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Abstract

In microphone array sound source localization based on Time Difference of Arrival (TDOA), tra-
ditional methods for solving the nonlinear equations of TDOA lead to significant deviations and
lower accuracy. To address this issue, this paper proposes a TDOA-based sound source localiza-
tion method using an Improved Dung Beetle Optimizer (IDBO) algorithm. This method enhances
the performance of the Dung Beetle Optimizer (DBO) by employing strategies such as chaotic
mapping, golden sine, and adaptive t-distribution, and applies it to sound source localization. To
evaluate the performance of the IDBO, it is compared with DBO, Harris Hawk Optimizer (HHO),
Gray Wolf Optimizer (GWO), Bald Eagle Search (BES) algorithm, and Whale Optimization Algo-
rithm (WOA). The results showed that in solving benchmark functions and localization models, it
demonstrates faster convergence speed, higher localization accuracy, and better stability.

Keywords: Sound source localization, Microphone array, Time difference of arrival, Dung beetle
optimizer algorithm, Golden sine, Adaptive t-distribution

1. Introduction

Sound source localization technology has extensive applications in various fields such as social life
(Liaquat et al., 2021), industry (Du et al., 2024), and military (Feng et al., 2023). Sound source
localization algorithms can be categorized based on principles into methods like Maximum Out-
put Power Beamforming, High-Resolution Spectrum Estimation, and Time Difference of Arrival
(TDOA) based localization. Maximum Output Power Beamforming requires prior information on
background noise and target sound sources to achieve optimal accuracy, making real-time local-
ization challenging to ensure in practical scenarios where such information is limited (Kocsis and
Horvith, 2024). The High-Resolution Spectrum Estimation technique is primarily designed for nar-
rowband signals. However, when applied to broadband signals such as speech, it necessitates the
decomposition of the wideband signal into narrowband signals. This process may introduce devi-
ations due to conversion losses (Wang et al., 2023). On the other hand, TDOA-based localization
algorithms have a simple structure, fast computational speed, and are commonly used for estimating
the three-dimensional coordinates of sound sources (Zhang et al., 2023).

When employing the TDOA method for sound source localization, the initial step involves
estimating the time delay, typically accomplished through techniques such as Generalized Cross
Correlation (GCC) (Guan et al., 2024) and Adaptive Time Delay Estimation algorithms based on
Least Mean Square (LMS) (Sun et al., 2023). Among these methods, GCC offers the advantage
of low computational complexity and fast operation speed. Subsequently, the estimated delays
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can be utilized for sound source localization; however, direct calculation approaches often lack ro-
bustness and accuracy. Ma et al. (2020) proposed an Improved Harris Hawk Optimizer (IHHO)
algorithm to enhance TDOA localization accuracy; nevertheless, its intricate structure necessitates
initial values computed using the Chan algorithm that are then assigned to IHHO’s initial popula-
tion. Another study by Ghorpade et al. (2021) introduced a novel Gray Wolf Optimization (GWO)
localization model applied to TDOA-based three-dimensional localization but with increased com-
putational time. This paper presents an Improved Dung Beetle Optimizer (IDBO) by incorporating
strategies like chaotic mapping, golden sine function, and adaptive t-distribution to improve the
performance of DBO, thereby achieving rapid and high-precision three-dimensional sound source
localization. Finally, simulation experiments compare the IDBO algorithm with DBO, HHO, GWO,
BES, and WOA algorithms in order to validate its performance in TDOA-based three-dimensional
sound source localization.

2. Localization model

The 3D sound source near-field positioning model is taken as an example to illustrate. Let ‘m’
represent the number of microphone arrays to be measured, (x, y, z) denote the unknown position
of the sound source, and (X;,Y;, Z;) indicate the position of the ¢ microphone. Consequently,
the distance di between the ¢ microphone and the unknown sound source can be mathematically
expressed:

dz':\/(Xz-—x)2++(Yz'—y)2+(Zz'—Z)2+€z’ (i=1,2,---,m) (1

The time delay utilized by the sound emitted from the sound source to reach microphone ¢ is:

= @

The sound velocity, typically 340 m/s, denoted as c, and the measurement noise € are consid-

ered in the following expression. The reference microphone is designated as Microphone 1. By

employing the generalized transformation correlation method, we can obtain the actual measured
delay difference 7;; between Microphone ¢ and the reference microphone.
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According to Equation 4, a system of equations in matrix form can be obtained:
AD=D—-D;+ N ®)

The position of the unknown sound source (z,y) can be solved by the maximum likelihood
method, and its likelihood function is:

T (g [ 222))
_ [\/;W}M_le)(p [_(AD7D+D1)2§2(AD7D+D1)}

where ¢; 1 is an independent Gaussian white noise random variable with a mean of 0 and a variance
of §2. For solving an unknown sound source coordinate that maximizes the likelihood function, it
can be converted to an objective function that solves the following equation:

f(z,y,2) = arg {mm [(AD ~D+D) (AD - D+ Dl)} } %)

Equation 7 is highly nonlinear, which is relatively complicated to solve using general mathemat-
ical methods and has low precision. The intelligent algorithm can be used and (8) can be employed
as an adaptation function, and the optimal solution of the objective function can be obtained by
searching for the position with the highest fitness, that is, the location of the unknown sound source.

fitness = [(AD — D+ D)7 (AD - D + D) )

3. Dung beetle optimizer algorithm

3.1. Primitive dung beetle optimizer algorithm

DBO is an optimization algorithm that simulates the behavior of dung beetles in nature. It abstracts
the biological behaviors of dung beetles, such as rolling, breeding, foraging, and stealing, into
operational processes in the algorithm (Xue and Shen, 2023). Each behavior of dung beetles updates
the position with a specific strategy to find a global optimal solution or a good local optimal solution
in the problem space, which can effectively solve complex search and optimization problems in
practical applications. Although the algorithm is relatively new, its application in multiple fields
shows its potential and value as an optimization tool.

3.1.1. BALL-ROLLING DUNG BEETLE.

When there are no obstacles in their path, the beetles use the sun to navigate, and the intensity of
the sun’s light affects their position. The formula for updating the position of the dung beetle when
it rolls the ball is:

i (t+1) =z, (t)+axkxz(t—1)+bx Az ©)
Az = |z; (t) — X"

where x; (t) represents the position of the ¢ dung beetle at the t iteration, & € (0, 0.02) is the
deviation coefficient, « is either -1 or 1, b € (0, 1) is a random number. Az is used to simulate the
variation in solar irradiance intensity, and X" denotes the globally worst position.
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When a dung beetle encounters an obstacle, it reorients itself by dancing to get a new route.
The dung beetle’s dancing behavior is simulated using the tangent function, where the position is
updated as follows:

€T; (t—i-l) =x; (t)—i—tanG- \xz (t) —x; (t— 1)| (10)

where 0 € [0, 7|, if 6 is equal to 0, /2, or 7, the beetle’s position will not be updated.

3.1.2. DUNG BEETLE BREEDING.

In nature, dung balls are hidden in a safe place by dung beetles, who then choose a suitable spot to
lay their eggs. The security environment is defined as follows:
Lb* = max (X* x (1 - R), Lb)
{ Ub* = min (X* x (1—R),Ub)
where X* represents the current best position of the population. Lb denotes the lower bound of
the search space, and Ub denotes the upper bound of the search space. Lb* and Ub* represent the
lower and upper bounds of the oviposition area, respectively. The inertia weight R = 1 — ¢/T44,
where 1}, is the maximum number of iterations. The female dung beetle will lay eggs by pushing
the ootheca to the determined oviposition area. Each female dung beetle lays only one egg, and the
position update of the ootheca is as follows:

Bl' (t+ 1) = X* ‘l‘bl X (Bz (t) —Lb*) +bg X (Bz (t) — Ub*) (12)

where B;(t) represents the position of the i ootheca at the t iteration, b; and bo are two independent
random vectors of 1 x D, where D is the dimensionality of the optimization problem.

1D

3.1.3. DUNG BEETLES ON THE PROWL.

When young dung beetles grow up, they will climb out of the ground to feed, and the young dung
beetles are more likely to find food in the best feeding areas. The boundaries of the best feeding
areas are defined as follows:

Lb® = maxz (X* x (1 — R), Lb)

LUt = min (X x (1—R),Ub) (13)

where X represents the global optimal position, while Lb? and Ub® denote the lower and upper
bounds of the best foraging area. Once the optimal foraging area is determined, the updating of the
position of the firefly during foraging is shown in Equation 14.

X;(t+1) = X; () + ) x (Xi (1) — Lbb> + Gy x (Xi (t) — Ubb) (14)
Here, X;(t) represents the position of the i firefly at the t iteration, where C} is a random number
following a normal distribution, and C' is a random number ranging from 0 to 1.
3.1.4. DUNG BEETLE STEALING.

The global optimal location is the best place to steal, where thieving dung beetles steal other dung
beetles’ dung balls. The thieving dung beetle’s location is updated as follows:

zi(t+1) =X+ 8 x g x (o (t) = X*|+]z; (t) — X° (15)

Here, z;(t) represents the position of the 4 thief firefly at the t iteration, where g isa 1 x D
random vector following a normal distribution, and S is a constant.



A SOUND SOURCE LOCATION METHOD

3.2. Improved dung beetle optimizer algorithm
3.2.1. TENT CHAOTIC MAPPING.

The initial population of the original dung beetle algorithm is randomly generated, which may re-
sult in an uneven distribution of the initial population, low population diversity, and susceptibility to
falling into local optimal solutions, ultimately leading to incorrect sound source location identifica-
tion. To address this issue, replacing random numbers with tent chaotic mapping for initializing the
population not only affects the entire algorithm process but also yields better optimization results
compared to random numbers (Chen et al., 2024). The iteration formula for tent chaotic mapping is
as follows:

zi/o,0 <z < «

Here, x; is the value at the 1 iteration, and « is a constant between 0 and 1.

3.2.2. INTEGRATION OF GOLDEN SINE INTO ROLLING BALL DUNG BEETLE.

The billiard-ball behavior of the dung beetle algorithm serves as its initial stage, during which it
explores the global position and determines the overall optimization capability of the algorithm. By
incorporating the golden section number from the golden sine algorithm into the position update
process, all values on the sine function can be traversed while continuously narrowing down the
search interval. This results in a high convergence speed and accuracy [13]. The billiard-ball be-
havior of dung beetles is enhanced by integrating the golden sine algorithm, leading to an updated
formula for position calculation.

X;(t+1) = X; (t) + akX; (t — 1) + bAX, 6 < Sp
D (17)

i (t+1) = X; (t)|sin Ry| — Rysin Ry [61X° — 6,X; ()], 6 > Sy

where X;(t) represents the position of the ¢ dung beetle at the sound source point during the ¢
iteration, and X? is the position of the global best sound source point where the dung beetle is
located. § = rand(1), St € (0.5,1], when 6 < St it indicates that the dung beetle rolls freely to
search for the sound source point without obstacles, and when § > S, it indicates that the dung
beetle encounters obstacles and adjusts its rolling direction to search for the sound source point. 6,
and - are coefficients introduced with the golden ratio, with values:

0 =—-7m+2r(1—71) (18)
0y = — + 27T (19)

where 7 = (v/5 — 1) /2 is the golden ratio coefficient.

3.2.3. ADAPTIVE T-DISTRIBUTED PERTURBATION STRATEGY.
The probability density function of the t-distribution (Zhang and Jia, 2024) is:

n+1

_ () 2?77
pt(x)_Mx(IJrn) ,—00 < x <00 (20)
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Here, n is the degree of freedom parameter, also serving as its decision parameter. I" () repre-
sents the gamma function, which is the second Euler integral. Its expression is:

T (”; 1) = [ T ey 1)

The number of algorithm iterations is set to its degree of freedom n. When n=1,¢(n =1) —
C (0,1), indicating that the t distribution is equivalent to the Cauchy distribution. When n = oo,
t(n=o00) = N (0,1), suggesting that the t distribution is equivalent to the Gaussian distribution.
Both distributions are illustrated in Figure 1. Consequently, during the initial stage of algorithm
search, the t distribution exhibits a wide range similar to that of the Cauchy distribution, facili-
tating large-scale exploration of sound source points. In contrast, during later stages of algorithm
search, the Gaussian-like t distribution demonstrates a more concentrated range which enhances
local development capabilities and improves accuracy in solving sound source positions. Addition-
ally, incorporating an adaptive t-distribution disturbance strategy further enhances the Dung Beetle
algorithm’s ability to escape local optimal sound source points. The position variation formula is as
follows:

Xpew = X; + X, - t (iter) (22)
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/o o N
03 1oy i
0.2 J -
Koo ) \ =3 : %
o / \ e :: '.'.
0.1 / \ o
/ N\ ..--"“ e,
0 = - 0
-2 0 2 4 -4 -2 0 2 4
X X
(a)Gaussian distibution (b)T distibution(n=1)
0.4
‘I'\‘ 0.3
03 ;i\
_ / \ 02
> >
D—: 0.2 'll' \‘ I
o4 / \ 0.1
/’ \s
~
0 ,/‘  — 0
-4 -2 0 2 4 -4 -2 0 2 4
X X
(c)T distibution(n=10) (d)Cauchy distibution

Figure 1: T distribution, Gaussian distribution, and Cauchy distribution.

In the equation, X; represents the position of the i little firefly at the source, X,y denotes
the new position after the t-distribution mutation, and ¢ (iter ) represents the t-distribution operator,
with the degrees of freedom parameter being the iteration count, iter. To retain certain information
about the original firefly’s position at the source, a disturbance probability P is set to determine
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whether the firefly at the current source position undergoes t-distribution mutation:

{Xnew:Xi+Xi-t(zter),R<P 23)

Xnew :XZ'7 REP

In the equation, R = rand(0,1) is a random number, and the disturbance probability P is set
to 0.5.
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Figure 2: Test curve of the benchmark function.

4. Simulation experiment and analysis
4.1. Performance test of IDBO algorithm

The performance of the IDBO algorithm and the effectiveness of the proposed improvement strategy
are tested by comparing it with several similar meta-heuristic intelligence algorithms on a bench-
mark function. These algorithms include the DBO, GWO, BES, WOA, and HHO. The parameters
of the benchmark function are presented in Table 1.

The initial population size of each algorithm is set to 30 in order to ensure evaluation accuracy,
and the test is conducted over 500 iterations. The convergence curves are compared and presented
in Figure 2. To mitigate potential contingencies caused by random parameters or specific operations
within the algorithm, a total of 30 independent runs were performed for the comparative experiment.
The minimum value among these results was selected, and the average value along with the standard
deviation across all 30 runs were calculated as shown in Table 2.
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Table 1: Test function parameters.

Function Function name Dimensionality Value range Optimal value
)3 Sphere 30 [-100,100] 0
F, Schwefel2.22 30 [-10,10] 0
F3 Schwefell.22 30 [-100,100] 0
Fy Schwefel2.21 30 [-100,100] 0
Table 2: Test function results of each algorithm.
Test | dicators IDBO ~ DBO  GWO  BES WOA  HHO
Function
F1 min 0 1.7251 7.9080  2.7855 14779  4.6468
x107167  x10% x10748 x1094 x107116
Fl std 0 9.4261 5.7417 5.0554  6.6201 4.0945
x107107 %1033 x10738 x10782 x10™%?
F1 avg 0 1.7210  3.4412  9.9318 1.2739  7.4890
x107107 %1033 x103 x10782 x107100
F2 min 5.1840  9.7976 1.1485 1.7275 7.5619 8.1781
x1027 %1080 x10720 x10730 x10763 x10762
F2 std 0 6.0111 5.2157 5.6865 1.2122  4.4380
x10760 x10720 x10727 x1072 x102
F2 avg 5.9890 1.1179  7.2687 3.3647 2.7592 1.1354
x107282 %100 x10720 x10°%7 x103 x102
F3 min 0 2.7345 9.7452 1.1168 5.2135 7.1061
x107148 1071 x1071? x103 x107 11
F3 std 0 5.9604 17136 9.4679  9.9899 3.8903
x1024 %1077 x10700 x103 x1078
F3 avg 0 1.0882  4.3831 23530  2.9211 7.1082
x102 x10708 x10706 x10* x1077°
F4 min 5.4299 3.2329 1.5042  6.3886 1.1375 9.1743
x10240 %108 %109 x10714 x1076!
F4 std 0 2.3628 1.4825 0.2246  29.2606  9.5747
%1031 x10708 x1071
F4 avg 8.3244  4.3196 1.8501 0.1428 31.4187 1.9370
x1028 %102 x10708 x1071
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The convergence speed and solution accuracy of IDBO are superior to other intelligent algo-
rithms on the benchmark test function, as depicted in Figure 1. Additionally, Table 1 demonstrates
that the IDBO algorithm exhibits the lowest minimum value, average value, and standard deviation
throughout the iterative process. In functions F1 and F3, all three evaluation indexes of IDBO yield
a perfect score of 0, indicating consistent attainment of accurate solutions over 30 repeated opera-
tions. Moreover, in functions F2 and F4, the three evaluation indexes of IDBO outperform those of
other algorithms significantly with a noticeable disparity in magnitudes.

After conducting the aforementioned analysis, IDBO demonstrates exceptional performance
in the given benchmark functions. The substantial disparities in minimum, average, and standard
deviation compared to other algorithms highlight its robust capability in locating global optimal
solutions and ensuring high stability and reliability throughout the iterative process. Simultaneously,
the proposed enhancement strategy’s feasibility and superiority have been validated.

4.2. Localization simulation analysis

The experimental scene for sound source location simulation was set up as a three-dimensional
space measuring 300 cm in length, 300 cm in width, and 300 cm in height. The arrangement of
microphones is illustrated in Figure 3. To assess the accuracy of the algorithm’s positioning, the
mean square error was employed to quantify the deviation between the estimated sound source
point position and its actual location.

| @ mic|
300 [
Figure 3: Microphone array distribution.
1 n
RMSE = [~ (2; = 2pi)" + (ui = )" + (51 — i) (24)
i=1

where n is the number of test sound sources, (z;,y;, z;) represents the estimated position of the
sound source, and (xp;, Ypi, 2pi) represents the true position of the sound source. The population size
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M for each algorithm is uniformly set to 30, and Gaussian white noise with standard deviations of
o=1, 2, 3, 4, 5 cmis added separately. The comparison of mean square error for each algorithm
under different noise intensities is shown in Figure 4.
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Figure 4: Comparison of localization accuracy of different intensity noise.

The comparison results reveal that as the noise gradually increases, the error of each algorithm
also increases. Among them, the IDBO algorithm consistently exhibits the lowest RMSE throughout
the entire range of noise levels, indicating its superior positioning accuracy under identical condi-
tions. Furthermore, the curve slope of the IDBO algorithm is relatively small, implying that even
with an increase in noise level, its performance remains stable and possesses excellent anti-noise
capabilities. Figure 5 illustrates the error histogram for each algorithm under varying numbers of
microphones when subjected to a noise condition o = 3 cm.

The comparison results revealed that the standard deviation of each algorithm decreases as the
number of microphones increases, indicating that utilizing redundant measurement values can en-
hance the positioning accuracy for each algorithm. Among all algorithms, IDBO consistently ex-
hibits the lowest error across different numbers of microphones. However, as the number of micro-
phones continues to increase, the improvement in IDBO accuracy gradually diminishes. In practical
applications, it is crucial to select an appropriate number of microphones based on specific require-
ments.

5. Conclusion

The DBO algorithm in this study is enhanced through the incorporation of chaos mapping, golden
sine, adaptive t-distribution, and other strategies. The performance of the IDBO algorithm is eval-
uated using benchmark functions. Test results demonstrate that the IDBO algorithm surpasses both
the original DBO algorithm and other similar algorithms in terms of convergence speed and accu-
racy. Subsequently, IDBO is applied to solve TDOA equations for sound source localization, with

10
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Figure 5: Error comparison of different microphones.

an analysis conducted on its performance under varying levels of noise and different numbers of
microphones. The findings reveal that IDBO exhibits superior stability and location accuracy.
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