
Proceedings of Machine Learning Research vol 245:1–9, 2024 2024 International Conference on Machine Learning and Intelligent Computing

Decentralized Federated Learning Algorithm Based on Federated
Groups and Secure Multiparty Computation

Fan Wu* WUFANGARY@163.COM
College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China

Maoting Gao
College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China

Editors: Nianyin Zeng and Ram Bilas Pachori

Abstract
To solve the problem that the centralized federal learning based on privacy protection relies on
trusted central servers, has low resistance to malicious attacks, and is prone to privacy leakage, this
paper proposes a decentralized federated learning algorithm based on federated groups and secure
multiparty computation. By establishing a federated group mechanism based on model relevance,
each client has its own federated group, and model parameters are only transmitted among fed-
erated group members, members outside the group are unable to access parameter information.
Secret owners utilize secret sharing algorithms to split their model parameters into several secret
shares, which are then transmitted to federated group members through secure channels. Feder-
ated group members then aggregate all transmitted secret shares by weighted averaging, and the
secret owner receives the aggregated secret shares passed back from all federated group members,
and then uses the secret recovery algorithms to recover secret, and obtains the updated parameter
model. In the federated group, while a member becomes a Byzantine node, it is removed from
the federated group, and another client is selected to join the group based on model relevance. So,
each client participating in federated learning serves as both a data node and a computing node,
federated learning eliminates reliance on servers and achieves decentralization. The good privacy
performance of the proposed algorithm model is theoretically analyzed, and experiments on the
FedML platform demonstrated that the algorithm has stronger resistance to attacks.
Keywords: federated learning, decentralization, privacy protection, federated groups, secure mul-
tiparty computation

1. Introduction

Federated learning (Rahman et al., 2021; McMahan et al., 2016a,b) is a method for multiple un-
trusted clients to collectively build a model aimed at obtaining a more accurate global model (Zhao
et al., 2020). In this approach, clients use local data for model training and then transmit parameters
to a central server for aggregation. However, the transmission process is susceptible to interception
by attackers, leading to leakage of model parameters and potentially inferring the original data of
clients (Mohassel and Zhang, 2017; LI et al., 2022). Even if attackers cannot directly access the
parameters transmitted by clients, they can obtain the aggregated results from the central server .
When encountering malicious central servers or black-box attacks, client data may be compromised.

To counter attackers’ inference attacks, Lyu et al. (2022) proposed several common privacy pro-
tection strategies, such as homomorphic encryption, secure multiparty computation, and differential
privacy. Sun et al. (2020) introduced the concept of Local Differential Privacy (LDP) to address the
problem of information leakage in federated learning due to noise introduced in privacy protection

© 2024 F. Wu* & M. Gao.

WU* GAO

being close to the original data. At the server-side, Gaussian noise is added to conceal the data
of individual participants. Bourse et al. (2018) proposed the homomorphic evaluation framework
FHE-DiNN based on fully homomorphic encryption, combining fully homomorphic encryption and
discrete neural networks to provide a linear complexity neural network related to network depth.
This framework improves the speed of fully homomorphic encryption and reduces complexity, but
also reduces accuracy. Di et al. (2022), combining secure multiparty computation and differen-
tial privacy, perturb the local parameter model obtained by clients during local training and use
Cramer’s secret sharing scheme (Cramer et al., 2000) to share to multiple central servers. In the
server, local parameter models are aggregated into a shared secret global model through multi-party
computation protocols. This method can greatly prevent client data leakage. Since it depends on
central servers, it cannot resist attackers’ black-box attacks on servers. Moreover, when encounter-
ing Byzantine nodes, there may be a decrease in accuracy. Byzantine nodes refer to nodes whose
behavior is arbitrary and may result in message loss, delay, disorder, or duplication. When a node
becomes a Byzantine node, it is very likely to send incorrect messages or fail to transmit parameter
shares within the specified time, leading to a decrease in overall accuracy.

This paper proposes a decentralized federated learning model based on federated groups and
secure multiparty computation (FG-SMC-FL), aiming to address the vulnerability of traditional
federated learning to inference attacks. This model combines two privacy protection methods: se-
cure multiparty computation and differential privacy, by creating federated groups to replace central
servers, effectively protecting the security of client data. Each client is assigned to a federated group
based on model relevance, and parameter shares are transmitted within the federated group to pre-
vent poisoning attacks by attackers. When members of a federated group become Byzantine nodes,
the system removes them and selects new members to ensure the security of user privacy. This
model not only eliminates the dependency on central servers but also transforms all clients into data
nodes and computing nodes, making better use of node resources.

2. Secure Multiparty Computation

Secure Multiparty Computation (SMC) is a specialized computing protocol designed to enable col-
laborative computation among a group of mutually untrusting participants without the presence of a
trusted third-party server. Its key techniques include secret sharing, oblivious transfer, and garbled
circuits. Secret sharing distributes secret information among participants and allows for the recon-
struction of the secret information using a secret reconstruction algorithm when enough shares are
collected.

The task of secret sharing is to split a secret into shares and distribute the shares among several
participants, where recipients need to collect a certain number of shares from participants who
possess the secret to reconstruct it.

This paper employs an efficient secret sharing scheme proposed by Cramer et al. (2000), known
as the (n, n)-threshold secret sharing scheme. Assuming the secret holder D needs to communicate
the secret to a set of participants P {P1, P2, ..., Pn}, where the nth secret share is represented by

sn = s−
n−1∑
i=1

si mod 2l. Here, s ∈ Z2l and 2l refers to a sufficiently large integer greater than any

coefficient, aiming to prevent attackers from inferring the secret through inference attacks.

2

SHORT TITLE

To reconstruct the secret, any k members can combine their respective shares of the secret and
use Lagrange interpolation formula to recover the secret s. Let the k members each possess a secret

share; the original secret can be derived using s =
n∑

i=1
si mod 2l.

3. Method Design

The model proposed, named FG-SMC-FL (Federated Group and Secure Multiparty Computation
Federated Learning), aims to address the vulnerability of models like that proposed by Tang et al.,
which rely on multiple central servers and are prone to malicious attacks. To eliminate dependence
on central servers, FG-SMC-FL employs federated groups based on model relevance and secure
multiparty computation.

In FG-SMC-FL, secret owners use secret sharing algorithms to divide their model parameters
into several secret shares. These shares are then distributed to members of federated groups through
secure channels. Each member aggregates all received secret shares using weighted averaging to
obtain aggregated parameters. The aggregated parameters are then transmitted back to the secret
owners. The secret owners utilize secret recovery algorithms to reconstruct the secret, obtaining
updated model parameters. This process iterates until model convergence.

If any member of a federated group becomes a Byzantine node, they are removed from the
group, and a new client is selected based on model relevance. The structure of the FG-SMC-FL
model is illustrated in Figure 1.

Figure 1: A federated learning framework based on federated groups and secure multiparty com-
putation.

In Figure 1, r represents the current round, client i is the secret owner, and client i first selects
K clients with the highest relevance based on model relevance as federated group members, and
sequentially labels the clients as {i1, i2, ..., ik, ..., iK}. s represents the secret shares transmitted

3

WU* GAO

between clients, where s(r, i, ik) denotes the secret share transmitted from client i to client ik in
round r.

The model establishes a federated group based on model relevance, reducing the number of dis-
tributed secret shares to address communication overhead among multiple participants. Addition-
ally, it replaces the server-side with clients to achieve decentralization, thereby mitigating threats
from malicious server-side entities. Before introducing specific solutions, let’s briefly introduce the
symbols used, as shown in Table 1.

Table 1: Symbol Description Table.

Symbol Description

N The number of participants
bi,j The model relevance between participant i and participant j
α Hyperparameter
wr
i The client of participant i in round r

r The current round
s Secret shares transmitted between clients
i Client identifier
Di The dataset of client i
ik Member identifier of the federated group where client i belongs
s(r, i, ik) Secret share transmitted from client i to client ik in round r
K Upper limit of federated group members
s Secret shares transmitted between clients

3.1. Federated Group Established Based on Model Relevance

If clients train their models in similar application contexts, they can learn more from the training
process. Therefore, clients tend to participate in federated learning with other participants whose
model applications are similar to theirs. To identify these participants similar to the current client,
a federated group can be established based on model relevance. All participants first send their
personalized parameters to all other participants. The secret owner selects K clients with the high-
est model relevance to form a federated group. The model relevance between participant i and
participant j is calculated using the following equation:

bi,j = eα cos(wr−1
i ,wr−1

j) (1)

where α is a hyperparameter, cos(wr−1
i , wr−1

j) representing the cosine similarity between wr−1
i and

wr−1
j , and higher values of bi,j indicate smaller differences between wr−1

i and wr−1
j . Participant i

selects the K members with the highest bi,j values to form the federated group.

3.2. Federated Learning Model Based on Federated Groups and Secure Multiparty
Computation

To address the issue of reliance on a trusted third-party central server in centralized federated learn-
ing, this paper proposes a federated learning model based on model relevance, which creates a

4

SHORT TITLE

federated group for each client. Clients establish federated groups by selecting K members based
on model relevance. Each client receives initialized parameter shares from members within the fed-
erated group, then locally restores them, conducts local training, and obtains new parameters for
the next round. Subsequently, using secret sharing algorithms, the client divides the secret into K
secret shares and transmits them to other members of the group. Upon receiving all secret shares,
federated group members aggregate them using weighted averaging to obtain aggregate parameters,
which are then transmitted back to the secret owner. The secret owner employs secret recovery
algorithms to restore the secret and obtain the updated parameter model, repeating these steps until
achieving the desired objectives.

Compared to centralized federated learning, which requires a reliable central server, the decen-
tralized federated learning framework based on federated groups and secure multiparty computa-
tion allows any client to act as a secret distributor or federated group member. This eliminates
the reliance on a reliable central server and mitigates security risks associated with storing model
parameters on a single server.

Here is the detailed algorithm for the proposed model:

Input: Machine learning algorithm M , client set C = {C1, . . . , Cm}, local dataset
D = {D1, . . . , Dm}, federated group A, differential privacy parameters ε and δ, minimum
number of clients for parameter uploading K, total training rounds R, model pruning weight P .
Output: Trained model S.
1. for r← 1 to R
2. for Ci ∈ C do
3. if r = 1
4. Initialize model parameters
5. Select t clients with high model relevance from C to join federated group A, A =
{A1, . . . , At}
6. Download initial global model s0 from A1

7. else
8. Download shares s(r − 1, *, j) from Aj , j ∈ {1, , t}
9. Restore sr − 1← SecRec(s(r − 1, *, 1), . . ., s(r − 1, *, t))
10. end if
11. Local training sri←M(sr−1, Di)
12. Prune weights sri← max (1, ∥ sri ∥ /P)
13. Add noise sri← sri + noise(ε, δ, P, K)
14. Calculate shares (s(r, ∗, 1), . . . , s(r, ∗, t))← SecShr(sri, t)
15. Send s(r, i, j) to sj, j ∈ {1, . . . , t}
16. end for
17. for Aj ∈ A do
18. Wait until enough parameters s(r, i1, j), . . . , s(r − 1, iK , j) are collected
19. Aggregate parameter shares: s(r, i1, j)← (s(r, i1, j) + ...+ s(r − 1, iK , j))/K
20. end for
21. end for
22. Download parameter shares and restore
23. Output final model S← sR

5

WU* GAO

Given the instability of networks in practical application scenarios, the above algorithm can tol-
erate client disconnections to some extent. If a client disconnects, it will simply skip the current
round of communication loop and not participate in the current round of training. Since the secret
sharing algorithm distributes shares to all federation group members in parallel after splitting, when
a client disconnects, it will not send parameter shares to group members. Additionally, since fed-
erated groups are established, if a member within the group becomes a Byzantine node, meaning
there are delays in message reception or message sending failures, the system will remove that node
and select a replacement based on model relevance from the participants. This ensures that data
will not be leaked by corrupted user endpoints and that missing group members will not prevent the
recovery of parameter shares.

3.3. Privacy Analysis

Currently, federated learning still relies on a central server and is susceptible to poisoning attacks
and inference attacks. This section analyzes and demonstrates the privacy protection effectiveness
of the proposed algorithm FG-SMC-FL and compares it with the algorithm proposed by Tang.

Since conventional federated learning relies on a reliable third-party central server, if the server
is subjected to poisoning attacks and is compromised, the privacy of all client data participating
in federated learning will become transparent. Some semi-honest participants may attempt to infer
sensitive data of target clients by obtaining the gradient parameters uploaded by the target clients. To
address this, the proposed algorithm provides a decentralized federated learning architecture where
all participating clients can perform calculations without the need for any trusted central server.
Each participant acts as both a data node and a computing node, ensuring that when the number of
adversaries is within a certain range, client data participating in federated learning cannot be stolen.

Theorem 1: When the number of untrustworthy clients is less than t, where 0 ≤ t ≤ N − 1 and
N is the number of clients participating in federated learning, adversaries cannot obtain any data
from any trustworthy client.

Proof: For any trustworthy client Ci, considering that corrupted clients can only receive param-
eter shares s(r, i, j) updated from Ci each round; when the number of corrupted clients is less than
t, adversaries cannot recover any parameter s(r, i, j), and thus cannot obtain any useful information
from the parameter shares. Moreover, since adversaries cannot obtain parameters, they cannot ag-
gregate all collected parameter shares or send aggregated parameters to the secret owner, resulting
in being identified as Byzantine nodes and removed from the federated group. Compared to the
algorithm proposed by Tang, which needs to consider whether the server is corrupted, the overall
privacy of the proposed algorithm is higher.

4. Experimental Results and Analysis

To verify the privacy protection performance of the proposed algorithm, we analyze and evaluate
it from three aspects: privacy, resilience to attacks, and efficiency. Section 2.3 has already demon-
strated the privacy of the proposed algorithm model, and this section mainly tests the accuracy of
the algorithm through experiments.

The experiments were conducted on the FedML platform, an excellent federated learning frame-
work. Cloud servers were used to simulate communication between multiple client nodes on the
FedML platform. Python was used to implement local model training, creation of federated groups,
secure multiparty computation, and communication between nodes after adding differential privacy.

6

SHORT TITLE

The MNIST dataset was used for the experiments, and a convolutional neural network was em-
ployed for training. The neural network consists of two convolutional layers with kernel sizes of
5∗5 and strides of 10 and 20.

4.1. Experiment 1: Resilience to Attacks

To analyze and verify the resilience to attacks of the proposed algorithm, we compared the training
results after 100 communication rounds between the proposed algorithm and the algorithm proposed
by Tang Lingtao et al., both with and without Byzantine nodes. The accuracy under different training
methods is shown in Table 2.

Table 2: Accuracy under different training method.

Scenario Method Accuracy

No Byzantine Nodes
TANG 96.12
FG-SMC-FL 96.20

With Byzantine Nodes
TANG 90.58
FG-SMC-FL 95.12

From the table, it can be observed that in the absence of Byzantine nodes, the accuracy of the
proposed algorithm and Tang’s algorithm is very similar, demonstrating that the proposed algorithm
can replace the central server functionality in Tang’s algorithm. However, Tang’s algorithm has
lower accuracy when facing Byzantine nodes. This is because although Tang’s algorithm can toler-
ate client disconnections to some extent, persistent disconnection of a client will affect the accuracy
of the overall results. In contrast, the proposed algorithm replaces the disconnected Byzantine node
with a new client based on model relevance, resulting in higher accuracy.

4.2. Experiment 2: Efficiency Analysis

In this experiment, we compared the proposed algorithm with Tang Lingtao’s algorithm to test the
efficiency of the model. The total time taken for the proposed model and Tang’s algorithm under
different data volumes (3000 and 6000) is shown in the Figure 2.

From the graph, it can be seen that the proposed solution is very similar to Tang’s algorithm.
The reasons for this are as follows:

1. In the proposed model, communication occurs only between the secret holder and feder-
ated group members each round, and communication between members outside the federated
group is not involved. Additionally, communication between the secret holder and federated
group members is parallel. Therefore, compared to Tang’s algorithm, there is no significant
increase in communication overhead.

2. The amount of communication between nodes remains unchanged. Both Tang’s algorithm
and the proposed algorithm train data locally, so only parameters are transmitted between
nodes without additional data.

3. The time required for aggregation remains unchanged. Both algorithms average the parame-
ters locally on the client side without the need for interaction.

7

WU* GAO

Figure 2: Total training time under different data volumes.

5. Conclusion

Through the study of existing federated learning and privacy protection methods, a decentralized
federated learning method based on federated groups and secure multiparty computation was pro-
posed. Secure multiparty computation is used to secret share client model parameters, and the
client’s model parameters are split into several secret shares to prevent inference attacks. A feder-
ated group scheme based on model relevance was designed to replace the central server with par-
ticipating clients, achieving decentralization. The model currently considers semi-honest clients,
assuming that the original parameter model is reliable during secret transmission. However, dealing
with malicious clients, who may transmit maliciously tampered data during secret sharing, will be
a future challenge.

References

Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic eval-
uation of deep discretized neural networks. In Advances in Cryptology–CRYPTO 2018: 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part III 38, pages 483–512. Springer International Publishing, 2018.

Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-party computation from
any linear secret-sharing scheme. In International Conference on the Theory and Applications
of Cryptographic Techniques, Berlin, Heidelberg: Springer Berlin Heidelberg, pages 316–334,
2000.

WANG Di, ZHANG Lufei, et al. Federated learning scheme based on secure multi-party computa-
tion and differential privacy. Computer Science, 49(9):297–305, 2022.

Shaobo LI, Lei YANG, Chuanjiang LI, Ansi ZHANG, and Ruishi LUO. Overview of federated
learning: Technology, applications and future. Computer Integrated Manufacturing System, 28
(7):2119, 2022.

8

SHORT TITLE

Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun Zhao, Qiang Yang, and S Yu
Philip. Privacy and robustness in federated learning: Attacks and defenses. IEEE transactions on
neural networks and learning systems, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pages 1273–1282, 2016a.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning
of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2(2), 2016b.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, pages 19–
38, 2017.

KM Jawadur Rahman, Faisal Ahmed, Nazma Akhter, Mohammad Hasan, Ruhul Amin, Kazi Ehsan
Aziz, AKM Muzahidul Islam, Md Saddam Hossain Mukta, and AKM Najmul Islam. Challenges,
applications and design aspects of federated learning: A survey. IEEE Access, 9:124682–124700,
2021.

Lichao Sun, Jianwei Qian, and Xun Chen. Ldp-fl: Practical private aggregation in federated learn-
ing with local differential privacy. In The Thirtieth International JointConference on Artificial
Intelligence, Montreal, Canada, pages 1571–1578, 2020.

Qi Zhao, Chuan Zhao, Shujie Cui, Shan Jing, and Zhenxiang Chen. Privatedl: privacy-preserving
collaborative deep learning against leakage from gradient sharing. International Journal of Intel-
ligent Systems, 35(8):1262–1279, 2020.

9

	Introduction
	 Secure Multiparty Computation
	 Method Design
	 Federated Group Established Based on Model Relevance
	 Federated Learning Model Based on Federated Groups and Secure Multiparty Computation
	 Privacy Analysis

	 Experimental Results and Analysis
	Experiment 1: Resilience to Attacks
	Experiment 2: Efficiency Analysis

	 Conclusion

