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Abstract

Label distribution learning (LDL) is a novel ma-
chine learning paradigm that aims to shift 0/1 la-
bels into descriptive degrees to characterize the pol-
ysemy of instances. Since the description degree
takes a value between 0∼1, it is difficult for the
annotator to accurately annotate each label. There-
fore, the predictive ability of numerous LDL algo-
rithms may be degraded by the presence of noise
in the label space. To address this problem, we pro-
pose a novel stability-trust LDL framework that
aims to reconstruct the feature space of an arbitrary
LDL dataset by using feature decoupling and proto-
type guidance. Specifically, first, we use prototype
learning to select reliable cluster centers (represen-
tative vectors of label distributions) to filter out a
set of clean samples (with labeled noise) on the
original dataset. Then, we decouple the feature
space (eliminating correlations among features) by
modeling a weight assigner that is learned on this
clean sample set, thus assigning weights to each
sample of the original dataset. Finally, all exist-
ing LDL algorithms can be trained on this new
re-weighted dataset for the goal of robust model-
ing. In addition, we create a new image dataset
to support the training and testing of compared
models. Experimental results demonstrate that the
proposed framework boosts the performance of the
LDL algorithm on datasets with label noise.

1 INTRODUCTION

Currently, label distribution learning (LDL) plays a land-
mark role in characterizing task uncertainty and convey-
ing the polysemy of an instance [Gao et al., 2017, Geng,
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Figure 1: This figure visualizes the difference between label
distribution learning and multi-label learning describing a
single instance. If the description object is an image, the
label distribution value represents the percentage of compo-
nents in the image.

2016, Zheng et al., 2021, Zheng and Jia, 2022]. In contrast
to the classical multi-label learning paradigm [Zhang and
Zhou, 2013], LDL describes an instance as a distribution
of descriptive degrees rather than a vector of 0/1 labels
(see Figure 1). Therefore, a learner (classifier or regressor)
tends to focus more on tracking the decision bounds, hence
the robustness of the whole algorithm is boosted [Le et al.,
2023].

Recently, a large body of work [Chen et al., 2021, Gao et al.,
2018, Li et al., 2022d, Liu et al., 2021, Si et al., 2022, Zhao
et al., 2021] leverages the properties of LDL to characterize
the relation between feature space and label space for achiev-
ing competitive performance. However, most researchers
overlook the fact that the label space of the dataset may be
noisy since the uncertainty of manual annotation and the
inductive bias of the label enhancement algorithm [Xu et al.,
2019] can introduce noise into the label space (for exam-
ple, the annotators misrecorded the percentage of the two
components and exchanged their label distribution values).
This low-quality set of labels can cause the LDL algorithm
to be off the right modeling track, usually showing up as
under-performance on the test set.
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Several works [Li et al., 2022c, Zheng and Jia, 2022] attempt
to address the problem of label noise on LDL benchmarks.
Li et al. [2022c] by building expert knowledge to endow
the training set samples with different weights during the
model iteration. Zheng and Jia [2022] estimate label uncer-
tainty by building a label distribution matrix on the label
space. Existing work on noise processing is embedded in the
prediction algorithm, which is tightly coupled with the algo-
rithm and has low generalizability. In contrast, we develop a
generalized LDL pre-processing framework (stability-trust
framework) in this paper, which is a catch-all paradigm for
constructing high-quality LDL datasets to serve existing
LDL algorithms to boost performance. Specifically, first, we
attempt to create a pseudo-label space over the label distri-
bution space, to distinguish which samples may be noisy
with the help of the prototype guidance. Then, a clean train-
ing set is filtered by a look-up table for training an efficient
weight assignor (when the weight assignor is trained on a
noisy dataset it leads to a degradation of the algorithm per-
formance). Note that the prototype space includes several
vectors that can represent the characteristics of the label dis-
tribution space. For instance, if the label distribution space
consists of six label values, we divide the dataset into six
subsets and estimate their expectations to obtain six rep-
resentative vectors. Finally, a weight assignor reconstructs
the original LDL dataset using a feature decoupling scheme
(including a kernel map). Feature decoupling is to treat the
feature space of the customized LDL datasets as tabular
information and decouple the correlation between features
by assigning weights to the samples. However, this weight
assigner predicts that the label distribution can be overly
compact due to the prototype guide, and for this reason, we
consider using uncertainty modeling to assign tiny weights
to a small number of samples as a positive incentive for
noise [Li, 2022]. The contributions of this paper are summa-
rized as:

1) We propose a stability-trust framework that achieves the
dual purpose of denoising and feature decoupling by assign-
ing weights to the raw sample space that helps the down-
stream learners enhance their regression abilities.

2) We use a prototype space to guide the weight assignor to
inscribe a compact learning space for faster convergence of
the model. In addition, we consider an uncertainty modeling
algorithm to construct some positive incentive noise to boost
the performance of the learner.

3) In contrast to the existing tabular datasets (customized
LDL dataset), we build a new image dataset stored in the
form of image-to-label1 to evaluate the deep networks.

1https://github.com/zzr-idam/LDL

2 RELATED WORK

Label distribution learning. Currently, LDL plays a vi-
tal role in estimating a task’s uncertainty and thus boost-
ing the model generalization capability. LDL is similar to
deep learning modeling approaches, where the output of a
model is usually standardized into probability vectors by
Softmax. However, in contrast, LDL gives semantic infor-
mation and a priori distributional constraints, which can
allow it to be used as a regularization term to help improve
the performance of existing methods. The LDL paradigm
is built from an age estimation task [Geng, 2016]. Since
then a large number of approaches have been proposed,
such as low-rank hypothesis-based [Jia et al., 2019, Ren
et al., 2019b], metric-based [Gao et al., 2018], manifold-
based [Tan et al., 2022, Wang and Geng, 2021], and label
correlation-based [Qian et al., 2022, Teng and Jia, 2021].
Moreover, some approaches are implemented in computer
vision [Chen et al., 2021, Gao et al., 2018, Li et al., 2022a,
Zhao et al., 2021], and speech recognition [Si et al., 2022]
tasks to boost the performance of classifiers. Recently, sev-
eral approaches based on LDL start to tackle the label noise
problem [Li et al., 2022c, Zheng and Jia, 2022]. However,
these approaches are customized strategies, and we attempt
to build a generalized preprocessing method to serve extant
LDL algorithms.

Prototype learning. Prototype learning [Deng et al., 2021,
Dong and Xing, 2018, Li et al., 2021, Ren et al., 2022,
Wang et al., 2021, Yang et al., 2018] is a classical learn-
ing paradigm in machine learning and pattern recognition,
which aims to select a representative subset to guide the
behavior of downstream tasks. For example, the nearest
neighbor algorithm (KNN) [Guo et al., 2003] is a typical
prototype learning case, which guides the aggregation of
the whole dataset by obtaining the centroids of a cluster.
Currently, prototype learning is utilized in several domains,
such as image recognition, speech recognition [Rouat and
Garcia, 2021], and inference of textual content [Haghighi
and Klein, 2006]. In the LDL domain, prototype learning
plays the role of feature selection to help downstream LDL
learners [González et al., 2020]. In this paper, the prototype
learning paradigm is used to help model a weight assignor
by filtering a clean subset.

Label noise estimation. The existing label space of large
datasets hardly avoids the disturbance of noise, due to the
complexity of the task, the subjectivity of the annotator, the
inaccuracy of the annotation algorithm, etc. Based on this,
numerous works are presented to address the problem of
noise disturbance [Arazo et al., 2019, Ju et al., 2022, Kaneko
et al., 2019, Li et al., 2022b, Reeve and Kabán, 2019, Xie
and Huang, 2022, Yao et al., 2020, Zhu et al., 2021]. There
are two main strategies to solve such problems, one is to
build a robust learning target or regularization term, and the
other is to renovate the model for unbiased estimation. In the
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field of LDL, there are already some works [Li et al., 2022c,
Zheng and Jia, 2022] that consider the presence of noise in
the label space, however, these works are only applicable to
customized LDL algorithms. In contrast, our algorithm is a
general framework as a data pre-processing technique.

3 STABILITY-TRUST FRAMEWORK

In this paper, we develop a stability-trust framework focus-
ing on tackling the problem of label distribution datasets
with noisy labels. Be aware that our framework can also
handle multi-class tasks with noisy labels.

Notation. Given a particular instance, the goal of LDL is
to learn the degree to which each label describes that in-
stance. Input matrix (tabular data) X ∈ RM×N , where
M is the number of instances and N is the dimension of
features. xi is the i-th instance in the dataset. The label
distribution space is defined as D ∈ RM×L, and Dj is
the j-th label. For each instance xi, its label distribution is
Di =

{
dy1
xi
, dy2

xi
, ·, dyL

xi

}
, where dyj

xi is the description degree
of the label yj for xi. The dyj

xi is constrained by dyj
xi ∈ [0, 1]

and
∑L

j=1 d
yj
xi = 1. In addition, the prototype space is de-

fined as P ∈ RL×L, then the prototype vector is defined
as pj . The virtual label vector of all instances guided by
the prototype learning is VL = {vl1, ..., vlM}. The label
distribution that is predicted by the model is defined as
Li =

{
ly1
xi
, ly2

xi
, ..., lyL

xi

}
. Building a pseudo-label vector on

the label space Y is Q = q1, q2, ·, qM , and qi denotes the
pseudo-label for instance xi.

Assumptions. We rely on three key principles or assump-
tions for developing a stability-trust framework. a) Proto-
types are usually the information least disturbed by noise,
such as the output of the mean filter and adaptive weighted
average filter. The prototype space as a “clean” set can push
the predictive distribution of the model closer to the central
data distribution. In other words, using the prototype space
as a guiding principle may lead to the construction of a
new sample space that is more compact within the class and
expands the distance between classes. For blind datasets
with noisy labels, this strategy yields a high-quality set with
minimal outlay. b) We use the prototype space to check the
estimated flags on the label distribution against the flags
that are self-contained by the label distribution to filter out
high-quality learning space for the weight assignor. This is
an efficient filtering mechanism that uses the consistency of
these two flags as the base for whether the sample is credi-
ble or not. c) Based on the stable learning paradigm [Shen
et al., 2020], we attempt to improve the inference ability
of the classifier by decoupling the correlation between fea-
tures. Specifically, stable learning uses a tactic of assigning
weights to samples to achieve feature decoupling, and the
overall framework can be written as Algorithm 1. Here w
can be a linear algorithm or a deep network, and β̂ works
ultimately on the raw sample space X.

Algorithm 1 Stable Learning Framework

1: Input : Dataset B={x(i) = (x
(i)
1 , ..., x

(i)
d ), y(i)}ni=1

2: Output : Coefficients β̂ on each variables
3: /*Step I*/
4: Learn weightw(X) to make X are mutually independent

of each other.
5: /*Step II*/
6: Solve weighted least squares with weighting function
w(X). The solution is β̂(n)

w .
7: Return β̂(n)

w .

Figure 2: Our architecture. This figure(a) shows the ar-
chitecture of the proposed stability-trust, which consists of
three parts. This figure(b) represents the performance of
the three LDL algorithms on the dataset, with the blue line
indicating the training set without the modification and the
red line indicating the dataset with reconstruction scheme.
The data in Figure(b) are normalized to be between 0 and
1. Predictably, images that are integrated over a curvilinear
surface show better performance with larger areas.

Goal. Although the framework aims to assign weights to
each sample in the raw sample space formally, it has two key
goals. On the one hand, decoupling the correlation between
features constructs a stable and robust learning space. On
the other hand, the output space of the network is guided by
prototypes to create a high-quality training set with compact
intra-class distance and relaxed inter-class distance. How-
ever, the principle of prototype learning overly makes the
model’s predictions compact, and to alleviate this problem,
we add a moderate amount of noise to the training set.
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4 PROPOSED METHOD

As shown in Figure 2, our framework is divided into three
stages, first, we use a standard prototype learning to filter
out a relatively clean training set B̂; next, we design some
customized loss terms by which a corresponding coefficient
is learned for each instance xi of the raw space; finally, po-
tentially noisy instances are given slight weights as positive
incentive noise as part of the training set. This approach
is a plug-and-play data pre-processing strategy to model
arbitrary sizes of tabular data sets.

Obtaining a clean set B̂ from the raw space B. Faced with
a label distribution dataset of arbitrary size with label noise
B, we need to simply clean it with the help of the prototype
space P . The purpose of cleaning dataset B to obtain B̂ is to
provide a high-quality training set for generating a weight
assignor. So far, one question needs to be discussed, why do
we require prototype learning to guide the reconstruction of
datasets? We visualize the label space of a label distribution
dataset as shown in Figure 3.

Figure 3: We visualize the label space of the SBU-3DFE
dataset by using the t-SNE algorithm [Van Der Maaten,
2014], where t-SNE is based on the KPCA algo-
rithm Anowar et al. [2021]. Intuitively, the label distribution
space of SBU-3DFE can be viewed as having 6 clusters,
a property that exactly matches the dimensionality of the
label space. Even if the label distribution space is noisy,
the center position of each cluster can still serve as reliable
target information.

The label space of this dataset (SBU-3DFE) has 6 dimen-
sions, which correspond exactly to the 6 clusters in Figure 3.
We leverage prototype learning to sieve out representative
vectors of each cluster as prototypes pj . Specifically, we
start with building the prototype space P on the training
dataset B. In the first step, L subsets are constructed, and
each subset stores the vectors D that can represent this label.
In the second step, the mean values in each of the L sets are
obtained as a prototype to build a prototype space of size

L× L. The formal expression under the Python style:

prototype[j, :] = mean(D [where(Di[j] > (1/L)), :]︸ ︷︷ ︸
prototype vector

), j ∈ L.

(1)
Following the prototype space P being constructed, we

introduce how to build the pseudo-label vector Q and the
prototype learning guided virtual label vector VL. In label
distribution space D, the index number of the maximum
value in each label distribution Di is assigned as the pseudo-
label qi for instance xi. For example, for the instance with la-
bel distribution [ 0.1, 0.1, 0.1, 0.4, 0.1, 0.2 ], its pseudo-label
is 4. For the virtual label vector VL guided by prototype
learning, we apply KNN (K=1) on the prototype space P to
search the virtual label for each instance. For example, for
xi, we calculate the Euclidean distance to each prototype in
the prototype space P , to select the nearest prototype pj and
use the index number with the maximum value in prototype
pj as the virtual label of xi. Finally, compare the constructed
Q and VL, if the paired qi and vli take the same value, keep
the instance xi and its corresponding label distribution Di

to obtain a new training set B.

Learning the coefficients of the raw samples. We try to
design a set of coefficients assigned β̂(n)

w to the raw samples.

Specifically, we use a simple linear model to learn these
coefficients in an end-to-end manner. First, we introduce the
stable learning problems as follows:

Problem. Given the target β̂(i)
w and input variables x =

[x1, ...xs] ∈ Rs, the task is to learn a predictive model
which can achieve uniformly small error on any data point.

We consider the linear regression problem with model mis-
specification. Specifically, we can assume the target β̂(i)

w is
generated by the following form:

β̂(i)
w = x⊤W1:s +W0 + b(x) + ϵ, (2)

where x ∈ Rs is an input vector, b(x) is a bias term that
depends on x, such that |b(x)| ≥ δ and ϵ is zero-mean
noise with variance σ2. Next, we need to use this model
to build a set of training data with an optimization target
to generate β̂(i)

w . Here, we eliminate the values of the non-
diagonal elements (ND) of the correlation matrix with the
help of an L2 norm.

min ||
N∑
i=1

ND(((X̂⊤W)X)(X̂⊤W)X)⊤)i − ρ||2, (3)

where X̂ denotes the feature space of a clean set of samples
B̂, X denotes feature space of raw samples correspond-
ing to B, and ρ denotes a small number (ρ ≤ 0.01). Note
that ND assembles the non-diagonal elements of a square
matrix into a one-dimensional array. Predictably, we only
address the correlations that exist between features in a
linear space. High-order correlations may still exist, and
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to completely decouple the correlations between features,

we kernel-mapped (Gaussian kernel: e−
||x−x

′
||2

2σ2 ) the recon-
struction matrix (ker(X̂⊤W)X)). The optimization objec-
tive of this algorithm can be written:

min ||
N∑
i=1

ND(((X̂⊤W)X)(X̂⊤W)X)⊤)i − ρ||2+

λ||
N∑
i=1

ND(ker(((X̂⊤W)X))ker((X̂⊤W)X)⊤))i − ρ||2,

(4)
where λ denotes a hyperparameter, which is obtained by
parameter sensitivity analysis. In addition, we add a regular-
ization term for W. The overall optimization objective can
be written as follows:

min ||
N∑
i=1

ND(X̄X̄⊤)i − ρ||2 + λ||
N∑
i=1

ND(ker(X̄)ker(X̄)⊤)i

− ρ||2 + γ||W||1,
(5)

where X̄ = X̂⊤WX, γ is a hyperparameter. To eliminate
the higher-order correlation between features, we apply a
soft trick whose values of the diagonal elements of tr(X̄X̄⊤)
tend to 1. The approach considered in this paper is motivated
by the following theoretical result, which shows the effect
of model misspecification bias even when the sample size is
infinity.

Proposition. Consider the L2 norm when the sample size is
infinity:

β̂ = minE(X,ρ)(

N∑
i=1

ND(X̄X̄⊤)i − ρ)2. (6)

The estimation bias caused by the worst case perturbation
error |b(x)| ≤ δ can be as bad as ||β̂−W||2 ≤ 2(δ/ψ)+ δ,
where ψ2 is the smallest eigenvalue of E((X−E(X))(X−
E(X))⊤).

Proof. Let ∆W = W − W̄ and ∆β̂ = β̂ − W̄. We have
∆β̂ = minE(X∆W−b(X))2.At the optimal solution, we
have ∆β̂ = E(b(X))−E(X⊤∆β̂1:s). By elimination W0,
and let X̃ = X − E(X), and b̃(X) = b(X) − EX(b(X)),
we have ∆β̂1:s = min(X̃⊤∆W1:s − b̃(X))2. It follows
that ∆β̂1:s = (E(X̃)X̃⊤)

−1E(b̃(X))X̃. This implies that
∆β̂1:s ≤ δ/ψ. Moreover, it implies that |∆β̂0 ≤ δ + δ/ψ|.
We thus obtain the desired bound.

In the proposition, we observe that the worst-case estima-
tion error tends to infinity when ψ tends to 0. This means
that when the variables are highly co-linear, ordinary least
squares yield a bad solution even when the training data is
very large (or infinite). To solve this problem, we introduce
the re-weighting theorem in [Shen et al., 2020] to alleviate
this problem. This strategy leads to a total bias that is a

Table 1: Statistics of the experimental datasets. B̂ denotes a
relatively clean dataset obtained from the raw sample space.

ID Dataset Examples Features Labels B̂ Full-rank

1 wc-LDL 500 243 12 163 Yes
2 SJAFFE 213 243 6 180 Yes
3 SBU-3DFE 2500 243 6 156 Yes
4 Scene 2000 294 9 204 Yes
5 Gene 17892 36 68 9868 Yes
6 Movie 7755 1869 5 6045 Yes
7 M2B 1240 250 5 799 Yes
8 SCUT 1500 300 5 879 Yes
9 fbp5500 5500 512 5 362 Yes
10 RAF-ML 4908 200 6 3120 Yes
11 Twitter 10040 200 8 7802 Yes
12 Flickr 11150 200 8 4978 Yes

constant value, providing a base for stable learning.

||β̂ − W̄||2 = O(1) +O(n−1/2)
√

EX∼Nw(X)2σ, (7)

where N denotes the Gaussian distribution.

In this paper, we use an automatic differentiation frame-
work (PyTorch) to run Eq. 5 on an RTX3090 GPU shader
with 24G RAM. Note that since the feature spaces of Gene,
Twitter, and Flicker are vast, we split the batch to conduct
the learning of weights β̂. Here, since the split-batch imple-
mentation of these datasets, the method cannot be directly
globally modeled, and for this reason, we train on these
three datasets to conduct more epochs (training rounds).

So far, we observe a phenomenon that the sample space
reconstructed by the weight assignor is overly compact for
the downstream learners, and these learners underperform
on the test samples. To solve this problem, we introduce
some positive incentive noise. The source of these positive
incentive noises is the doubtful samples (B − B̂) after being
filtered by the prototype guidance.

The samples weighted by our algorithm occupy only 50-
90% of the raw samples, as shown in Table 1. Although the
label space of the remaining samples has a high probability
of carrying noise, noisy data are not always noxious and
may have positive incentive properties [Li, 2022]. We want
to assign a certain amount of weight to these samples to
model the robust decision boundary without disrupting the
generalization ability of the model as much as possible.
Here, we use a customized normal distribution 0.01×N(0, 1)
which randomly assigns weights to these samples. Through
the experimental part, we observe that this strategy makes
the prediction of the label distribution more relaxed, and this
method plays the role of regularization due to the feature
decoupling that makes the prediction result of the LDL
model overly compact.

5 EXPERIMENTS

Algorithm configurations. We conduct experiments on 12
datasets and the characteristics of the datasets are summa-
rized in Table 1. Except for dataset wc-LDL, the configu-
rations of all other datasets are referenced to [Wang and
Geng, 2021]. This new release dataset (wc-LDL) has 500
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Table 2: The performance of our proposed method with the comparison algorithms on 12 datasets. The best-performing
results are marked in bold.

Dataset Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ K-L ↓ Cosine ↑ Intersection ↑

Ours 0.0743 ± 0.0011 0.3884 ± 0.0055 0.7667 ± 0.0033 0.0421 ± 0.0008 0.9896 ± 0.0009 0.8813 ± 0.0014
Baseline-LDL 0.0788 ± 0.0019 0.4008 ± 0.0042 0.7770 ± 0.0023 0.0408 ± 0.0056 0.9801 ± 0.0017 0.8760 ± 0.0015

INP 0.0779 ± 0.0021 0.3980 ± 0.0051 0.7779 ± 0.0030 0.0404 ± 0.0020 0.9883 ± 0.0009 0.8778 ± 0.0014
PCA 0.0748 ± 0.0122 0.4008 ± 0.0020 0.7883 ± 0.0012 0.0422 ± 0.0051 0.9887 ± 0.0012 0.8790 ± 0.0034

LDL-LRR 0.0923 ± 0.0030 0.4212 ± 0.0036 0.8135 ± 0.0024 0.0511 ± 0.0049 0.9718 ± 0.0022 0.8669 ± 0.0047
LDL-LCLR 0.1057 ± 0.0019 1.0569 ± 0.0039 0.7890 ± 0.0039 0.0545 ± 0.0037 0.9668 ± 0.0049 0.8383 ± 0.0018

LDLSF 0.1009 ± 0.0038 0.4199 ± 0.0044 0.9008 ± 0.0015 0.0519 ± 0.0040 0.9779 ± 0.0018 0.8660 ± 0.0022
LALOT 0.0989 ± 0.0019 0.6689 ± 0.0019 0.8089 ± 0.0049 0.0477 ± 0.0018 0.9476 ± 0.0020 0.8700 ± 0.0033

wc-LDL

BFGS-LLD 0.1122 ± 0.0039 1.5657 ± 0.0021 0.7998 ± 0.0020 0.0498 ± 0.0051 0.9704 ± 0.0036 0.8611 ± 0.0016

Ours 0.0822 ± 0.0019 0.4001 ± 0.0033 0.7888 ± 0.0043 0.4053 ± 0.0013 0.9891 ± 0.0002 0.8846 ± 0.0055
Baseline-LDL 0.0899 ± 0.0033 0.4128 ± 0.0027 0.8007 ± 0.0013 0.4212 ± 0.0074 0.9709 ± 0.0013 0.8699 ± 0.0015

INP 0.0854 ± 0.0018 0.4008 ± 0.0030 0.7955 ± 0.0023 0.4010 ± 0.0012 0.9799 ± 0.0014 0.8809 ± 0.0015
PCA 0.0832 ± 0.0033 0.4012 ± 0.0008 0.7910 ± 0.0043 0.4155 ± 0.0087 0.9823 ± 0.0049 0.8832 ± 0.0055

LDL-LRR 0.0866 ± 0.0021 0.4220 ± 0.0036 0.8001 ± 0.0024 0.4258 ± 0.0049 0.9610 ± 0.0022 0.8689 ± 0.0047
LDL-LCLR 0.1057 ± 0.0019 1.0569 ± 0.0039 0.7890 ± 0.0039 0.5045 ± 0.0037 0.9668 ± 0.0049 0.8383 ± 0.0018

LDLSF 0.1122 ± 0.0038 0.4397 ± 0.0044 0.9212 ± 0.0015 0.5557 ± 0.0040 0.9779 ± 0.0018 0.8660 ± 0.0022
LALOT 0.0979 ± 0.0018 0.6799 ± 0.0021 0.8077 ± 0.0039 0.4756 ± 0.0015 0.9433 ± 0.0111 0.8423 ± 0.0034

SJAFFE

BFGS-LLD 0.1334 ± 0.0139 1.6648 ± 0.0023 0.7999 ± 0.0022 0.4771 ± 0.0051 0.9711 ± 0.0036 0.8655 ± 0.0116

Ours 0.0811 ± 0.0023 0.3987 ± 0.0024 0.7533 ± 0.0027 0.0354 ± 0.0031 0.9888 ± 0.0066 0.8997 ± 0.0030
Baseline-LDL 0.0970 ± 0.0442 0.4151 ± 0.0088 0.7810 ± 0.0023 0.0414 ± 0.0019 0.9711 ± 0.0013 0.8797 ± 0.0016

INP 0.0833 ± 0.0020 0.3994 ± 0.0010 0.7611 ± 0.0020 0.0365 ± 0.0014 0.9811 ± 0.0015 0.8900 ± 0.0017
PCA 0.0820 ± 0.0045 0.3999 ± 0.0011 0.7689 ± 0.0111 0.0370 ± 0.0077 0.9866 ± 0.0015 0.8953 ± 0.0044

LDL-LRR 0.0912 ± 0.0036 0.4013 ± 0.0039 0.7602 ± 0.0021 0.0369 ± 0.0028 0.9697 ± 0.0029 0.8891 ± 0.0033
LDL-LCLR 0.1100 ± 0.0025 0.9660 ± 0.0039 0.7897 ± 0.0033 0.0511 ± 0.0021 0.9677 ± 0.0056 0.8555 ± 0.0032

LDLSF 0.1009 ± 0.0038 0.4199 ± 0.0044 0.9008 ± 0.0015 0.0519 ± 0.0040 0.9780 ± 0.0029 0.8660 ± 0.0022
LALOT 0.0899 ± 0.0021 0.6563 ± 0.0019 0.8132 ± 0.0100 0.0468 ± 0.0021 0.9441 ± 0.0011 0.8723 ± 0.0034

SBU

BFGS-LLD 0.1119 ± 0.0030 1.4657 ± 0.0022 0.7700 ± 0.0025 0.0492 ± 0.0053 0.9753 ± 0.0036 0.8710 ± 0.0019

Ours 0.2981 ± 0.0024 2.3077 ± 0.0013 6.4133 ± 0.0029 0.8029 ± 0.0020 0.7991 ± 0.0011 0.5699 ± 0.0014
Baseline-LDL 0.3155 ± 0.0022 2.3559 ± 0.0155 6.6958 ± 0.1231 0.8533 ± 0.0099 0.7664 ± 0.0015 0.5349 ± 0.0014

INP 0.2998 ± 0.0020 2.3374 ± 0.0018 6.5163 ± 0.0018 0.8111 ± 0.0029 0.7890 ± 0.0049 0.5691 ± 0.0010
PCA 0.3010 ± 0.0213 2.3266 ± 0.0085 6.533± 0.0091 0.8097 ± 0.0031 0.7913 ± 0.0033 0.5612 ± 0.0006

LDL-LRR 0.2989 ± 0.0111 2.3698 ± 0.0051 6.4777 ± 0.0025 0.8362 ± 0.0069 0.7744 ± 0.0077 0.5444 ± 0.0049
LDL-LCLR 0.3740 ± 0.0066 2.4986 ± 0.0066 6.8600 ± 0.0067 0.8559 ± 0.0039 0.7119 ± 0.0122 0.5119 ± 0.0081

LDLSF 0.3441 ± 0.0249 2.9884 ± 0.0055 6.6900 ± 0.0055 0.8391 ± 0.0044 0.7336 ± 0.0088 0.5660 ± 0.0041
LALOT 0.3129 ± 0.0152 2.3999 ± 0.0044 6.6366 ± 0.0078 0.8226 ± 0.0033 0.7390 ± 0.0100 0.5224 ± 0.0066

Scene

BFGS-LLD 0.3598 ± 0.0020 2.4998 ± 0.0033 6.7999 ± 0.0049 0.8400 ± 0.0033 0.7333 ± 0.0064 0.5199 ± 0.0055

Ours 0.0480 ± 0.0033 2.1008 ± 0.0259 14.0800 ± 0.0153 0.2320 ± 0.0094 0.8406 ± 0.0023 0.7997 ± 0.0077
Baseline-LDL 0.0509 ± 0.0066 2.2004 ± 0.0055 14.1449 ± 0.2448 0.2440 ± 0.0024 0.8345 ± 0.0009 0.7821 ± 0.0016

INP 0.0488 ± 0.0012 2.1029 ± 0.0259 14.0888 ± 0.0551 0.2335 ± 0.0044 0.8395 ± 0.0032 0.7984 ± 0.0066
PCA 0.0482 ± 0.0013 2.1020 ± 0.0212 14.0835 ± 0.0142 0.2321 ± 0.0087 0.8390 ± 0.0016 0.7989 ± 0.0099

LDL-LRR 0.0494 ± 0.0039 2.1888 ± 0.0861 14.2550 ± 0.0144 0.2400 ± 0.0077 0.8388 ± 0.0144 0.7789 ± 0.0040
LDL-LCLR 0.0511 ± 0.0022 2.2201 ± 0.0444 14.2101 ± 0.0510 0.2566 ± 0.0047 0.8302 ± 0.0012 0.7722 ± 0.0060

LDLSF 0.0513 ± 0.0030 2.2221 ± 0.0036 14.3667 ± 0.0265 0.2445 ± 0.0077 0.8320 ± 0.0010 0.7701 ± 0.0026
LALOT 0.0505 ± 0.0033 2.1989 ± 0.0194 14.1855 ± 0.0922 0.2443 ± 0.0088 0.8297 ± 0.0060 0.7888 ± 0.0013

Gene

BFGS-LLD 0.0578 ± 0.0066 2.3008 ± 0.0188 14.3559 ± 0.1556 0.2480 ± 0.0015 0.8300 ± 0.0049 0.7786 ± 0.0070

Ours 0.1071 ± 0.0008 0.4997 ± 0.0064 0.9710 ± 0.0044 0.0970 ± 0.0008 0.9595 ± 0.0063 0.8791 ± 0.0019
Baseline-LDL 0.1109 ± 0.0033 0.5119 ± 0.0155 1.0889 ± 0.0111 0.1355 ± 0.0022 0.9422 ± 0.0333 0.8744 ± 0.0054

INP 0.1089 ± 0.0018 0.5001 ± 0.0044 0.9722 ± 0.0040 0.0977 ± 0.0008 0.9585 ± 0.0061 0.8861 ± 0.0006
PCA 0.1077 ± 0.0006 0.5013 ± 0.0032 0.9720 ± 0.0032 0.0972 ± 0.0005 0.9590 ± 0.0002 0.8853 ± 0.0022

LDL-LRR 0.1107 ± 0.0009 0.5019 ± 0.0010 0.9801 ± 0.0061 0.1045 ± 0.0049 0.9591 ± 0.0022 0.8772 ± 0.0027
LDL-LCLR 0.1177 ± 0.0086 0.5345 ± 0.0040 1.1533 ± 0.0111 0.1559 ± 0.0030 0.9360 ± 0.0049 0.8222 ± 0.0011

LDLSF 0.1155 ± 0.0045 0.5339 ± 0.0062 1.1152 ± 0.0050 0.1540 ± 0.0041 0.9445 ± 0.0020 0.8551 ± 0.0044
LALOT 0.1221 ± 0.0110 0.5440 ± 0.0033 1.1112 ± 0.0040 0.1503 ± 0.0008 0.9477 ± 0.0022 0.8559 ± 0.0002

Movie

BFGS-LLD 0.1310 ± 0.0032 0.5230 ± 0.0022 1.1170 ± 0.0024 0.1595 ± 0.0155 0.9400 ± 0.0003 0.8491 ± 0.0018

watercolor images and corresponding label distribution (12
emotions). For the wc-LDL dataset, we give 12 emotion tips
to the annotators including 5 men and 5 women. Finally, the
outputs of these 10 annotators are normalized as the label
distribution corresponding to the image. Note that before
watercolor images are annotated, we ask these experts to
take a comprehensive view based on the lines and color
combinations of the images. For example, dense lines ex-
press vexation, blue denotes depression, and red denotes
enthusiasm. To construct a training set with noisy labels, we

use a switching algorithm with randomness at 20-35% of
the training set. This algorithm aims to exchange the values
of the label distribution over a label distribution ([0.1, 0.2,
0.7] → [0.7, 0.1, 0.2]). We develop a simple linear model
with a data pre-processing method (Ours). In addition, we
set up a baseline (Baseline-LDL) with data pre-processing
(without the strategy of randomly assigning weights to noisy
samples). To evaluate the performance of LDL models, we
use the six metrics proposed by [Geng, 2016], including
Chebyshev distance ↓, Clark distance ↓, Canberra distance
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↓, KL divergence ↓, Cosine similarity ↑, and Intersection
similarity ↑. ↓ represents the indicator’s performance favor-
ing low values and ↑ represents the indicator’s performance
favoring high values.

Experimental setting. We conduct comparative ex-
periments with seven LDL algorithms (Baseline-LDL,
INP [Zheng and Jia, 2022], BFGS-LLD [Geng, 2016], LDL-
LRR [Jia et al., 2021], LDL-LCLR [Ren et al., 2019b],
LDLSF [Ren et al., 2019a], principal component analy-
sis (PCA) and LALOT [Zhao and Zhou, 2018]). Baseline-
LDL as one of the methods of comparison is trained only
on a relatively clean set of samples. INP presents an im-
plicit representation to estimate the uncertainty of the label
space. BFGS-LLD is based on a linear model, the loss func-
tion is K-L divergence, and the optimization method is the
quasi-Newton approach. LDL-LRR and LDL-LCLR both
consider label correlations in the learning process, with
the former considering the order relationship of the labels
and the latter capturing global relationships between la-
bels. For LDL-LRR, the parameters λ and β are tuned from
10{−6,−5,...,−2,−1} and 10{−3,−2,...,1,2}, respectively. For
LDL-LCLR, the parameters λ1, λ2, λ3, λ4 and k are set
to 0.0001, 0.001, 0.001, 0.001 and 4, respectively. LDLSF
leverages label-specific features and common features si-
multaneously, whose parameters λ1, λ2 and λ3 are tuned
from 10{−6,−5,...,−2,−1}, respectively, and ρ is set to 10−3.
LALOT adopts optimal transport distance as the loss func-
tion, and the trade-off parameter C and the regularization
coefficient λ are set to 200 and 0.2, respectively. The fine-
tuning settings for all comparison methods are referenced
in [Jia et al., 2021]. In addition to the above comparison
algorithms, we introduce PCA as one of the comparison
algorithms because PCA also serves to decouple the feature
space. PCA serves as a preprocessing framework (retain-
ing 80 percent of the features), followed immediately by a
standard linear regressor.

Results and analysis. We conduct 10 times 5-fold cross-
validation on each dataset. The experimental results are
presented in the form of “mean±std” in Table 2 (the rest
of the showcase is released in the supplemental material).
Overall, our proposed method outperforms other compar-
ison algorithms on all evaluation metrics. Three main rea-
sons contribute to the competitive results of our approach.
i): With the uniform optimization scheme, our algorithm
performs better than the baseline algorithm (Baseline-LDL)
due to the feature decoupling. ii): From the performance
of the baseline model, our method obtains competitive re-
sults on most of the metrics, thanks to the samples with
uncertainty. In addition, we note that methods with label
constraints (e.g., LDL-LRR) also perform well, and it may
be due to label constraints that ignore the noisy label in-
terference. iii): Since the powerful learning capability of
kernel mapping, the advantage of our approach is vast on

image and text datasets. Moreover, we evaluate the range of
p-values for the six metrics on 12 data sets.

Chebyshev [1.54e − 104, 1.00e + 00], Clark [5.44e −
97, 1.98e − 02], Canberra [9.62e − 98, 1.10e − 01], K-L
[1.77e−102, 1.99e−01], C osine [1.33e−99, 2.01e−01],
and Intersection [1.33e− 113, 7.88e− 01]

Figure 4: This figure shows the performance comparison
of these four algorithms after implementing our framework.
The first row indicates that the algorithms are run on the
Movie dataset with label noise, the second row indicates
that the algorithms are run on the M2B dataset with label
noise, and the third row indicates that the algorithms are run
on the SCUT dataset with label noise.

Parameter sensitivity analysis. Our method has two pa-
rameters, including the regularization parameter λ and γ. To
analyze the sensitivity of λ and γ, we run our method with
two sets {0.001, 0.005, 0.01, 0.05, 0.1}, and {0.001, 0.005,
0.01, 0.05, 0.1} on the Gene dataset. We conduct a 5-fold
cross-validation and achieved the following results (Cosine
↑): λi → {0.9841 ± 0.0133, 0.9802 ± 0.0007, 0.9896 ±
0.0009, 0.9876 ± 0.0044, 0.9877 ± 0.0084}. γi → {0.9813
± 0.0043, 0.9821 ± 0.0075, 0.9896 ± 0.0009, 0.9890 ±
0.0100, 0.9892 ± 0.0023}.

Ablation study. To demonstrate the effectiveness of the loss
function and the module of our model, we conduct an abla-
tion study involving the following three experiments, and
the results are shown in Table 3: (a) w/o feature decoupling:
We remove the weight assignment strategy, and our model is
trained only on samples that are weighted by clean samples
and those with uncertainty. (b) w/o the kernel mapping: We
remove the loss term in Eq. 5 for the kernel trick, keeping
only the first loss term and a regularization term. (c) w/o
regularization term: We remove the third loss term in Eq. 5.
We conduct 10 times 5-fold cross-validation on the dataset
of the ablation experiment.

Discussion. The stability-trust framework can offer a more
compact regression space with the help of prototype learn-
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Table 3: Ablation study. Effectiveness of the loss functions and the modules on Gene. Quantitative results demonstrate the
effectiveness of each module.

Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ K-L ↓ Cosine ↑ Intersection ↑

Ours 0.0480 ± 0.0033 2.1008 ± 0.0259 14.0800 ± 0.0153 0.2320 ± 0.0094 0.8406 ± 0.0023 0.7997 ± 0.0077
w/o FD 0.0499 ± 0.0063 2.1331 ± 0.0220 14.1866 ± 0.0155 0.2329 ± 0.0110 0.8361 ± 0.0023 0.7900 ± 0.0056
w/o KT 0.0511 ± 0.0034 2.1226 ± 0.0230 14.1164 ± 0.0163 0.2445 ± 0.0011 0.8389 ± 0.0023 0.7884 ± 0.0039
w/o RT 0.0498 ± 0.0019 2.1121 ± 0.0100 14.2911 ± 0.0156 0.2333 ± 0.0094 0.8398 ± 0.0022 0.7990 ± 0.0075

Table 4: Overall performance of MedMNIST (v2) in metrics of AUC and ACC, using ResNet-18 / ResNet-50 [Al-Haija and
Adebanjo, 2020] with resolution 28 and 224, auto-sklearn, AutoKeras, Google AutoML Vision, FPVT [Liu et al., 2022],
and Ours.

Methods PathMNIST ChestMNIST DermaMNIST OCTMNIST PneumoniaMNIST BloodMNIST
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 (28) 0.970 0.823 0.700 0.941 0.846 0.711 0.950 0.730 0.953 0.840 0.990 0.932
ResNet-18 (224) 0.971 0.860 0.702 0.943 0.890 0.721 0.952 0.753 0.960 0.848 0.990 0.955
ResNet-50 (28) 0.971 0.833 0.691 0.942 0.883 0.705 0.923 0.744 0.941 0.833 0.989 0.950

ResNet-50 (224) 0.973 0.841 0.676 0.929 0.890 0.713 0.944 0.702 0.960 0.893 0.972 0.935
auto-sklearn 0.444 0.386 0.640 0.625 0.886 0.730 0.843 0.591 0.940 0.863 0.982 0.870
AutoKeras 0.951 0.860 0.711 0.932 0.910 0.755 0.950 0.731 0.965 0.911 0.994 0.950

Google AutoML Vision 0.981 0.833 0.710 0.941 0.920 0.749 0.932 0.722 0.990 0.930 0.992 0.957
FPVT 0.965 0.900 0.715 0.940 0.911 0.753 0.952 0.769 0.930 0.892 0.970 0.942
Ours 0.992 0.939 0.816 0.959 0.931 0.826 0.966 0.835 0.988 0.960 0.992 0.989

ing. To verify our theory, we use t-SNE to enforce the pre-
dicted label distributions and the ground-truth label distri-
butions of the raw dataset, respectively. We evaluate four
datasets (Movie, M2B, SCUT, and fbp5500) and the results
are visualized in the supplemental material. We note that the
stability-trust framework can aggregate similar label vectors
more compactly. Although a compact prediction space can
reduce the number of outliers, this results in a loss of ac-
curacy in quantitative evaluation. In this paper, we propose
to leverage the rest of the samples with noise to give them
small weights as the training set to alleviate this problem.
To evaluate the effectiveness of this method, we propose
a metric that computes the average distance between the
predicted label distribution to the prototype vector, which is
written as:

Score = Sigmoid(
1

N

N∑
i

||Li − p||2), (8)

where Sigmoid is intended to normalize the output. We use
our algorithm to evaluate the above problem on four data
sets (Movie, M2B, SCUT, and fbp5500). The score of our
algorithm is {0.35, 0.42, 0.44, 0.29} when trained on only
clean samples, and scores trained on samples containing
noise are {0.47, 0.45, 0.51, 0.33}; respectively. The train-
ing set containing noisy samples can be a more relaxed
prediction result, which theoretically extends the decision
boundary of the model.

In addition, we need to evaluate whether the stability-
trust framework is suited for the multi-classification tasks
(MedMNIST (v2) Yang et al. [2023]). Here, this framework
is evaluated only on the multi-class dataset.

We use ResNet-18 as the baseline method. At first, we used

a label enhancement algorithm [Xu et al., 2019] to con-
vert MedMNIST (v2) into a pseudo-LDL dataset. We use
ResNet-18 [Ayyachamy et al., 2019] set as the baseline
method. We use cross-entropy and set the batch size to
128 during the model training. We utilize an AdamW op-
timizer with an initial learning rate of 0.001 and train the
network for 100 epochs, delaying the learning rate by 0.1
after 50 and 75 epochs. This ResNet-18 is implemented on
MedMNIST (v2) after being enforced by the stability-trust
framework. It is worth noting that the image is flattened
and then input to the stability-trust framework. As shown
in Table 4, our method achieves optimal results on noisy
labels’ datasets (10% noise). Besides, we demonstrate the
degree of performance improvement through BFGS-LLD,
LALOT, LDLSF, and LDL-LRR algorithms conducted on
Movie, M2B, and SCUT datasets. These methods used our
framework to pre-process the dataset before implementation.
As shown in Figure 4, the stability-trust framework as a data
pre-processing technique can enable the performance of the
LDL algorithm to be enhanced on a benchmark with noise.

6 CONCLUSION

We propose a stability-trust framework to overcome the
problem of noisy labels on 13 benchmarks (12 label distri-
butions and 1 multi-classification). Our approach has two
key components, one is prototype learning to guide the
model to learn the compact space; the other is the feature de-
coupling strategy. Our method is more efficient compared to
the existent LDL de-noising methods and it does not require
additional knowledge and an expensive sampling process.
A large number of experimental results demonstrate the
effectiveness of our approach.
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OVERVIEW

In this supplemental material, we introduce the implementation details of the experiment in Section I. We show a heat map
for our algorithm to eliminate correlations between features in Section II.

7 IMPLEMENTATION OF EXPERIMENT

We conduct 10 times 5-fold cross-validation on each dataset. The experimental results are presented in the form of
“mean±std” in Tables 5 and 6. Our algorithm achieves competitive results compared to other algorithms.

The stability-trust framework (no positive incentive noise) can offer a more compact regression space with the help of
prototype learning. However, our algorithm with positive incentive noise can extend the decision boundary. To verify
our theory, we use t-SNE [Van Der Maaten, 2014] to enforce the predicted label distributions and the ground-truth label
distributions of the raw dataset, respectively. We evaluate four datasets (Movie, M2B, SCUT, and fbp5500) and the results
are visualized in Figure 5.

8 HEAT MAPS OF FEATURE CORRELATIONS

We use heat maps to evaluate feature correlations in the Gene dataset to verify that our method has the capability of attribute
decoupling (see Figure 6). Figure 6(a) demonstrates strong correlation between the raw dataset features and Figure 6(b)
demonstrates weak correlation between the features.

*Correspondence. This work was supported by the National Natural Science Foundation of China (62176123).
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Table 5: The performance of our proposed method with the comparison algorithms on 12 datasets. The best-performing
results are marked in bold.

Dataset Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ K-L ↓ Cosine ↑ Intersection ↑

Ours 0.0480 ± 0.0033 2.1008 ± 0.0259 14.0800 ± 0.0153 0.2320 ± 0.0094 0.8406 ± 0.0023 0.7997 ± 0.0077
Baseline-LDL 0.0509 ± 0.0066 2.2004 ± 0.0055 14.1449 ± 0.2448 0.2440 ± 0.0024 0.8345 ± 0.0009 0.7821 ± 0.0016

INP 0.0488 ± 0.0012 2.1029 ± 0.0259 14.0888 ± 0.0551 0.2335 ± 0.0044 0.8395 ± 0.0032 0.7984 ± 0.0066
PCA 0.0482 ± 0.0013 2.1020 ± 0.0212 14.0835 ± 0.0142 0.2321 ± 0.0087 0.8390 ± 0.0016 0.7989 ± 0.0099

LDL-LRR 0.0494 ± 0.0039 2.1888 ± 0.0861 14.2550 ± 0.0144 0.2400 ± 0.0077 0.8388 ± 0.0144 0.7789 ± 0.0040
LDL-LCLR 0.0511 ± 0.0022 2.2201 ± 0.0444 14.2101 ± 0.0510 0.2566 ± 0.0047 0.8302 ± 0.0012 0.7722 ± 0.0060

LDLSF 0.0513 ± 0.0030 2.2221 ± 0.0036 14.3667 ± 0.0265 0.2445 ± 0.0077 0.8320 ± 0.0010 0.7701 ± 0.0026
LALOT 0.0505 ± 0.0033 2.1989 ± 0.0194 14.1855 ± 0.0922 0.2443 ± 0.0088 0.8297 ± 0.0060 0.7888 ± 0.0013

Gene

BFGS-LLD 0.0578 ± 0.0066 2.3008 ± 0.0188 14.3559 ± 0.1556 0.2480 ± 0.0015 0.8300 ± 0.0049 0.7786 ± 0.0070

Ours 0.1071 ± 0.0008 0.4997 ± 0.0064 0.9710 ± 0.0044 0.0970 ± 0.0008 0.9595 ± 0.0063 0.8791 ± 0.0019
Baseline-LDL 0.1109 ± 0.0033 0.5119 ± 0.0155 1.0889 ± 0.0111 0.1355 ± 0.0022 0.9422 ± 0.0333 0.8744 ± 0.0054

INP 0.1089 ± 0.0018 0.5001 ± 0.0044 0.9722 ± 0.0040 0.0977 ± 0.0008 0.9585 ± 0.0061 0.8861 ± 0.0006
PCA 0.1077 ± 0.0006 0.5013 ± 0.0032 0.9720 ± 0.0032 0.0972 ± 0.0005 0.9590 ± 0.0002 0.8853 ± 0.0022

LDL-LRR 0.1107 ± 0.0009 0.5019 ± 0.0010 0.9801 ± 0.0061 0.1045 ± 0.0049 0.9591 ± 0.0022 0.8772 ± 0.0027
LDL-LCLR 0.1177 ± 0.0086 0.5345 ± 0.0040 1.1533 ± 0.0111 0.1559 ± 0.0030 0.9360 ± 0.0049 0.8222 ± 0.0011

LDLSF 0.1155 ± 0.0045 0.5339 ± 0.0062 1.1152 ± 0.0050 0.1540 ± 0.0041 0.9445 ± 0.0020 0.8551 ± 0.0044
LALOT 0.1221 ± 0.0110 0.5440 ± 0.0033 1.1112 ± 0.0040 0.1503 ± 0.0008 0.9477 ± 0.0022 0.8559 ± 0.0002

Movie

BFGS-LLD 0.1310 ± 0.0032 0.5230 ± 0.0022 1.1170 ± 0.0024 0.1595 ± 0.0155 0.9400 ± 0.0003 0.8491 ± 0.0018

Ours 0.3691 ± 0.0021 1.1541 ± 0.0131 2.0880 ± 0.0056 0.4872 ± 0.0026 0.8028 ± 0.0033 0.6800 ± 0.0082
Baseline-LDL 0.3997 ± 0.0077 1.2889 ± 0.0056 2.1992 ± 0.2887 0.5006 ± 0.0044 0.7887 ± 0.0099 0.6558 ± 0.0065

INP 0.3763 ± 0.0022 1.1560 ± 0.0102 2.0889 ± 0.0055 0.4880 ± 0.0023 0.7998 ± 0.0022 0.6703 ± 0.0033
PCA 0.3731 ± 0.0017 1.1555 ± 0.0123 2.0893 ± 0.0048 0.4883 ± 0.0112 0.7999 ± 0.0091 0.6745 ± 0.0044

LDL-LRR 0.3793 ± 0.0010 1.1590 ± 0.0167 2.1084 ± 0.0034 0.4998 ± 0.0012 0.7931 ± 0.0023 0.6634 ± 0.0077
LDL-LCLR 0.4040 ± 0.0082 1.2444 ± 0.0045 2.2000 ± 0.0009 0.4996 ± 0.0013 0.7760 ± 0.0079 0.6555 ± 0.0012

LDLSF 0.4159 ± 0.0055 1.3105 ± 0.0041 2.2155 ± 0.0076 0.5002 ± 0.0006 0.7552 ± 0.0004 0.6234 ± 0.0033
LALOT 0.3881 ± 0.0099 1.4883 ± 0.0012 2.1257 ± 0.0268 0.4990 ± 0.0008 0.7549 ± 0.0021 0.6620 ± 0.0053

M2B

BFGS-LLD 0.3811 ± 0.0044 1.3650 ± 0.0002 2.1992 ± 0.0095 0.4995 ± 0.0005 0.7699 ± 0.0040 0.6532 ± 0.0009

Ours 0.3851 ± 0.0034 1.2580 ± 0.0191 2.1901 ± 0.0042 0.4900 ± 0.0036 0.7007 ± 0.0002 0.6955 ± 0.0004
Baseline-LDL 0.4008 ± 0.0008 1.3365 ± 0.0155 2.2110 ± 0.0339 0.5119 ± 0.0044 0.6697 ± 0.0012 0.6489 ± 0.0055

INP 0.3895 ± 0.0021 1.2640 ± 0.0111 2.1995 ± 0.0095 0.4911 ± 0.0030 0.6990 ± 0.0002 0.6904 ± 0.0001
PCA 0.3903 ± 0.0023 1.2642 ± 0.0155 2.1942 ± 0.0044 0.4903 ± 0.0017 0.6992 ± 0.0001 0.6912 ± 0.0022

LDL-LRR 0.3901 ± 0.0011 1.3000 ± 0.0122 2.2006 ± 0.0039 0.5088 ± 0.0026 0.6992 ± 0.0023 0.6889 ± 0.0007
LDL-LCLR 0.4240 ± 0.0042 1.3444 ± 0.0055 2.2450 ± 0.0016 0.5131 ± 0.0022 0.6261 ± 0.0005 0.5500 ± 0.0012

LDLSF 0.4360 ± 0.0015 1.2185 ± 0.0022 2.2159 ± 0.0076 0.5120 ± 0.0006 0.6261 ± 0.0004 0.5534 ± 0.0030
LALOT 0.3999 ± 0.0009 1.4983 ± 0.0012 2.2207 ± 0.0158 0.4995 ± 0.0002 0.6549 ± 0.0020 0.6411 ± 0.0044

SCUT

BFGS-LLD 0.3992 ± 0.0055 1.5656 ± 0.0163 2.2832 ± 0.0080 0.4966 ± 0.0011 0.6491 ± 0.0040 0.6333 ± 0.0013

(a) Movie (b) M2B (c) SCUT (f) fbp5500

Figure 5: This figure visualizes the data distribution in the label space, with the first row indicating the spatial distribution of
the raw dataset and the second row indicating the predicted label distribution.
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Table 6: The performance of our proposed method with the comparison algorithms on 12 datasets. The best-performing
results are marked in bold.

Dataset Algorithm Chebyshev ↓ Clark ↓ Canberra ↓ K-L ↓ Cosine ↑ Intersection ↑

Ours 0.1212 ± 0.0001 1.1666 ± 0.0123 2.0921 ± 0.0200 0.1031 ± 0.0012 0.9708 ± 0.0012 0.8600 ± 0.0035
Baseline-LDL 0.1287 ± 0.0091 1.1899 ± 0.0333 2.1177 ± 0.0432 0.1100 ± 0.0033 0.9610 ± 0.0022 0.8447 ± 0.0064

INP 0.1251 ± 0.0002 1.1890 ± 0.0120 2.0980 ± 0.0223 0.1053 ± 0.0009 0.9643 ± 0.0015 0.8501 ± 0.0025
PCA 0.1220 ± 0.0030 1.1755 ± 0.0111 2.0999 ± 0.0123 0.1044 ± 0.0014 0.9650 ± 0.0007 0.8534 ± 0.0031

LDL-LRR 0.1222 ± 0.0030 1.1733 ± 0.0038 2.0992 ± 0.0095 0.1077 ± 0.0077 0.9633 ± 0.0021 0.8512 ± 0.0066
LDL-LCLR 0.1277 ± 0.0016 1.1969 ± 0.0039 2.1194 ± 0.0046 0.1135 ± 0.0006 0.9588 ± 0.0044 0.8483 ± 0.0014

LDLSF 0.1270 ± 0.0028 1.1909 ± 0.0164 2.1846 ± 0.0119 0.1193 ± 0.0041 0.9609 ± 0.0019 0.8460 ± 0.0007
LALOT 0.1306 ± 0.0022 1.1921 ± 0.0015 2.1111 ± 0.0171 0.1120 ± 0.0015 0.9430 ± 0.0019 0.8400 ± 0.0004

fbp5500

BFGS-LLD 0.1299 ± 0.0049 1.4655 ± 0.0041 2.1675 ± 0.0024 0.1135 ± 0.0055 0.9595 ± 0.0030 0.8419 ± 0.0018

Ours 0.1421 ± 0.0025 1.3588 ± 0.0321 2.6798 ± 0.0026 0.2006 ± 0.0033 0.9429 ± 0.0023 0.8334 ± 0.0029
Baseline-LDL 0.1489 ± 0.0023 1.3994 ± 0.0451 2.7006 ± 0.0903 0.2118 ± 0.0022 0.9288 ± 0.0019 0.8196 ± 0.0044

INP 0.1456 ± 0.0021 1.3651 ± 0.0441 2.6888 ± 0.0023 0.2017 ± 0.0012 0.9394 ± 0.0026 0.8247 ± 0.0077
PCA 0.1432 ± 0.0020 1.3660 ± 0.0454 2.6889 ± 0.0019 0.2008 ± 0.0010 0.9390 ± 0.0009 0.8320 ± 0.0023

LDL-LRR 0.1426 ± 0.0033 1.3659 ± 0.0211 2.7125 ± 0.0422 0.2149 ± 0.0007 0.9390 ± 0.0013 0.8277 ± 0.0044
LDL-LCLR 0.1515 ± 0.0022 1.5923 ± 0.0117 2.7779 ± 0.0239 0.2244 ± 0.0030 0.9262 ± 0.0062 0.8189 ± 0.0098

LDLSF 0.1488 ± 0.0024 1.3889 ± 0.0086 2.7672 ± 0.0660 0.2302 ± 0.0044 0.9111 ± 0.0051 0.8117 ± 0.0022
LALOT 0.1479 ± 0.0010 1.3659 ± 0.0099 2.6956 ± 0.0144 0.2221 ± 0.0064 0.9311 ± 0.0021 0.8107 ± 0.0008

RAF-ML

BFGS-LLD 0.1499 ± 0.0009 1.6656 ± 0.0066 2.7101 ± 0.0211 0.2541 ± 0.0055 0.9204 ± 0.0023 0.8157 ± 0.0050

Ours 0.2770 ± 0.0081 2.2309 ± 0.0113 5.1097 ± 0.0051 0.5104 ± 0.0054 0.8987 ± 0.0044 0.7987 ± 0.0016
Baseline-LDL 0.2887 ± 0.0040 2.3008 ± 0.0151 5.4999 ± 0.1555 0.6060 ± 0.0042 0.8667 ± 0.0066 0.7774 ± 0.0031

INP 0.2777 ± 0.0021 2.2374 ± 0.0110 5.1163 ± 0.0018 0.5111 ± 0.0029 0.8807 ± 0.0049 0.7891 ± 0.0014
PCA 0.2771 ± 0.0082 2.2343 ± 0.0144 5.1167 ± 0.0072 0.5110 ± 0.0036 0.8837 ± 0.0012 0.7924 ± 0.0041

LDL-LRR 0.2802 ± 0.0021 2.2441 ± 0.0051 5.2002 ± 0.0023 0.5189 ± 0.0035 0.8662 ± 0.0042 0.7789 ± 0.0014
LDL-LCLR 0.2994 ± 0.0045 2.4900 ± 0.0012 6.9609 ± 0.0041 0.6056 ± 0.0031 0.7110 ± 0.0021 0.7110 ± 0.0088

LDLSF 0.3007 ± 0.0002 2.7887 ± 0.0057 5.6101 ± 0.0118 0.6396 ± 0.0022 0.7939 ± 0.0098 0.7660 ± 0.0007
LALOT 0.3133 ± 0.0021 2.3141 ± 0.0016 5.5336 ± 0.0241 0.5233 ± 0.0012 0.8595 ± 0.0550 0.7214 ± 0.0049

Twitter

BFGS-LLD 0.3114 ± 0.0044 2.5511 ± 0.0028 5.7145 ± 0.0041 0.5461 ± 0.0153 0.8335 ± 0.0055 0.7744 ± 0.0020

Ours 0.2801 ± 0.0088 2.3169 ± 0.0064 5.2188 ± 0.0159 0.5314 ± 0.0033 0.8406 ± 0.0044 0.7832 ± 0.0025
Baseline-LDL 0.3134 ± 0.0021 2.6641 ± 0.1051 5.5599 ± 0.0130 0.6007 ± 0.0022 0.8330± 0.0099 0.7661 ± 0.0034

INP 0.2816 ± 0.0031 2.3356 ± 0.0097 5.2222 ± 0.0159 0.5314 ± 0.0013 0.8406 ± 0.0014 0.7741 ± 0.0025
PCA 0.2813 ± 0.0074 2.3226 ± 0.0061 5.2210 ± 0.0103 0.5317 ± 0.0072 0.8405 ± 0.0055 0.7749 ± 0.0092

LDL-LRR 0.2885 ± 0.0012 2.3209 ± 0.0174 5.3459 ± 0.0229 0.5558 ± 0.0032 0.8401± 0.0040 0.7699 ± 0.0037
LDL-LCLR 0.2970 ± 0.0009 2.4444 ± 0.0063 6.1600 ± 0.0041 0.6222 ± 0.0013 0.7919 ± 0.0029 0.7090 ± 0.0070

LDLSF 0.3301 ± 0.0009 2.8888 ± 0.0459 5.9152 ± 0.0121 0.6100 ± 0.0021 0.8139 ± 0.0098 0.7360 ± 0.0037
LALOT 0.3411 ± 0.0026 2.9140 ± 0.0019 5.3333 ± 0.0243 0.5737 ± 0.0012 0.8225 ± 0.0202 0.7144 ± 0.0004

Flickr

BFGS-LLD 0.3200 ± 0.0041 2.7517 ± 0.0060 5.8149 ± 0.0048 0.5961 ± 0.0099 0.8131 ± 0.0011 0.7407 ± 0.0077

(a) Raw dataset (b) Human gene with our method

Figure 6: This figure shows the feature correlation of Gene datasets with our method. Our approach has a clear ability to
decouple features.
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