intersection over Union (IoU) thresholds, from
0.50 to 0.95 in 0.05 steps. This rewards models with better localization of objects more. The metrics AP50 and AP75 give
the average precision values of classifications with IoU values over 50% and 75%. The AP75 values decrease only slightly
in comparison to AP50, which shows that there are few object detections where the IoU is under 75%. However, when
comparing the AP75 values to the AP value, one can see that the performance decreases quite a bit. This is, because the AP
considers AP metrics with IoU bounds over 75% as well, where the model reaches its limits. The metrics APS, APM and
APL measure the performance of the model on small, medium and large objects. The performance is best on large objects
and decreases from medium to smaller ones which is typical for object detection models, as larger objects consist of more
pixels and therefore provide more features based on which they can be classified.

Overall, Pix2Seq provides high AP values and is, therefore, a well-suited object extractor for our method.

Table 6: Average Precision of Pix2Seq approach with multiple attribute classes on RelKP and CLEVR images. Models have
been fine-tuned on training examples with 5 different seeds. They have been evaluated on 750 test examples respectively.

Dataset AP AP50 AP75 APS APM APL

RelKP 89.7± 0.45 97.8± 0.31 96.4± 0.49 75.4± 1.10 91.8± 1.08 96.3± 0.61
CLEVR 96.5± 0.26 98.8± 0.19 98.7± 0.16 91.1± 0.8 96.7± 0.24 99.2± 0.32

A.2 PROGRAM SYNTHESIS.

For the domain of visual concepts, the input of the program synthesis tasks has the type of a list of symbolic object
representations, i.e. a integer list. Therefore, the domain specific language (DSL) for Pix2Code was created based on that
from the list domain of Ellis et al. [2023] and adapted to construct concepts, e.g., with primitives like forall and count. A
list of all primitives used in our evaluations can be found in Tab. 7. The DSL has primitives like fold and map and logical
primitives like and and not. Further, there are integer values which are needed for counting, but more importantly to encode
the attribute values of the objects. In Tab. 8 we provide a mapping from integers to the attributes of RelKP and CURI objects
is given.

For the main evaluations, Pix2Code’s program synthesis component was trained with an enumeration timeout of 720s and
96 CPUs. We used the batching strategy "batch all unsolved" where the algorithm starts with all tasks and continues with the

3https://github.com/gaopengcuhk/Pretrained-Pix2Seq
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Table 7: DSL used in Pix2Code experiments. t0 can be an arbitrary type.

Primitive Types Description

true bool Boolean with positive value.
not bool → bool Boolean operator that negates a boolean.
and bool → bool → bool Boolean operator. If both inputs are true, the ouput is true. Otherwise it is false.
or bool → bool → bool Boolean operator. If at least one input is true, the output is true. Otherwise it is

false.
eq? int → int → bool Compares two integer values. If they are equal the output is true. Otherwise it is

false.
gt? int → int → bool Compares two integer values. If the first one is greather than the second one the

output is true. Otherwise it is false.
find t0 → list[t0] → int Searches for the given element in the given list. Returns the index of the element

in the list. Throws error if no element is found.
max int → int → int Given two integer values the function returns the higher value.
min int → int → int Given two integer values the function returns the lower value.
map (t0 → t1) → list[t0] → list[t1] Applies the input function to every element in the given input list of type t0.

The output is a list of type t1.
index int → list[t0] → t0 Takes an integer and a list as input and outputs the element at the index defined

by the input integer.
fold list[t0] → t1 → (t0 → t1 → t1) → t1 Inputs a list, a start value and a function. Applies the function to the start value

and to the first element in the list and overwrites the start value by the result.
Repeats this with every element in the list.

length list[t0] → int Returns the length of the given list.
if bool → t0 → t0 → t0 Inputs a boolean and two options. If the boolean is true, the first option is

returned, else the second one.
+ int → int → int Adds two integer values.
- int → int → int Subtracts two integer values.
empty list(t0) An empty list.
cons t0 → list[t0] → list[t0] Appends the given item to the start of the given list.
car list[t0] → t0 Returns the head of the given list.
cdr list[t0] → list[t0] Returns the tail of the given list.
empty? list[t0] → bool Returns true if the list is empty. Otherwise returns false.
forall (t0 → bool) → list[t0] → bool Takes a predicate function and a list and applies the function to all elements in

the list. If for all the predicate is true, the function returns true.
exists (t0 → bool) → list[t0] → bool Takes a predicate function and a list and applies the function to all elements in

the list. If for at least one element the predicate is true, the function returns true.
count list[t0] → t0 → int Takes a list and an element and counts how often the element appears in the list.
0-9 int Integer values.
10-14* int Integer values

*Only used in revising confounded task experiment.

tasks that were not solved in the previous iterations. Further an λ-value of 1.5, α-value of 30 and beam size of 5 was used.
The experiments were run for 15 iterations.

A.3 LEARNED LIBRARY PRIMITIVES

In Fig. 6 we provide a graph of all the abstracted primitives of a Pix2Code model trained on CURI iid. Let us highlight a few
things here. We observe that one of the basic primitives is f0=(λ (x y) (forall (λ (z) (eq? y (index x z))))). This represents a
function that can be applied on a list of lists and checks for each element if the value at index x is equal to y. This is quite
general and can be used to compare colors, shapes, etc.

In another primitive, f1=(f0 5), the primitive f0 gets extended so that the parameter x gets set by the value 5 (which represents
the index for color). f1 is then integrated in other primitives, e.g. f8=(f1 6) and f18=(f1 0) where y is set respectively with
the values 6 and 0 for the colors purple and gray. This means that f8 resembles the concept all objects are purple and f18 the
concept all objects are gray.
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Table 8: A mapping from integers to the attributes of RelKP and CURI objects.

RelKP
size color shape

0: small 0: red 0: triangle
1: medium 1: blue 1: square
2: big 2: yellow 2: circle

CURI
size color shape material

0: small 0: gray 0: cube 0: rubber
1: large 1: blue 1: sphere 1: metal

2: brown 2: cylinder
3: yellow
4: red
5: green
6: purple

f5=(λ (x y z) (and (f2 (y (f3 
 (cdr (cdr x))))) (not 

 (f4 z))))

f4=(f0 6 1)

f6=(λ (x y z) (and (f4 y) (not 
 (f0 4 z (cdr (cdr x))))))

f13=(λ (x y z) (and y (f4 (f11 
 (f12 z) x z))))

f24=(λ (x y z) (or (f4 (f11 
 (cdr z) (f3 x) y))))

f7=(λ (x y) (eq? x (index 7 
 y)))

f16=(λ (x y) (not (f7 (f15 x 2) 
 y)))

f21=(λ (x) (not (f7 (count x 
 1) x))) f8=(f1 6)

f9=(λ (x) (f0 4 0 x)) f11=(λ (x) (if (f9 x)))

f10=(λ (x) (forall (λ (y) (or 
 (eq? 4 (index 5 y)) (x 

 y)))))

f14=(λ (x y) (f2 (if (f10 y x) x 
 (f3 x))))

f1=(f0 5)

f2=(f1 2)

f18=(f1 0)

f19=(f1 3)

f12=(λ (x) (cons (car x) 
 empty))

f22=(λ (x y z) (not (or (f17 x) 
 (or (y (f12 x)) z))))

f23=(λ (x y) (exists (λ (z) 
 (and (f2 (cons z x)) 

 y))))

f3=(map (λ (x) (cdr x)))

f17=(f0 6 0)

f0=(λ (x y) (forall (λ (z) 
 (eq? y (index x z)))))

f15=(λ (x y) (count (map (λ 
 (z) (count z y)) x) 1))

f20=(λ (x) (count x 0))

Figure 6: Graphical illustration of the library primitives abstracted by Pix2Code trained on CURI IID.

A.4 CLASSIFYING AN IMAGE.

Given learned concept representations Pix2Code can identify if a specific concept is present in a novel image by first
extracting the corresponding object representations and then testing a selected program of a concept on these. If the concept
is present in the image the program will return True. Fig. 7 sketches this procedure.

B CURI BASELINE MODEL

For comparing Pix2Code, we use the baseline model of Vedantam et al. [2021], which we refer to as CURI-B. For that we
train the four different proposed architectures via the query loss of Vedantam et al. [2021](i.e. α = 0) as we are investigating
unsupervised concept learning settings in this work. We train for 1000 steps and use the same hyperparameters as used in the
main evaluation of the authors. Based on Tab. 9 we select the best performing pooling approach for each dataset and split.

C DATA USED FOR MAIN EXPERIMENTS

C.1 RELKP

To investigate the relational concept learning abilities of Pix2Code, the data set RelKP was constructed, which includes
200 specific Kandinsky Patterns of varying complex concepts based on the number of objects, concept types, number of
relations, and number of pairs. For each train concept, one support and one query set were created. The support and query
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Selected program

(λx (forall (λy (eq?
 (shape y)   ) x)

Pix2Code

Object
extractor

x1 x2y1 y2 x1 x2y1 y2 x1 x2y1 y2

Figure 7: Pix2Code overview for the classification of an unseen image. The image gets processed by the object extractor
resulting in a symbolic object representation. This is the input to the program used for classification which gives the final
prediction.

Table 9: Mean accuracy (with std) for different datasets and splits reported individually for the model of [Vedantam et al.,
2021] based on the different proposed pooling approaches.

Concatenation Global Avg. Relation Net Transformer

RelKP iid 50.87 ± 0.08 59.69 ± 0.83 57.45 ± 1.47 52.76 ± 0.24
CURI iid 57.96 ± 1.00 65.57 ± 0.91 66.68 ± 1.50 62.24 ± 1.54
Boolean 56.63 ± 0.80 63.85 ± 3.70 67.86 ± 1.21 66.60 ± 1.16
Counting 54.48 ± 1.90 60.24 ± 0.68 58.87 ± 2.16 62.19 ± 2.44
Extrinsic 61.89 ± 2.19 67.81 ± 5.48 72.56 ± 0.40 70.21 ± 2.84
Intrinsic 53.01 ± 0.13 66.16 ± 1.33 67.85 ± 2.50 63.70 ± 4.54
Binding(color) 58.41 ± 0.55 65.20 ± 3.05 61.21 ± 2.61 69.89 ± 1.54
Compositional 59.16 ± 1.95 65.18 ± 0.22 67.63 ± 0.53 65.42 ± 3.46
Complexity 57.94 ± 1.79 64.04 ± 1.31 65.24 ± 0.14 62.27 ± 1.74
Binding(shape) 59.30 ± 3.02 57.24 ± 4.67 66.35 ± 0.36 63.51 ± 3.45

sets consist of 25 examples with five positive 20 negative image examples of the concept, respectively. The test concepts
have one support set and eight query sets per concept, giving 40 positive and 160 negative examples for the query set. The
generated patterns are inspired by the Kandinsky Patterns of Shindo et al. Shindo et al. [2023a] Example images can be seen
in Fig. 8.

Table 10: Overview of relations that are used to create RelKP data set.

Relation Description

same_color ∀x, y : color(x) = color(y)
same_shape ∀x, y : shape(x) = shape(y)
same_size ∀x, y : size(x) = size(y)
one_red_triangle ∃x : color(x) = red ∧ shape(x) = triangle ∧ ∀y : x ̸=

y ∧ color(y) ̸= red ∧ shape(y) ̸= triangle

There are two types of concepts, those where the relations refer to all objects in the image and those where the relations
refer to only a pair of objects in the image. The relations include object concepts like "same shape" and "one object is a red
triangle". The used relations are listed in Tab. 10. The relations can be combined with and and or and not can be applied
to relations.

In RelKP the smallest number of objects is two and the maximum number is six. For concepts where a relation refers to all
objects all objects in an image have to indicate the specific concept. For concepts where the relations only refer to a pair, this
means that among all objects there should exist at least one pair for which the objects have the same shape and the same
color. More complex patterns of this type can have relations for the remaining distinct pairs of objects in the image as well.
An example of a clause describing such a pattern is given in equation Eq. 8, i.e., there is a pair of objects that has the same
shape and the same color, there is another distinct pair that also has the same shape and the same color and there is a third
pair that does not has the same shape or it does not have the same color.
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Two objects that have the same color

Three objects where one is a red triangle

One pair with same shape and one pair with not the same shape

Figure 8: Three example concepts of RelKP. The two left images depict positive examples of the concept and the two right
images depict negative ones.

∃x1∃x2∃y1∃y2∃z1∃z2
((x1 ̸= x2) ∧ (x1 ̸= y1) ∧ (x1 ̸= y2) ∧ (x1 ̸= z1) ∧ (x1 ̸= z2)

∧ (x2 ̸= y1) ∧ (x2 ̸= y2) ∧ (x2 ̸= z1) ∧ (x2 ̸= z2)

∧ (y1 ̸= y2) ∧ (y1 ̸= z1) ∧ (y1 ̸= z2)

∧ (y2 ̸= z1) ∧ (y2 ̸= z2) ∧ (z1 ̸= z2)

∧ (same_shape(x1, x2) ∧ same_color(x1, x2))
∧ (same_shape(y1, y2) ∧ ¬same_color(y1, y2))
∧ (¬same_shape(z1, z2) ∨ ¬same_color(z1, z2)))

(8)

C.2 CURI

The CURI dataset [Vedantam et al., 2021] is based on CLEVR images [Johnson et al., 2017], which depict 3D objects that
possess the attributes color, shape, size and material (cf. Fig. 1 for example images). The dataset has a total number of 14
929 abstract concepts. For each concept, the dataset contains at least one episode, which consists of a support and a query set
of images, each with five positive and 20 negative image examples. Overall, the data set is designed to test for compositional
generalization and thus contains eight different concept splits that are based on specific properties that occur only in the test
set.

The “counting” split tests for counting generalization via 47 novel combinations of property-count concepts in its test set.
There are the intrinsic and extrinsic property splits, where in the training set concepts like "green" and "metal" or "red" and
position "1" (on the x or y axis) do not occur together. For the boolean split there occur some combinations of properties and
logical operators only in the test split, e.g., "green" and "or". Further, the binding splits have some object attributes only in
the test concepts, i.e., the shape cylinder occurs only in test concepts for Binding(shape) and the colors purple, cyan and
yellow occur only in the test concepts for Binding(color). For the counting split, there is a selection of 47 concepts that are
counting-based in the test set, but still some other counting concepts in the train set as well. The complexity split takes only
concepts that are shorter than 10 tokens (i.e., that are less complex) for training and the longer ones for testing. We refer to
the original work [Vedantam et al., 2021] for further details.
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D DETAILS ON EXPERIMENTAL EVALUATIONS

In the following, we provide additional experimental details, but importantly, also ablation evaluations where both CURI-B
and Pix2Code are provided with ground-truth object information input rather than the raw images. Vedantam et al. [2021]
refer to this type of input as schema input.

All experiments were performed using the following hardware: CPU: AMD EPYC 7742 64- Core Processor, RAM: 2064
GB, GPU: NVIDIA A100-SXM4-40GB GPU with 40 GB of RAM.

D.1 CHOICE OF CURI SUPPORT SETS FOR PIX2CODE

The CURI data set is constructed in a way that a model can predict labels for a query set based on support examples.
Therefore, for one concept in CURI there exists often multiple support sets with respective query sets. Our Method Pix2Code
works different in a sense that it retrieved a program based on a support set of examples and based on that is able to classify
arbitrary query examples, i.e., executing the program on them. To evaluate Pix2Code on the CURI dataset we therefore
chose to consider just one support set per concept to reduce the number of programs that need to be enumerated per concept.
In Tab. 11, we analyze if this changes the performance of Pix2Code whereby we show that this doesn’t affect the model’s
performance notably. In our evaluations of Pix2Code we therefore consider only one support set per concept.

Table 11: Comparison of one support set per task and different support sets per task. Mean Acc@all of Pix2Code on test
tasks of CURI splits with schema inputs are reported.

CURI Splits 100 Pix2Code Pix2Code
(same support) (diff support)

Boolean 80.58 80.39
Counting 58.24 57.77
Extrinsic 77.51 78.03
Intrinsic 89.25 89.93
Binding(color) 80.89 81.04
Compositional 77.45 77.77
Binding(shape) 78.35 77.58
Complexity 73.42 73.52

D.2 LEARNING VISUAL CONCEPTS.

Tab. 12 presents the results of an ablation study where we provide ground truth symbolic representations of the objects in
each image for the RelKP iid and CURI iid split, rather than the representations of Pix2Code’s object extractor or CURI-B’s
image encoder. We observe that Pix2Code represents a competitive approach over CURI-B particularly when considering
the accuracy of the solved tasks.

Tab. 13 (top) presents how many tasks Pix2Code has solved per dataset. Leading to an average of 93% for RelKP iid and
68.86% for CURI iid. For schema inputs Tab. 16 (top) the average of solved tasks for RelKP is 93.67% and for CURI
72.42%, which is slightly higher.

Table 12: Mean test accuracy on Kandinsky and CURI concepts with iid train test splits and schema input.

CURI-B
Pix2Code
(Acc@all)

Pix2Code
(Acc@solved)

RelKP 91.36 ±0.59 91.01±0.90 93.95 ±0.51

CURI
(iid Split)

73.73 ±0.31 74.16 ±1.18 83.31 ±1.65
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Table 13: Number of solved CURI concepts for image input with Pix2Code over the three seeds.

Datasets Seed 0 Seed 1 Seed 2 Avg. Total Tasks

RelKP iid 91 94 95 93 100
CURI iid 7005 4936 5389 5777 8389

Boolean 1665 2002 1776 1814 2565
Counting 9 20 19 16 47
Extrinsic 540 501 632 558 750
Intrinsic 258 272 223 251 283
Binding(color) 1927 1940 2211 2026 2590
Compositional 1699 1597 1605 1634 2402
Complexity 6739 6811 6914 6821 8363
Binding(shape) 1002 789 1165 985 1484

D.3 TIME COSTS OF PIX2CODE

In Tab. 14 we provide the mean durations (in sec.) for the training of CURI-B and Pix2Code (and its sub-modules) on the iid
data set of CURI over three seeds.

Table 14: Training times of CURI and Pix2Code.

CURI-B Pix2Code Object Extractor Program Synthesis

Duration 1094.3 ± 122 s 48575.7 ± 2338s 17247.3 ±583s 31328.3±2404s

The training of CURI-B for 1000 steps takes, on average, 1094 seconds (ca. 18 minutes). Pix2Code was trained for 15
iterations which takes on average 48, 575.5 seconds (ca. 13, 5h). Indeed, this is a substantially longer training time. However,
we consider this to be a trade-off for the benefits of improved generalisability, interpretability, and revisability.

D.4 GENERALIZING TO NOVEL COMBINATIONS OF KNOWN VISUAL CONCEPTS.

In Tab. 15 we provide the ablation results when both models are trained on schema input. We observe the same trend as in
the evaluations of the main text. Tab. 13 (bottom) presents how many tasks Pix2Code has solved per CURI split. Leading to
a median of 72.56% over all splits. For schema inputs Tab. 16 (bottom) the median is 74.95%.

Table 15: Mean accuracy (with std) for meta-test tasks of CURI splits reported individually and as the median (with median
absolute deviation) over all splits. Hereby the models were provided with schema inputs, rather than images.

CURI
(Comp. Splits) CURI-B Pix2Code

(Acc@all)
Pix2Code

(Acc@solved)

Boolean 75.69 ±0.41 80.46 ±1.28 91.07 ±2.39

Counting 70.56 ±0.44 58.34 ±0.45 69.16 ±2.81

Extrinsic 76.97 ±0.18 78.67 ±1.82 89.68 ±1.93

Intrinsic 78.18 ±1.61 87.47 ±3.34 92.64 ±0.98

Binding(color) 78.37 ±0.61 80.61 ±2.27 87.62 ±2.49

Compositional 74.12 ±0.91 77.19 ±0.52 87.21 ±0.68

Binding(shape) 72.60 ±0.82 78.75 ±1.68 88.33 ±2.26

Complexity 75.07 ±0.43 74.21 ±0.56 78.43 ±0.56

Mdn. 75.38 ±2.19 78.71 ±1.82 87.98 ±2.40

3847



Table 16: Number of solved CURI concepts for schema input with Pix2Code over the three seeds.

Datasets Seed 0 Seed 1 Seed 2 Avg. Total Tasks

RelKP iid 92 95 94 94 100
CURI iid 6875 5482 5869 6075 8389

Boolean 1769 2119 1840 1909 2565
Counting 23 26 20 23 47
Extrinsic 498 498 634 543 750
Intrinsic 263 274 211 249 283
Binding(color) 1963 2070 2300 2111 2590
Compositional 1817 1754 1696 1756 2402
Complexity 7085 7060 7132 7092 8363
Binding(shape) 1130 963 1267 1120 1484

D.5 GENERALIZING TO VARIABLE NUMBER OF OBJECTS.

For investigating entity generalization in the context of visual concept learning we created images with the CLEVR-
Hans repository [Stammer et al., 2021] for generating the CURI variations AllCubes-N and AllMetalOneGray-N. In
AllMetalOneGray-N positive images all contain metal objects and at least one gray object. Negative images have a rubber
object and others are metal. Examples of the datasets are depicted in Fig. 9.
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Figure 9: Examples of created test examples for AllMetalOneGray-N. Positive images have all metal objects and at least one
gray one. Negative images have one rubber object

For the support sets of AllCubes-N and AllMetalOneGray-N, we used one original, randomly sampled support set of the
concepts "all objects are cubes" and "all objects are metal and there exists a gray object" from the CURI data set. For the
query sets 100 positive and 100 negative examples were created and grouped into 25 examples per query set.

For the evaluations CURI-B needed to be retrained on the iid train split with the hyperparameter max objects set to 10,
leading to CURI-B-10. The best performing model was the one with transformer pooling, its test results on the CURI iid
split are reported in Tab. 17. For Pix2Code, the original trained models from the iid split were used to query a program for
the support sets of the concepts and classify the query examples. Both models achieve comparable results on the original
data set, however, the evaluations of (Q3) in (Tab. 3) show that in terms of entity generalization Pix2Code largly outperforms
CURI-B-10.

D.6 INTERPRETING PROGRAMS.

For providing the natural language explanations of Tab. 4 we used gpt-4-turbo. An exemplary prompt for "all objects are
cyan" is shown in Listing 1. Note that the prompt uses the raw program output whereas in the Tab. 4 and Tab. 18 the
programs where parsed to a more readable form and integer values were substituted with their semantic meaning.
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Table 17: Mean test accuracy on CURI concepts with iid train test splits and schema input where CURI-B is modified to
process up to ten objects (CURI-B-10).

CURI-B-10
Pix2Code
(Acc@all)

Pix2Code
(Acc@solved)

CURI
(iid Split)

74.5 ±1.55 74.16 ±1.18 83.31 ±1.65

Further, we evaluated the language model Gemini4 for comparison, the results are given in Tab. 18.

Table 18: Examples of CURI concepts from with Pix2Code programs and natural language translation from an LLM, i.e.,
gemini-pro-dev-api. All programs achieve 100% accuracy on the CURI test scenes.

Original Concept Retrieved Program Natural Language Translation (Gemini)

All objects are cyan (λ (x) ((λ (y z) (forall (λ (u) (eq? (index y
u) z)))) color cyan x))

"All objects have the color cyan."

All objects are cubes (λ (x) ((λ (y z) (forall (λ (u) (eq? (index y
u) z)))) shape cube x))

"All objects have the shape cube."

All objects are purple and
all objects are spheres

(λ (x) (and ((λ (y z) (forall (λ (u) (eq?
(index y u) z)))) shape sphere x) ((λ (v w)
(forall (λ (a) (eq? (index v a) w)))) color
purple x)))

"All objects are spheres and purple."

All objects are brown or all
objects are cubes

(λ (x) (or ((λ (y z) (forall (λ (u) (eq? (index
y u) z)))) shape cube x) ((λ (v w) (forall (λ
(a) (eq? (index v a) w)))) color brown x)))

"All objects are either cubes and made of
rubber or are brown."

All objects are small and
there exists a purple object

(λ (x) (and ((λ (y z) (forall (λ (u) (eq?
(index y u) z)))) size small x) (exists (λ (v)
((λ (w a b) (eq? (index b w) a)) v purple
color)) x)))

"All objects are small and there exists a
green object."

There are three gray objects (λ (x) (eq? ((λ (y) (count (map (λ (z) ((λ
(u v) (index u v)) color z)) y))) x gray) 3))

"All objects have size large."

There exists an arbitrary ob-
ject and there exist three
other objects that are blue

(λ (x) (gt? ((λ (y) (count (map (λ (z) ((λ (u
v) (index u v)) color z)) y))) x blue) 2))

"There are more than 2 objects with size
large."

4https://blog.google/technology/ai/google-gemini-ai
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Listing 1: Example prompt for LLMs.

There i s a l i s t o f i n t e g e r l i s t s t h a t r e p r e s e n t o b j e c t s from an image .
Each o b j e c t i s encoded by f o u r v a l u e s f o r t h e bounding box of t h e o b j e c t ,
t h e n one v a l u e f o r t h e s i z e , one v a l u e f o r t h e c o l o r , one f o r t h e shape
and one f o r t h e m a t e r i a l . Th i s means an o b j e c t i s encoded by a l i s t o f 8 v a l u e s :
[ x_min , y_min , x_max , y_max , s i z e , c o l o r , shape , m a t e r i a l ] .

The v a l u e s f o r s i z e ( i n d e x 4 ) :
0 : s m a l l
1 : l a r g e

The v a l u e s f o r c o l o r ( i n d e x 5 ) :
0 : g r ay
1 : b l u e
2 : brown
3 : ye l l ow
4 : r e d
5 : g r e e n
6 : p u r p l e
7 : cyan

The v a l u e s f o r shape ( i n d e x 6 ) :
0 : cube
1 : s p h e r e
2 : c y l i n d e r

The v a l u e s f o r m a t e r i a l ( i n d e x 7 ) :
0 : r u b b e r
1 : m e t a l

In t h e f o l l o w i n g t h e r e i s a lambda c a l c u l u s program t h a t p r o c e s s e s a l i s t o f o b j e c t s
and c l a s s i f i e s them based on a r u l e . The r u l e d e t e r m i n e s whe the r t h e image b e l o n g s
t o a p a t t e r n o r n o t ( True o r F a l s e ) .

P l e a s e g i v e d e s c r i p t i o n o f t h e p a t t e r n t h a t i s d e t e c t e d by t h e program i n one
s e n t e n c e .

Program :
( lambda ( # ( # ( lambda ( lambda ( f o r a l l ( lambda ( eq ? ( i n d e x $2 $0 ) $1 ) ) ) ) ) 6 1 ) $0 ) )

E x p l a n a t i o n :
A l l o b j e c t s have t h e shape s p h e r e .

Program :
( lambda ( # ( # ( # ( lambda ( lambda ( f o r a l l ( lambda ( eq ? ( i n d e x $2 $0 ) $1 ) ) ) ) ) 5 ) 2 ) $0 ) )

E x p l a n a t i o n :
A l l o b j e c t s have t h e c o l o r brown .

Program :
( lambda ( # ( # ( lambda ( lambda ( f o r a l l ( lambda ( eq ? ( i n d e x $2 $0 ) \ $1 ) ) ) ) ) 5 ) 7 $0 ) )

E x p l a n a t i o n :
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D.7 REVISE CONFOUNDERS.

For the evaluations of confounding in concept learning, we propose CURI-Hans. It consists of original CURI concepts
listed in Tab. 19 and a confounded test task. This test task is confounded by "all objects are cyan", which is added to the
support set of test task, i.e. each object gets the color cyan. The query set stays unconfounded, i.e., every object can have any
color from the set of existing colors of the original CLEVR setting.

Table 19: Subset of CURI concepts for confounded experiment. For each concept, one episode was selected and the test task
has been confounded so that in the support set the positive samples had all cyan objects.

Split Concept Description

Train 6746 All objects are blue
Train 6001 All objects are spheres
Train 7666 There exists a metal object and its x-location is greater than 1
Train 4399 There exists a sphere and there exists an object with y-location equal to 7
Train 9659 There exists a metal object and there exists another object which has the y-location 6
Train 14275 All objects are brown and all objects are cylinders
Train 13983 All objects are red and there exists a cube
Train 2524 There exists a yellow object and all objects are rubber

Test 5327 There exists a cube and all objects are (cyan and) metal

For revising the program synthesis component of Pix2Code, we remove program primitives from L, as well as collected
programs of the training tasks that include the removed program primitives (as the code model qψ is trained on them). To do
this more easily, we change the object representations so that each object property has its own integer values, leading to
Tab. 20 (in comparison to Tab. 8).

Table 20: A mapping from integers to the attributes of CURI-EG objects.

CURI
size color shape material

0: small 2: gray 9: cube 12: rubber
1: large 3: blue 10: sphere 13: metal

4: brown 11: cylinder
5: yellow
6: red
7: green
8: purple
9: cyan

To remove the confounder color cyan, we can therefore remove the primitive 9 as well as the color index 5 (because color is
at index 5 in the object representations). We finally finetune the code model on the modified library and reevaluate on the
unconfounded query set.

D.8 REVISE COUNTING.

To revise Pix2Code for the counting split of CURI, we add four primitives to the library L. These primitives are each designed
to count the number of occurrences for a given attribute (i.e. size, color, shape and material) in a object representation list.
The primitives are the following:

(λ (x)( λ (y)(count (map ( λ (z) (index 4 z))y)x))) to count the times y occurs as size.

(λ (x)( λ (y)(count (map ( λ (z) (index 5 z))y)x))) to count the times y occurs as color.

(λ (x)( λ (y)(count (map ( λ (z) (index 6 z))y)x))) to count the times y occurs as shape.

(λ (x)( λ (y)(count (map ( λ (z) (index 7 z))y)x))) to count the times y occurs as material.
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The four primitives are added with prior probability of −0.3 to L. After that, the module is trained for another iteration to
update the code model and Pix2Code is evaluated again on the test tasks of the counting split, achieving a much higher
accuracy.

D.9 EXTENDING PIX2CODE TO NATURAL IMAGES.

For evaluating Pix2Code on real-world concepts we created 7 abstract concepts based on the MS COCO dataset [Lin
et al., 2014], an example concept is given in Fig. 5. Since we are only investigating the potential of applying Pix2Code to
real-world scenarios, we consider a small set of training tasks and do not investigate the generalization to test tasks here.
The training tasks have 25 support images based on which programs are retrieved and 100 images for testing the programs.
In Tab. 5 the 5 COCO concepts for which Pix2Code synthesized programs are presented. The two concepts for which no
program was retrieved are "There exist two dogs" and "There exists a book or a teddy bear".

In the context of integrating Pix2Code to more realistic image settings let us discuss potential bottlenecks and updates to
mitigate these. Specifically, more realistic image settings can lead to an increased number and complexity of the object
token sequences of the object extractor. However, this should not represent a bottleneck within the object extraction module
of Pix2Code as object extractors like Pix2Seq can handle such settings as was illustrated in the original work [Chen et al.,
2022].

In comparison, the program synthesis module could contain the following possible limitations. First off, given a large
symbolic representation space, the code model can experience issues processing the entire symbolic input. However,
approaches exist to mitigate this, e.g., an attention-based module could be used. Second, a large symbolic representation
space may require more base program primitives (e.g., more integer values), which can lead to an increased search time due
to the larger search space. This may limit the applicability in time-sensitive settings. Concerning this, Ellis et al. [2023]
suggests increasing the number of CPUs, which allows for parallelizing the searches. If time is not of the essence one can
increase the search timeout parameters. Another possible measure to mitigate long search times is to incorporate a form of
pre-filtering of objects and their attributes, thereby reducing the search space. In the case of our evaluations in (Q6), we used
the same hyperparameters as for the other evaluations and used 16 CPUs to obtain the results, however, in the case of a
higher number of real-world training tasks, it still needs to be investigated whether the search time and number of CPUs
need to be increased.

We note that the current architecture of Pix2Code does not explicitly handle the object extractor’s noise. If the noise is too
high, it can happen that Pix2Code does not find a suitable program as in the case of the two COCO concepts. We propose to
integrate object representation uncertainty in future work to apply Pix2Code to real-world settings in a robust way.
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