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Abstract

Bayesian optimization (BO) is a well-established
methodology for optimizing costly black-box func-
tions. However, the sparse observations in the high-
dimensional search space pose challenges in con-
structing reliable Gaussian Process (GP) models,
which leads to blind exploration of the search
space. We propose a novel Voronoi Graph Travers-
ing (VGT) algorithm to extend BO to ultra high-
dimensional problems. VGT employs a Voronoi
diagram to mesh the design space and transform it
into an undirected Voronoi graph. VGT explores
the search space by iteratively performing path se-
lection, promising cell sampling, and graph expan-
sion operations. We introduce a UCB-based global
traversal strategy to select the path towards promis-
ing Voronoi cells. Then we perform local BO
within the promising cell and train local GP with a
neighboring subset. The intrinsic geometric bound-
aries and adjacency of the Voronoi graph assist
in fine-tuning the trajectory of local BO sampling.
We also present a subspace enhancement approach
for the intrinsic low-dimensional problems. Ex-
perimental results, including both synthetic bench-
marks and real-world applications, demonstrate the
proposed approach’s state-of-the-art performance
for tackling ultra high-dimensional problems rang-
ing from hundreds to one thousand dimensions.

1 INTRODUCTION

The black-box function optimization is a widespread prob-
lem in engineering societies, particularly in domains char-
acterized by computationally expensive or time-consuming
evaluations, such as integrated circuit design [Zhao et al.,
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2023], vehicle design [Yao et al., 2011], and drug discov-
ery [Ou-Yang et al., 2012]. Bayesian optimization (BO), as
discussed in [Snoek et al., 2012, Shahriari et al., 2015], is
a sample-efficient global optimization for expensive black-
box problems. Nonetheless, scaling BO to high-dimensional
(HD) space presents significant challenges, and becomes
a prominent research area. High-dimensional BO suffers
from the hurdles caused by the curse of dimensionality.
Firstly, the sparse observations in the HD space compromise
the reliability of Gaussian process (GP) models, making it
challenging to accurately capture the manifolds of objec-
tive functions. Consequently, the imprecise GP models lead
to blind exploration across the entire space. Secondly, the
computational cost of GP training grows cubically with the
number of observations, posing a bottleneck for HD prob-
lems. And for the complex HD heterogeneous problems, a
large amount of observations is often imperative.

The sample efficiency of BO relies on accurate GP models,
which demand numerous observations and become infeasi-
ble in HD space. Many high-dimensional BO (HDBO) meth-
ods have been proposed to enhance GP reliability and im-
prove the sampling efficiency, as reviewed in Sec.2. Firstly,
dimension decoupling based methods [Kandasamy et al.,
2015, Rolland et al., 2018, Mutný and Krause, 2018, Wang
and Jegelka, 2017, Wang et al., 2018] fit the objective func-
tion with a set of low-dimensional addictive GPs, avoiding
uncertain GP model in the HD space. Secondly, subspace
embedding based approaches [Wang et al., 2016, Binois
et al., 2020, Nayebi et al., 2019, Letham et al., 2020, Eriks-
son and Jankowiak, 2021, Song et al., 2022] embed the
original HD problem into a low-dimensional subspace to
obtain an effective subspace GP. However, the presumptions,
dimension decomposability or intrinsic low-dimensionality,
of these two approaches may not hold in practical problems.
Another method, TuRBO [Eriksson et al., 2019], enhances
the local reliability of GPs through dynamic trust regions.
However, achieving credible local GPs remains computa-
tionally expensive and infeasible for problems involving
several hundred design variables.
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Local search methods with restart strategies are popular
approaches for solving high-dimensional problems, which
utilize the search direction and step length to iteratively
navigate towards improved solutions. Commonly used lo-
cal search methods include line search approaches like the
quasi-Newton method BFGS [Nocedal and Wright, 2018,
Liu and Nocedal, 1989] and trust region methods such as
BOBYQA [Powell, 2009]. However, the global convergence
performance of these algorithms significantly relies on the
choice of initial solutions.

In this paper, we aim to scale BO to address multi-modal
and heterogeneous problems in ultra high-dimensional input
spaces. Characterizing function landscapes with regression
models within HD spaces spanning several hundred dimen-
sions is inherently impractical. Consequently, we adopt an
alternative strategy, steering away from the pursuit of en-
hancing GP fitness. Inspired by the key idea of local search
methods, we leverage the Voronoi boundary and adjacency
of each observation (x, f(x)) to provide the step length
and search direction information and guide the optimization
process. We propose the Voronoi Graph Traversing (VGT)
algorithm, which employs Voronoi diagrams to segment the
search space into convex Voronoi cells and utilizes adja-
cency information to construct a Voronoi graph to represent
the design space. The contributions of this paper are sum-
marized as follows.

• We propose the VGT algorithm, a sample-efficient ap-
proach to enable BO to solve ultra high-dimensional
problems. By decomposing the space into Voronoi cells
and mapping it to a Voronoi graph, we transform the
global exploration in continuous spaces into a Voronoi
graph traversal problem. Then the promising cell is
identified by traversing the graph via UCB.

• In the local optimization phase, we employ local BO
within the selected promising cell. We introduce the
Voronoi Neighbored GP (VNGP) model, constructed
with the Voronoi neighbors, to reduce computational
cost. Additionally, the natural geometric boundaries
and Voronoi neighbors assist in fine-tuning the trajec-
tory of local BO sampling.

• For intrinsic low-dimensional problems, we provide
a local feature extraction method to capture the local
manifold of the objective function and enhance sam-
pling efficiency by targeting effective subspaces.

• We assess the performance of the VGT algorithm using
ultra high-dimensional benchmarks, with dimensions
extending up to 1000D. The results demonstrate that
VGT exhibits exceptional advantages when dealing
with high-dimensional problems ranging from hun-
dreds to one thousand dimensions.

A Python implementation of VGT is available on https:
//github.com/adzhao072/VGT.

2 RELATED WORKS

The key ideas to tackle HDBO include dimension decou-
pling, subspace embedding, and region restriction.

Dimension decoupling based methods rely on the assump-
tion of dimension decomposability within the objective func-
tion. ADD-GP [Kandasamy et al., 2015] is proposed to learn
the additive structure and decompose the high-dimensional
space into disjoint or overlapping subspaces [Rolland et al.,
2018, Mutný and Krause, 2018, Wang and Jegelka, 2017].
However, training a collection of GPs is computationally
expensive and unaffordable for large observations. To alle-
viate the computational cost of GPs, various methods have
emerged to approximate the GP kernel with Fourier features
[Mutný and Krause, 2018, Rahimi and Recht, 2007, Sripe-
rumbudur and Szabo, 2015, Wang et al., 2018, Hensman
et al., 2017]. Nevertheless, the challenge of expensive com-
putation and unknown dimension structure still hinder their
application in high-dimensional cases.

Subspace embedding is a currently popular method
that projects the high-dimensional problem into a low-
dimensional subspace based on the assumption of intrinsic
low dimensionality. Linear embedding methods, including
RemBO [Wang et al., 2016, Binois et al., 2020], HesBO
[Nayebi et al., 2019] and ALEBO [Letham et al., 2020], cast
the problem into a randomly selected linear subspace and
perform BO within the subspace. SAASBO [Eriksson and
Jankowiak, 2021] and MCTS-VS [Song et al., 2022] aim
to improve BO’s sample efficiency by identifying sparse
effective variables. Additionally, other methods focus on
learning non-linear feature spaces with neural networks [Lu
et al., 2018, Tripp et al., 2020, Maus et al., 2022].

Region restriction is an effective approach for directly man-
aging the high-dimensional input space. TuRBO [Eriksson
et al., 2019] confines the optimization within dynamically
adjusted hyper-rectangular trust regions, which resists blind
exploration across the entire search space. Extensions of
TuRBO have been proposed for categorical and mixed vari-
ables [Wan et al., 2021], as well as for faster local descent
[Zhai and Gao, 2022]. Another approach, LA-MCTS [Wang
et al., 2020, Yang et al., 2021], introduces a SVM-based
hierarchical space partition and balances the exploration and
exploitation via Monte Carlo tree search (MCTS).

3 PROBLEM SETUP AND BACKGROUND

Problem setup. We consider the following black-box
function optimization problem:

x∗ = argmin
x∈X

f(x), (1)

where x represents the input variable, X = [0, 1]D is the
normalized search space, f : X → R denotes the objective
function that incurs computationally expensive evaluations,
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Figure 1: An illustration of a Voronoi graph G(V, E).
The edge set E is determined by Delaunay triangulation.
The neighbor set corresponding to node v7 is N (v7) =
{v4, v5, v6, v7}.

and x∗ is the optimal parameter that achieves the minimal
function value.

Voronoi Diagram. The Voronoi diagram, also known as
Dirichlet tessellation, is a geometric representation that par-
titions space based on the Euclidean distance to a given set
of observations or seeds. Consider a set of n observations
denoted as V = {vi; i = 0, · · · , n− 1} in the space X . The
Voronoi diagram divides X into n convex polygons known
as Voronoi cells. An observation vj serves as the site for
its corresponding Voronoi cell Vor(vj). The Voronoi cell
Vor(vj) covers the region that is closer to vj than any other
observation in V [de Berg et al., 2008]:

Vor(vj) = {x ∈ X |∀vi ∈ V, ||x− vj || ≤ ||x− vi||}. (2)

The adjacent cells that share common Voronoi boundaries
are called Voronoi neighbors. Given an observed dataset V ,
the Voronoi diagram Vor(V) is uniquely determined. The
neighborhood relationships within the Voronoi diagram can
be established through the utilization of Delaunay triangu-
lation. When two Voronoi cells share a common edge, it
signifies a neighbor relationship between the corresponding
nodes in X . Fig. 1 presents an illustration of the Voronoi
diagram along with its dual, the Delaunay triangulation.

Voronoi Graph. Based on the Voronoi diagram, we de-
fine a Voronoi graph G(V, E) as an undirected graph with
self-loops. The node set V consists of the given observa-
tions. Each node vi corresponds to a Voronoi cell Vor(vi).
Each non-looped edge {vi, vj} ∈ E , where i ̸= j, repre-
sents the existence of a specific neighboring relationship be-
tween Voronoi cell Vor(vi) and Vor(vj). If the neighboring
relationship is defined by Voronoi adjacency, the Voronoi
graph G(V, E) extends the Delaunay triangulation by in-
cluding self-loops. However, in the high-dimensional sce-

narios, the exponential increase in possible simplices, such
as triangles or tetrahedrons, presents significant challenges
for the efficient construction and representation of Voronoi
boundaries and Delaunay triangulation, both in terms of
computation and storage. Fortunately, the VGT algorithm
does not rely on the exact Voronoi neighboring relation-
ship. For high-dimensional cases, we construct an approxi-
mate graph based on the similarity of observations without
explicit Voronoi computation. As outlined in Sec.4.3, we
introduce a Voronoi graph approximation technique that ef-
ficiently captures the neighborhood relationships and builds
the connected Voronoi graph. To simplify the notation, we
define the neighboring subset centered around a node v as
N (v) = {vi; where {v, vi} ∈ E for vi ∈ V}. Notice that,
N (v) ⊆ V includes both the node v itself and its corre-
sponding neighbors.

Slice Inverse Regression. Slice Inverse Regression (SIR)
is a supervised method to discover the effective dimen-
sion reduction (EDR) directions, particularly in scenarios
where there is a limited number of observations in the high-
dimensional search space (n ≪ D). In SIR, a regression
model is defined as

y = f(βT
1 x, · · · ,βT

d x, ϵ), (3)

where B = {β1, · · · ,βd} represents the d-dimensional
EDR subspace (d≪ D), and ϵ denotes the regression noise.
The pattern space B is extracted from the central inverse
regression curve E(x|y)−E(x) under the linear design con-
dition (LDC). This is achieved by solving the generalized
eigen decomposition problem:

ΣE(x|y)β = λΣxβ, (4)

where Σ(·) denotes the covariance matrix empirically esti-
mated using the sliced observations [Li, 1991].

4 VORONOI GRAPH TRAVERSING
METHOD

In this section, we introduce the Voronoi graph traversing
(VGT) algorithm, a novel approach for addressing HD black-
box function optimization problems.

4.1 VORONOI GRAPH TRAVERSING

Due to limited observations and high computational com-
plexity, building reliable GP models in HD spaces is imprac-
tical. Thus, the sample guidance provided by the surrogate
model diminishes significantly, resulting in blind explo-
ration of HD space. Our Voronoi Graph Traversing (VGT)
algorithm takes a different approach, which employs the
geometric information within the Voronoi diagram to im-
plicitly update the step length and search direction, planning
the traversal trajectory in HD space.
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Figure 2: An illustration of the search procedure of VGT. (a) Expansion of node depth: The depth of a node is incremented
if a new sample is created within its corresponding Voronoi cell. (b) Path selection: Select the red path v5,h=6 → v6,h=6 to
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Figure 3: An illustration demonstrating how Voronoi geo-
metric boundaries guide HD optimization.

We partition the search space into Voronoi cells and repre-
sent it as a Voronoi graph utilizing adjacency relationships,
as depicted in Fig.1. The global exploration of VGT involves
traversing the Voronoi graph, and navigating towards the
optimal cell. For the local exploitation phase, the effective
selection of step length and search direction determines
the success of the optimization algorithm. We refine the
BO sampling mechanism. The Voronoi boundaries, deter-
mined by the perpendicular bisectors between a cell and
its neighbors, are considered highly informative and de-
serving of exploration. The GP posterior exhibits a higher
standard deviation near these boundaries compared to re-
gions close to existing observations. Sampling around the
Voronoi boundaries maximizes the information gain about
the current observations V Contal et al. [2013]. Hence, we
anticipate using the Voronoi cell’s boundary to guide the
selection of the step length of the next observation. Addi-
tionally, the search direction is indicated by the local GP
model constructed with Voronoi neighbors of the target cell.
However, computing and storing Voronoi boundaries is in-
tractable. We use a Gaussian distribution to approximate
the profile of the target Voronoi cell and sample new ob-
servations, as indicated by the dashed ellipse in Fig.3. The
sample direction of local BO is refined with the assistance
of the shape and geometric boundaries of the Voronoi cells.
For the “bad” observation with poorer function value, like

v7, the new cell Vor(v7) extrudes the space of original cell
Vor(v6), influencing subsequent sampling directions of BO,
as shown in Fig.3(b). Conversely, successful observations,
such as v8, guide the algorithm towards more optimal re-
gions, as exemplified by v9 that converges near the global
optimum. By leveraging the geometric boundaries and ad-
jacency of the Voronoi graph, VGT precisely utilizes the
coordinate and function value of each observation to guide
the optimization.

4.2 SEARCH PROCEDURE OF VGT

The search procedure is illustrated in Fig.2 and detailed in
Algorithm 1, which encompasses three primary stages: (1)
Path selection creates a movement from the current node
towards a promising neighboring node; (2) Local BO sam-
pling generates a new sample within the promising Voronoi
cell; (3) Expansion & propagation expands the graph with
new observations and updates the reward. These steps are
performed iteratively until the stopping criterion is satisfied.

The traversal algorithm commences by randomly generating
an initial node v0,h=0|Gt=0 , which covers the whole search
space X . Here, the node depth h denotes the number of
visits to a node and its parents. The update of node depth h
follows the tree structure shown in Fig.2(a). The union set
of leaf nodes represents a space partition of X at iteration t.
Then we present the detailed search procedure of VGT.

Path Selection. In each iteration t, VGT moves from a
start node v∗t−1,h∗

t−1|Gt to a promising neighbor v∗t,h∗
t |Gt ∈

N (v∗t−1,h∗
t−1|Gt) (e.g., from node v5,h=6 to node v6,h=6

in Fig.2(b)), facilitating progress towards the global op-
timum. Notably, the start node v∗t−1,h∗

t−1|Gt is the opti-
mal node selected in iteration t − 1, and also included
in N (v∗t−1,h∗

t−1|Gt), allowing for a “stationary step”. To
achieve a comprehensive exploration of the search space,
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Algorithm 1 Voronoi Graph Traversing (VGT)

Input: Objective function f(x), search space X , maximal iteration T .
1: Randomly sample the initial node V = {v0,h=0 = random(x0, f(x0))}; Gt=0(V, E). ▷ Random Initialization
2: Traverse from v∗−1,h∗

−1|Gt=0 ← v0,h=0|Gt=0 .
3: for t = 0 to T − 1 do
4: Select the promising node from neighboring subset v∗t,h∗

t |Gt = argmax
vj∈N (v∗

t−1,h∗
t−1

|Gt )

UCB(vj). ▷ Path Selection

5: Train the VNGP model with dataset N (v∗t,h∗
t |Gt).

6: Generate sample xt+1 by performing BO within Voronoi cell Vor(v∗t,h∗
t |Gt). ▷ Sample via Local BO

7: Evaluate objective function and collect samples vt+1,h∗
t+1 = (xt+1, f(xt+1)).

8: Gt+1 ← Gt.append(vt+1,h∗
t+1); v∗t,h∗

t+1|Gt+1 ← v∗t,h∗
t+1|Gt ; Update UCB. ▷ Expansion & Propagation

9: end for

we employ the Upper Confidence Bound (UCB) criterion to
assess the potential of each node during the dynamic path
selection process. The UCB for VGT is defined as follows
[Lupu and Precup, 2018]:

UCB(vi) = Q(vi) +

√
Cp · ln t
h(vi)

, (5)

where Q(vi) represents the quality of node vi, and h(vi)
denotes the depth of vi. For simplicity, we estimate the qual-
ity of node vi as Q(vi) = −f(xi). The hyperparameter Cp

balances the exploration of under-explored areas and the
exploitation of promising regions. The traversal algorithm
in VGT specifically limits the evaluations of UCB to nodes
that have established neighborhood relationships, rather than
evaluating all nodes in the graph. This selective UCB evalu-
ation strategy aims to prioritize nodes that are more likely
to contribute to finding the optimal solution. By focusing
on nodes with established neighborhood relationships, VGT
ensures a more targeted exploration.

Sample via Local BO. Once a promising node is selected,
we perform local BO within the corresponding Voronoi
cell. To mitigate the computational complexity associated
with GP modeling, we propose the Voronoi Neighbored GP
(VNGP) model, which is trained with the neighbor dataset
N (v∗t,h∗

t |Gt). As the GP kernel is correlated with the distance
between observations, the observations located far from the
target cell contribute little to local modeling. VNGP takes
advantage of the spatial structure of the Voronoi graph to
enable computationally efficient local modeling while main-
taining accuracy. The new observation vt+1,h∗

t+1 is sampled
by optimizing the acquisition function within the irregular
Voronoi cell (e.g., the blue polygonal region in Fig.2(c)).
To achieve this, we employ a Gaussian distribution (e.g.,
the black dashed ellipse in Fig.2(c)) centered around the
Voronoi site v∗t,h∗

t |Gt to sample the acquisition function. The
hyperparameters of the sample distribution are tuned using
random samples located within the target cell. Samples lying
outside the target cell are discarded by reject sampling.

Expansion & Propagation. Each sample within a target
cell Vor(v∗t,h∗

t |Gt) of depth h∗
t creates a new cell of depth

h∗
t +1 while also incrementing the depth of v∗t,h∗

t |Gt+1 . Once
a new observation is sampled, the graph Gt+1 is then ex-
panded by incorporating a new Voronoi cell centered around
the new observation vt+1,h∗

t+1, as shown in Fig.2(d). The
UCB is updated to refine the trajectory of the next step based
on the most recent information. The expansion & propaga-
tion step progressively expands the coverage of search space
by incorporating the newly acquired nodes and enhances
the algorithm’s global exploration capability.

By iteratively performing the aforementioned steps, the al-
gorithm continues to explore the design space and adjust its
trajectory to efficiently navigate towards the optimal region.
The VNGP model is dynamically updated along with the
movement and incorporation of new samples to maintain
its local responsiveness and adaptability. By leveraging the
VNGP model and employing the UCB selection strategy, the
algorithm identifies a traversal path that progresses towards
the global optimum along the valley bottom, as illustrated
by the red traversing path in Fig.4. For a visual overview of
the VGT traversal procedure, please refer to Appendix A.

4.3 SCALING TO HIGH-DIMENSIONAL SEARCH
SPACE

In this section, we propose two key strategies, namely
Voronoi graph approximation and subspace BO sampling,
to tackle the challenges of scaling the VGT algorithm to
high-dimensional search spaces.

Voronoi Graph Approximation. Determining the
Voronoi diagram and Delaunay triangulation in high-
dimensional space and large-sample-budget scenarios is
computationally infeasible. Instead of explicitly calculat-
ing the Voronoi boundaries and Delaunay connections,
we can employ similarity search approaches, such as
K-nearest neighbor search (K-NNS) [Yianilos, 1993] or
approximate nearest neighbor search (ANNS) [Andoni
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et al., 2015, Malkov and Yashunin, 2020], to discover
the neighborhood relationships among observations and
construct an approximate Voronoi graph. In this work, we
utilize K-NNS to approximate the neighborhood of a given
node. By identifying the K nearest neighbor nodes, we can
establish connections between each node and its K closest
neighbors, thereby forming a connected graph within the
search space. K is a hyper-parameter that depends on the
dimensionality of the problem. With a larger K, the Voronoi
neighbors will be included in the K nearest neighbors. For
a moderate K, the Voronoi neighbors and the K nearest
neighbors often coincide. Additionally, in high-dimensional
cases, the Voronoi boundaries are not computed explicitly.
Instead, we use reject sampling to discard candidates
outside the target cell based on the property described in
Eq.(2). Ultimately, the high-dimensional Voronoi graph
approximation problem boils down to K-NNS. This
approximation effectively captures the local neighborhood
relationships while avoiding the computational overhead
associated with explicit Voronoi boundaries and Delaunay
connections.

Subspace BO Sampling. In high-dimensional spaces, the
localized GP model is often underfitting and exhibits large
uncertainty, especially when the number of available sam-
ples is significantly smaller than the problem’s dimension D.
To tackle this issue, we incorporate Localized SIR (LSIR)
[Wu et al., 2008] to capture the local EDR subspace denoted
as Bt by leveraging information from neighboring samples.
Furthermore, experience suggests that the objective func-
tion tends to decrease along the previous descent direction
denoted as st−1. Exploiting this insight, we construct the
pattern subspace St = {st−1} ∪ Bt with a dimension sig-
nificantly smaller than the original problem’s dimension, de-
noted as |St| ≪ D. Consequently, by accurately modeling
the subspace problem with a smaller number of observa-
tions, we can effectively optimize the acquisition function
α(xt + s) within the subspace St, subject to the step length
constraint xt + s ∈ Vor(v∗t,h∗

t |Gt):

st = argmax
s∈St

α(xt + s),

s.t. xt + s ∈ Vor(v∗t,h∗
t |Gt),

(6)

where α(·) is the acquisition function. The subspace method
can efficiently capture the local effective manifold of ob-
jective functions in ultra HD space and enhance local BO
sampling. To mitigate the potential degradation of diversity
caused by subspace BO, we adopt a strategy of alternat-
ing subspace sampling and full-dimension sampling. We
introduce a hyper-parameter Rp to represent the ratio be-
tween subspace sampling and full-dimension sampling. For
sparse optimization problems, where the valid dimensions
are limited, a larger value of Rp can be chosen to allocate
more iterations for exploiting the subspace spanned by the
effective feature directions. On the other hand, for dense

problems with a larger number of relevant dimensions, a
smaller value of Rp can be utilized to focus more on the
exploration of the promising cells.

5 DISCUSSIONS

5.1 COMPLEXITY ANALYSIS

The computational burden of the VGT algorithm mainly
originates from two factors: training the VNGP model and
optimizing the acquisition function. For each iteration t,
fitting the VNGP model incurs a complexity of O(K3).
Optimizing the acquisition function involves the prediction
complexity of the VNGP model, which is O(K2), as well
as the complexity of the nearest neighbor search (NNS). The
complexity of NNS depends on the specific implementation.
In our approach, we utilize the popular k-d tree for NNS,
which involves depth-first tree traversal and backtracking.
The backtracking operation typically grows exponentially
with the dimension D, resulting in a linear query complexity
for high-dimensional problems. In many scenarios, the k-
d tree struggles to outperform brute-force search , which
has a search complexity of O(D ·N), due to the curse of
dimensionality. This work is primarily focused on enhancing
the sample efficiency of HDBO, and we do not delve into the
challenges associated with high-dimensional NNS further.
Initially, the computational cost is predominantly dominated
by the VNGP model, while in later iterations, NNS becomes
the main factor affecting computational efficiency. For a
more detailed description of the computational complexity
of VGT, please refer to Appendix B.

5.2 INSIGHTS

In this paper, we propose VGT as an efficient global opti-
mization approach for complex and heterogeneous problems
over HD search space. VGT divides the design space into
Voronoi cells and traverses the graph to achieve global ex-
ploration. By combining graph traversal with promising cell
sampling, VGT guides towards the optimal region along a
valley with small function values, as shown in Fig.4. Re-
gions with poor function values are effectively avoided with
a few additional observations. While VGT operates within
the localized BO framework, maintaining a global perspec-
tive is crucial for ensuring the quality of convergence. In
addition to the graph traversal strategy, VGT employs a
restart mechanism to enhance its global search capability.
If there is no reduction in the objective function value over
several consecutive iterations, the algorithm moves to the
Voronoi cell with the minimal depth h and creates a new
search path.

The Voronoi diagram in VGT provides a fine-grained parti-
tion of the search space, with each observation contributing
to the update of the geometry of the promising region and
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guiding the search direction. Compared to TuRBO, which
employs hyper-rectangular trust regions, VGT leverages
the geometric boundaries defined by each observation, and
adapts more effectively to irregular, multi-modal, and het-
erogeneous function landscapes. Compared to La-MCTS,
which utilizes SVM for domain decomposition, VGT ex-
hibits lower computational complexity and superior scala-
bility to high-dimensional heterogeneous problems, as the
SVM boundary inherently relies on the adaptation of the
kernel function to the objective function landscape.

Voronoi cell 
Vor(vt,h)

Observations

Traversal path

Valley of function 
landscape

Global optimum

v0,h=4

v1,h=1

v2,h=2

v3,h=3

v4,h=5

v5,h=6

v7,h=12

v6,h=7

v8,h=8

v9,h=9

v10,h=10

v11,h=11
v12,h=12

Target cell 
Vor(v*)

Figure 4: An illustration of the traversal path of VGT. Most
observations are concentrated in the promising valley. The
traversal path is marked by red arrows.

6 EXPERIMENTAL RESULTS

We conduct a thorough evaluation of VGT’s performance
using a diverse set of HD experiments. Our experiments en-
compass both synthetic functions, such as Ackley, Griewank,
Rosenbrock and Hartmann6, as well as real-world applica-
tions, including vehicle design (124D Mopta08), machine
learning tasks (388D SVM training), and analog circuit op-
timization (36D opamp, 77D phase lock loop). Except for
the experiments in Sec.6.1.3 involving additional dummy
dimensions, all other benchmarks are based on real dimen-
sions and challenging for optimization algorithms.

To provide a comprehensive evaluation, we compare the
performance of VGT against a wide range of state-of-the-art
baselines, including the local BO methods MCTD [Zhai and
Gao, 2022], TuRBO [Eriksson et al., 2019] and La-MCTS
[Wang et al., 2020], the subspace embedding-based ap-
proaches MCTS-VS [Song et al., 2022] and HesBO [Nayebi
et al., 2019], the popular evolutionary algorithm CMA-ES
[Hansen et al., 2003], the simplex method Nelder-Mead
[Nelder and Mead, 1965], and Random Search. All experi-
ments are conducted on a Linux workstation equipped with
Intel Xeon Gold 6230 @2.1GHz CPUs and 128GB mem-
ory. To account for random variations, each experiment is
repeated 10 times with different random seeds. For more de-
tailed experimental settings, sensitivity analysis of the hyper-
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Figure 5: Optimization results for low-dimensional synthetic
benchmarks.

parameters, and additional experimental results, please refer
to Appendix C.

6.1 SYNTHETIC FUNCTIONS

6.1.1 Low-dimensional Synthetic Benchmarks

We first provide a set of low-dimensional synthetic bench-
marks to evaluate the performance of the proposed VGT
algorithm, including Ackley, Griewank, Rosenbrock, and
Hartmann6. The experimental results are presented in Fig.5.
For these small-scale problems, we can explicitly compute
the Voronoi boundaries and neighbors. Then, we compare
the performance of VGT-lowdim with explicit Voronoi
boundaries and neighbors, and VGT with approximated
Voronoi graph by K-NNS. Experimental results indicate
that the Voronoi graph approximation approach proposed
in Sec.4.3 does not compromise VGT’s sample efficiency.
Both of the aforementioned VGT methods achieve superior
sampling efficiency and better solutions compared to state-
of-the-art baselines, with TuRBO and MCTD following
behind. The performance of the subspace embedding-based
approaches, HesBO and MCTS-VS, is inferior to the local
BO methods.

6.1.2 High-dimensional Synthetic Benchmarks

We evaluate the performance of VGT and compare it against
various baselines on benchmark functions including Ackley,
and Griewank. Both functions are evaluated in dimensions
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Figure 6: Optimization results for high-dimensional synthetic benchmarks are presented. All benchmarks are multi-modal
and challenging for global optimization algorithms, with each having a unique global optimum of 0.

of 100D, 200D and 1000D, and are challenging for global
optimization algorithms.

Fig.6 gives a visual comparison of VGT against the base-
lines. In the 100D and 200D scenarios, VGT consistently
outperforms MCTD for both benchmarks, with CMA-ES
and TuRBO closely following. The subspace embedding-
based method HesBO and variable selection-based method
MCTS-VS show unsatisfactory performance when applied
to the full-dimensional problems.

For the 1000D ultra high-dimensional scenarios, MCTD
encounters difficulties when applying its local descent strat-
egy, resulting in premature termination. The curve of LA-
MCTS is also missing due to the computation time exceed-
ing 200 hours, highlighting the computational challenges of
the problem. Among the compared algorithms, only VGT
demonstrates efficient and stable descent for the ultra high-
dimensional cases. CMA-ES and other HDBO methods, in-
cluding MCTS-VS and TuRBO, are lagging far behind VGT.
These results demonstrate that VGT is a highly effective
algorithm for ultra HD optimization problems, outperform-
ing other state-of-the-art methods in terms of both sample
efficiency and quality of solutions.
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Figure 7: Experiments with additional dummy dimensions.

6.1.3 Scenarios with Additional Dummy Dimensions

To evaluate the effectiveness of the proposed subspace
sampling method, we conduct experiments with additional
dummy dimensions in the Hartmann6D and Ackley10D
functions. By extending the dimensions to 500D through the
addition of independent dummy variables, we investigate
two scenarios of VGT: single full-dimensional sampling
VGT and effective subspace sampling VGT-subspace.
For the subspace sampling, we set Rp = 1/1 to enhance the
subspace exploitation while also maintaining global search
capability. The numerical results, depicted in Fig.7, demon-
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strate that VGT-subspace with subspace sampling exhib-
ited the fastest descent rate among the compared algorithms,
closely followed by VGT with full-dimensional sampling.
The variable selection-based MCTS-VS shows the ability
to capture the valid dimensions and achieves satisfactory re-
sults. CMA-ES also demonstrates good adaptability to these
problems. However, MCTD falls behind TuRBO and is not
well-suited for these intrinsically low-dimensional problems.
These findings validate the effectiveness of the subspace
sampling method in VGT, which allows for sample-efficient
optimization even in the presence of additional dummy di-
mensions.

6.2 REAL-WORLD APPLICATIONS

For the real-world optimization problems, we focus on two
analog integrated circuit optimization problems based on the
open-source benchmark circuits [Sunter and Sarson, 2017],
a 36D opamp circuit and a 77D phase lock loop (PLL).
Additionally, we consider a 124D soft-constrained vehicle
design problem MOPTA08, as well as a 388D SVM training
task. For these real-world problems with unknown dimen-
sional structures, we use the parameter setting Rp = 1/4
for subspace sampling, which allows us to explore potential
EDR directions with a small number of observations.
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Figure 8: Optimization results for real-world applications.
Each practical problem is transformed into a scalar mini-
mization problem.

For the opamp circuit, the objective is to minimize the Iddq
with three specification constraints. We formulate a scalar
objective function with soft penalties to address the circuit
design, which involves 36 free parameters related to tran-
sistor sizes and capacitor areas. The circuit performance

is obtained from the SPICE simulator, and the objective
function exhibits heterogeneity due to the piece-wise device
model. VGT outperforms other methods in this case. MCTD
achieves a similar descent speed to TuRBO, indicating that
the stochastic three-point descent of MCTD can not pro-
vide an advantage in this scenario. The simplex method,
Nelder Mead, fails to find the feasible region. For the PLL
circuit, the objective is to minimize the average current con-
sumption (Iddavg) while maintaining the output peak-to-
peak voltage. We focus on optimizing the charge pump and
voltage-controlled oscillator (VCO) components. Behavior
models of logic gates are used to reduce simulation time.
The PLL has 77 design parameters related to device sizes.
Results show that VGT still outperforms other methods in
this case, with HesBO following.

For the 124D soft-constrained vehicle design problem
MOPTA08 and the 388D SVM training task, VGT main-
tains its superiority over other methods in these benchmarks.
For MOPTA08, VGT converges to the optimum with a
small number of samples, while MCTD, TuRBO, MCTS-
VS, and CMA-ES achieve similar final results. In the case
of SVM388D, VGT outperforms other baselines by a large
margin, highlighting its superiority for high-dimensional
problems. MCTD, TuRBO, and CMA-ES also display good
performance in high-dimensional settings, while other meth-
ods fail to find reasonable solutions. Please refer to Fig.8
for a visual representation of the results.

7 CONCLUSIONS

We propose a novel Voronoi graph traversing method for
scaling BO to ultra high-dimensional input space. We uti-
lize a UCB-based graph traversing strategy to navigate the
search direction in high-dimensional space. Local exploita-
tion efficiency is ensured by sampling within the promis-
ing Voronoi cell. Moreover, we provide an efficient sub-
space BO sampling by restricting BO to the effective sub-
space extracted using LSIR. Experiments on the ultra high-
dimensional benchmarks spanning up to 1000D demonstrate
the remarkable advantages of the VGT algorithm for solv-
ing problems in ultra high-dimensional input space. The
extension of VGT to ultra high-dimensional constrained
optimization, multi-objective optimization, and distributed
parallel computing is a focus of future research.
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A CONVERGENCE PROCEDURE OF VGT

In this section, we present a detailed illustration of the iterative and convergence process of the VGT algorithm, depicted in
Figure 9, to facilitate readers’ in-depth comprehension of VGT’s search mechanism in high-dimensional spaces.
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Figure 9: An illustration of the convergence procedure in VGT.

In high-dimensional spaces, limited observations result in highly imprecise GP models, rendering BO prone to blind
exploration. The VGT algorithm introduces Voronoi domain decomposition to partition the high-dimensional space into
convex Voronoi cells. Global exploration of space is achieved through traversal along the Voronoi graph. Subsequently, the
Voronoi cell’s geometric boundaries are employed to direct the sampling for local BO. To guarantee the global coverage
of the entire space, in each iteration, we aim to position the sampling for local BO as near as possible to the edge of the
promising Voronoi cell, typically around the vicinity of the dashed ellipse in Figure 9.

The algorithm starts with a randomly initial point, e.g. v0 as depicted in Figure 9(a), representing the entire search space X .
By iteratively performing path selection, promising cell sampling, and graph expansion operations, new cells are generated.
The “good” observations, (e.g. v4 in Figure 9(e)), direct the algorithm towards more promising regions (indicated by the red
arrow). Conversely, the “bad” observations, like v1, v2, v3, and v8, guide the algorithm away from under-performing areas.
With the progression of iterations, the promising cell gradually contracts and converges towards the global optimum.
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B COMPUTATIONAL COMPLEXITY ANALYSIS

The computational burden of the VGT algorithm mainly originates from two factors: training the VNGP model and
optimizing the acquisition function. The training and prediction complexity of the VNGP model is influenced by the number
of neighbors of the selected node. In the Voronoi graph constructed with K nearest neighbor search (NNS), the promising
node is connected to its K nearest neighbors. Consequently, the data size for training the VNGP model is K.

We consider a VNGP model with a training dataset (XK ,yK) of size K. The predictive mean µ(x) and variance σ2(x) at
x ∈ X is:

µ(x) = m(x) + kT
KC−1

K (y −m(X)),

σ2(x) = k(x,x)− kT
KC−1

K kK ,
(7)

where kK=[k(x,x0),· · ·, k(x,xK−1)]
T and CK is the K-dimensional covariance matrix. The model parameters are tuned

by maximizing the log marginal likelihood function:

L(θ) = −1

2
yTC−1

K y − 1

2
log

∣∣CK

∣∣− K

2
log(2π). (8)

Hence, training the VNGP model has a complexity ofO(K3) due to the covariance matrix inversion in Eq.(8). The prediction
complexity is O(K2) in Eq.(7).

Another important computation cost arises from the optimization of the acquisition function within the Voronoi cell for each
iteration t, which involves the prediction complexity of the VNGP model O(K2), and the NNS complexity by k-d tree. The
k-d tree has a construction complexity of O(D ·N · log(N)) and a worst-case query complexity of O(D ·N).

C EXPERIMENTS

C.1 RUNTIME COMPARISON

Table 1 presents a comparison of the experimental results and the average runtime for a total of 2000 function evaluations.

Table 1: Runtime comparison of Bayesian optimization methods

Algorithms Ackley100D Ackley200D Griewank100D Griewank200D
f(x) Runtime f(x) Runtime f(x) Runtime f(x) Runtime

VGT 0.44± 0.42 1.0h 2.03± 0.42 1.6h 0.90± 0.13 2.2h 195.6± 194.4 2.2h
MCTD 1.12± 0.20 14.1h 3.28± 1.26 25.6h 13.1± 6.6 4.8h 259.4± 65.1 4.5h

MCTS-VS 8.33± 0.50 1.2h 10.17± 0.49 1.2h 527.0± 60.9 1.2h 1327.0± 55.4 47min
TuRBO 5.01± 0.30 1.5h 7.78± 0.22 1.4h 107.3± 30.6 1.6h 703.7± 26.7 53min

LaMCTS 11.93± 0.12 5.3h 12.72± 0.15 10.9h 1307.0± 192.5 4.9h 3162.5± 163.8 6.6h
LaMCTS-TuRBO 9.66± 0.52 3.7h 11.48± 0.11 2.6h 703.9± 68.0 17.7h 1789.3± 151.5 7.5h

GP-EI 12.50± 0.13 1.6h 13.15± 0.16 3.9h 1382.9± 68.6 3.1h 3203.1± 75.0 3.7h

C.2 ADDITIONAL EXPERIMENTAL RESULTS

For the additional experiments, we consider the valley-shaped function Rosenbrock and the multi-modal function Rastrigin.
Both functions are evaluated in dimensions of 100D, 200D, and 1000D, posing challenges for global optimization algorithms.

Fig. 10 presents the experimental results of 10 repeated runs. For the 100D and 200D Rosenbrock function, VGT consistently
outperforms MCTD, with CMA-ES and TuRBO closely following behind. CMA-ES and TuRBO exhibit comparable sample
efficiency for this case. The subspace embedding-based method HesBO and variable selection-based method MCTS-VS
show unsatisfactory performance when applied to full-dimensional problems.

For the 100D and 200D Rastrigin benchmarks, VGT initially lags behind MCTD due to its strategy of investing more
observations in exploring the search space and assessing potential regions. However, VGT eventually surpasses them and
achieves the best final solutions.
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Figure 10: Optimization results for high-dimensional synthetic benchmarks.

For the 1000D ultra high-dimensional scenarios, MCTD still fails to handle the ultra high-dimensional search space.
Similarly, the local BO method LA-MCTS also fails due to its high computation cost caused by the SVM boundary for
domain decomposition. In contrast, the proposed VGT algorithm continues to lead ahead of other baselines, and the margin
with others is much larger in the high-dimensional cases. This demonstrates that the VGT algorithm exhibits much higher
sampling efficiency for high-dimensional problems.

Fig. 11 displays a scatter plot of observations, using Ackley200D as an example. The distribution of observations in the local
BO methods TuRBO and MCTD is relatively concentrated throughout the optimization process, limiting the algorithm’s
global exploration ability in the early stage. Conversely, the distribution of observations of the variable selection method
MCTS-VS is overdispersed, indicating its weak local exploitation ability and difficulty in achieving rapid descent in the
objective function value. In contrast, the observations of VGT are dispersed in the early stage, providing more exploration of
the search space. As the iteration progresses, the observations tend to concentrate during the late stage, facilitating more
focused exploitation of the search space.

C.3 SENSITIVITY ANALYSIS OF HYPER-PARAMETERS

We further investigate the sensitivities of the hyper-parameters of VGT, including Cp for exploration and exploitation
balance, the number of neighbors K used for approximating the Voronoi graph and the subspace exploitation ratio Rp. The
corresponding experimental results are visualized in Fig. 12.

Exploration & exploitation balance parameter Cp The hyper-parameter Cp balances the exploitation in the best cell
and the exploration of sparse areas with fewer visits. A large value of Cp prioritizes exploration over exploitation, leading
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Figure 11: Scatter plot of observations, using Ackley200D as an example.

to the algorithm traversing under-explored regions of the search space. This can result in a reduced convergence rate, as
shown in Fig. 12(a) for Cp = 1 and Cp = 5. Setting Cp within a reasonable range generally does not significantly impact
the optimization ability of the algorithm.

Number of neighbors K The hyper-parameter K determines the number of nearest neighbors used to approximate the
Voronoi graph, which directly affects the performance and computational complexity of the algorithm. A small value of K
can lead to a poorly fitted VNGP model, which is not instructive for the optimization process, e.g. K = 20 in Fig. 12(b).
Meanwhile, a larger value of K improves accuracy at the cost of increased computational burden. Therefore, selecting
an appropriate value of K according to the problem size is important to achieve a balance between performance and
computational efficiency. For example, the choice K = 80 for the 200D problem in Fig. 12(b) yields satisfactory results.
However, if K is further increased, the improvement in sampling efficiency is not significant.

Subspace exploitation ratio Rp The parameter Rp controls the ratio to perform subspace BO sampling. It is essential to
select appropriate Rp according to the intrinsic dimension of the problem. A larger value of Rp can lead to a degradation of
the dimension "diversity" of the observations, which can result in the optimization trapped in the sub-optimal region. In
our experiments, we observe that just a small Rp can effectively extract the EDR subspace and accelerate the optimization
process for problems with redundant dimensions. For instance, setting Rp = 1/3 is sufficient for the Ackley10_500D
problem in Fig. 12(c).

C.4 EXPERIMENTAL SETTINGS

We use the opensource implementation of the baselines referred to by the authors: MCTD1, MCTS-VS2, TuRBO3, LA-
MCTS4 and HesBO5. For CMA-ES, we use the pycma library6, and for Nelder Mead, we use the Python implementation 7.
We adopt the default hyper-parameter settings by the authors. The detailed experimental configuration is as follows:

MCTD We use the author’s default parameter settings with Cd = 10 for the weight of recent improvement, Cp = 0.5 for
the weight of exploration, C ′

p = 0.1 for branch exploration and C ′′
d = 50, C ′′

p = 0.1 for leaf exploration.

1https://github.com/yazhai/mctd
2https://github.com/lamda-bbo/MCTS-VS
3https://github.com/uber-research/TuRBO
4https://github.com/facebookresearch/LaMCTS
5https://github.com/aminnayebi/HesBO
6https://github.com/CMA-ES/pycma
7https://github.com/fchollet/nelder-mead
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Figure 12: Sensitivity analysis of hyper-parameters.

TuRBO To achieve better performance, we consider a single trust region for TuRBO. The batch size is set to 50 for the
1000D benchmarks and 20 for other benchmarks.

MCTS-VS We use the author’s default parameter settings with k = 20, Cp = 0.1, feature batch size Nv = 2 and sample
batch size Ns = 3.

LA-MCTS We use the parameter settings leaf size=20, Cp = 0.1 and gamma type="auto". For the Ackley, Rastrigin
and SVM388D benchmarks, the poly kernel is used for the boundary. For other benchmarks, RBF kernel is used. For
LaMCTS-TuRBO, we use 20 initial points and a total of 50 evaluations for each TuRBO iteration.

HesBO We set the low dimension d = 20 and use the box size [−0.5, 0.5]d to reduce blind exploration.

CMA-ES We run CMA-ES with σ = 0.1 and the default population size p = 4 + ⌊3 · logD⌋.

Nelder Mead We use the parameter settings with α = 4, γ = 8, ρ = 0.1 and σ = 0.1.

The local BO of VGT is implemented with GPyTorch8 library and EI is used as the acquisition function. We use the
synthetic functions from the SFU benchmarks9, IEEE analog benchmark circuits10, vehical design problem Mopta_08 and
SVM training task from 11. The detailed experimental setups and hyper-parameters of VGT are summarized in Table 2.

8https://github.com/cornellius-gp/gpytorch
9https://www.sfu.ca/~ssurjano/optimization.html

10https://sagroups.ieee.org/2427/analogue-benchmark-circuits/
11https://arxiv.org/pdf/2103.00349.pdf
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Table 2: Summary of experimental settings

Benchmarks Dimension(D) Search space Initial points Iteration (T ) K Cp Rp

Ackley5D 5 [−5, 10]5 10 60 20 0.1 −
Griewank5D 5 [−500, 500]5 10 60 20 0.1 −

Rosenbrock5D 5 [−2.048, 2.048]5 10 60 20 2 −
Hartmann6D 6 [0, 1]6 10 60 20 0.1 −

Ackley100D 100 [−5, 10]100 50 2000 100 0.1 −
Ackley200D 200 [−5, 10]200 50 2000 160 0.1 −

Ackley1000D 1000 [−5, 10]1000 50 5000 300 0.1 −
Griewank100D 100 [−500, 500]100 50 2000 100 0.01 −
Griewank200D 200 [−500, 500]200 50 2000 160 0.01 −
Griewank1000D 1000 [−500, 500]1000 50 5000 300 0.01 −

Rosenbrock100D 100 [−2.048, 2.048]100 50 2000 100 2 −
Rosenbrock200D 200 [−2.048, 2.048]200 50 2000 160 2 −
Rosenbrock1000D 1000 [−2.048, 2.048]1000 50 5000 300 2 −

Rastrigin100D 100 [−5.12, 5.12]100 50 2000 100 5 −
Rastrigin200D 200 [−5.12, 5.12]200 50 2000 160 10 −

Rastrigin1000D 1000 [−5.12, 5.12]1000 50 5000 300 10 −

Hartmann6_500D 500 [0, 1]500 10 1000 30 0.1 1/1
Ackley10_500D 500 [−5, 10]500 10 1000 40 0.1 1/1

OPAMP36D 36 [0, 1]36 10 500 60 0.1 1/4
PLL77D 77 [0, 1]77 10 500 40 0.1 1/4

Mopta08_124D 124 [0, 1]124 10 1000 80 0.05 1/4
SVM388D 388 [0, 1]388 10 2000 120 0.001 1/4
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