
Graph Contrastive Learning under Heterophily via Graph Filters

Wenhan Yang1 Baharan Mirzasoleiman1

1Computer Science Department, University of California Los Angeles (UCLA)

Abstract

Graph contrastive learning (CL) methods learn
node representations in a self-supervised manner
by maximizing the similarity between the aug-
mented node representations obtained via a GNN-
based encoder. However, CL methods perform
poorly on graphs with heterophily, where con-
nected nodes tend to belong to different classes. In
this work, we address this problem by proposing
an effective graph CL method, namely HLCL, for
learning graph representations under heterophily.
HLCL first identifies a homophilic and a het-
erophilic subgraph based on the cosine similar-
ity of node features. It then uses a low-pass and
a high-pass graph filter to aggregate representa-
tions of nodes connected in the homophilic sub-
graph and differentiate representations of nodes
in the heterophilic subgraph. The final node repre-
sentations are learned by contrasting both the aug-
mented high-pass filtered views and the augmented
low-pass filtered node views. Our extensive ex-
periments show that HLCL outperforms state-of-
the-art graph CL methods on benchmark datasets
with heterophily, as well as large-scale real-world
graphs, by up to 7%, and outperforms graph su-
pervised learning methods on datasets with het-
erophily by up to 10%.

1 INTRODUCTION

Graph neural networks (GNNs) are powerful tools for learn-
ing graph-structured data in various domains [Kipf and
Welling, 2016, Veličković et al., 2017]. GNNs use the
graph’s adjacency matrix to aggregate node information
from their neighbors, effectively acting as a low-pass filter
that smooths graph signals [Nt and Maehara, 2019]. They
have shown remarkable success in supervised and semi-

supervised learning, where task-specific labels are available.
However, obtaining high-quality labels can be costly in
many domains, spurring interest in self-supervised learn-
ing on graphs to learn representations without supervision
[Velickovic et al., 2019, Peng et al., 2020, Qiu et al., 2020,
Hassani and Khasahmadi, 2020, Zhu et al., 2020b].

Among these self-supervised methods, Contrastive Learn-
ing (CL) has demonstrated remarkable success [Velickovic
et al., 2019, Peng et al., 2020, Qiu et al., 2020, Hassani
and Khasahmadi, 2020, Zhu et al., 2020b]. Graph CL meth-
ods first augment the input graph, either by altering node
features or the graph topology. Then, they learn represen-
tations by contrasting the augmented graph views encoded
with a GNN-based encoder. Existing graph CL methods
perform well under homophily, where neighboring nodes
often share the same label. However, they perform poorly on
heterophilic graphs, where connected nodes tend to belong
to different classes [Zhu et al., 2020b]. Indeed, for learning
rich representations in graphs with heterophily, contrasting
augmented views of every node is not enough, but it is cru-
cial to differentiate representation of node with different
labels [Bo et al., 2021, Luan et al., 2020]. However, without
label information, it is not clear how this can be achieved.

In this work, we propose an effective graph CL method,
namely HLCL, for learning node representations under het-
erophily. HLCL first uses nodes’ feature similarity to iden-
tify a homophilic and heterophilic subgraph in the original
graph. Then, for each subgraph, it generates two augmented
graph views, and applies a high-pass filter to the heterophilic
subgraphs and a low-pass filter to the homophilic subgraphs.
The final representations are learned by contrasting the aug-
mented high-pass filtered views and contrasting the aug-
mented low-pass filtered views of each node, using the same
GNN encoder, as illustrated in Fig. 1. In doing so, HLCL
achieves state-of-the-art performance under heterophily, sur-
passing graph supervised learning methods and yielding
comparable performance to state-of-the-art graph CL meth-
ods under homophily. In addition, we prove that the learned
representations by HLCL encode both low-frequency and

Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:3936–3955.

mailto:<hangeryang18@g.ucla.edu>?Subject=Your UAI 2024 paper

Figure 1: HLCL identifies a homophilic and a heterophilic subgraph Ghom,Ghet, and generates two augmentations for
each subgraph. Then, it applies low-pass filters FFFLP , F̃FFLP to the augmented homophilic subgraphs and high-pass filters
FFFHP , F̃FFHP to the augmented heterophilic subgraphs, to generate low-pass HHHL, H̃HHL and high-pass HHHH , H̃HHH filtered views,
using the same encoder WWW . HLCL learns the final representations by contrasting the projected low-pass filtered augmented
views zzzL, z̃zzL and the high-pass filtered augmented views zzzh, z̃zzh of every node.

high-frequency information.

Our extensive experiments show that on seven benchmark
datasets, HLCL outperforms existing graph CL methods
by up to 7% and graph supervised learning methods by up
to 10% under heterophily, while maintaining comparable
performance under homophily. Additionally, HLCL scales
well to large graphs like Penn94, outperforming other graph
CL methods by up to 5%.

In summary, our contributions are as follows:

• Graph CL with graph filters. HLCL is the first graph
CL method that utilizes graph filters, and combines
high-pass and low-pass filtered representations using
contrastive losses. This approach enables learning rich
representations under heterophily.

• Careful aggregation. HLCL identifies a homophilic
and a heterophilic subgraph based on node features or
representations, for effective information aggregation.

• Theoretical analysis. By analyzing HLCL, we theoret-
ically prove that HLCL learns the invariance informa-
tion from both homophilic and heterophilic subgraphs.

• Extensive experiments. Empirically, we confirm that
HLCL achieves state-of-the-art under heterophily and
a competitive performance under homophily.

2 RELATED WORK

Graph self-supervised learning. Graph self-supervised
learning (SSL) methods have become a powerful tool for
learning representations without any labels. Graph con-
trastive learning (CL) is among the most successful graph
SSL methods. Numerous methods have been proposed in
the field: [Velickovic et al., 2019, Peng et al., 2020, Has-
sani and Khasahmadi, 2020, Zhu et al., 2021c] focus on
contrasting the global augmented representation with the
local augmented representation, while [Zhu et al., 2020c,

You et al., 2020, Qiu et al., 2020, Liu et al., 2022] contrast
same-scale representation, global or local, in two augmented
views. Due to the complexity of collecting negative sam-
ples in graph data, negative-sample free contrastive objec-
tives have also been studied [Thakoor et al., 2021, Bielak
et al., 2021]. However, such work focus on encoding the
homophilic graphs and perform poorly under heterophily.
Recently, a stream of SSL methods have been proposed to
learn the node representations of the heterophilic graphs
without labels. HGRL [Chen et al., 2022] improves the node
representations on heterophilic graphs by rewiring non-local
neighbors based on feature information before training. SP-
GCL [Wang et al., 2022] considers nodes from the T -hop
neighborhood of a node with high feature similarities as pos-
itive pairs, without using any explicit augmentations. DSSL
[Xiao et al., 2022] separates the heterogeneous patterns in
local neighborhood distributions to capture both homophilic
and heterophilic information globally. GREET [Liu et al.,
2023] discriminates homophilic edges from heterophilic
edges using random walk based graph diffusion and con-
trasts the projected representations of the two graph views
directly via a dual-channel contrastive loss. MUSE [Yuan
et al., 2023] creates two views to capture information from
the node itself and its neighborhood, and fuses these views
to enhance node representations. NeCo [He et al., 2023]
proposes a new pretext task, group discrimination, which
divides the nodes into k groups and keeps the consistent
representation of nodes within a group.

Graph (semi-)supervised learning under heterophily. In
the supervised setting, recent methods propose to use other
types of aggregation that better fit graphs with heterophily.
Zhu et al. [2021a] analyzed and designed a uniform frame-
work for GNNs’ propagations and proposed GNN-LF and
GNN-HF that preserve information of different frequency
separately by using different filtering kernels with learn-
able weights. FAGCN [Bo et al., 2021] and FBGNN [Luan

3937

et al., 2020] train two separate encoders to capture the high-
pass and low-pass graph signals separately. Then they rely
on labels to learn relatively complex mechanisms to com-
bine the outputs of the encoders. However, learning how to
combine the encoder outputs is highly sensitive to having
high-quality labels. This makes such methods highly im-
practical for self-supervised contrastive learning, where the
label information is not available. Unlike the above super-
vised methods, we apply the high-pass and low-pass filters
to different subgraphs, contrasting the resulting high-pass
filtered node views and low-pass filtered node views in a
self-supervised manner, without any label. This is in con-
trast to learning the best combination of filtered signals of
different encoders based on labels. A more comprehensive
overview of related work are provided in Appendix A.6.

3 PRELIMINARIES

Notations. We denote by G = (V, E) an undirected
graph, where V = {v1, v2, . . . , vN} represents the node
set, and E ⊆ V × V represents the edge set. We denote
by AAA ∈ {0, 1}N×N the symmetric adjacency matrix of
graph G, where AAAij = 1 if and only if (vi, vj) ∈ E , and
AAAij = 0 otherwise. We denote the feature matrix by XXX ,
where XXXi. ∈ Rm is the feature vector of the ith node, and
xxx ∈ RN is a column of the matrix and represents a graph
signal. DDD is the degree matrix of the graph, with DDDii =∑

j AAAij , and Ni = {j : AAAij = 1} is the neighborhood of
node i. LLL is the Laplacian matrix of the graph, defined as
LLL = DDD −AAA. The normalized Laplacian matrix is denoted
by LLLsym = DDD− 1

2LDLDLD− 1
2 , and the normalized adjacency

matrix is defined as AAAsym = DDD− 1
2ADADAD− 1

2 . Here, we use
the renormalized version of the adjacency matrix Â̂ÂAsym =

D̄̄D̄D− 1
2 Ā̄ĀAD̄̄D̄D− 1

2 as introduced in [Kipf and Welling, 2016],
where Ā̄ĀA = AAA+ III , D̄̄D̄D =DDD+ III . Similarly, the renormalized
Laplacian matrix is defined as L̂̂L̂Lsym = III − Â̂ÂAsym. L̂̂L̂Lsym

is a real symmetric matrix, with orthonormal eigenvectors
{uuui}nl=1 ∈ Rn, and corresponding eigenvalues λi ∈ [0, 2)

[Chung, 1997]. For Â̂ÂAsym we have λi(Â̂ÂAsym) ∈ (−1, 1].

3.1 GRAPH CL UNDER HOMOPHILY

State-of-the-art graph CL methods explicitly augment
the input graph using feature or topology augmentations,
encode the augmented graphs using a GNN-based encoder,
and contrast the encoded node representations [Zhu et al.,
2020c, 2021b, Velickovic et al., 2019, Thakoor et al., 2021,
Qiu et al., 2020], as we will discuss in more detail next.

Graph Augmentation. First, the input graph is explicitly
augmented, by altering its topology or node features. Topol-
ogy augmentation methods remove or add nodes or edges,
and feature augmentation methods alter the node features by
masking particular columns, dropping features at random,
or randomly shuffling the node features [Zhu et al., 2020c,

2021b, Velickovic et al., 2019, Thakoor et al., 2021].

GNN Encoder. The augmented graphs are then passed
through a GNN-based encoder to obtain the augmented node
views. The GNN encoder produces node representations by
aggregating the node features in a neighborhood as follows:

HHH l = σ(Ã̃ÃAsymHHH l−1WWW l−1), HHH0 =XXX, (1)

where HHH l
L is the node representations at layer l of the en-

coder, WWW l ∈ Rdl×dl−1 is the weight matrix in layer l of the
encoder, and σ is the activation function. Crucially, the Adja-
cency matrix Ã̃ÃAsym is a low-pass filter that aggregates every
node’s features with the features of nodes in its immediate
neighborhood. For a multi-layer graph encoder, it iteratively
aggregates features in a multi-hop neighborhood of every
node to learn its representation. Hence, it smooths out the
node representations and produces similar representations
for the nodes within the same multi-hop neighborhood.

Contrastive Loss. Finally, the contrastive loss distinguishes
the representations of the same node in two different aug-
mented views, from other node representations. For example
the commonly used InfoNCE loss [Oord et al., 2018] is:

− log
esimτ (uuu

i,vvvi)

esimτ (uuui,vvvi) +
∑
k ̸=i

esimτ (uuui,vvvk)
, (2)

where uuui, vvvi are representations of two different augmented
views of node i, sim(uuui, vvvk) is the cosine similarity between
uuui and vvvk, and τ is a temperature parameter.

3.2 HIGH-PASS AND LOW-PASS GRAPH FILTERS

The adjacency and Laplacian matrices can be leveraged to
filter the smooth and non-smooth graph components, and
capture similarity and dissimilarity of node features to their
neighborhoods. Specifically, multiplication of Laplacian
with a graph signal L̂̂L̂Lsymxxx =

∑
i λiuuuiuuu

T
i xxx, acts as a filter-

ing operation over xxx, adjusting the scale of the components
of xxx in the frequency domain. The entries of every eigen-
vector, uuui align with a cluster of connected nodes in the
graph. For the Laplacian matrix, a smaller eigenvalue λi

corresponds to a lower frequency (smoother) eigenvectors
uuui, and a larger cluster of connected nodes. On the other
hand, a larger λi corresponds to a high frequency (non-
smooth) eigenvectors uuui, which identify smaller clusters
of closely connected nodes in the graph. A Laplacian fil-
ter magnifies the high frequency signals that align well
with basis functions corresponding to large eigenvalues
λi ∈ (1, 2) and suppresses the low frequency signal that
aligns with basis functions corresponding to small eigenval-
ues λi ∈ [0, 1]. That means, for small clusters of nodes that
have a large alignment with uuui corresponding to λi > 1,
the projection λiuuuiuuu

T
i xxx amplifies xxx within the cluster and

consequently magnifies the difference in xxx among the nodes
within that cluster. On the other hand, for the larger clusters

3938

(a) Homophily neighborhood (b) Heterophily neighborhood

Figure 2: Chameleon (β=0.23). Heterophilic graphs contain
neighborhoods with homogeneous & heterogeneous labels.

that align well with uuui corresponding to λi < 1, the projec-
tion λiuuuiuuu

T
i xxx suppresses xxx within the cluster and reduces

the differences in xxx among the nodes within that cluster.
Hence the Laplacian matrices can be generally regarded as
high-pass filters [Ekambaram, 2014], that enlarge the differ-
ences in node features over small clusters, and smooths out
the differences over larger clusters in the graph. In contrast,
affinity matrices, such as the normalized adjacency matrix,
can be treated as low-pass filters [Nt and Maehara, 2019],
which suppress and filter out non-smooth components of the
signals. This is because all of the eigenvalues of the affinity
matrices are smaller than 1, i.e., λi ∈ (−1, 1].

On the node level, left multiplying L̂̂L̂Lsym and Â̂ÂAsym filters
with xxx can be understood as diversification and aggregation
operations, respectively [Luan et al., 2020]. In particular, a
typical GNN filters smooth graph frequencies by aggregat-
ing the node representations with those of their neighbors,
using the adjacency matrix, i.e.,

(Â̂ÂAsymxxx)i =
∑
j∈Ni

1

D̄̄D̄Dii

xxxj . (3)

Hence, it results in similar representations for the nodes in a
neighborhood. In contrast, the high-pass filter only preserves
the high-pass frequencies, using the Laplacian matrix, i.e.

(L̂̂L̂Lsymxxx)i =
∑
j∈Ni

1

D̄̄D̄Dii

(xxxi − xxxj). (4)

In doing so, it magnifies the dissimilarities between the
nodes and make the representations of nodes in a neighbor-
hood distinguishable.

Homophily Ratio Homophily ratio quantifies how likely
nodes with same labels are connected in the graph. Formally,
homophily ratio, β, is defined as follows [Pei et al., 2020]:

β =
1

|V |
∑
v∈V

No. of similar neighbors of v
No. of neighbors of v

. (5)

4 GRAPH CL UNDER HETEROPHILY

In this section, we first discuss the challenges of having
a universal method for graph CL under heterophily and

homophily. Then, we present our approach to overcome
these challenges and learn high-quality representations.

Challenges. Under heterophily, where nodes in a neigh-
borhood may have different labels, aggregating the node
representations in a neighborhood fades out the dissimilarity
between representations of node in different classes, and
contrasting those augmented representations further makes
them indistinguishable. Labels can help guide an appropriate
aggregation in the neighborhood. However, without labels, it
is not clear how the neighborhood information should be ag-
gregated. Additionally, even if one can identify homophilic
edges, the number of such edges may be too small to learn
high quality representations via GNNs, under heterophily.
To achieve rich representations in such graphs, it is crucial
to not only aggregate representations of neighbors with the
same label, but also push away representations of neighbors
with different labels. This allows learning richer node repre-
sentations based on both similarities and dissimilarities of
the nodes in different neighborhoods.

Next, we present our method, HLCL, that can learn high-
quality representations under heterophily.

4.1 HIGH-PASS & LOW-PASS GRAPH CL (HLCL)

As discussed, under heterophily, leveraging node feature
similarities is not enough for learning high-quality represen-
tations. It is crucial to capture the dissimilarities between
the neighboring nodes to separate different classes. A high-
pass filter like the Laplacian matrix (c.f. Sec. 3.2) filters the
non-smooth graph component and captures the dissimilarity
of the node features in a neighborhood. However, without
labels, we cannot know whether the graph is homophilic or
heterophilic, and naively using a high-pass filter instead of
a low-pass filter significantly harms the performance under
homophily. Moreover, most heterophilic graphs also consist
of several neighborhoods with homogeneous labels, as illus-
trated in Fig.2. Hence, simply applying a high-pass filter to
an unlabeled graph may result in poor performance.

Idea. To learn rich node representations for both graph
types, our main idea is to first identify a homophilic
subgraph and a heterophilic subgraph in the original graph.
Then, we augment each subgraph, and apply a low-pass fil-
ter to the augmented homophilic subgraphs and a high-pass
filter to the augmented heterophilic subgraphs to obtain
two high-pass and two low-pass filtered views for every
node, using the same encoder. The final representations are
learned by contrasting the two high-pass filtered views and
the two low-pass filtered views of every node.

Next, we introduce our method, HLCL, which works based
on the above idea.

Separating Subgraphs. HLCL first identifies two sub-
graphs in the original graph: a homophilic subgraph with

3939

edges connecting nodes with homogeneous labels, and a
heterophilic subgraph with edges connecting nodes with
heterogeneous labels.

Formally, given a graph G = (V, E), the heterophilic sub-
graph Ghet = (V, Ehet) and the homophilic subgraph
Ghom = (V, Ehom) each contain all the nodes V , and a sub-
set of the edges of the original graph, i.e., Ehet, Ehom ⊆ E .
We denote by AAAhet,AAAhom ∈ {0, 1}N×N the symmetric ad-
jacency matrix of subgraphs Ghet,Ghet, respectively. Note
that the feature matrix XXX for G is the same as Ghet and
Ghom. However, the neighborhood for a given node i can
be different in the two subgraphs. We define N het

i = {j :
AAAhet

ij = 1} and N hom
i = {j : AAAhom

ij = 1} as the neigh-
borhood of node i in Ghet, Ghom, respectively. Without
any label supervision, we rely on the important observa-
tion that for graphs with different homophily ratios, the
original features can approximately indicate the label in-
formation [Jin et al., 2021, Chen et al., 2022, Wang et al.,
2020, Zhu et al., 2020b]. Based on this observation, we
calculate pairwise feature similarities sij = ⟨xxxi.,xxxj.⟩ for
all i, j ∈ [n] = |V|, where ⟨., .⟩ is the cosine similarity.
Then, we first form the homophilic subgraph by selecting
k1 fraction of edges in neighborhood of every node i with
largest cosine similarities. Formally, Ehom =

{
(i, j)|i ∈

[n], j ∈ argmaxP⊆Ni,|S|=⌈k1·|Ni|⌉
∑

p∈P {si,p}
}

. Next,
we form the heterophilic subgraph using k2 fraction of
the edges in neighborhood of every node with lowest
cosine similarities, i.e., Ehet =

{
(i, j)|i ∈ [n], j ∈

argminP⊆Ni,|S|=⌈k2·|Ni|⌉
∑

p∈P {si,p}
}

.

The initial subgraphs are constructed via original node fea-
tures. However, the subgraphs are updated every T epochs
with the learned node representations during training. Note
that, in contrast to prior work [Chen et al., 2022], we do not
introduce new edges based on feature similarities throughout
the training, which could change the semantic information
of the graph [He et al., 2023].

We note that all the nodes may not be connected in both
subgraphs. However, as long as one subgraph is mostly con-
nected, the information can be aggregated effectively and
a satisfactory performance is obtained. For example, un-
der homophily the heterophilic subgraph is small, but the
homophilic subgraph contains almost all the nodes in the
largest connected component of the original graph. Simi-
larly, under extreme heterophily almost all the nodes are
in the heterophilic subgraph and the homophilic subgraph
is small and minimally affects the performance. As HLCL
contrasts augmented views of the homophilic subgraph and
heterophilic separately (it does not contrast the subgraphs
with each other), only one subgraph needs to be mostly con-
nected to achieve satisfactory performance. In our ablation
stuides in Sec. 6.5, we confirm that in real-world graphs at
least one of the subgraphs are mostly connected.

Augmenting the Subgraphs. Next, HLCL generates two

augmented views for each subgraph via random graph
perturbations. We denote the two augmented graph views
as G and G̃. For the homophilic subgraph, we follow [Zhu
et al., 2020c] and apply edge removal and feature masks
as our graph augmentations. For the heterophilic subgraph,
we apply node dropping and feature masks as our aug-
mentations. We study the effects of different augmentation
techniques on the heterophilic subgraph in Sec. 6.1.

Producing the Filtered Representations. Subsequently,
HLCL applies a high-pass filter to the two augmented views
of the heterophilic subgraph, and a low-pass filter to the two
augmented views of the homophilic subgraph, using the
same encoder. The shared encoder is crucial to ensure a
good performance under both homophily and heterophily.

Specifically, to generate the low-pass and high-pass fil-
tered node views, HLCL leverages the renormalized adja-
cency matrices of the augmented heterophilic subgraph and
the renormalized Laplacian matrices of the augmented het-
erophilic subgraph. Formally, FFFLP = Â̂ÂAhom

sym , and FFFHP =

L̂̂L̂Lhet
sym = III − Â̂ÂAhom

sym , are the low-pass and high-pass filters
corresponding to the first augmented view of the homophilic
and heterophilic subgraphs, and F̃FFLP , F̃FFHP are the low-
pass and high-pass filters corresponding to the second aug-
mented view of the homophilic and heterophilic subgraphs.
Effectively,FFFLP , F̃FFLP are the aggregation operations in Eq.
(3) and FFFHP , F̃FFHP are diversification operations in Eq. (4).
Then, the two low-pass filtered views of the homophilics
subgraph are obtained as follows:

HHH l
L = σ(FFFLPHHH

l−1
H WWW l−1), (6)

H̃HH
l

L = σ(F̃FFLPHHH
l−1
H WWW l−1), (7)

and the two high-pass filtered views of the heterophilic
subgraph are obtained as follows:

HHH l
H = σ(FFFHPHHH

l−1
H WWW l−1), (8)

H̃HH
l

H = σ(F̃FFHPHHH
l−1
L WWW l−1). (9)

HHH l
L, H̃HH

l

L are the low-pass filtered augmented views at layer

l of the encoder, HHH l
L, H̃HH

l

L are the high-pass filtered aug-
mented views at layer l of the encoder, WWW l ∈ Rdl×dl−1 is
the weight matrix in layer l of the encoder, σ is the activa-
tion function, and we have HHH0

L = HHH0
H = XXX , and H̃HH

0

L =

H̃HH
0

H = X̃XX where XXX,X̃XX are augmented feature matrices.

FFFHP , F̃FFHP filter out the low-frequency signals and pre-
serve the high-frequency signals. In doing so, they capture
the difference in feature of each node and its neighbors.
Using a high-pass encoder within a multi-layer encoder it-
eratively captures the difference between features of the
nodes in a multi-hop neighborhood of a node in the het-
erophilic subgraph. Hence, it makes the representations of
nodes that have different features from their neighbors dis-
tinct in their multi-hop neighborhood. On the other hand,

3940

FFFLP , F̃FFLP , only preserve the low-frequency signals by ag-
gregating every node’s features with those of its immediate
neighborhood. Using the low-pass filter within a multi-layer
graph encoder iteratively aggregates features in a multi-hop
neighborhood of every node in the homophilic subgraph to
learn its representation. Hence, they smooth out the node
representations and produces similar representations for the
nodes within the same multi-hop neighborhood.

Note that, we use the Laplacian and adjacency matrices of
the augmented subgraphs instead of those of the original
graphs, as they indicate how the information in different
neighborhoods should be aggregated by the GCN encoder.
Indeed, it is important to use the corresponding matrices in
the subgraphs. In doing so, we pull together representations
of nodes within label-homogeneous neighborhoods by ap-
plying low-pass filters to homophilic subgraphs, and push
away representations of nodes within label-heterogeneous
neighborhoods by applying high-pass filter to heterophilic
subgraphs. If both filters are applied to the original graph,
representations of the nodes within each neighborhood will
be pulled together and pushed apart at the same time.

Using both high-pass and low-pass filters provide com-
plementary information and allow learning both smooth
and non-smooth components of the graphs simultaneously,
which is particularly useful for graphs under heterophily.
We note that other types of high-pass and low-pass filters
can be used in a similar way in our framework.

Contrasting the Filtered Representations. Finally, by con-
trastive the augmented views of each subgraph, HLCL
learns high-quality representations. The augmented views
HHH,H̃HH are first projected via a 2-layer non-linear MLP,
named projection head, to another latent space zzz, z̃zz where
the contrastive losses are calculated, as advocated by [Chen
et al., 2020, Chen and He, 2021, Zhu et al., 2020c, 2021b].

Then, for each subgraph, we first consider every node i in the
first augmented subgraph view as the anchor, and contrast
it with all the nodes in the second augmented subgraph
view. This yields the following contrastive losses for the
homophilic and heterophilic subgraphs, respectively:

l(zzzil, z̃zz
i
l) = log

esim(zzzi
l ,z̃zz

i
l)/τ

esim(zzzi
l ,z̃zz

i
l)/τ +

∑
k∈[N],
k ̸=i

esim(zzzi
l ,z̃zz

k
l)/τ

(10)

l(zzzih, z̃zz
i
h) = log

esim(zzzi
h,z̃zz

i
h)/τ

esim(zzzi
h,z̃zz

i
h)/τ +

∑
k∈[N],
k ̸=i

esim(zzzi
h,z̃zz

k
h)/τ

,(11)

where sim is the cosine similarity between the projected rep-
resentations, and τ is a temperature parameter. The second
term in the denominator represent the inter-view negative
pairs, which are between the anchored view of node i and
the views of all other nodes from the other view.

Similarly, for each subgraph we also consider the second
augmented view of node i as the anchor and contrast it with

Algorithm 1 High-pass and Low-pass Graph CL (HLCL)

1: Infer subgraph Ghom by selecting the top ⌈k1 × |Ni|⌉
edges with highest cosine similarity for every node i.

2: Infer subgraph Ghet by selecting the top ⌈k2 × |Ni|⌉
edges with lowest cosine similarity for every node i.

3: for epoch = 1, 2, 3, · · · do
4: Obtain augmented graph views

Ghom, G̃hom,Ghet, G̃het via random perturbations.
5: Generate high-pass node representations HHHH , H̃HHH

based on Eq. (8), (9), using encoder weights WWW .
6: Generate low-pass node representations based on

HHHL, H̃HHL based on Eq. (6), (7)using encoder weightsWWW .
7: Compute the contrastive objective LHLCL in Eq.

(12).
8: Update the encoder weights WWW by applying

stochastic gradient ascent to minimize LHLCL.
9: if epoch % T = 0 then

10: update Ghet, Ghom, G̃het, G̃hom based on
current node representations.

11: end if
12: end for

all the nodes in the first augmented subgraph view. Since
two views are symmetric, the loss for using the other view as
anchor is defined in a similar fashion. The overall objective
to be minimized is then defined as the average over all the
four contrastive losses. Formally, we minimize:

LHLCL=− 1

4N

N∑
i=1

[l(zzzil, z̃zz
i
l)+l(zzzih, z̃zz

i
h)+l(z̃zzil, zzz

i
l)+l(z̃zzih, zzz

i
h)].

(12)
Effectively, by maximizing the agreement between the low-
pass views and between the high-pass views, HLCL pulls
away the representation of nodes with different features
from their neighborhood, and allows them to be distin-
guished from their neighbors.

Final representations. After minimizing the contrastive
loss in Eq. (12), we use the low-pass filtered representations
as the final output.

The pseudocode is illustrated in Alg. 1.

Scalability to Large Graphs via Message Passing. The
high-pass and low-pass filtered representations can be ob-
tained through message passing in an inductive manner,
according to Eq. (3), (4), without the need to explicitly cal-
culate the normalized Adjacency and Laplacian matrix. In
particular, the high-pass filtered representations can be ob-
tained by iteratively differentiating the representations of a
node and those of its neighbors, and the low-pass filtered
representations can be obtained by aggregating the node’s

3941

representation with those of its neighbors:

hhhl
i = σ(WWW l−1hhhl−1

i), (13)

(hhhl
i)L = Σj∈{Nhom

i ∪{i}}(hhh
l
i + hhhl

j), (14)

(hhhl
i)H = Σj∈{Nhet

i ∪{i}}(hhh
l
i − hhhl

j). (15)

The above update rules can be applied to both augmented
subgraphs. This is the same approach used to train GNNs
on large graphs. Hence, HLCL will have the same complex-
ity as conducting a normal GNN message passing with an
additional message being passed to generate the high-pass
filtered views. This makes HLCL scalable to large graphs,
as we will also confirm in our experiments.

In addition, we will empirically confirm in Appendix A.4
that directly contrasting the high-pass and low-pass filtered
representations can produce comparable results to HLCL,
while speeding up the algorithm by 2x, as it requires mini-
mizing only one pair of contrastive losses.

4.2 THEORETICAL ANALYSIS

Next, we theoretically prove that by separating the graph
into homophilic and heterophilic subgraphs and applying
low-pass and high-pass filters on them respectively, HLCL
can encode both low-frequency and high-frequency infor-
mation in the learned representations.

Following [Liu et al., 2022], we simplify the contrastive
losses (10), (11) by assuming τ = 1 and using inner product
for sim. Additionally, we assume a one-layer linear encoder.

Theorem 1 (HLCL: Spectral Invariance). Under the above
assumptions and given ideal subgraphs Ghom and Ghet, the
HLCL loss can be lower-bounded as follows:

LHLCL ≥ −1−N

2

∑
i

(
αAi

(
2− (λAAAhom

i
− λ

ÃAA
hom
i

)2
)

+ αLi

(
4− (λLLLhet

i
− λ

L̃LL
het
i

)2
))
,

where λAAAhom , λ
ÃAA

hom
i

denote the eigenvalues of the low-pass
filters corresponding to augmented homophilic subgraph,
λLLLhet , λ

L̃LL
het
i

denote the eigenvalues of the high-pass filters
corresponding to augmented heterophilic subgraph, and
αAAAhom , αLLLhet are adaptive weights that change during the
training as the parameters of the encoder changes.

Theorem 1 provides a lower-bound for the HLCL loss. The
lower-bound is in the form of a summation of two terms:
the first term is the sum of the difference between the low-
frequency components of the two low-pass filtered aug-
mented views of the homophilic subgraph, and the second
term is the sum of the difference between the two high-
pass filtered augmented views of the heterophilic subgraph.
Minimizing the HLCL loss ensures a small value for the
lower bound. In doing so, the encoder changes such that it

assigns a larger weight (αAi and αLi) to invariant frequen-
cies i, for which λhom

Ai
∼ λ̂hom

Ai
and λhet

Li
∼ λ̂het

Li
. Notably,

(λhom
Ai

∼ λhom
Ãi

) implies that the two contrasted augmenta-
tions are invariant at ith frequency. Same reasoning holds
for the second term. Therefore, during training with HLCL,
the encoder will emphasize the invariance between two con-
trasted augmentations from the spectrum domain, for both
the homophilic and heterophilic subgraphs.

The proof is given in the Appendix. B

5 EXPERIMENTS

In this section, we evaluate the node representations learned
with HLCL, under linear probe. We compare HLCL with
existing graph CL, graph SSL and graph supervised learning
methods, and conduct an extensive ablation study to evaluate
the effect of each of HLCL’s components.

Datasets. We consider nine widely-used public benchmark
datasets with different homophily ratios, β. The details of
the datasets are shown in Sec. A.2. We repeat the experi-
ments 10 times for smaller benchmark datasets, and 3 times
for large real-world datasets, and report the early-stopped
average accuracy as the final result. For small graphs, we
follow CPGNN [Zhu et al., 2020a], GRACE [Zhu et al.,
2020c], and HGRL [Chen et al., 2022] and randomly select
10% of nodes for training, 10% of nodes for validation, and
80% of nodes for testing. For large graphs, following [Lim
et al., 2021] we randomly select 25% of nodes for training,
25% of nodes for validation, and 50% of nodes for testing.

Linear Probe Evaluation. For SSL methods, we follow
the evaluation protocol used in [Zhu et al., 2020c]. Models
are first trained in a self-supervised manner without labels.
Then, we fed the final node embeddings into a l2-regularized
logistic regression classifier to fit the labeled data.

5.1 RESULTS

HLCL vs Self-supervised Baselines. We compare HLCL
with existing baselines for self-supervised representation
learning. We consider general graph self-supervised learn-
ing methods like DGI [Velickovic et al., 2019], BGRL
[Thakoor et al., 2021], and GRACE [Zhu et al., 2020c]
as well as graph self-supervised learning methods that fo-
cus on learning under heterophily like HGRL [Chen et al.,
2022], and SP-GCL [Wang et al., 2022]. In addition, we
also include popular general graph supervised learning meth-
ods like GCN Kipf and Welling [2016], and graph super-
vised learning method targeting graphs under heterophily
like MixHop, H2GCN, GloGNN, and CPGNN [Abu-El-
Haija et al., 2019, Zhu et al., 2020b, 2021c, Li et al., 2022].
We record the hyperparameters for our experiments in Sec.
A.1 Table 1 shows that HLCL achieves a significant boost
on graphs with heterophily and a comparable performance

3942

Table 1: HLCL vs baselines. Methods identified with † and ∗ are supervised methods and SSL methods for graphs under
heterophily, respectively. HLCL achieves state-of-the-art under heterophily, and a comparable performance under homophily.

Homophily Heterophily

Cora CiteSeer Pubmed Actor Chameleon Squirrel Penn94 Twitch-gamers Genius

Hom.(β) .83 .71 .79 .09 .23 .19 .48 .56 .51
Nodes 2,708 3,327 19,717 5,201 2,277 5,201 41,554 168,114 421,961
Edges 5,278 4,676 44,324 198,493 8,854 46,998 1,362,229 6,797,557 984,979

Classes 6 7 3 5 5 5 2 2 2

HLCL 84.1 ± 1.0 70.1 ± 0.8 84.5 ± 0.4 34.0 ± 0.2 50.9 ± 1.0 42.9 ± 2.6 68.1 ± 3.5 67.0 ± 0.9 84.3±0.1

DGI 84.5 ± 1.1 71.9 ± 0.7 86.0 ± 0.1 28.0 ± 1.4 32.6 ± 2.9 38.8 ± 2.3 62.9 ± 0.4 61.5 ± 0.6 OOM
BGRL 83.0 ± 0.7 69.8 ± 0.6 80.2 ± 0.6 28.3 ± 0.9 32.6 ± 4.7 35.7 ± 1.4 58.8 ± 0.6 60.9 ± 0.3 76.4±3.0

GRACE 83.7 ± 0.7 71.4 ± 1.0 86.7±0.1 34.5 ± 1.1 35.4 ± 3.6 36.2 ± 2.8 62.5 ± 0.4 57.1 ± 0.1 79.6±2.9

SP-GCL∗ 83.2 ± 0.1 72.0 ± 0.4 79.2 ± 0.7 27.7 ± 0.7 36.5 ± 1.9 33.7 ± 1.3 - 62.0 ± 0.2 90.1∗± 0.2
HGRL∗ 82.1 ± 0.8 71.0 ± 0.7 84.2 ± 0.2 35.4 ± 0.9 43.9 ± 1.7 38.7 ± 1.7 OOM OOM OOM

GCN† 82.3 ± 1.2 70.2 ± 0.9 86.4 ± 0.3 28.2 ± 0.4 40.9 ± 4.1 39.5 ± 1.5 82.5 ± 0.3 62.2 ± 0.3 87.4 ± 0.4

MixHop† 81.0 ± 1.6 66.4 ± 1.7 85.1 ± 0.3 29.0 ± 1.0 33.8 ± 1.2 33.4 ± 1.6 83.5 ± 0.7 65.6 ± 0.3 90.6 ± 0.2
H2GCN† 81.4 ± 1.2 71.8 ± 0.9 85.9 ± 0.4 33.6 ± 0.8 26.8 ± 3.6 35.1 ± 1.2 OOM OOM OOM
GloGNN† 88.3†± 1.1 77.4†± 1.7 89.6†± 0.4 37.4†± 0.8 25.9 ± 3.6 35.1 ± 1.2 85.6†± 0.4 66.4 ± 0.3 90.7†± 0.1
CPGNN† 83.6 ± 1.3 72.0 ± 0.5 86.7 ± 0.2 35.6 ± 0.9 33.0 ± 3.2 30.0 ± 2.0 OOM OOM OOM

(a) Chameleon (b) Chameleon

(c) Citeseer (d) Citeseer

Figure 3: GRACE vs HLCL representations. (a), (c) distri-
bution of eigenvalues in the representation matrix. (b), (d)
alignment of the labels with the eigenvectors of the represen-
tation matrix.HLCL produces higher quality representations
with lower rank and higher alignment with the label vector.

on graphs with homophily compared to the popular graph
CL methods, showing up to 7% performance boost on
Chameleon and 5% boost on Penn94. Compared to super-
vised methods such as H2GCN trained in an end-to-end
manner, HLCL achieves a comparable performances under
homophily and superior performance on heterophilic graphs
like Chameleon by 10% and Squirrel by 3%. This confirms
the effectiveness of HLCL.

HLCL learns superior representations under het-
erophily. Next, we compare the quality of representations
learned by HLCL with that of GRACE, which only uses the
low-pass filter for graph CL. We study Chameleon, a popu-
lar heterophily dataset [Platonov et al., 2023], and Citeseer,

a well-known homophily dataset [Yang et al., 2016]. Fig. 3
compares the distribution of normalized eigenvalues of the
representation matrices and the alignment of their eigenvec-
tors with the label vector. Lower-ranked representations that
have a higher alignment between their prominent eigenval-
ues and label vector yield superior performance [Xue et al.,
2022]. Fig. 3a confirms that HLCL’s representations of
Chameleon (heterophily) have a lower-rank structure com-
pare to that of GRACE. Fig. 3b further confirms a strong
alignment between the eigenvectors of the representation
matrix and the label vector. Both factors contribute to higher
classification accuracy of HLCL compared to GRACE. On
the other hand, on Citeseer (homophily), HLCL exhibits a
similar but only slightly higher rank spectrum than GRACE.
Thus, contrasting the low-pass and high-pass views does not
significantly harm the performances under homophily.

6 ABLATION STUDIES

6.1 HLCL WITH EXPLICIT AUGMENTATION

Graph augmentation methods are well studied for graph CL
under homophily [Zhu et al., 2020c, You et al., 2020, Liu
et al., 2022]. However, it is unclear if the same techniques
are effective when a high-pass filter is applied to the graph.
Here, we study the effects of different structural and fea-
ture augmentations applied to the heterophilic subgraphs of
HLCL. We keep the graph augmentations on the homophilic
subgraph constant, as mentioned in Sec. 4.1 and only investi-
gate the effect of augmentation on the heterophilic subgraph.
We consider popular graph augmentation methods includ-
ing edge dropping, feature masking, node dropping, edge
adding, and diffusion [You et al., 2020, Hassani and Khasah-
madi, 2020]. As shown in Table 2, applying node dropping is

3943

Table 2: The effect of applying different augmentations to the heterophilic subgraph.

Homophily Heterophily

Cora CiteSeer Chameleon Squirrel Actor

EdgeRemoving 80.0 ± 0.5 65.8 ± 0.3 47.6 ± 1.1 40.5 ± 1.1 32.4 ± 0.9
NodeDropping 82.1 ± 0.5 66.7 ± 0.8 48.0 ± 3.4 42.0 ± 0.4 32.9 ± 0.5
EdgeAdding 81.5 ± 1.7 66.2 ± 0.8 49.1 ± 0.5 42.9 ± 2.6 32.8 ± 1.1

FeatureMasking 81.9 ± 1.8 65.6 ± 1.5 48.3 ± 1.8 40.8 ± 1.3 33.8 ± 1.5
PPRDiffusion 75.1 ± 1.8 62.0 ± 1.3 50.2 ± 4.7 40.7 ± 0.2 33.2 ± 1.8

Table 3: Using high-pass (HP) only, low-pass only (LP) filter
or both filters (HLCL) with inferred and ideal homophilic
and heterophilic subgraphs (found using actual labels).

Homophily Heterophily

Cora Chameleon Squirrel

HLCL 84.1 50.9 42.9
LP 83.7 35.4 36.2
HP 32.5 33.1 33.1

HLCL:ideal 89.7 61.6 47.4
LP:ideal 87.1 53.7 44.9
HP:ideal 63.6 58.9 39.9

Table 4: Performance for different update intervals.

Dataset T =10 T =50 T =250 No Update

Cora 80.5 84.1 83.1 82.1
Chameleon 41.6 50.9 48.3 42.7

more effective on improving the performance on homophilic
graph, while feature perturbation is more effective on im-
proving the performance on heterophilic graph. Overall,
HLCL’s performance is stable across all augmentations.

6.2 HLCL WITH SINGLE GRAPH FILTER

Next, to confirm that both filters are necessary for HLCL’s
superior performance, we examine the performance of
HLCL while applying contrastive loss to either low-pass
or high-pass filtered representations during training. The
results are shown in Table 3. To rule out the possibility for
poor subgraph sampling influencing the results, we also con-
sider ideal subgraphs obtained via the true labels. That is, in
Ghom, only nodes of the same labels are connected, while
in Ghet, only nodes of different labels are connected. First,
we observe that applying contrastive loss to both high-pass
and low-pass filtered representations yields the best perfor-
mance, both on regular subgraphs and ideal subgraphs. This
demonstrate that utilizing both representations from both
frequency terms is crucial for HLCL’s success. Besidies, we
see that more precise homophilic and heterophilic subgraphs
considerably improves the performance, and finding them
more accurately is a promising direction for future work.

In Appendix A.3, we demonstrate the performance of exist-
ing graph CL methods using only high-pass filters.

6.3 SUBGRAPH UPDATE INTERVAL

We also conduct an ablation study on the interval between
subgraph updates. The results are shown in Table 4. We
see that frequent updates (T =10) or no updates can both
harm the performance on both homophilic and heterophilic
graphs. Not updating the subgraphs leads to overfitting their
inaccuracies, and updating them too frequently does not
allow aggregating and learning the information effectively.
A moderate amount of updates yields best performance.

6.4 HOMOPHILY RATIO CAN GUIDE TUNING

Next, we conduct a detailed study to explore the impact of
varying k1 on HLCL’s performance. As observed in Table 5,
different k1 (and k2 = 1− k1) values can have a significant
influence on the performance. The performance on the Cora
dataset varies by 30% with different k1 values, while the
performance of the Chameleon dataset varies by 7%. Based
on the results, the homophily ratio of the graph is a good
indicator of the appropriate k1 (and k2) values. On both
Cora and Chameleon, the best performances are achieved
when k1 ≈ homophily ratio. Similar results are observed
in Citeseer (k1 = 0.9; homophily ratio = 0.71) and Actor
(k1 = 0.09, homophily ratio = 0.09). In practice, one can
sample a small subgraph and measure its homophily ratio
for easier tuning.

Table 5: Performance for different values of k1.

Dataset 0.9 0.8 0.5 0.2 0.1

Cora (β=.83) 84.1 80.2 72.1 54.8 53.7
Chameleon (β=.23) 42.0 42.0 42.0 50.9 45.0

6.5 HLCL SUBGRAPH INFERENCE

We also investigate the connectivity of the homophilic and
heterophilic subgraphs inferred by HLCL. Specifically, we
measured the fraction of nodes in the largest connected com-
ponent of the original graph that are in the largest connected

3944

Table 6: Connectivity of the inferred homophilic and het-
erophilic subgraphs.

Data homophilic heterophilic

Cora (.83) 1 8.5%
Citeseer (.71) 1 7.7%
Chameleon (.23) 25.6% 98.2%
Squirrel (.19) 94.4% 95%
Actor (.09) 4.7% 99.8%

component of each subgraph after sampling in Table 6. We
see that under homophily (Cora, Citeseer), all the nodes are
in the homophilic subgraphs and the heterophilic subgraph
is small and minimally affects the performance. Under ex-
treme heterophily (Actor) almost all the nodes are in the
heterophilic subgraph and the homophilic subgraph is small
and minimally affects the performance. For other graphs,
depending on the tuned value of k1, the size of the largest
connected component of the two subgraphs changes.

6.6 USING DIFFERENT FILTERED
REPRESENTATIONS AS OUTPUT

Finally, we study the performance of using different filters
to produce final representations. We consider using low-pass
filtered only, high-pass filtered only, and concatenating the
low-pass filtered and high-pass filtered representations. The
results are shown in Table 7. We observe that using low-pass
filtered representations can yield better performances for
both homophilic and heterophilic graphs. It is important to
note that the encoder is trained using contrastive loss on
both high-pass filtered heterophilic subgraphs and low-pass
filtered homophilic subgraphs. This ensures that nodes in
the same class have similar representations when a low-pass
filter is applied, and nodes in different classes have distinct
representations with a high-pass filter. During inference,
the goal is to identify nodes with similar representations.
Hence, using low-pass filtered representatives work better
in practice, than using the high-pass filtered representations
or a combination of both.

7 LIMITATIONS

The performance of learning from heterophily graphs heav-
ily depends on how information is aggregated in different
neighborhoods. Label availability is crucial for guiding this
aggregation. In the absence of labels, a significant challenge
for any graph SSL method, including HLCL, arises when
nodes with similar labels cannot be approximately identi-
fied. For instance, in the Penn94 dataset, all SSL methods in
Table 1, including HLCL, underperform compared to super-
vised methods. This is due to the lack of correlation between
node feature similarity and label similarity in this dataset.
In contrast, in the Cora dataset, nodes belonging to the same

Table 7: Producing final representations with different graph
filters. Low-pass filtered representations has the highest
performance on both homophilic and heterophilic graphs.

Model Cora Citeseer Chameleon Squirrel

LP 84.1 ± 1.0 70.1 ± 0.8 50.9 ± 1.0 42.9 ± 2.6
HP 51.9 ± 2.9 36.2 ± 2.5 35.6 ± 3.1 29.8 ± 1.6
LP+HP 74.2 ± 2.0 57.6 ± 2.0 48.7 ± 1.0 40.8 ± 2.0

class exhibit an average of 31% higher feature cosine simi-
larity than nodes from different classes, while in Chameleon,
this difference is 11%. However, in Penn94, the difference
is only 1.4% on average, indicating a high similarity in
node features across different classes. Consequently, SSL
methods, including HLCL, face challenges in learning high-
quality node representations. Despite this, HLCL outper-
forms other SSL baselines on Penn94, as shown in Table 1.

Additionally, on graphs where node features cannot dif-
ferentiate different classes, HLCL can face challenges. For
instance, for Actor dataset, nodes from different classes have
similar connectivity patterns to other classes [Ma et al.]. In
this case, the graph structure is not useful to classify the
nodes (and may hurt the performance), and only relying on
node features achieve a better performance. As shown in
[Ma et al., Chen et al., 2022], models like MLP which do
not use any graph structure can outperform GNN methods
like GCN and even H2GCN on the Actor dataset. HGRL
uses MLP as its encoder and does not leverage the graph
structure, hence it can slightly outperform HLCL on Actor,
but is outperformed by HLCL on other datasets.

In Sec. A.5, we discuss the effectiveness of node features in
inferring subgraphs, and their limitations if used directly for
classification without incorporating the graph structure.

8 CONCLUSION

We proposed HLCL, a contrastive learning framework that
finds a homophilic and a heterophilic subgraph in a graph,
applies high-pass and low-pass filters to the augmented sub-
graph views, and learns node representations by contrasting
the filtered augmented views. This is particularly beneficial
for graphs with heterophily. Through extensive experiments,
we demonstrated that our proposed framework achieves up
to 7% boost graphs under heterophily and outperforms popu-
lar graph supervised learning methods by up to 10%. HLCL
also provides a comparable performance under homophily.
We believe our work provides an important direction for
future work on contrastive learning under heterophily.

Acknowledgments. This research was partially supported
by the National Science Foundation CAREER Award
2146492.

3945

References

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin
Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg
Ver Steeg, and Aram Galstyan. Mixhop: Higher-order
graph convolutional architectures via sparsified neighbor-
hood mixing. In international conference on machine
learning, pages 21–29. PMLR, 2019.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux,
Benoit Gaüzère, Sébastien Adam, and Paul Honeine. An-
alyzing the expressive power of graph neural networks
in a spectral perspective. In International Conference on
Learning Representations, 2020.

Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V Chawla.
Graph barlow twins: A self-supervised representa-
tion learning framework for graphs. arXiv preprint
arXiv:2106.02466, 2021.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Be-
yond low-frequency information in graph convolutional
networks. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pages 3950–3957, 2021.

Jingfan Chen, Guanghui Zhu, Yifan Qi, Chunfeng Yuan,
and Yihua Huang. Towards self-supervised learning on
graphs with heterophily. In Proceedings of the 31st ACM
International Conference on Information & Knowledge
Management, pages 201–211, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International con-
ference on machine learning, pages 1597–1607. PMLR,
2020.

Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 15750–15758, 2021.

Fan RK Chung. Spectral graph theory, volume 92. Ameri-
can Mathematical Soc., 1997.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural
information processing systems, 29, 2016.

Venkatesan Nallampatti Ekambaram. Graph-structured data
viewed through a Fourier lens. University of California,
Berkeley, 2014.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in
neural information processing systems, 30, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive
multi-view representation learning on graphs. In Inter-
national Conference on Machine Learning, pages 4116–
4126. PMLR, 2020.

Dongxiao He, Jitao Zhao, Rui Guo, Zhiyong Feng, Di Jin,
Yuxiao Huang, Zhen Wang, and Weixiong Zhang. Con-
trastive learning meets homophily: two birds with one
stone. In International Conference on Machine Learning,
pages 12775–12789. PMLR, 2023.

Di Jin, Zhizhi Yu, Cuiying Huo, Rui Wang, Xiao Wang,
Dongxiao He, and Jiawei Han. Universal graph con-
volutional networks. Advances in Neural Information
Processing Systems, 34:10654–10664, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang
Luo, Dongsheng Li, and Weining Qian. Finding global
homophily in graph neural networks when meeting het-
erophily. In International Conference on Machine Learn-
ing, pages 13242–13256. PMLR, 2022.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang,
Vaishnavi Gupta, Omkar Bhalerao, and Ser Nam Lim.
Large scale learning on non-homophilous graphs: New
benchmarks and strong simple methods. Advances in Neu-
ral Information Processing Systems, 34:20887–20902,
2021.

Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei.
Revisiting graph contrastive learning from the perspec-
tive of graph spectrum. Advances in Neural Information
Processing Systems, 35:2972–2983, 2022.

Yixin Liu, Yizhen Zheng, Daokun Zhang, Vincent CS Lee,
and Shirui Pan. Beyond smoothing: Unsupervised graph
representation learning with edge heterophily discriminat-
ing. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pages 4516–4524, 2023.

Sitao Luan, Mingde Zhao, Chenqing Hua, Xiao-Wen
Chang, and Doina Precup. Complete the missing
half: Augmenting aggregation filtering with diversifica-
tion for graph convolutional networks. arXiv preprint
arXiv:2008.08844, 2020.

Y Ma, X Liu, N Shah, and J Tang. Is homophily a necessity
for graph neural networks? arxiv 2021. arXiv preprint
arXiv:2106.06134.

Miller McPherson, Lynn Smith-Lovin, and James M Cook.
Birds of a feather: Homophily in social networks. Annual
review of sociology, 27(1):415–444, 2001.

3946

Hoang Nt and Takanori Maehara. Revisiting graph neural
networks: All we have is low-pass filters. arXiv preprint
arXiv:1905.09550, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang,
Yu Lei, and Bo Yang. Geom-gcn: Geometric graph con-
volutional networks. arXiv preprint arXiv:2002.05287,
2020.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng,
Yu Rong, Tingyang Xu, and Junzhou Huang. Graph
representation learning via graphical mutual information
maximization. In Proceedings of The Web Conference
2020, pages 259–270, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem
Babenko, and Liudmila Prokhorenkova. A critical look
at the evaluation of gnns under heterophily: are we re-
ally making progress? arXiv preprint arXiv:2302.11640,
2023.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang,
Hongxia Yang, Ming Ding, Kuansan Wang, and Jie Tang.
Gcc: Graph contrastive coding for graph neural network
pre-training. In Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining, pages 1150–1160, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-
scale attributed node embedding. Journal of Complex
Networks, 9(2):cnab014, 2021.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi
Azar, Mehdi Azabou, Eva L Dyer, Remi Munos, Petar
Veličković, and Michal Valko. Large-scale representation
learning on graphs via bootstrapping. arXiv preprint
arXiv:2102.06514, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

Petar Velickovic, William Fedus, William L Hamilton,
Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep
graph infomax. ICLR (Poster), 2(3):4, 2019.

Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. Can
single-pass contrastive learning work for both homophilic
and heterophilic graph? arXiv preprint arXiv:2211.10890,
2022.

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi,
and Jian Pei. Am-gcn: Adaptive multi-channel graph
convolutional networks. In Proceedings of the 26th ACM
SIGKDD International conference on knowledge discov-
ery & data mining, pages 1243–1253, 2020.

Yewen Wang, Ziniu Hu, Yusong Ye, and Yizhou Sun. De-
mystifying graph neural network via graph filter assess-
ment. 2019.

Teng Xiao, Zhengyu Chen, Zhimeng Guo, Zeyang Zhuang,
and Suhang Wang. Decoupled self-supervised learning
for graphs. Advances in Neural Information Processing
Systems, 35:620–634, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Yihao Xue, Kyle Whitecross, and Baharan Mirzasoleiman.
Investigating why contrastive learning benefits robust-
ness against label noise. In International Conference on
Machine Learning, pages 24851–24871. PMLR, 2022.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang,
and Danai Koutra. Two sides of the same coin: Het-
erophily and oversmoothing in graph convolutional neural
networks. arXiv preprint arXiv:2102.06462, 2021.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Re-
visiting semi-supervised learning with graph embeddings.
In International conference on machine learning, pages
40–48. PMLR, 2016.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. Advances in Neural Infor-
mation Processing Systems, 33:5812–5823, 2020.

Mengyi Yuan, Minjie Chen, and Xiang Li. Muse: Multi-
view contrastive learning for heterophilic graphs. In Pro-
ceedings of the 32nd ACM International Conference on
Information and Knowledge Management, pages 3094–
3103, 2023.

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong
Yao, and Wenwu Zhu. Arbitrary-order proximity pre-
served network embedding. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge
discovery & data mining, pages 2778–2786, 2018.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim
Lipka, Nesreen K Ahmed, and Danai Koutra. Graph
neural networks with heterophily. arXiv preprint
arXiv:2009.13566, pages 11168–11176, 2020a.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Le-
man Akoglu, and Danai Koutra. Beyond homophily in
graph neural networks: Current limitations and effective
designs. Advances in Neural Information Processing
Systems, 33:7793–7804, 2020b.

Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng
Cui. Interpreting and unifying graph neural networks
with an optimization framework. In Proceedings of the
Web Conference 2021, pages 1215–1226, 2021a.

3947

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu,
and Liang Wang. Deep graph contrastive representation
learning. arXiv preprint arXiv:2006.04131, 2020c.

Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An em-
pirical study of graph contrastive learning. arXiv preprint
arXiv:2109.01116, 2021b.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and
Liang Wang. Graph contrastive learning with adaptive
augmentation. In Proceedings of the Web Conference
2021, pages 2069–2080, 2021c.

3948

Graph Contrastive Learning under Heterophily via Graph Filters
(Supplementary Material)

Wenhan Yang1 Baharan Mirzasoleiman1

1Computer Science Department, University of California Los Angeles (UCLA)

A APPENDIX

A.1 HYPERPARAMETERS DETAILS

We list the details of our model hyperparameters for each datasets in Table. 8.

Table 8: HLCL hyperparameters for each dataset

Cora CiteS Pubmed Actor Cham Squir Penn TwitchG Genius
k2 0.9 0.9 0.8 0.1 0.2 0.5 1.0 1.0 1.0
k1 0.1 0.1 0.2 0.9 0.8 0.5 1.0 1.0 1.0
lr 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
T 50 50 50 50 50 50 50 50 50

A.2 DATASET DETAILS

For graphs with homophily, we use the citation networks including Cora, Citeseer, and Pubmed [Yang et al., 2016]. For
graphs with heterophily, we use the Wikipedia network and the web page networks including Chameleon, Squirrel, and
Actor [Rozemberczki et al., 2021, Pei et al., 2020]. Note that, for fair comparison, we adopt the Chameleon and Squirrel
from [Platonov et al., 2023] with duplicated nodes removed.To illustrate the scalability of HLCL, we also include three
large-scale real-world datasets, Penn94, Genius, and Twitch-gamers provided by [Lim et al., 2021].

A.3 EXISTING GCL METHODS WITH HP FILTERS

In this section, we illustrate the importance of our contrastive structure in achieving performance gains on heterophily
datasets. We show that contrasting both the low-pass filtered graph views and high-pass filtered graph views is crucial
to obtain high-quality representation under heterophily, as opposed to applying high-pass filter. To do so, we replace the
LP filter with HP filter in other popular graph CL methods. The results are shown in Table 9. As demonstrated, while there
are performance gains on some heterophily datasets, accuracy significantly deteriorates in homophily settings.For larger
values of β, it is more likely that nodes with the same labels are connected together. In graphs with a large homophily
ratio, most of the neighborhoods have homogeneous labels. On the other hand, graphs with a small homophily ratio contain
neighborhoods with homogeneous and heterogeneous labels, as illustrated in Fig. 2. Existing graph CL methods have a
very poor performance under heterophily, or low homophily ratio, and cannot learn high-quality representations.

3949

mailto:<hangeryang18@g.ucla.edu>?Subject=Your UAI 2024 paper

Table 9: Using high-pass filter in existing Graph CL methods. HLCL denotes our method

Homophily Heterophily

Cora CiteSeer Chameleon Squirrel Actor

HLCL 84.1 ± 1.0 70.1 ± 0.8 50.9 ± 1.0 42.9 ± 2.6 34.0 ± 0.2

DGI:low 84.53 ± 1.1 71.88 ± 0.7 32.58 ± 2.9 38.83 ± 2.3 28.00 ± 1.4
DGI:high 31.95 ± 2.8 30.54 ± 1.7 29.89 ± 3.0 36.86 ± 3.0 32.03 ± 0.9

BGRL:low 83.01 ± 0.7 69.81 ± 0.6 32.58 ± 4.7 35.70 ± 1.4 28.32 ± 0.9
BGRL:high 29.63 ± 2.8 24.99 ± 3.1 37.30 ± 6.0 38.03 ± 1.1 33.87 ± 1.9

GRACE:low 83.69 ± 0.7 71.37 ± 1.0 35.39 ± 3.6 36.18 ± 2.8 34.5 ±1.1
GRACE:high 32.46 ± 2.0 26.55 ± 3.1 33.03 ± 3.9 33.05 ± 2.1 32.00 ± 1.3

A.4 SIMPLIFIED HLCL

Empirically, we observed that directly contrasting the high-pass filtered representations with the low-pass filtered representa-
tions can produce comparable results to HLCL, as shown in Table 10. This simplified version can speed up the algorithm by
2×, as it requires only one contrasting learning process.

Table 10: Comprasion between HLCL and Simplified HLCL

Homophily Heterophily

Cora CiteSeer Chameleon Squirrel Actor

HLCL 84.1 ± 1.0 70.1 ± 0.8 50.9 ± 1.0 42.9 ± 2.6 34.0 ± 0.2

HLCLSimplified 83.5 ± 2.7 71.8 ± 1.4 48.3 ± 6.8 39.5 ± 5.3 35.5 ± 1.9

A.5 USING FEATURES TO INFER LABEL INFORMATION

HLCL uses feature information to approximately estimate the label information. Here, we justify this choice empirically
and demonstrate that while feature information can help in inferring subgraphs approximately, it cannot be used for accurte
node classification. First, we show that the node features are sufficient to give approximate neighborhood information,
which is helpful in splitting the subgraph. We provide the homophily ratios of the original graph, the homophilic subgraph,
and the heterophilic subgraph selected based on feature similarity across different datasets. As shown in Table 11, using
feature cosine similarity, HLCL can approximately create homophilic and heterophilic subgraphs from the original graph.
However, while features can approximately indicate if neighboring nodes are of the same class, they are insufficient for
accurate (multi-class) node classification, and the graph structure is crucial to take into account. Otherwise, one could
simply use an MLP classifier on node features. It is important to note that approximately identifying a homophilic and
a heterophilic subgraph is a binary classification task, which is significantly easier than multi-class node classification.
We show the insufficiency of node features for accurate classification without graph structure in Table 12. We conducted
additional experiments with an MLP classifier on various homophily and heterophily datasets, which showed that MLP
yields very poor performances, particularly under heterophily.

Table 11: Homophily ratios of the subgraphs sampled via node features. After sampling, homophilic subgraph has a higher
homophily ratio, while the heterophilic subgraph has a lower homophily ratio compared to the original graph.

Cora(hom) Citeseer(hom) Chameleon(het) Squirrel(het)
orig graph hom% 0.83 0.71 0.23 0.19
hom subgraph hom% 0.87 0.82 0.74 0.42
het subgraph hom% 0.08 0.05 0.24 0.19

3950

Table 12: Using node feature only (MLP) to classify the nodes. As shown, without graph structures, the model can only
achieve sub-optimal performances.

Cora (6 classes) Citeseer (7 classes) Chameleon (5 classes) Squirrel (5 classes)
MLP 64.8± 1.2 66.5± 1.0 37.4± 2.1 25.5± 0.9
HLCL 84.1± 1.0 70.1± 0.8 50.9± 1.0 42.9± 2.6

A.6 EXTENDED RELATED WORK

(Semi-)supervised learning on graphs. In recent years, GNNs have become one of the most prominent tools for processing
graph-structured data. In general, GNNs utilize the adjacency matrix to learn the node representations, by aggregating
information within every node’s neighborhood [Defferrard et al., 2016, Kipf and Welling, 2016]. Existing variants, including
GraphSAGE [Hamilton et al., 2017], Graph Attention (GAT) [Veličković et al., 2017], MixHop [Abu-El-Haija et al., 2019],
SGC [Nt and Maehara, 2019], GAT [Velickovic et al., 2019], and GIN [Xu et al., 2018], learn a more general class of
neighborhood mixing relationships, by aggregating weighted information within a multi-hop neighborhood of every node.
GNNs can be generally seen as applying a fix, or a parametric and learnable (e.g. GAT) low-pass graph filter to graph
signals. Those with trainable parameters can adapt to a wider range of frequency levels on different graphs. However,
they still have a higher emphasis on lower-frequency signals and discard the high-frequency signals in a graph. While the
aggregation operation makes GNNs powerful tools for semi-supervised learning, it can make the learned node representations
indistinguishable in a neighborhood [Nt and Maehara, 2019]. As a result, typical GNNs and their variants have been long
criticized for their poor generalization performance under heterophily [Balcilar et al., 2020].

Graph self-supervised learning. Graph self-supervised learning methods have become a powerful tool for learning
representations without any labels, and graph contrastive learning is the most successful and popular model structure.
Numerous methods have been proposed in the field: [Velickovic et al., 2019, Peng et al., 2020, Hassani and Khasahmadi,
2020, Zhu et al., 2021c] focus on contrasting the global augmented representation with the local augmented representation,
while [Zhu et al., 2020c, You et al., 2020, Qiu et al., 2020, Liu et al., 2022] contrast same-scale representation, global or local,
in two augmented views. Due to the complexity of collecting negative samples in graph data, negative-sample free contrastive
objectives have also been studied [Thakoor et al., 2021, Bielak et al., 2021]. However, works mentioned above focus on
encoding the homophily graphs and perform poorly on graphs with heterophily. Recently, a stream of self-supervised
learning methods have been proposed to learn effectively the node representations of the heterophily graphs without any
labels. HGRL [Chen et al., 2022] improves the node representations on heterophilic graphs by preserving the node original
features and rewiring informative nodes that are not in the local neighborhood. SP-GCL [Wang et al., 2022] proposed
using nodes from the T-hop neighborhood of a node with high feature similarities as positive pairs, without using any
explicit augmentations. DSSL [Xiao et al., 2022] separates the heterogeneous patterns in local neighborhood distributions to
capture both homophilic and heterophilic information globally. GREET [Liu et al., 2023] discriminates homophilic edges
from heterophilic edges using random walk based graph diffusion and contrasts the projected representations of the two
graph views directly via a dual-channel contrastive loss. MUSE [Yuan et al., 2023] utilize semantic view contrast based
on ego node feature perturbations and contextual view contrast based on topology perturbations. Then, it integrates the
representations learned from both contrasting views to construct a fusion contrast that combines both structural and semantic
information. NeCo [He et al., 2023] proposes a new pretext task, group discrimination, which divides the nodes into k
groups and keeps the consistent representation of nodes within a group.

Graph (semi-)supervised learning under heterophily. To address over-smoothing issue of GNNs, recent methods propose
to use other types of aggregation that better fit graphs with heterophily. Geom-GCN uses geometric aggregation in place of
the typical aggregation [Pei et al., 2020], H2GCN uses several special model designs including separate aggregation and
higher-neighborhood aggregation to train the model for handling graphs with heterophily, and CPGNN trains a compatibility
matrix to model the heterophily level [Zhu et al., 2020a]. More recently, Wang et al. [2019] proposed to learn an aggregation
filter for every graph from a set of based filters designed based on different ways of normalizing the adjacency matrix.
GGCN introduced degree corrections and signed message passing on GCN to address both oversmoothing problems and the
model’s poor performances on heterophily graphs [Yan et al., 2021]. Zhu et al. [2021a] analyzed and designed a uniform
framework for GNNs propagations and proposed GNN-LF and GNN-HF that preserve information of different frequency
separately by using different filtering kernels with learnable weights. FAGCN [Bo et al., 2021] and FBGNN [Luan et al.,
2020] train two separate encoders to capture the high-pass and low-pass graph signals separately. Then they rely on labels to
learn relatively complex mechanisms to combine the outputs of the encoders. However, learning how to combine the encoder
outputs is highly sensitive to having high-quality labels. This makes such methods highly impractical for unsupervised

3951

contrastive learning, where the label information is not available.

Unlike the above supervised methods, we apply the high-pass and low-pass filters to different subgraphs, contrasting the
resulting high-pass filtered node views and low-pass filtered node views in a self-supervised manner, without any label. This
is in contrast to learning the best combination of filtered signals of different encoders based on labels.

B PROOF

Assumption 1. Let XXX be the feature matrix of Ghom and WWW be the learnable weights of the GNN encoder. Then,

XXXWWWWWWXXX = w0 + w1AAA
hom + w2(AAA

hom)2 + · · ·+ wj(AAA
hom)j .

XWWXXWWXXWWX under homophily captures the similarities of features between every two nodes in the subgraph after passing
through the low-pass graph filter. Assumptions 1 aims to expand XWWXXWWXXWWX with the weighted sum of different orders of AAA.
Here, wi s are the weights of different orders of AAA. That is wi is the weight of i-th order of AAA, representing the number of
length-i paths between nodes i and j in its (i, j) entry. For homophilic subgraphs, which adhere to the homophily principle,
the weights for closer-hop connections (represented by AAA, AAA2, etc.) are higher, since the closer the nodes are, the more
similar they are. This is based on the homophily principle [McPherson et al., 2001, Luan et al., 2020]. This principle suggests
that, in homophily graphs, nodes within closer neighborhoods exhibit greater feature similarities. After projection, the
similarities also become higher [Zhang et al., 2018].

Assumption 2. Let XXX be the feature matrix of Ghet and WWW be the learnable weights of the GNN encoder. Then,

XXXWWWWWWXXX = w0 + w1LLL
het + w2(LLL

het)2 + · · ·+ wj(LLL
het)j .

XWWXXWWXXWWX under heterophily captures the dissimilarities of features between every two nodes in the subgraph after passing
through the high-pass graph filters. Assumptions 2 aims to expand XWWXXWWXXWWX with the weighted sum of different orders of LLL.
Here, wi is the weight of i-th order of LLL. In contrast to homophilic graphs, for heterophilic subgraphs, the closer the nodes
are, the more dissimilar they are [Zhu et al., 2020c].

Lemma 1. Let AAA and ÃAA be adjacency matrices of the target graph and its augmented counterpart. Suppose that AAA and ÃAA

have the same eigenspaces, and let DDD and D̃DD be the corresponding degree matrices, where DDD = D̃DD. Then the Laplacian
matrices LLL and L̃LL have the same eigenspaces.

Proof. Given that AAA and ÃAA have the same eigenspaces, there exists an orthogonal matrix QQQ such that:

AAA =QQQΛΛΛQQQT and ÃAA =QQQΛ̃ΛΛQQQT

where ΛΛΛ and Λ̃ΛΛ are diagonal matrices containing the eigenvalues of AAA and ÃAA, respectively. Since DDD = D̃DD, let DDD = D̃DD. The
Laplacian matrices are defined as:

LLL =DDD −AAA and L̃LL =DDD − ÃAA

Substituting the spectral decompositions of AAA and ÃAA, we have:

LLL =DDD −QQQΛΛΛQQQT

L̃LL =DDD −QQQΛ̃ΛΛQQQT

Both LLL and L̃LL can be written as:
LLL =QQQ(QQQTDDDQQQ−ΛΛΛ)QQQT

L̃LL =QQQ(QQQTDDDQQQ− Λ̃ΛΛ)QQQT

Since DDD is diagonal, QQQTDDDQQQ remains a diagonal matrix (as the orthogonal transformation of a diagonal matrix preserves
diagonal structure). Let DDD′ =QQQTDDDQQQ, then:

LLL =QQQ(DDD′ −ΛΛΛ)QQQT

L̃LL =QQQ(DDD′ − Λ̃ΛΛ)QQQT

The eigenvalues of LLL and L̃LL are given by the diagonal entries of DDD′ −ΛΛΛ and DDD′ − Λ̃ΛΛ, respectively. Since QQQ is the same for
both LLL and L̃LL, they have the same eigenspaces. Thus, LLL and L̃LL have the same eigenspaces.

3952

B.1 THEOREM 1 [HLCL: SPECTRAL INVARIANCE]

Given a graph G, we infer a homophilic and a heterophilic subgraph from it, denoted as Ghom and Ghet, respectively. Their
augmented counterparts are denoted as G̃hom and G̃het. For graph augmentations, we follow [Liu et al., 2022], where the
adjacency matrix of the homophilic subgraph and the augmented homophilic subgraph share the same eigenspaces (AAAhom
and ÃAAhom). Similarly, the adjacency matrix of the heterophilic subgraph and the augmented heterophilic subgraph share
the same eigenspaces (AAAhet and ÃAAhet). By Lemma 1, the Laplacian matrix of the homophilic subgraph and the augmented
homophilic subgraph share the same eigenspaces (LLLhom and L̃LLhom), and the Laplacian matrix of the heterophilic subgraph
and the augmented heterophilic subgraph share the same eigenspaces (LLLhet and L̃LLhet).

We establish the following lower bound:

LHLCL ≥ −1−N

2

∑
i

(
αAAAi

(
2− (λAAAhom

i
− λ

ÃAA
hom
i
)2
)
+ αLLLi

(
4− (λLLLhet

i
− λ

L̃LL
het
i
)2
))

where λAAAhom and λLLLhet denote the eigenvalues of the homophilic subgraph low-pass filter and the heterophilic subgraph
high-pass filter, respectively, and αAAAhom and αLLLhet denote the adaptive weights for the i-th adjacency and Laplacian matrix
components.

Proof. By minimizing the HLCL loss, we minimize the losses for contrasting augmented views of both heterophilic and
homophilc subgraphs. Hence we discuss each in our proof.

For simplification, since the HLCL loss is symmetric, we only choose one graph view as the anchor view.

L = − 1

2N

N∑
i=1

(l(zzzil, z̃zz
i
l) + l(zzzih, z̃zz

i
h)) (16)

= − 1

2N

N∑
i=1

(log
ezzz

i
lz̃zz

i
l
T

ezzz
i
hz̃zz

i
h
T

+
∑

k∈[N],)
k ̸=i

ezzz
i
lz̃zz

k
l
T
+ log

ezzz
i
hz̃zz

i
h
T

ezzz
i
hz̃zz

i
h
T
+
∑

k∈[N],
k ̸=i

ezzz
i
hz̃zz

k
h
T
) (17)

= − 1

2N

N∑
i=1

(zzzilz̃zz
i
l

T
+ zzzihz̃zz

i
h

T − log

N∑
k

ezzz
i
lz̃zz

k
l
T

− log

N∑
k

ezzz
i
hz̃zz

k
h
T

) (18)

≥ − 1

2N

N∑
i=1

(zzzilz̃zz
i
l

T
+ zzzihz̃zz

i
h

T − logN · e
∑N

k zzzi
lz̃zz

k
l
T /N − logN · e

∑N
k zzzi

hz̃zz
k
h
T /N) (19)

≡ −
N∑
i=1

(zzzilz̃zz
i
l

T
+ zzzihz̃zz

i
h

T − 1

N

∑
N

zzzilz̃zz
i
l

T
+ zzzihz̃zz

i
h

T
) (20)

= −(tr(ZZZlZ̃ZZl
T
) + tr(ZZZhZ̃ZZh

T
)− 1

N
sum(ZZZlZ̃ZZl

T
)− 1

N
sum(ZZZhZ̃ZZh

T
)) (21)

ZZZl is the projected representation of Ghom, Z̃ZZl is the projected representation of G̃hom, ZZZh is the projected representation
of Ghet, and Z̃ZZh is the projected representation of G̃het. As mentioned before, AAAhom and ÃAAhom share the same eigenspaces,
so we have that AAAhom = QQQhomΛhomQQQ

T
hom and ÃAAhom = QQQhomΛ̃ΛΛhomQQQ

T
hom, where QQQhom is the collection of eigenspaces, and

Λhom = diag(λAAAhom
i

) and Λ̃ΛΛhom = diag(λ
ÃAA

hom
i

) are their diagonal weight matrices. Similarly, AAAhet = QQQhetΛhetQQQ
T
het and

ÃAAhet = QQQhetΛ̃ΛΛhetQQQ
T
het, where QQQhet is the collection of eigenspaces, and ΛΛΛhet = diag(λLLLhet

i
) and Λ̃ΛΛhet = diag(λ

L̃LL
het
i

). With

the simplification of the HLCL loss, we have ZZZhZ̃ZZh
T
= LXWWXL̃LXWWXL̃LXWWXL̃ and ZZZlZ̃ZZl

T
= AXWWXÃAXWWXÃAXWWXÃ, where W is learnable

parameters of the encoder.

Lemma 2. With assumption 1, for homophilic subgraph Ghom, when j ≥ N−1,XWWXXWWXXWWX = w0+w1AAA
hom+w2(AAA

hom)2+
· · · + wj(AAA

hom)j = QQQhomAAAhomQQQ
T
hom, where AAAhom = diag(αAAA1

. . . αAAAN
). αAAA1

. . . αAAAN
are N different parameters, if

λAAAhom
1

. . . λAAAhom
N

are N different frequency amplitudes.

Proof. The proof can be found in Theorem 4 of [Liu et al., 2022].

3953

Lemma 3. With assumption 2, for heterophilic subgraph Ghet, when j ≥ N−1,XWWXXWWXXWWX = w0+w1LLL
het+w2(LLL

het)2+· · ·+
wj(LLL

het)j = QQQhetAAAhetQQQ
T
het, where AAAhet = diag(αLLL1

. . . αLLLN
). αLLL1

. . . αLLLN
are N different parameters, if λAAAhet

1
. . . λAAAhet

N

are N different frequency amplitudes.

Proof. The proof can be found in Theorem 4 of [Liu et al., 2022], by replacing LLL as the decomposing matrix.

For ZZZlZ̃ZZl
T

, using Lemma 2, we have:

ZZZlZ̃ZZl
T
= AXWWXÃAXWWXÃAXWWXÃ

=QQQhomΛΛΛhomQQQ
T
homQQQhomAAAhomQQQ

T
homQQQhomΛ̃ΛΛhomQQQ

T
hom

=QQQhomΛΛΛhomAAAhomΛ̃ΛΛhomQQQ
T
hom

=QQQhom

λAAAhom

1
αAAA1

λ
ÃAA

hom
1

0 · · · 0

0 λAAAhom
2
αAAA2

λ
ÃAA

hom
2

· · · 0

...
...

. . .
...

0 0 · · · λAAAhom
N
αAAAN

λ
ÃAA

hom
N

QQQT
hom

=

N∑
i=1

λAAAhom
i
αAAAi

λ
ÃAA

hom
i
qAAAi

qTAAAi
,

where qAAAi
is the ith column of the matrix QQQhom.

For ZZZhZ̃ZZh
T

, using Lemma 3, we have:

ZZZhZ̃ZZh
T
= LXWWXL̃LXWWXL̃LXWWXL̃

=QQQhetΛΛΛhetQQQ
T
hetQQQhetAAAhetQQQ

T
hetQQQhetΛ̃ΛΛhetQQQ

T
het

=QQQhetΛΛΛhetAAAhetΛ̃ΛΛhetQQQ
T
het

=QQQhet

λLLLhet

1
αLLL1

λ
L̃LL

het
1

0 · · · 0

0 λLLLhet
2
αLLL2

λ
L̃LL

het
2

· · · 0

...
...

. . .
...

0 0 · · · λLLLhet
N
αLLLN

λ
L̃LL

het
N

QQQT
het

=
N∑
i=1

λLLLhet
i
αLLLi

λ
L̃LL

het
i
qLLLi

qTLLLi
,

where qLLLi
is the ith column of the matrix QQQhet. Therefore, we have:

tr(ZZZlZ̃ZZl
T
) =

N∑
i=1

λAAAhom
i
αAAAi

λ
ÃAA

hom
i
, sum(ZZZlZ̃ZZl

T
) =

∑
i

λAAAhom
i
αAAAi

λ
ÃAA

hom
i
sum(qAAAi

qTAAAi
)

tr(ZZZhZ̃ZZh
T
) =

N∑
i=1

λLLLhet
i
αLLLi

λ
L̃LL

het
i

, sum(ZZZhZ̃ZZh
T
) =

∑
i

λLLLhet
i
αLLLi

λ
L̃LL

het
i

sum(qLLLi
qTLLLi

)

By substituting this into Eq. (21), we have

LHLCL ≥ −

(
N∑
i=1

(
λAAAhom

i
αAAAi

λ
ÃAA

hom
i

+ λLLLhet
i
αLLLi

λ
L̃LL

het
i

)
− 1

N

N∑
i=1

(
λAAAhom

i
αAAAi

λ
ÃAA

hom
i

∑
(qAAAi

qTAAAi
) + λLLLhet

i
αLLLi

λ
L̃LL

het
i

∑
(qLLLi

qTLLLi
)
))

= −

(
N∑
i=1

λAAAhom
i
αAAAi

λ
ÃAA

hom
i

(
1− 1

N

∑
(qAAAi

qTAAAi
)

)
+ λAAAhet

i
αLLLi

λ
ÃAA

het
i

(
1− 1

N

∑
(qLLLi

qTLLLi
)

))

3954

Since qTi qi = 1, |qij | < 1,
∑

(qiq
T
i) > −N2, we have

LHLCL ≥ (−1−N)

N∑
i=1

(
λAAAhom

i
αAAAi

λ
ÃAA

hom
i

+ λAAAhet
i
αLLLi

λ
ÃAA

het
i

)
.

Since λAAAhom
i

∈ (−1, 1], and λLLLhet
i
∈ [0, 2), we have

LHLCL ≥ −1−N

2

N∑
i=1

(
αAAAi

(
2− (λAAAhom

i
− λ

ÃAA
hom
i
)2
)
+ αLLLi

(
4− (λLLLhet

i
− λ

L̃LL
het
i
)2
))

.

3955

	Introduction
	Related Work
	Preliminaries
	Graph CL under Homophily
	High-pass and Low-pass graph filters

	Graph CL under Heterophily
	High-pass & Low-pass graph CL (HLCL)
	Theoretical Analysis

	Experiments
	Results

	Ablation Studies
	HLCL with Explicit Augmentation
	HLCL with Single Graph Filter
	Subgraph Update Interval
	 Homophily ratio can guide Tuning
	HLCL Subgraph Inference
	Using different filtered representations as output

	Limitations
	Conclusion
	Appendix
	Hyperparameters Details
	Dataset Details
	Existing GCL methods with HP filters
	Simplified HLCL
	Using features to infer label information
	Extended Related Work

	Proof
	Theorem 1 [HLCL: Spectral Invariance]

