
α-Former: Local-Feature-Aware (L-FA) Transformer

Zhi Xu1 Bin Sun1 Yue Bai1 Yun Raymond Fu1

1Department of ECE, , Northeastern University, Boston, Massachusetts, USA

Abstract

Despite the success of current segmentation mod-
els powered by the transformer, the camouflaged
instance segmentation (CIS) task remains a chal-
lenge due to the target and the background are
similar. To overcome this problem, we propose a
novel architecture called the local-feature-aware
transformer (α-Former), inspired by how humans
find the camouflaged instance in a given photo-
graph. We use traditional computer vision descrip-
tors to simulate how humans find the unnatural
boundary in a given photograph. Then, the infor-
mation extracted by traditional descriptors can be
employed as prior knowledge to enhance the neural
network’s performance. Moreover, due to the non-
learnable characteristics of traditional descriptors,
we designed a learnable binary filter to simulate the
traditional descriptors. In order to aggregate the in-
formation from the backbone and binary filter, we
introduce an adapter to merge local features into
the transformer framework. Additionally, we intro-
duce an edge-aware feature fusion module to im-
prove boundary results in the segmentation model.
Using the proposed transformer-based encoder-
decoder architecture, our α-Former surpasses state-
of-the-art performance on the COD10K and NC4K
datasets.

1 INTRODUCTION

Camouflaged instance segmentation (CIS) is beneficial for
applications in computer vision, like medical image segmen-
tation, agriculture, etc (Fan et al. [2020]). However, this
task is challenging compared to traditional object detection
and segmentation since camouflaged objects can effectively
blend in with the background, making it difficult for models
to detect and annotate them accurately.

Traditional

Methods

Ours

Figure 1: The α-Former was motivated by the need to im-
prove the performance of the camouflaged instance segmen-
tation model. The model generates a local feature that pro-
vides precise boundary information about the target object.
The input image is displayed in the top left, the prediction
result without the local feature is shown in the top right, the
generated local feature is displayed in the bottom left, and
the prediction result with the local feature is shown in the
bottom right. Incorporating the local feature into the model
results in a more accurate segmentation of the target object.

Recently, transformer reached outstanding performances in
different applications like detection (Carion et al. [2020]),
classification (Chen et al. [2021]), segmentation (Strudel
et al. [2021]), etc. However, transformer models usually
need a large-scale dataset for training. Thanks to the large-
scale datasets and benchmarks for camouflaged object de-
tection including , NC4K (Lv et al. [2021]), COD10K (Fan
et al. [2020]), CAMO (Le et al. [2019]), CAMO++ (Le
et al. [2021]), the researchers can implement the transformer
on CIS. As a result, the transformer have achieved state-of-
the-art performance in this field (Pei et al. [2022]).

Despite their effectiveness, current transformer models have
limitations in dealing with CIS. As shown in Fig 1, these
models tend to predict multiple objects for a single target
when the edge is unclear. This is because the models pri-

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:3879–3892.

mailto:<xu.zhi2@northeastern.edu>?Subject=Your UAI 2024 paper

marily focus on finding the target object and ignore the
importance of accurately identifying the boundary of the
target object. To improve CIS performance, models need
to understand the object’s location better and enhance the
features around the instance’s boundary.

Inspired by how humans detect hidden objects within a pho-
tograph, the approach does not involve a direct search for the
concealed instance due to the object’s seamless integration
into the surroundings, making it challenging to pinpoint di-
rectly. Instead, humans rely on comparing the local features
with adjacent pixels. When humans recognize an unnatural
boundary, it raises confidence in the presence of a concealed
object (Troscianko et al. [2009]). However, the question
arises of how to impart prior knowledge to a neural net-
work regarding identifying unnatural boundaries. This is
where traditional descriptors come into play. The fundamen-
tal concept behind these descriptors is to establish a means
of comparing a pixel to its neighboring pixels. Illustrated
in Fig.1, the lower left image demonstrates the outcome of
applying a traditional descriptor to a camouflaged instance,
revealing the ability of such descriptors to identify unnatural
boundaries in the given image. Subsequently, this informa-
tion can be employed as prior knowledge to enhance the
neural network’s performance.

To improve the boundary features of our model, we have in-
tegrated traditional descriptors like LBP (Ojala et al. [1994])
into the transformer framework. LBP is especially sensitive
to edges, which is advantageous in the context of CIS be-
cause of the high similarity between foreground and the
background. As depicted in Figure 1, LBP can accurately
demarcate the boundary of the target object, even when the
texture and color of the target object have high similarity
to that of the background. This makes it possible for the
model to achieve superior results, as shown in Figure 1. By
combining LBP with the transformer, we have developed
an effective framework for identifying target objects and
creating precise boundaries. We call this framework the
local-feature-aware transformer, or α-Former (pronounced
"alpha-former"). Inspired by LBP, we have created a learn-
able module known as the binary filter (BF), which can
compare pixel values within a field and generate a local
feature. The binary filter consists of a learnable module and
a fixed-weight convolution layer called BCNN which can
extract features similar to the LBP.

The fixed convolution layer is able to generate local features
by comparing different pairs of pixels, while the learnable
module can collect and consolidate this comparison infor-
mation. To effectively integrate the features extracted by the
binary filter, we have developed a learnable module known
as the feature aggregation adapter (FAA). The FAA can pro-
vide the local features to the backbone of the model without
interfering with its performance, even if there are differ-
ences in the input distribution. Moreover, our FAA module
is highly parameter-efficient and easy to train. Additionally,

0 0 0

1 -1 0

0 0 0

Figure 2: Examples of our BCNN layer. The left is a sample
of 3 × 3 BCNN layer, the center is the input image, and
the right is the output of the BCNN layer. Our BCNN is
a fixed-weight binary convolution layer that can provide
the comparison information of neighboring pixel pairs. Our
results show that BCNN can provide a precise boundary for
a given image.

we have designed an edge-aware module that can accurately
predict boundaries for CIS. This module includes a multi-
level convolution layer that offers a wide receptive field, as
well as a fixed-weight convolution layer that extracts local
features. To utilize the ground truth edge as supervision, we
employ a 1× 1 convolution layer to generate edge predic-
tions. These edge predictions are then incorporated into the
final prediction head to improve overall performance of the
model.

Our model combines the binary filter (BF), feature ag-
gregation adapter (FAA), and edge-aware fusion module
to achieve superior performance on two popular datasets,
NC4K and COD10K. Specifically, our architecture outper-
forms the current state-of-the-art by approximately 2 aver-
age precision (AP) points. Additionally, we do comprehen-
sive ablation studies to demonstrate the effectiveness of the
proposed BF, FAA, and edge-aware fusion module. Also,
we provide lots of qualitative results in our experiments.

To summarize, our contributions are:

• Inspired by how human find the camouflaged instance
in a photograph, we use traditional descriptors to sim-
ulate the process of how human find the unnatural
boundary. Moreover, due to the non-learnable charac-
teristics of traditional descriptor, we proposed a learn-
able module to extract similar features as the traditional
descriptor.

• We proposed α-Former, which firstly provides local
binary information to the camouflage instance segmen-
tation model. Also, we provide edge supervision to our
model to improve the final mask boundary.

• We achieve state-of-art camouflaged instance segmen-
tation results on two different benchmarks. Experi-
ments and ablation study prove the efficiency of our
proposed modules and architecture.

3880

2 RELATE WORK

Camouflaged Object Detection. Camouflaged object
detection aims to find the object in the image that hidden
in the background and is more difficult than traditional
object detection. Earlier works mainly focus on some
level features like color (Huerta et al. [2007]), texture
(Song and Geng [2010]). As deep learning advances,
an increasing number of studies are employing neural
networks to address the issue. These methods (including
Zhu et al. [2021], Mei et al. [2021]) mostly employ a CNN
backbone for high-level feature extraction and aim to detect
and predict the camouflaged objects.. (Zhai et al. [2021])
proposed MGL that firstly use a mutual graph to detect
and predict the final results. (Yang et al. [2021]) proposed
UGTR which tried to mimic the human process, adding an
uncertain prediction for camouflaged object detection. (Pei
et al. [2022]) proposed OSFormer that uses a one-stage
architecture and transformer to get the final results. (Mei
et al. [2021]) introduced PFNet that firstly adds a focus and
positioning module to mimic the human detection process,
which tries to find the target object.

Integrating traditional descriptors to Help CNN. There
is a long history of using traditional descriptors to help
improve the performance of CNN. Earlier works use dif-
ferent descriptors to help CNN. For example, some works
(Karanwal and Diwakar [2021a,b]) use LBP (Ojala et al.
[1994]) to help improve the face performance recognition.
People also use HOG (Dalal and Triggs [2005]) to help
them improve the performance of human detection (Surasak
et al. [2018]) and action recognition (Patel et al. [2020]).
Recently, researchers tried to combine SIFT (Lowe [1999])
and convolution networks (including Gupta et al. [2019],
Hossein-Nejad et al. [2021], Kovač and Marák [2022]) to
extract better features and implement the features in dif-
ferent applications. Considering so many works integrating
traditional descriptor with deep learning architecture and get
performance improvement and the lack of effort to apply the
traditional descriptor to camouflaged object detection, we
try to use a descriptor inspired by traditional descriptors to
enhance the effectiveness of camouflaged object detection.
Binary Filter. The traditional descriptor inspires the idea
of using a binary filter for convolution. Many works already
use their binary filter to get good performance in many
datasets. For example, BinaryConnect (Courbariaux et al.
[2015]) tried to design a neural network that only has binary
weights in propagation. In this article, they approximate
the real value in neural networks with binary values. Based
on BinaryConnect, (Courbariaux et al. [2016]) proposed
BinaryNet where both the activations and weights are con-
strained to −1 or +1. LBCNN (Juefei-Xu et al. [2017]) uses
a fixed-weight binary convolution to replace the original
convolution and get good performance in the classification
tasks. These works show the feasibility of using binary fil-

ters to extract features and train neural networks.
Adapter. The adapter is firstly proposed in NLP tasks
(Houlsby et al. [2019]), which targets to transfer the pre-
trained NLP model to different downstream tasks while not
introducing lots of parameters in the new models. Because
of its efficiency, more and more researchers have recently
tried to add an adapter to computer vision tasks (including
Long Li et al. [2019], Sung et al. [2022]). Also, it is very
efficient to use adapter in domain transfer, and lots of works
(including Ansell et al. [2021], Ke et al. [2021]) that con-
centrate on this. The input domain has changed after using
the binary filter in our work. Hence, we use an adapter to
help the pre-trained backbone to extract the features.

Feature

Edge-aware

Fusion

Prediction

Head

F2 T3-T5

Encoder Decoder

Extractor

Figure 3: α-Former comprises a feature extractor, an
encoder-decoder, an edge-aware fusion module, and a pre-
diction head. α-Former use a single RGB image as input,
and α-Former output the camouflaged object mask in the
input image.

3 BINARY FILTER

3.1 WHY USE BINARY FILTER

We have observed that traditional camouflage segmentation
models struggle to accurately determine the boundary of
objects in ambiguous cases. For example, when presented
with an image of a pipefish, as shown in Fig. 1, a standard
model may predict multiple objects instead of correctly iden-
tifying the single target object. Inspired by how human find
camouflaged instance, traditional descriptors come into our
minds. We can use traditional descriptors to provide prior
knowledge to neural network to enhance its ability. How-
ever, the traditional descriptors like LBP is not learnable,
meaning that it is difficult to adapt to new input data.

To address this issue, we sought to design an architecture
that can detect local binary features similar to those cap-
tured by traditional descriptors but is also learnable. The
LBP descriptor compares the center pixel value with the
surrounding pixel values, so we were inspired to create a bi-
nary filter using a fixed binary weight convolution (BCNN)
to simulate this process.

3.2 ARCHITECTURE OF BINARY FILTER

We describe the architecture of the proposed binary filter,
which allows for comparison operations that are difficult to
perform with traditional convolution layers in this section.

3881

P
re

p
ro

c
e
s
s

Binary Filter Binary Filter

BN
BCN

N
ReLU

1*1

Conv

1
*1

 C
o
n
v

Concatenate Skip Connection

Feature

Aggregation

Adapter

Pre-trained

backbone

Figure 4: Our feature extractor contains a preprocessing module, several binary filters, a feature aggregation adapter, and
a pre-trained backbone. The binary filter can extract local features of the input image. After getting local features, we
concatenate the original image and local features and use our feature aggregation adapter to transfer the new image domain
to the input image domain. After the feature aggregation adapter, we use a pre-trained CNN to do high-level and low-level
features extraction.

As illustrated in Fig. 2, we can simulate the comparison op-
eration by designing a convolution kernel where the center
value is -1, the left value is 1, and all other values are 0.
After applying this convolution operation, we compare the
output with 0. If the output is greater than 0, we know that
the value of left pixel is greater than the value of the center
pixel; otherwise, the value of the left pixel is less than the
value of the center pixel. Our designed binary convolution
layer with fixed binary weight convolution (BCNN) can
extract the precise boundary for the target object, as demon-
strated in Fig. 2. To increase the robustness of BCNN, we
use multiple binary convolution kernels for each BCNN
layer, and for each kernel, we randomly select a value from
−1, 0, 1. However, the BCNN is not trainable, and to make
the binary filter trainable, we add a 1× 1 convolution layer
after each BCNN layer to gather information, which is train-
able. This trainable 1× 1 convolution layer is very light and
easy to train compared to the traditional CNN architecture.

4 METHODS

Architecture Our proposed α-Former has five crucial mod-
ules. (1) A feature extractor with a binary filter to extract
similar features as the LBP (Ojala et al. [1994]), an adapter
to transfer the input domain, and a backbone to extract ob-
ject features. (2) A transformer encoder that uses global and
local features to generate object embedding. (3) An edge-
aware feature fusion module to generate precise boundaries.
(4) A transformer decoder to extract the information from
the embedding (5) Mask predict head to predict final in-
stance mask. The whole architecture is shown in Fig.3

4.1 FEATURE EXTRACTOR

Our feature extractor consists of three parts: a learnable
local binary filter (BF), a feature aggregation adapter (FAA),
and a pre-trained CNN backbone. These components are
shown in Fig.4.

4.1.1 Binary Filter (BF)

The purpose of the binary filter is to get local features. Here,
provided an input image I ∈ RH×W×3, we firstly use a
convolution layer to preprocess the image. After the prepro-
cessing, we use a pre-defined binary filter to extract local
binary features. The detail of the binary filter is already
discussed in Sec.3. We use multiple binary filters in every
experiment to extract the local binary information. After
the BF module, we can get a feature F ∈ RH×W×C where
channel number of the final 1 × 1 convolution is C. Then
we concatenate the feature F and the original image I .

4.1.2 Feature Aggregation Adapter (FAA)

After the BF module, the channel numbers of concatenate
images are different from the backbone training images,
which makes it not practical to use the pre-trained backbone
directly. To use the pre-trained backbone, we need a method
to transfer the concatenated image domain to the domain
that is the same as the original images. Here, we introduce
a feature aggregation adapter to align the new image do-
main with the original image domain. The architecture of
the adapter is a 1 × 1 convolution and a skip connection
which can be seen in Fig.4. The adapter output a image with
the shape H ×W × 3 which is the same as the original im-
ages. The purpose of adding a skip connection is that, at the
beginning of the training, it is challenging to initialize the
parameter of the 1× 1 convolution to guarantee the domain
of the output is the same as the domain of the original image.
In order not to influence the performance of the backbone
at the beginning of the training, we can set very tiny initial
values of the 1× 1 convolution layer. Furthermore, for the
skip connection, we can directly add the first three channels,
the original images, to the output. This operation can ensure
the input of the backbone is almost the same as the original
image at the beginning of the training. Throughout the train-
ing phase, the model can gradually learn to use the local
binary features.

3882

Figure 5: Our encoder contains a position encoding module, a self-attention module, and a CNN architecture. The encoder’s
input is the extracted third to fifth layer’s backbone features. After getting the input feature, we integrate a position embedding
to the features and use a self-attention module to get its local features. After getting the local feature, we use an add & norm
operation followed by a CNN architecture to get the final output of the encoder. Then we restore and grid the output of the
encoder to a location-aware query and input the query to the decoder. In the decoder, we use a cross-attention module to
extract information. We use the same CNN architecture as the encoder after the cross-attention.

4.1.3 CNN BACKBONE

We use a pre-trained backbone in our experiments. In order
to provide high-level features and low-level features to the
prediction module, We utilize multi-scale features derived
from the backbone. We will use the last four layers’ features
in most of our experiments. We will use F2−F5 to represent
different layer features in the following part. Because the
backbone’s input contains more local features than the orig-
inal image, the extracted features of the backbone contain
extra information compared to directly inputting the original
images to the backbone.

4.2 ENCODER-DECODER

To speed up the training process and reduce the computation
cost we combine the transformer and CNN in our encoder,
which can be seen in Fig.5. We input multi-scale features
F3 − F5 to our encoder to generate more informative fea-
tures. Inspired by DETR (Carion et al. [2020]), which adds a
position embedding to the input feature, We firstly calculate
the position embedding of the input features and incorporate
it into the original features F3−F5 and get updated features
F3(1)−F5(1). Then we input the features to a self-attention
module, which can capture the local information and get
F3(2) − F5(2). After the self-attention module, we use a
CNN module to increase the training process. We add the
features F3(1)−F5(1) and F3(2)−F5(2), then we pass the
result of the self-attention module to a layer normalization,
then we pass the result to a 3×3 convolution layer. After the
convolution, A group normalization and a GELU activation
are used. Following the GELU activation, we add a 3 × 3
convolution layer. After the convolution layer, we restore
the outputs to multi-scale features T3 − T5. Then we flatten
the T3 − T5 to a sequence and input them to the decoder.
The decoder is the same as the encoder. We also combine
the transformer and the convolution. For the input sequence,

we follow the same operation as the encoder, which first cal-
culates the location embedding of the input features. After
that, we grid the input sequence to the shape of S × S ×D,
then flatten them to query shapes L × D and produce a
location-aware query that will provide the location informa-
tion for every token. After getting the location-aware query,
we input the encoder feature and location-aware query to a
cross-attention layer. We use the encoder feature as the key
and value, and use the location-aware query as the query in
the cross attention layer. After the cross-attention layer, we
use the same normalization layer and convolution structure
as the encoder to produce the decoder embedding.

4.3 EDGE-AWARE FEATURE FUSION MODULE
(EAF)

To improve the performance of boundary prediction, we
added a module called edge-aware feature fusion. This mod-
ule uses the ground truth edge as a guide to combine two
types of features: high-level features extracted from the
backbone network (called F2) and low-level features ex-
tracted from the encoder (called T3 to T5).

The edge-aware feature fusion module processes the low-
level features T5 to T3 by first extracting information with
a convolution layer, then a binary convolutional layer is
utilized to capture local binary features, which are then fed
into a 1× 1 convolutional layer to predict edges (called E5).

Next, We up-sample the binary features to ensure they are
the size is the same as T4 and concatenate them, generating
a new input feature (I4). We repeat this process until we
reach F2.

Employing the edge-aware feature fusion module enables
the model better recognize the boundaries of objects, leading
to more precise segmentation masks and avoiding the issue
of predicting one object as multiple objects. The formula
for the edge-aware fusion model is given, and the output of

3883

Multi-size

Conv
B

C
N

N

𝑻𝒊+𝟏

1*1 Conv

Edge

prediction

block

Up-

sample

𝑻𝒊
𝑖

Edge

Loss

Figure 6: Our edge-aware feature fusion module uses a
pyramid structure. The main component of our edge-aware
feature fusion module is an edge prediction block. Given
the input feature, we use a multi-size convolution following
a BCNN layer to extract its feature. Then we up-sample the
result to ensure that the size is the same as the next input
feature size. We employ a 1× 1 convolution layer to predict
the edge and use the ground truth edge as supervision.

the final block O2 is forwarded to the mask prediction head.

We also output the result of the final block O2 to the mask
prediction head.

4.4 MASK PREDICTION HEAD

We follow the same structure as OSFormer (Pei et al.
[2022]). For more details, please see supplementary ma-
terials.

4.5 LOSS FUNCTION

Our loss function is composed of three parts, edge loss,
location loss, and mask loss. We use dice loss for the edge
loss and location loss; for mask loss, we use focal loss.
Hence, our final loss function can be written as

L = λedgeLedge + λlocationLlocation + λmaskLmask

. In our experiments, λedge and λlocation is set to 1 while
λmask is set to 3 to balance different loss.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

datasets We use two benchmark datasets: NC4K (Lv et al.
[2021]) and COD10K (Fan et al. [2020]) in our experiments.

Table 1: Quantitative results of the α-Former, the best results
are highlighted in bold.

method COD10K NC4K
AP AP50 AP75 AP AP50 AP75

Mask-RCNN (He et al. [2017]) 25.0 55.5 20.4 27.7 58.6 22.7
MS-RCNN (Huang et al. [2019]) 30.1 57.5 25.7 36.1 68.9 33.5

Cascade RCNN (Cai and Vasconcelos [2019]) 25.3 56.1 21.3 29.5 60.8 24.8
HTC (Chen et al. [2019]) 28.1 56.3 25.1 29.8 59.0 26.6

Mask Transfiner (Ke et al. [2022]) 28.7 56.3 26.4 29.4 56.7 27.2
YOLACT (Bolya et al. [2019]) 24.3 53.3 19.7 32.1 65.3 27.9
CondInst (Tian et al. [2020]) 30.6 63.6 26.1 33.4 67.4 29.4

QueryInst (Fang et al. [2021]) 28.5 60.1 23.1 33.0 66.7 29.4
SOTR (Guo et al. [2021]) 27.9 58.7 24.1 29.3 61.0 25.6

SOLOv2 (Wang et al. [2020]) 32.5 63.2 29.9 34.4 65.9 31.9
OSFormer (Pei et al. [2022]) 41.0 71.1 40.8 42.5 72.5 42.3

α-Former(Ours) 42.5 72.8 41.8 42.9 72.9 43.3

The COD10K datasets include 3040 training images with
instance-level annotations and 2026 for testing. The NC4K
datasets contain 4121 images with instance-level labels. We
train our model using the COD10K training set and test our
model on COD10K testing set and NC4K dataset. In order
to provide more training samples for the model, we resize
the input images to multiple sizes. We ensure that the shorter
side measures between 480 and 800 pixels, while the longer
side of the input image is under 1333 pixels after resizing.
evaluation metrics We use COCO-style evaluation metrics
in our experiments, including AP,AP50 and AP75, but our
experiments have slight differences. The original COCO
evaluation metrics use mAP, which will calculate the mean
AP for every category. However, our camouflaged datasets
are class-agnostic. Hence, we only need to calculate the AP
for the whole dataset while ignoring the category.
implement details Pytorch is used to implement our α-
Former and we trained it on a single V100-sxm2. To build
our model, ResNet-50 (He et al. [2016]) is used as the
backbone, which had been trained with the ImageNet (Deng
et al. [2009]) dataset. During our experiments, we trained
our model for 90K iterations, utilizing a batch size of 2.
The optimizer we used was SGD, the initial learning rate
is 2.5e − 4, and the learning rate was reduced by a factor
of 0.1 when the number of iterations reached 60K and 80K.
The weight decay parameter is 1e− 4.

5.2 COMPARISON WITH THE
STATE-OF-THE-ARTS

We conduct experiment to compare our model with current
State-of-the-arts models. Because there are not many cam-
ouflaged instance segmentation models, we also use several
generic instance segmentation models and limit these mod-
els to train and test on the camouflaged datasets. To have
fair comparisons, pre-trained ResNet-50 was used as the
backbone for all models. The results are shown in Table.1

3884

Table 2: Comparison with the traditional descriptor, the best
results are highlighted in bold.

method COD10K NC4K
AP AP50 AP75 AP AP50 AP75

Baseline 40.244 69.875 39.422 41.718 71.640 41.179
HOG 40.934 70.887 40.285 42.765 71.988 44.226
LBP 40.410 70.323 40.184 41.794 71.313 42.484

Circle-LBP 40.424 69.622 40.764 41.921 71.661 42.133
Binary filter 42.453 72.735 41.758 42.936 72.905 43.278

5.3 ABLATION STUDY

5.3.1 Comparison with the traditional descriptor

As shown in Table.2, the performance of our binary filter
and the traditional descriptor is compared. Here, Baseline
means no descriptors are added. Because SIFT cannot gen-
erate a feature map with the same size as the input images,
in order to use the same architecture and have a fair com-
parison, we mainly focus on the LBP (Ojala et al. [1994]),
HOG (Dalal and Triggs [2005]), circle-LBP (Ojala et al.
[2002]) descriptor in our experiments. Except for the local
feature extractor, our experiments’ other settings are the
same. We can see that some of the traditional descriptors
can outperform the model that does not include any local
feature extractor. However, our learnable binary filter can
perform better than the traditional descriptor. This experi-
ment demonstrates our binary filter’s efficiency and ability
to provide powerful local features to enhance the model’s
performance.

5.3.2 Adapter

In this section, we show the improvement of adding the fea-
ture aggregation adapter to our feature extractor. The target
for our adapter is to provide the extra local feature to our
encoder. If we directly delete the adapter, the input domain
will be different, and the pre-trained backbone cannot deal
with the input with the local feature. However, to provide a
fair comparison, we still need to provide the local feature
to the encoder-decoder and the edge-aware fusion module.
Hence, we concatenate our local features to the ResNet
extracted features and change the input channel numbers
of the encoder and edge-aware fusion module. In this way,
we can still provide the local features to the encoder and
edge-aware fusion module and provide a fair comparison.
Also, we try a different setting that modified the first layer
of the pre-trained backbone and randomly initialized (RI)
this layer to demonstrate the efficiency of our adapter. To
better show the effectiveness of our adapter, We also test the
adapter on the traditional descriptor. The results are shown
in Table.3. Noticed that our adapter is helpful for the binary
filter and can improve the performance of the traditional
descriptor.

Table 3: Ablations for the existence of feature aggregation
adapter.

method COD10K NC4K
AP AP50 AP75 AP AP50 AP75

HOG + RI 36.785 63.585 37.906 35.474 64.150 37.246
HOG w/o adapter 40.801 70.435 41.407 42.682 72.647 43.154
HOG w/ adapter 40.934 70.887 40.285 42.765 71.988 44.226

LBP + RI 33.562 61.623 34.732 35.631 64.463 35.462
LBP w/o adapter 39.530 69.419 39.331 42.288 71.077 42.162
LBP w/ adapter 40.410 70.323 40.184 41.794 71.313 42.484

Circle-LBP + RI 35.246 66.352 36.462 36.853 67.432 35.241
Circle-LBP w/o adapter 40.270 70.550 40.257 42.668 73.669 42.172
Circle-LBP w/ adapter 40.424 69.622 40.764 41.921 71.661 42.133

Binary filter + RI 36.415 64.151 35.414 33.541 67.252 34.532
Binary filter w/o adapter 41.427 71.247 40.984 42.610 71.517 42.985
Binary filter w/ adapter 42.453 72.735 41.758 42.936 72.905 43.278

Table 4: Ablations for the existence of edge-aware feature
fusion module.

method COD10K NC4K
AP AP50 AP75 AP AP50 AP75

HOG w/o EAF 37.658 66.584 35.984 39.252 67.971 38.756
HOG w/ EAF 40.934 70.887 40.285 42.765 71.988 44.226

LBP w/o EAF 36.128 67.197 36.725 36.375 68.258 37.813
LBP w/ EAF 40.410 70.323 40.184 41.794 71.313 42.484

Circle-LBP w/o EAF 35.254 64.741 36.194 36.581 66.943 36.135
Circle-LBP w/ EAF 40.424 69.622 40.764 41.921 71.661 42.133

Binary filter w/o EAF 38.019 69.765 36.813 37.083 68.672 38.731
Binary filter w/ EAF 42.453 72.735 41.758 42.936 72.905 43.278

5.3.3 Edge-aware feature fusion module

We provide the ablation study of our edge-aware fusion
module in this section. Our edge-aware fusion module can
provide precise boundary prediction information to the fi-
nal prediction heads. We show the results using different
descriptors, including traditional descriptors and our binary
filter which is similar to the adapter. The results are shown
in Table.4. Noticed that our proposed edge-aware feature
fusion module can improve the performance for about 4 AP
higher than the model do not have an edge-aware feature
fusion module. It shows the efficiency of our edge-aware
feature fusion module and proves that edge prediction is
crucial in camouflaged instance segmentation. The qualita-
tive results of our edge-aware feature fusion module can be
seen in Fig.7, which shows that our edge-aware feature fu-
sion module can deal with different situations and precisely
predict the edge of the target object.

5.3.4 influence of different kernel size in BCNN

we investigate the impact of various kernel sizes on our
binary filter in this section. Different kernel sizes will have
different receptive fields, and a larger receptive field will
provide more pixels in one convolution operation. In our
binary filter, it will affect the final local binary feature of
the binary filter. Our results are shown in Table.5. It shows

3885

Input Predicted mask Predicted edge Ground truth Input Predicted mask Predicted edge Ground truth

Figure 7: The results of our α-Former’s qualitative evaluation demonstrate its ability to extract precise boundaries and its
strong performance in a range of challenging scenarios. These findings suggest that our proposed approach can effectively
address the complexities of real-world image segmentation tasks.

Table 5: performance of α-Former with different kernel size
in the binary filter, the best results are highlighted in bold.

method COD10K NC4K
AP AP50 AP75 AP AP50 AP75

3 × 3 42.453 72.735 41.758 42.936 72.905 43.278
5 × 5 41.308 70.624 41.707 42.567 72.075 43.198
7 × 7 40.476 70.047 40.790 42.136 71.895 42.698
9 × 9 40.691 70.116 40.810 41.164 71.043 42.580

that a smaller kernel size can have better performance. The
reason that small kernel sizes have better performance may
be that camouflaged objects have similar pixel values as the
background. The larger kernel may increase the influence
of the background and result in final performance drops.

5.4 VISUALIZATIONS

We presents the qualitative results of the α-Former in this
section, including the edge prediction achieved by our edge-
aware fusion module. The results show the efficiency of
our method, as our module can predict precise boundaries,
as shown in the second row’s first column, where it ac-
curately identifies the feet of a challenging target object.
Additionally, our α-Former can successfully handle differ-
ent backgrounds, such as branches, land, or aquatic plants,
and precisely segment different target objects, including
birds, fishes, and terrestrial animals. Moreover, our model
can generate accurate edges even when the target object is
partially occluded by the background, as seen in the last
row’s first column. This suggests that our approach can ex-

tract semantic information from the backbone’s features and
still recognize the object as the same entity, even if it is
not continuous. Overall, these results demonstrate the ro-
bustness and effectiveness of our α-Former in challenging
scenarios.

6 CONCLUSION

In conclusion, we contribute a novel local feature-aware
transformer framework called α-Former targeting on cam-
ouflaged instance segmentation. Observing the camouflaged
objects’ characteristics, inspired by humans, we introduce
traditional descriptors to current camouflaged instance seg-
mentation methods and use traditional descriptor to simulate
the process that human find unnatural boundary of cam-
ouflaged instance. Moreover, we design a learnable novel
binary filter to extract the camouflaged image’s local fea-
tures. To provide the local features to the encoder, we design
a feature aggregation adapter to fuse the pre-trained back-
bone and the local features input. Furthermore, we create an
edge-aware feature fusion module to improve the boundary
prediction of camouflaged objects, combining multi-level
features and employing the ground truth edge as supervi-
sion. We also provide the quantitative results and qualitative
results of our α-Former to show our robustness to different
backgrounds. We believe the α-Former is a new state-of-
the-art for camouflaged instance segmentation, and it can
be transferred to applications like medical diagnosis, photo-
realistic blending, etc.

3886

References

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Sebastian
Ruder, Goran Glavaš, Ivan Vulić, and Anna Korhonen.
Mad-g: Multilingual adapter generation for efficient cross-
lingual transfer. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 4762–4781,
2021.

Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee.
Yolact: Real-time instance segmentation. In Proceedings
of the IEEE/CVF international conference on computer
vision, pages 9157–9166, 2019.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: high
quality object detection and instance segmentation. IEEE
transactions on pattern analysis and machine intelligence,
43(5):1483–1498, 2019.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nico-
las Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. In Eu-
ropean conference on computer vision, pages 213–229.
Springer, 2020.

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda.
Crossvit: Cross-attention multi-scale vision transformer
for image classification. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 357–
366, 2021.

Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao
Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,
Wanli Ouyang, et al. Hybrid task cascade for instance
segmentation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
4974–4983, 2019.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks
with binary weights during propagations. Advances in
neural information processing systems, 28, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural net-
works: Training deep neural networks with weights
and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

Navneet Dalal and Bill Triggs. Histograms of oriented gradi-
ents for human detection. In 2005 IEEE computer society
conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng,
Jianbing Shen, and Ling Shao. Camouflaged object de-
tection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2777–
2787, 2020.

Yuxin Fang, Shusheng Yang, Xinggang Wang, Yu Li, Chen
Fang, Ying Shan, Bin Feng, and Wenyu Liu. Instances as
queries. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6910–6919, 2021.

Ruohao Guo, Dantong Niu, Liao Qu, and Zhenbo Li. Sotr:
Segmenting objects with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 7157–7166, 2021.

Surbhi Gupta, Munish Kumar, and Anupam Garg. Improved
object recognition results using sift and orb feature detec-
tor. Multimedia Tools and Applications, 78(23):34157–
34171, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2961–2969,
2017.

Zahra Hossein-Nejad, Hamed Agahi, and Azar Mah-
moodzadeh. Image matching based on the adaptive redun-
dant keypoint elimination method in the sift algorithm.
Pattern Analysis and Applications, 24(2):669–683, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo,
Mona Attariyan, and Sylvain Gelly. Parameter-efficient
transfer learning for nlp. In International Conference on
Machine Learning, pages 2790–2799. PMLR, 2019.

Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang
Huang, and Xinggang Wang. Mask scoring r-cnn. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 6409–6418, 2019.

Iván Huerta, Daniel Rowe, Mikhail Mozerov, and Jordi
Gonzàlez. Improving background subtraction based on
a casuistry of colour-motion segmentation problems. In
Iberian Conference on Pattern Recognition and Image
Analysis, pages 475–482. Springer, 2007.

Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Sav-
vides. Local binary convolutional neural networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 19–28, 2017.

3887

Shekhar Karanwal and Manoj Diwakar. Neighborhood and
center difference-based-lbp for face recognition. Pattern
Analysis and Applications, 24(2):741–761, 2021a.

Shekhar Karanwal and Manoj Diwakar. Od-lbp: Orthogo-
nal difference-local binary pattern for face recognition.
Digital Signal Processing, 110:102948, 2021b.

Lei Ke, Martin Danelljan, Xia Li, Yu-Wing Tai, Chi-Keung
Tang, and Fisher Yu. Mask transfiner for high-quality
instance segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4412–4421, 2022.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu.
Achieving forgetting prevention and knowledge transfer
in continual learning. Advances in Neural Information
Processing Systems, 34:22443–22456, 2021.

Ivan Kovač and Pavol Marák. Finger vein recognition: uti-
lization of adaptive gabor filters in the enhancement stage
combined with sift/surf-based feature extraction. Signal,
Image and Video Processing, pages 1–7, 2022.

Trung-Nghia Le, Tam V Nguyen, Zhongliang Nie, Minh-
Triet Tran, and Akihiro Sugimoto. Anabranch network
for camouflaged object segmentation. Computer Vision
and Image Understanding, 184:45–56, 2019.

Trung-Nghia Le, Yubo Cao, Tan-Cong Nguyen, Minh-Quan
Le, Khanh-Duy Nguyen, Thanh-Toan Do, Minh-Triet
Tran, and Tam V Nguyen. Camouflaged instance segmen-
tation in-the-wild: Dataset, method, and benchmark suite.
IEEE Transactions on Image Processing, 31:287–300,
2021.

Cheng Long Li, Andong Lu, Ai Hua Zheng, Zhengzheng Tu,
and Jin Tang. Multi-adapter rgbt tracking. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision Workshops, pages 0–0, 2019.

David G Lowe. Object recognition from local scale-
invariant features. In Proceedings of the seventh IEEE
international conference on computer vision, volume 2,
pages 1150–1157. Ieee, 1999.

Yunqiu Lv, Jing Zhang, Yuchao Dai, Aixuan Li, Bowen Liu,
Nick Barnes, and Deng-Ping Fan. Simultaneously local-
ize, segment and rank the camouflaged objects. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11591–11601, 2021.

Haiyang Mei, Ge-Peng Ji, Ziqi Wei, Xin Yang, Xiaopeng
Wei, and Deng-Ping Fan. Camouflaged object segmen-
tation with distraction mining. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8772–8781, 2021.

Timo Ojala, Matti Pietikainen, and David Harwood. Perfor-
mance evaluation of texture measures with classification
based on kullback discrimination of distributions. In
Proceedings of 12th international conference on pattern
recognition, volume 1, pages 582–585. IEEE, 1994.

Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multires-
olution gray-scale and rotation invariant texture classi-
fication with local binary patterns. IEEE Transactions
on pattern analysis and machine intelligence, 24(7):971–
987, 2002.

Chirag I Patel, Dileep Labana, Sharnil Pandya, Kirit Modi,
Hemant Ghayvat, and Muhammad Awais. Histogram
of oriented gradient-based fusion of features for human
action recognition in action video sequences. Sensors, 20
(24):7299, 2020.

Jialun Pei, Tianyang Cheng, Deng-Ping Fan, He Tang,
Chuanbo Chen, and Luc Van Gool. Osformer: One-stage
camouflaged instance segmentation with transformers. In
European Conference on Computer Vision, pages 19–37.
Springer, 2022.

Liming Song and Weidong Geng. A new camouflage texture
evaluation method based on wssim and nature image
features. In 2010 International Conference on Multimedia
Technology, pages 1–4. IEEE, 2010.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for semantic segmen-
tation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7262–7272, 2021.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-
adapter: Parameter-efficient transfer learning for vision-
and-language tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5227–5237, 2022.

Thattapon Surasak, Ito Takahiro, Cheng-hsuan Cheng, Chi-
en Wang, and Pao-you Sheng. Histogram of oriented
gradients for human detection in video. In 2018 5th Inter-
national conference on business and industrial research
(ICBIR), pages 172–176. IEEE, 2018.

Zhi Tian, Chunhua Shen, and Hao Chen. Conditional con-
volutions for instance segmentation. In European con-
ference on computer vision, pages 282–298. Springer,
2020.

Tom Troscianko, Christopher P Benton, P George Lovell,
David J Tolhurst, and Zygmunt Pizlo. Camouflage and
visual perception. Philosophical Transactions of the
Royal Society B: Biological Sciences, 364(1516):449–
461, 2009.

3888

Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. Solov2: Dynamic and fast instance segmenta-
tion. Advances in Neural information processing systems,
33:17721–17732, 2020.

Fan Yang, Qiang Zhai, Xin Li, Rui Huang, Ao Luo, Hong
Cheng, and Deng-Ping Fan. Uncertainty-guided trans-
former reasoning for camouflaged object detection. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4146–4155, 2021.

Qiang Zhai, Xin Li, Fan Yang, Chenglizhao Chen, Hong
Cheng, and Deng-Ping Fan. Mutual graph learning for
camouflaged object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12997–13007, 2021.

Jinchao Zhu, Xiaoyu Zhang, Shuo Zhang, and Junnan Liu.
Inferring camouflaged objects by texture-aware interac-
tive guidance network. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 3599–
3607, 2021.

3889

A MORE ABLATION STUDIES

A.1 INFLUENCE OF THE ENCODER LAYERS
AND DECODER LAYERS

In the table.6, we compare the influence of using different
encoder and decoder layers in our architecture. We can see
that with the increase of encoder and decoder layers, the
performance will first improve and then maintain a similar
performance. So, in our architecture, we use six layers of
encoder and three layers of decoder.

Table 6: Comparison with the traditional descriptor, the best
results are highlighted in bold.

encoder decoder COD10K NC4K
AP AP50 AP75 AP AP50 AP75

1 3 37.256 68.755 37.982 39.453 69.538 40.453
3 1 38.453 70.188 39.423 40.020 70.358 41.168
3 3 40.421 70.861 40.453 41.093 71.592 42.048
3 6 41.424 72.826 40.826 41.726 72.059 42.824
6 3 42.453 72.735 41.758 42.936 72.905 43.278
6 6 42.187 72.682 41.744 42.921 72.723 43.168
6 9 42.424 72.672 41.776 42.876 72.781 43.133

A.2 ABLATION STUDIES OF USING DIFFERENT
BACKBONE

In the table.7, we compare the performance of using differ-
ent backbones in our architecture.

Table 7: Comparison with the traditional descriptor, the best
results are highlighted in bold.

Backbone COD10K NC4K
AP AP50 AP75 AP AP50 AP75

Resnet-50(Default) 42.453 72.735 41.758 42.936 72.905 43.278
Resnet-18 36.489 67.159 37.188 37.458 68.711 38.950
Resnet-101 43.188 73.725 42.713 43.794 72.313 44.484

Vgg-16 37.148 68.469 37.195 39.948 69.159 40.152

B MORE IMPLEMENT DETAILS

B.1 MORE DETAILS OF THE FEATURE
AGGREGATION ADAPTER

Our feature aggregation adapter uses a tiny initial value to
guarantee at the beginning of the training, the output domain
is the same as the input image domain. Specifically, we set
the mean and the variance value of the convolution weight
as 0 and 0.001, and the bias value of the convolution layer as
0. Using the tiny-initialized convolution layer and the skip
connection, we can know that the output of the adapter is
almost the same as the input at the beginning of the training.

B.2 MORE DETAILS OF THE EDGE-AWARE
FEATURE FUSION MODULE

In this section, we provide more details about our edge-
aware feature fusion module. Our edge-aware feature fusion
module uses multi-scale features to predict the boundary of
the target object. As shown in table.8, we provide the input
and output shapes of the different edge prediction blocks.

Table 8: Input and output shape of different edge prediction

block

Block Input Shape Output Shape

block5 H×W
32

H×W
16

block4 H×W
16

H×W
8

block3 H×W
8

H×W
4

block2 H×W
4

H×W
4

B.3 MORE DETAILS OF THE PREDICTION HEAD

In this section, we provide more details about our prediction
head. We follow the same architecture as OSFormerPei et al.
[2022]. As shown in Fig.8. During the training process,
we use a fully-connected layer to calculate the location
label. At the same time, we use a multi-layer perceptron
to calculate the instance-aware parameters. Then we assign
positive and negative locations using ground truth. During
the testing process, we use a confidence score of the location
label to filter ineffective parameters of the instance-aware
parameters. Then we use two linear layers to calculate the
weight and bias to calculate the segmentation mask. Then
we use an up-sampling operation to get the final prediction
masks.

C MORE VISUALIZATIONS

As shown in Fig.9, we provide more visualizations in this
section.

3890

𝑋𝑑

MLP

FC

Location label

Label

Assignment
Linear

Linear

𝜔 𝛽
𝐹 𝑃

Location loss

Training

𝑋𝑑

MLP

FC

Location label

Suppress Linear

Linear

𝜔 𝛽
𝐹 𝑃

Up-

sample

Testing

𝑋𝑑

MLP

FC Location label

Label

Assignment
Linear

Linear

𝜔 𝛽
𝐹 𝑃

Training

𝑋𝑑

MLP

FC Location label

Suppress Linear

Linear

𝜔 𝛽
𝐹 𝑃

Testing

Up-

sample

Figure 8: During the training process, our prediction head
uses location labels as supervision, and during the testing
process, our prediction head uses location labels to filter
ineffective parameters.

3891

Input Predicted mask Predicted edge Ground truth Input Predicted mask Predicted edge Ground truth

Figure 9: The qualitative results of α-Former.

3892

	Introduction
	Relate Work
	Binary Filter
	Why use binary filter
	Architecture of binary filter

	Methods
	Feature Extractor
	Binary Filter (BF)
	Feature Aggregation Adapter (FAA)
	CNN BACKBONE

	Encoder-Decoder
	Edge-aware feature fusion module (EAF)
	Mask prediction head
	Loss function

	Experiments
	Experimental setup
	Comparison with the State-of-the-arts
	Ablation Study
	Comparison with the traditional descriptor
	Adapter
	Edge-aware feature fusion module
	influence of different kernel size in BCNN

	Visualizations

	Conclusion
	More Ablation Studies
	Influence of the encoder layers and decoder layers
	Ablation studies of using different backbone

	More Implement Details
	More Details of the Feature Aggregation Adapter
	More Details of the Edge-aware Feature Fusion Module
	More Details of the Prediction Head

	More Visualizations

